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Abstract— Digital Twins (DTs) rely on the alignment of a 

physical asset and its digital representation to provide a useful 

insight into its operation. By bridging the gap between a physical 

entity and process data collected in real time, DTs have been at 

the forefront of the most recent wave of industrial digitisation. 

Due to the great variety of assets which can be modelled with a 

DT, there is no standardised way to develop one. Successful DT 

implementations found in literature vary from being strongly 

dependent on physical simulations, to being solely data-driven. 

Therefore, the consideration of the DT design process addressed 

in this work is necessary for incorporating physics-based 

models. To this end, we group DTs into three categories, namely: 

purely data-driven DTs, physics-based DTs and physics-

informed DTs. We choose representative cases from literature 

to explain their distinguishing features, describe the intrinsic 

differences, as well as draw conclusions on their advantages and 

limitations. We then present the case study of developing a DT 

for FastBlade, a facility for regenerative testing of tidal turbine 

blades. We discuss the challenges and opportunities associated 

with the facility to assess the suitability of each of the three 

distinct DT development strategies. The complexity of the 

energy-recovery system, unknown asset internals, as well as the 

broad scope of the sensing and logging network are identified to 

be the key decisive factors.  Finally, we suggest developing a 

physics-informed DT for FastBlade as the optimal route.  

Keywords— Digital Twins, Data-Driven Engineering, 

Machine Learning, Physical Models 

I. INTRODUCTION 

A. Digital Twins – Definition and Implementation   

A Digital Twin (DT) is a coupling of a physical asset and 
its corresponding model in the digital domain. While the 
concept of using a virtual model to improve the operation of 
an asset or an engineering process is not novel, the key 
distinguishing feature of DTs is the bi-directional flow of data 
between the physical and virtual twins  [1]. Unlike a digital 
shadow (DS), the DT not only updates together with the state 
of the physical asset, but it can also have a direct impact on 
the operation of its real-word counterpart. The influence of the 
DT on the physical asset can either require human 
intervention, or be fully-automated [2]. A schematic DT 
model is presented in Fig. 1. Another important feature of 
many DT applications is its ability to operate close to real-time 
conditions [3]. By seamlessly transferring data between the 
physical and digital assets, competitive advantage can be 

achieved across a variety of fields, including production [4], 
[5], [6], hydraulic systems [7], [8] and modelling physical 
phenomena [9]. This is sometimes referred to as moving 
towards “cyber-physical” systems operation and is the 
cornerstone of a system-of-systems approach trying to 
integrate DTs into a seamless workflow process at a facility or 
factory [10].  

The major benefits of incorporating DTs into production 
and operation pipelines include improved asset monitoring 
and management, enhanced simulation capabilities, increased 
efficiency, as well as better planning and analysis [11]. Recent 
years have brought about a unified view on what characterises 
a DT. However, due to their great dependence on a particular 
asset modelled, there does not exist a unified approach to 
developing DTs.  

Fig. 1. Schematic interconnection between a physical asset and its DT. 
Source: authors, based on [1]. 

B. Development of a Digital Twin 

Since any industrial asset can have its DT, each use case 
will result in a unique set of challenges. The variation in asset 
complexity, its operation environment and availability of 
historic operation data makes it difficult to adopt a common 
DT development framework. Therefore, it is possible to find 
successful DT implementations which will be seemingly 
completely different from one another.  

Addressing the fundamental matter of what it takes to 
create a digital twin, soon leads to one of the most important 
design dilemmas, namely – the need for a physical simulation. 
The recent developments of simulation packages have made 
modelling physical processes unprecedently accurate. 
Complex physical models constitute an indispensable tool in 
areas of science and engineering which are too many to 



mention. However, creating a physics-based model comes 
with an upfront development cost and running it is often 
associated with a high computational demand. Therefore, the 
study of different industrial applications shows the use cases 
of both physics-based and purely data-driven DTs. The aim of 
this work is to introduce the inherent trade-offs between DTs 
with varying reliance on physical models in the light of 
relevant literature and the case study of FastBlade, a tidal 
turbine blade testing facility. We then aim to discuss the 
considerations for deciding on a given DT development 
strategy for FastBlade.   

