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Abstract
The steep plasma pressure gradient that forms at the edge of the high confinement, H-mode
regime of tokamak operation provides free energy to drive electromagnetic micro-instabilities
that are widely believed to influence the transport processes in this so-called pedestal region.
This high pressure gradient also provides a high current density (bootstrap current), known to
influence ballooning mode stability and to be important for driving kink modes in the ideal
magneto-hydrodynamic plasma model (so-called peeling-ballooning modes). Furthermore,
efficient, steady state future tokamak power plants must operate with a large bootstrap current in
the core and especially concerning spherical tokamaks, confinement will be influenced by
electromagnetic turbulence. To accommodate these important situations, conventional
electromagnetic gyrokinetic theory is extended to incorporate neoclassical effects in the
equilibrium drives, allowing Bϑ ∼ B0 (B0 is the confining magnetic field, and Bϑ is its poloidal
component). This provides a global gyrokinetic model that self-consistently captures the
consequences of large bootstrap current fractions on the equilibrium distribution functions.

Keywords: gyrokinetic theory, tokamak pedestal, spherical tokamak plasma, bootstrap current,
kink modes, peeling ballooning modes

(Some figures may appear in colour only in the online journal)

1. Introduction

The tokamak is the most advanced fusion energy system, con-
fining the fuel in plasma that is formed by a toroidal magnetic
field geometry. The fusion performance is strongly influenced
by the effectiveness of the confinement system, which is usu-
ally degraded by turbulence. This turbulence arises as a con-
sequence of a zoo of drift instabilities with short wavelengths
in directions perpendicular to the magnetic field, typically at
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or below the ion Larmor radius; the wavelength along themag-
netic field lines is comparable to the system size. Under certain
conditions, including increasing the heating power through a
well-defined threshold, a tokamak plasma bifurcates to a state
of high confinement, called the H-mode [1]. This is a con-
sequence of the suppression of turbulence in the outer few cen-
timetres of the plasma providing an insulating transport barrier
and consequent high pressure gradient. This transport barrier
also called the pedestal region, results in high core pressure
and is attractive for high fusion energy output. The H-mode
therefore forms the basis for the baseline operational regime
for ITER [2].

The pressure at the core of an H-mode plasma is highly
sensitive to the properties of the pedestal: a wide pedestal with
steep pressure gradient results in high core pressure and there-
fore high fusion power in a tokamak like ITER. For this reason,
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optimising the fusion power in ITER is likely to require the
optimisation of the pedestal. There are two key pieces of phys-
ics that influence these pedestal properties [3].

First, intermediate toroidal mode number (n∼ 10) ideal
magneto-hydrodynamic (MHD) instabilities that tap the com-
bined effects of the plasma pressure gradient and current dens-
ity, called peeling-ballooning modes, trigger plasma eruptions
called edge localised modes (or ELMs) [4–6]. Each ELM res-
ults in a crash in the pedestal pressure gradient, and with many
ELMs per second they therefore have a strong impact on the
time-averaged pedestal properties. Peeling-ballooning modes
are well-understood, with quantitative predictions available
for their trigger conditions. There are threemain pedestal para-
meters that influence this trigger in a tokamak plasma of given
shape—the pressure gradient, the current density and the ped-
estal width. The onset of peeling-ballooning modes provides
our first condition, which constrains the pedestal structure.

The second piece of physics that has an impact on the ped-
estal structure is the local drift instabilities that influence tur-
bulence and transport there [7–10]. These typically have a
much shorter wavelength than the peeling-ballooning modes,
and are often characterised by wavenumbers perpendicular
to the magnetic field k⊥ ≳ 1/ρi, where ρi is the ion Larmor
radius. As mentioned above, the transport barrier forms as
one class of turbulence is suppressed. This enables the pres-
sure gradient to rise until another class of micro-instabilities
is triggered, driving residual turbulence and related transport
that controls the pressure gradient in the pedestal. A num-
ber of features differentiate the pedestal from the core plasma
in a conventional tokamak, resulting in a different nature to
the turbulence: (a) the high pressure gradient compared to
the magnetic energy density drives stronger fluctuations in
the magnetic field; (b) strong electric field shear influences
the micro-stability and turbulence, and (c) the high pres-
sure gradient drives strong neoclassical flows and bootstrap
current. Understanding this turbulence and related transport
provides another constraint on the pedestal parameters which,
when combined with the peeling-ballooning mode constraint,
provides a minimal model for the pedestal structure [3].

Spherical tokamak plasmas achieve much higher ratios of
thermal to magnetic energy (β) than conventional aspect ratio
tokamaks. This then makes the core plasma vulnerable to elec-
tromagnetic instabilities, such as the kinetic ballooning mode
andmicrotearingmodes. This is especially true in reactor scen-
arios, such as those envisaged for STEP [11, 12], where a
high β is beneficial for commercial viability. Benefits include
achieving a high fraction of bootstrap current and creating a
spherical tokamak core plasma turbulence regime with several
similarities to the pedestal plasma of conventional tokamaks,
described above.