C. Paper Outline and Methodology 

In this paper we first aim to review the existing systematic 
review studies which have been carried out to characterise the 
nature of DTs. We then propose a practical division of DTs 
into three categories and consider the gap which has been 
identified in the process of DT development and which relates 
to the use of physical knowledge of the modelled system. We 
review specific use cases from each of the suggested 
categories to understand the reasons for the design choices 
made. We then draw conclusions on the extent of the use of 
physics-based modelling based on available resources and 
desired DT functionality. The findings are applied to a 
particular industrial use case and the insights into the choice 
of the suitable DT development strategy are shared. Finally, 
we use the knowledge gained to propose a generalised strategy 
for choosing the optimal DT development plan. The division 
of DTs into the suggested categories is regarded as a helpful 
tool in the process of systemising knowledge about building 
DTs, rather than an unfailing method of classifying mature 
DTs. Therefore, this work does not constitute a contribution 
in the area of DT ontology, but rather focuses on deriving a 
particular heuristic, applying it to a specific industrial 
application and generalising the learning outcomes.  

II. LITERATURE REVIEW 

In recent years, considerable research has been carried out 
to characterise DTs. Table 1 presents five extensive systematic 
reviews of DTs, together with their main contributions.  

TABLE I.  THE SUMMARY OF SELECTED DT REVIEWS 

Ref. Title Insight 

[12] 

Digital Twin 
applications toward 
Industry 4.0: A 
Review 

Presents DTs in the light of Industry 
4.0, discusses their features and 
presents a list of the most common 
applications. 

[13] 

Digital twin 
paradigm: A 
systematic literature 
review 

Provides an up-to-date picture of the 
main DT components, features and 
associated problems, considering the 
ongoing research in various 
application domains. 

[14] 

Characterising the 
Digital Twin: A 
systematic literature 
review 

Provides DT characterisation, 
identifies knowledge gaps and 
indicates the areas of future 
research. 

[15] 

A systematic review 
of digital twin about 
physical entities, 
virtual models, twin 
data, and applications 

Provides DT definition, presents an 
overview of the DT components, 
characteristics and applications in 
the light of the current research and 
suggests future recommendations. 

[16] 

Systematic review of 
digital twin 
technology and 
applications 

Explains the DT concept and 
definition, provides a historical 
context, suggests a conceptual DT 
model and discusses current 
challenges and future development. 

The review papers listed in Table 1 focus on establishing 
the most suitable definition of DTs, list their applications and 
discuss the future directions of research. Therefore, they 
should be referred to for the more in-depth study of the DT 
specifications. However, as it was stated in the introduction, 
DTs lack a common development strategy. This might be 
particularly important for deciding on the extent to which 
physics-based models need to be integrated into them, since 
physical modelling requires substantial resources. In the 
following subsections, the DTs found in literature are divided 
into three classes to help systemise the conclusions drawn.  

A. Division of Digital Twins and Nomenclature 

Special care must be exercised when differentiating 
between different kinds of DTs based on their dependence on 
physical models. In essence, all DTs are data-driven, as in 
line with their definition, DTs rely on a continuous, bi-
directional flow of information (i.e., data). What is more, 
although not all DTs seem to strictly rely on physical models, 
collection of physical data over time at pre-defined system 
locations may also constitute a physical model in the broader 
sense. Although every DT may show certain features of 
hybridisation, in this work we refer to three different classes 
of DTs, based on the extent to which they rely on physics-
based models, namely: 
- Purely data-driven digital twins (DDDTs), which rely 

solely on statistical correlations;  
- Physics-based digital twins (PBDTs), which use a 

comprehensive physics-based simulation modelling 
entire asset operation;  

- Physics-informed digital twins (PIDTs), which rely on a 
limited physical insight into the operation of an asset.  

The division is made to distinguish between these classes 
of DTs to allow for generalisation and drawing relevant 
conclusions. The key differences between these DT types will 
be further discussed in the following sections.  

B. Nature of the Problem  

Although the question of necessity and scope of physics-
based simulations in DTs is universal, only the publication by 
Erikstad [17] is found to discuss differences between PBDTs 
and DDDTs directly. The author observes the difference 
between structural physics-based models, which rely on finite 
element analysis (FEA), and machine learning (ML) models, 
which are based on statistics and data science to monitor, 
diagnose and predict system output based on the input data 
streams. Comparing the two approaches, it is concluded that 
though fundamentally different, they each offer unique 
benefits and are often complementary to each other. Erisktad 
also provides examples of using statistical methods to 
improve performance of a DT by incorporating 
computational offloading and surrogate models. The aim of 
this literature review is to deepen the understanding of the 
differences between DDDTs, PBDTs and PIDTs, and to find 
criteria facilitating the choice of a suitable DT development 
strategy.  

C. Purely Data-Driven Digital Twins 

DTs incorporating no physics-based models are almost 
universally found in systems whose operation is easily 
divisible into states and events, resulting in discrete process 
outcomes, such as success or failure. DDDTs are commonly 



found in assembly line processes, where a number of distinct 
stages needs to be completed to output a desired product.  

Resman et al. [18] develop a framework for DDDT 
development for discrete manufacturing systems. They 
validate their work using a process in which a robotic arm 
inserts blocks into pallets to create desired patterns. The DT is 
capable of measuring the start and end time of the process and 
classifies whether the assembled output matches the desired 
template. Friedrich et al. [19] describe a case study of an 
assembly line producing parts for a quadcopter drone. The 
work showcases the development of a high-fidelity DDDT, 
integrated into the pilot assembly line to continuously monitor 
the process. The DT tracks the assembly line failures and by 
using statistical methods, outputs a reliability function for 
each asset. Both publications demonstrate the success of 
implementing DDDTs into a discrete production system, 
providing valuable insight into the probability of a successful 
process completion. However, the nature of the solution limits 
the insight into a problem once it has occurred. The solutions 
developed do not provide information about the severity of a 
failure or suggestions how an asset can be fixed.  

The publication by Vishnu et al. [20] describes the 
development of a DDDT for predicting key performance 
indicators (KPIs) in a CNC machining process, namely 
energy and surface roughness. The critical cutting parameters 
for optimisation are identified using a correlation matrix and 
are used to train predictive models. A support vector machine 
(SVM), a fully connected deep neural network (FCDNN) and 
a gaussian process regression (GPR) are model types used for 
KPI prediction. The predicted values are communicated to 
the operator, who can manually adjust feed rate and spindle 
speed and see the predicted power product quality and 
associated energy consumption. The DDDT developed 
bypasses lack of physical knowledge about the system by 
using an extensive training dataset, at the same time 
providing just a black-box image of the entire process.   

D. Physics-Based Digital Twins 

Considering the reliance of DTs on physics-based 
simulations, PBDTs appear to be on the other side of the 
spectrum relative to the examples described in the previous 
section, as they stem from a comprehensive physical 
representation of an asset. Rituraj and Scheidl [7] describe the 
development of a DT for a counterbalance valve (CBV), based 
on its physical model. Experimental data are obtained under 
various operational conditions and is subsequently used for 
parameter identification to match the model’s output with 
empirical results. Thanks to the physical relationships 
described, the model is capable of predicting outputs of an 
asset in operating conditions beyond those used for parameter 
identification. The physics-based model also offers valuable 
insight into the valve’s operation. However, expert knowledge 
of the CBV topology is a prerequisite for accurate physical 
model development. Anda et al. [8] describe the development 
of a control valve. Their aim is to predict the local valve flow 
coefficient at various operation positions of the valve. The 
methodology relies on a computational fluid dynamics (CFD) 
model, which is calibrated by running a real valve in the 
laboratory. Subsequently, an artificial neural network (ANN) 
is used to link chosen operation parameters with the valve 
flow coefficient outputs, providing a satisfactory training 
accuracy. The approach combines the use of a physics-based 
model with ML. The calibrated CFD model serves multiple 

purposes, including behaviour prediction and ease of synthetic 
data generation. Similar to Rituraj and Scheidl [7], the detailed 
knowledge of asset internals is demonstrated by the authors in 
the development of a physics-based model.  

The work done by Kapteyn et al., presented in [21], [22] 
shows the development of a DT for a 12-ft wingspan 
unmanned aerial vehicle (UAV). The component-based 
approach is acquired by producing reduced order models of 
the asset to generate structural models suitable for real-time 
deployment. A plurality of physical models is developed for 
the UAV, representing a variety of degradation levels of the 
asset. Based on the sensor readings, the most suitable model 
is chosen in real time to best optimise the mission trajectory 
of the UAV. The authors succeed in creating models which 
are both accurate and computationally-feasible. However, as 
it is the case with any high-fidelity model, detailed 
knowledge of the behaviour of the asset is required. In 
another work, Kapteyn et al. [23] offer a broader insight into 
the concept of interaction between the physical and digital 
works. Basing their idea on a probabilistic graphical model, 
they create an abstraction of a coupled asset-twin dynamical 
system. This allows them to use concepts from areas such as 
Bayesian statistics and control theory to generalise the 
corelation between observed quantities (i.e., deterministic 
values) and estimated quantities (usually characterised by a 
probability distribution), making the problem of DT 
development scalable. The probabilistic model can be used 
for tailoring a computational model, to reflect the individual 
characteristics of a physical asset with great fidelity. 
Although acquiring the probabilistic approach improves the 
performance of a DT, the suggested method still relies on the 
existence of pre-developed physical models, which in the 
case of the UAV are finite-element structural models.  

E. Physics-Informed Digital Twins 

Somewhere in-between the DDDTs and PDDTs are the 
Physics-Informed Digital Twins (PIDTs). These rely heavily 
on data-derived models, which are, however, constrained 
using partial physical modelling of key parameters, even 
though a comprehensive physical model is not known or 
possible to develop. 

For example, similar to the work presented by Kapteyn et 
al. in [23], Møller et al. [24] consider a probabilistic approach 
to DT development. The reasons for their decision result from 
the fact that the phenomena which they are modelling, namely 
ultrafiltration and microfiltration membrane separation, are 
characterised by associated uncertainties and complex 
interactions and do have a rigorous theoretical description. 
The authors propose Stochastic Greybox Modelling and 
Control (SGMC) based on stochastic differential equations 
describing certain physical phenomena known to occur in the 
filtration process and quantify various inherent uncertainties. 
The method serves as a means of data-driven future 
forecasting in a problem which is not represented by a 
conventional physical model, such as a CFD-based 
simulation. Although the solution provided by the authors is 
complex, they manage to prove the efficacy of the method and 
show that DTs can be developed for systems which are hard 
to describe accurately with known physical tools.  

The paper by Zhang and Zhao [25] describes the process 
of developing a DT for a wind farm, which also bypasses the 
development of a comprehensive physical model. The key 



operational parameters of the windfarm identified in the 
publication are the energy output and the structural fatigue. 
Both parameters are determined by the spatiotemporal flow 
field around the turbines, which however, does not have an 
accurate physical model due to the limitations of current 
measurement, modelling and prediction tools. As a solution 
to the problem, available theoretical models based on Navier-
Stokes equations and actuator disk method for wind turbine 
modelling are coupled with Lidar measurements and 
operational data of the turbines via a physics-informed ANN. 
High-fidelity models are compared against predictions made 
by the ANN to prove that even complex air dynamics 
phenomena are accurately reconstructed by the DT created. 
The publication presents how both physical and digital 
domains are linked using a physics-informed ANN, where 
information obtained from sparse Lidar data are used 
alongside a simplified Navier-Stokes module and a turbine 
module, informing the ANN about the wind aerodynamics 
and the wind turbine properties respectively. This way, the 
lack of an overarching physical model is circumvented in the 
system and satisfactory performance is achieved. A similar 
approach is described by Yucesan and Viana [26], who 
develop a PIDT to monitor fatigue of the main bearing of a 
wind turbine and estimate the product life. The physics-
informed model quantifies output uncertainties and uses a 
smaller dataset relative to a DDDT. As a result, it is 
concluded that the DT reaches satisfactory performance and 
the impact of varying lubricant quality in the bearings is 
mitigated. The authors claim that the model is more reliable 
than a purely data-driven, black-box approach. However, the 
physical models need to follow linear algebra requirements 
dictated by the ANN structure and frequent bearing 
inspections are initially required to build up a representative 
dataset.  

F. Literature Review Findings  

The literature review describes numerous case studies of 
DT development, grouped into three categories based on the 
extent to which they rely on physics-based models. The aim 
of this subsection is to draw conclusions from the study and 
formalise them to aid the decision-making process for 
choosing the most optimal DT development strategy.  

It is evident that DDDTs are suitable for discrete 
processes, typically in production/assembly lines, where the 
division into individual process states is evident. Statistical 
methods can be used to locate failures within the process and 
estimate the reliability of a system. The fact that DDDTs do 
not offer a detailed insight into the operation of an asset has 
more serious implications for processes with non-discrete 
success measures, such as CNC machining [20]. Although a 
purely data-driven approach may offer a satisfactory solution, 
a solely statistical correlation of process parameters may 
hinder the operator’s understanding of asset operation and 
would require collecting a new dataset in the case of e.g., 
adding a new process parameter.   

The literature review has shown that PBDTs offer 
considerable insight into the operation of an asset, and for the 
discussed cases, result in satisfactory DT performance. In fact, 
it seems natural to choose a comprehensive physical model to 
represent the behaviour of an asset as faithfully as a twin 
would. There also exist ways in which computational demand 
of such models can be decreased, such as by using reduced-

order models [22], [27], to make them more suitable for near 
real-time deployment. The use of detailed physical 
simulations does not prohibit incorporation of advanced 
statistical methods either, which can be used, e.g., to aid the 
decision-making process.  

However, creating a comprehensive physical model of an 
asset is not always possible. The referenced literature shows 
cases when a faithful theoretical model cannot be constructed 
due to unpredictable behaviour of the filtration process [24] or 
when creating such a model is not feasible due to strong 
nonlinearity and many degrees of freedom present in the 
system [25]. Therefore, PIDTs are seen as a solution which 
allows some physical dependences to be introduced into the 
model of an asset, while relying heavily on experimental data. 
Such solutions offer more control over the behaviour of the 
model due to the deterministic part present, at the same time 
taking advantage of statistical methods.  

In the next section, the distinct advantages and 
disadvantages of these models will be explored in context of 
a specific application of a DT at an advanced research 
facility.    

III. FASTBLADE CASE STUDY 

A. FastBlade – Facility at the Forefront of Innovation  

FastBlade, pictured in Fig. 2, is the world’s first 
regenerative fatigue test facility [28]. It is run by the 
University of Edinburgh and is located in Rosyth, Scotland. 
The site allows for testing mechanical performance of metal 
and composite structures of up to 14 metres, such as beams, 
columns and blades. The predominant purpose of the facility 
is to investigate the properties of tidal turbine blades by 
subjecting them to both static and cyclic loads. This way, 
fatigue applied to a specimen simulates the loads a blade 
would experience over its lifetime of subsea deployment at an 
accelerated pace. The tidal energy potential in the UK is 
estimated at 50 TWh per year, constituting about half of the 
potential European resource [29]. By validating the design and 
manufacturing processes at FastBlade, the tidal energy 
generation technology can be de-risked, thus helping exploit 
this great potential in the UK and worldwide.  

Fig. 2. The main experimental setup at FastBlade [30]. The specimen under 
test is mounted on the reaction frame and deflected by three actuators.  
Source: The University of Edinburgh. 

FastBlade is equipped with a proprietary energy-recovery 
system which allows efficient energy transition between 
electric motors, pumps and the deforming specimen. Thanks 
to this, FastBlade can carry out tests at significantly reduced 
energy consumption, making the process much more 
economical.  This state-of-the-art solution circumvents the 
challenge of the high natural frequency of short and stiff tidal 

 



blades, which prohibits the energy-efficient actuation of a 
specimen at its resonant frequency. A great number and 
variety of sensors can be found across the site, including 
accelerometers, strain gauges and thermocouples on the test 
specimen, as well as power transducers, rotational encoders, 
flowmeters and other sensors installed on the pumps, electric 
motors, inverters, actuators and oil pipes. The sensors are 
connected to synchronised data loggers, which store data for 
analysis. Such variety of data recorded provides not only a 
detailed insight into the behaviour of the specimen, but also 
the operation of the facility.  

B. Reasons for Digital Twin Development  

FastBlade is a pioneering site in the area of regenerative 
structural tests, enabling industry-academia collaboration on 
an integrated research and development process within the 
Open Engineering framework [31]. However, the success of 
the facility depends on how reliably its complex system can 
operate, delivering high-quality tests with minimum 
downtime. DTs, as introduced in the introduction to this paper, 
answer the need for a comprehensive monitoring tool which 
is capable of not only storing data and providing a real-time 
insight into its operation, but also indicating faults and 
suggesting system improvements. The most important reasons 
for investing in the development a system of DTs for 
FastBlade are: 

- Anomaly detection: detecting anomalies in the operation 
of an asset protects the equipment and allows for safe 
operation of the system, reducing operational downtime 
by enhanced maintenance scheduling. It is also an 
enabling step in allowing unmanned operation of the 
facility.  

- Close monitoring of test parameters: applying common 
standards to evaluate test performance, such as process 
capability index (PCI) [32], ensures that the test results 
are credible and is necessary for certification purposes. 

- Close monitoring of the proprietary energy recovery 
system: monitoring the system is essential not only to 
validate its operational concept, but also quantify and 
minimise the energy consumption, which is the most 
significant running cost of a test.  

- Recording historic data: a systemised way of storing 
historic data is crucial in assessing the degradation of the 
assets and developing further system improvements.  

C. Considerations for a Digital Twin at FastBlade 

Although there is an evident need for a DT to be developed 
for FastBlade, the unique characteristics of the facility pose a 
number of challenges. The most significant factors identified 
to affect the DT development strategy include the use of very 
specific, niche system components, such as the Digital 
Displacement® pumps [33], pictured in Fig. 3. The pumps do 
not only meet the operational pressure requirements to meet 
the target loads, but also allow for bi-directional fluid flow, 
which is indispensable for recovering energy in the system. 
However, the products are off-the-shelf and their physical 
models are not supplied. Moreover, complex asset operation 
and some of its internal design being protected by trade 
secrets, seem to be prohibitive obstacles to the development 
of faithful and reliable physics-based models. The problem 
scales up to the entirety of the system at FastBlade, as due to 
the one-off setup, there does not exist a comprehensive 
physical simulation which would just require calibration to 

turn it into a DT, but rather ground-up DT development. The 
efforts which have already been invested in building a 
physical model of the hydraulic system, including piping 
topology, pumps, valves and PID controllers, have turned out 
to be unreliable and computationally-slow, which would 
require further upgrades and running-time improvement. 
Considering the development of a DDDT for FastBlade, 
another challenge discovered is limited historic data available, 
since the site only became operational in 2022. While there 
exist numerous records of tests run at different load and 
frequency specifications, information about the degradation of 
some of the critical assets, such as electric motors, reaction 
frame or pumps, is scarce.  

One of the greatest opportunities for creating a DT for 
FastBlade is the synchronised sensing infrastructure present, 
holistically monitoring most of the assets present on site. 
Moreover, the availability of significant computational 
resources at FastBlade, including GPUs with a total memory 
of 192 GB, opens the door to taking full advantage of recent 
developments in data-driven methods. The literature study 
shows that some of the aforementioned problems, such as the 
lack of a comprehensive physics-based models, can be 
mitigated with the use of ML or statistical modelling. The 
advent of efficient feature extraction algorithms, such as 
Short-time Fourier transform (STFT) [34], or wavelet 
scattering [35], and ANN architectures, such as autoencoders 
[36], also allows feasible and accurate detection of anomalies 
using recorded data alone [37], [38], [39], [40].  

Fig. 3. Four Digital Displacement® pumps in the FastBlade’s machinery 
room. Each pump is mechanically coupled to the shaft of an electric motor. 
Source: The University of Edinburgh.    

D. Choosing the Optimal Digital Twin Development 

Strategy for FastBlade  

The aim of this subsection is to consider how the 
characteristics of FastBlade impacts the choice of the most 
suitable DT development route considering both challenges 
and benefits of each of the strategies discussed in this work. 
Considering DDDTs, the question to answer is how useful the 
insight into the operation of the plant can be without the use 
of any physical information about the system. On the one 
hand, the static and fatigue tests run at FastBlade are not 
processes whose outcome can be easily classified as either 
success or failure, but they have a more descriptive character. 
However, there is certainly value in certain statistical 
methods, such as PCI, in assessing how consistent the 
minimum and maximum load exerted on a specimen is. 
Similarly, no physical models are required for detecting 
anomalies in e.g., vibrational traces recorded by 
accelerometers installed on the electric motors, which can 
highlight bearing issues, or analysing audio acquired on site 
for non-specific anomaly detection. Therefore, developing a 
DDDT for FastBlade would certainly provide much insight 
into its operation, showing potential for a real-time impact on 
the operation of the physical assets, e.g., when anomalous 

 



behaviour is discovered.  On the other hand, considering the 
arguments drawn from the literature review, there would 
certainly be limitations to how in-depth the insight into 
operation of the facility would be. It would not be possible to 
pinpoint the cause of an anomaly once it has been found using 
audio data, it would be hard to find out how to improve a poor 
PCI score or predict the results of a test without having an 
extensive dataset collected for a given specimen.    

 Certainly, many such issues would be addressed by 
developing a PBDT. Having a faithful physical model of the 
setup at FastBlade, the specimen under test would potentially 
represent the only unknown in the system. Referring to one of 
established cantilever models, it would be possible to calibrate 
the simulation in a feasible number of cycles and try to predict 
the outcome of the test long before it is completed. This way, 
test parameters such as nominal motor speed or test frequency 
could be optimised to enhance the efficiency of the process. 
Similarly, updating the state of each asset in real time would 
enable precise localisation of identified faults. However, due 
to the limitations mentioned, it might not only be unfeasible 
to invest resources into the development of such a faithful 
model, but doing so might even be impossible considering our 
limited knowledge of some of the asset internals. Yet, in line 
with the literature review findings, it should be possible to fill 
in the gaps in our understanding of the system thanks to the 
richness of the data collected on site. Introducing a physical 
constraint to the models developed, even if based on 
simplified assumption (such as a spring-damper model for the 
specimen, or a simple rotating rigid body representation for 
the electric motors) should not only help the algorithms train 
faster, but should also provide additional credibility of the 
predicted results. Therefore, having identified and discussed 
the key routes for DT development with varying dependence 
on physics-based models, it is decided that developing a PIDT 
for FastBlade should constitute a practicable solution, at the 
same time providing desired operational benefits.   

E. Dgital Twin Development and Integration at FastBlade 

Based on the classification of DTs considered in this work, 
and the evaluation of the system found at FastBlade, the 
optimal DT development strategy has been chosen. The aim 
of this subsection is to outline the key considerations of 
creating a PIDT for FastBlade, highlighting how approaching 
individual problems will help combine the reliance on data 
and statistical models with the physical insight into the DT.  

Primarily, the purely data-driven solutions may be applied 
in some of the anomaly detection and test quality assurance 
methods. Microphone data can be used for non-specific, 
audio-based anomaly detection requiring little historic data. 
By recording audio of the normal system operation, it is then 
possible to incorporate a signal processing pipeline to extract 
relevant features and train an ANN to classify abnormal 
behaviour [41]. Such a tool may be used as the first line of 
prevention against running the system with a fault.  

Moreover, no physical insight is needed for real-time 
evaluation of the test quality. The aforementioned techniques, 
such as PCI, are widely used in industry and provide a 
statistical measure of how close the distribution of recorded 
values is to the expected outcomes. They can be applied to a 
variety of system parameters in FastBlade, including the 
maximum and minimum load recorded cycle-to-cycle in a 
fatigue test, where pre-defined values must be matched to 
meet certification requirements. Purely data-driven 
approaches can also contribute to the process of developing 

the DT by optimising sensor locations across the system. As 
an example, high-resolution strain maps of the specimen 
under test, obtained through Digital Image Correlation (DIC), 
can be used to optimise the location of point strain gauges 
across the sample [42]. This way, the redundancy of 
information collected is reduced and the measurements from 
sparsely located sensors can be used to reconstruct high-
resolution strain data.  

As discussed in the previous sections, data alone will be 
used to model the performance of the pumps in the system. 
Due to the complexity of their operation, metamodels can be 
incorporated to corelate recorded operational parameters, such 
as rotational speed, temperature or valve control signals, to the 
output pressure. Similarly, it should be possible to track the 
degradation of the reaction frame, which is one of the most 
expensive utilities in the system, without running 
computationally-expensive FEA models, as long as the 
change in the surface strain relative to the system loads is 
monitored.  

The assets whose simplified physical models can provide 
useful insight and improve the quality of ML models are the 
electric motors and the oil delivery system. The motors can be 
modelled using rotating rigid body theory, calibrated by 
verifying their theoretical moment of inertia. The existing 
physical model of the oil system, containing detailed 
information on hose lengths, bend radii and valves used, can 
be simplified with losses averaged over larger sections. Lastly, 
the specimen under test, whose dynamics is not verified until 
the test commences, can be modelled using a spring-damper 
model. The test sample stores energy as it is deflected (like a 
spring) and both actuation and relaxation have a damping 
factor, which should be correlated with the actuation velocity. 
This way, a simplified specimen model could be calibrated 
when the first cycles are run, and used to predict the test 
outcomes.  

IV. DISCUSSION AND CONCLUSIONS 

In this paper we address the question of the need for 
physical models in developing digital twins, which has not 
been considered explicitly in literature. We chose to assign 
cases found in literature to one of the three DT categories, 
namely: purely data-driven (DDDTs); relying on 
comprehensive physical simulations (PBDTs); or using 
limited physical knowledge of the system (PIDTs). The 
framework for deciding on the most optimal DT development 
strategy resulting from the insights gained in this work is 
presented using a decision tree in Fig. 4.  

Fig. 4. Decision tree intended to help optimise the DT development route. 
Source: authors.     

 



The requirement for DDDTs is usually an extensive 
dataset. They are suitable for discrete processes, and while 
precious feedback can be provided for other cases, there will 
almost certainly be limitations to the insight provided into the 
operation of an asset. PBDTs generally offer the most detailed 
description of the asset operation, but they are associated with 
high upfront cost of developing a comprehensive physical 
model. Although they were historically expensive to run, there 
exist ways to improve their feasibility. They can also be 
integrated with statistical solutions, e.g., in the decision-
making process. PIDTs can be utilised in cases when it is 
either impossible or impractical to create a high-fidelity 
physical model. Relying to a large extent on historical data and 
statistical methods, they incorporate certain physical 
information about the system which can mitigate some of the 
downsides of not having a complete physical simulation. The 
in-depth analysis of FastBlade’s system needs and the 
available infrastructure shows that developing PIDTs can 
maximise the advantage gained, not restricting the parallel 
incorporation of purely data-driven solutions.  

Looking critically at the process of optimising the DT 
development route for FastBlade presented in the paper, it 
could be concluded that the chosen solution, namely creating 
a PIDT, constitutes some form of middle ground between 
DDDTs and PBDTs which leverages the benefits of the both 
worlds. Seen in such light, opting for the hybrid solution 
would not require such an in-depth analysis. However, it has 
to be noted that although a PIDT can be seen as a compromise 
in some ways, there exist systems where DDDTs or PBDTs 
would be the preferred DT solution. DDDTs would typically 
offer faster development and better system transferability, 
while the presence of physical models does not limit the extent 
to which data-driven solutions are incorporated in PBDTs. 
Therefore, the multi-level analysis of system requirements and 
limitations is recommended each time a new DT development 
strategy is considered.  
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