Consider the bootstrap current, which is driven in a toka-
mak plasma by the density and temperature gradients that the
magnetic field structure supports; it flows parallel to the mag-
netic field [13]. In the pedestal, the high pressure gradient
drives a high bootstrap current in a relatively narrow region,
resulting in steep current density gradients. Such high cur-
rent density gradients are well known to drive long wavelength
kink-modes and, as mentioned above, play an important role

in the intermediate n peeling-ballooning modes. However,
because this drive falls as 1/n, it is not usually thought to
be important for short wavelength drift modes at ion Larmor
radius length scales. It is thus ordered out of the conventional
gyrokinetic theory, which provides a reasonable approach in
the core of a conventional tokamak. However, the steep current
density gradient in the pedestal challenges this assumption.
Recent work [14] has extended the ELITE ideal MHD code
[6, 15] to quantify the relative sizes of the kink and curvature
drive terms, and the stabilising effect of field line bending. It is
found that for a model equilibrium, characteristic of mid-sized
tokamaks, the kink drive dominates over the curvature term out
to n∼ 40, which corresponds to k⊥ρi ∼ 1 (see figure 4.19 of
[14]). While this kink drive is predominantly external (associ-
ated with a vacuum rational surface), this provides significant
evidence for the importance of the equilibrium bootstrap cur-
rent density for pedestal plasma stability, which then raises
the question of how to effectively incorporate it into micro-
instability calculations.

Gyrokinetic theory provides the basis for most microstabil-
ity analysis in tokamak plasmas. This includes full-f kinetic
simulations (e.g. [16–19]) where the equilibrium and fluctu-
ation scales are merged, and a δf approach (global, e.g. [20] or
[21, 22] based on [23]; local theory, e.g. [24–27] or [28] for
drift cyclotron kinetics, and simulations [29–32], and hybrid,
e.g. [33–35], where the radial profile variation is introduced
perturbatively). One of the complications associated with the
global full-f techniques arises from the gyrokinetic quasi-
neutrality equation that is not derived to sufficiently high order
to determine the electrostatic potential fully consistent with
the fluctuating distribution function (this problem is due to
a coupling between the radial electric field [36] and the tor-
oidal plasma rotation and was addressed in [37] in the limit of
Bϑ/B0 ≪ 1). In the δf formalism, one separates the distribu-
tion function into two parts: (a) an ‘equilibrium’ distribution
function, Fj (j is the particle species index), which evolves on
slow, transport timescales and has length scales of order the
system size, and (b) a fluctuating part, δfj, which has short
wavelength across magnetic field lines (comparable to the Lar-
mor radius) and long wavelength along them (comparable to
the system size).

One impact of the bootstrap current can be understood by
incorporating it into the MHD equilibrium solution, which
can then be analysed for micro-instabilities using a gyrokin-
etic code. However, such analyses will typically adopt a Max-
wellian equilibrium distribution function, which is then not
consistent with the bootstrap current used to evaluate theMHD
equilibrium. The neoclassical effects on the equilibrium distri-
bution function can be introduced by expanding the drift kin-
etic equation that describes it in powers of ρϑj/L, where ρϑj
is the Larmor radius of species j evaluated using only the pol-
oidal component of the magnetic field (i.e. the poloidal Lar-
mor radius), and L characterises the length scale of equilibrium
variations. The leading order provides a Maxwellian solution
without flows, while the next order provides the physics of
the neoclassical flows, including the bootstrap and Pfirsch–
Schluter currents. To ensure consistent ordering, one would
also need to retain features of the second order correction
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that depend on the gyrophase angle. This equilibrium solu-
tion is then used to derive the gyrokinetic equation for the
fluctuating quantities in response to that equilibrium. Solving
the drift kinetic equation for the equilibrium plasma elimin-
ates the finite orbit width effects and is equivalent to work-
ing in terms of the magnetic moment extended to higher order
in the Larmor radius relative to the system size. The corres-
ponding gyrokinetic equation is described by the generalised
gyrokinetics of [38] in the absence of nonlinear effects; by [39]
when the nonlinear effects are retained; or by [37, 40–42] that
focuses on purely electrostatic fluctuations to address a theory
for toroidal angular momentum transport. This generalisation
implicitly [39, 43] or explicitly [37, 40] implies Bϑ/B0 ≪ 1.
This assumption significantly simplifies the gyrokinetic deriv-
ation and allows one to solve for the gyrophase-independent
fluctuating distribution function only. Bϑ/B0 ∼ ε/q, where ε
is the inverse aspect ratio of the flux surface and q is the
corresponding safety factor. Bϑ/B0 ≪ 1 is typically a good
approximation for conventional tokamaks, including for toka-
mak pedestals (provided ε≪ 1, and q is large at the edge),
but becomes questionable for spherical tokamak equilibria.
To avoid this limitation and to allow general magnetic field
configurations, in this paper we relax the Bϑ/B0 ∼ ε/q≪ 1
assumption, which (as we shall see in the sections below) ulti-
mately results in solving a system of gyrokinetic equations,
including for the gyrophase angle dependent piece of the fluc-
tuating distribution function, and also requires one to retain
the finite Larmor radius effects in the equilibrium distribution
function.

Previous work also considered the impact of higher order
equilibrium effects on the gyrokinetic physics. The emphasis
of [44], for example, was to make a connection between
gyrokinetic theory and ideal MHD, and therefore employed
a number of approximations relevant for that comparison,
which we will not make here. An electromagnetic theory was
developed in [45], retaining only the parallel component of the
vector potential; they adopted a model for an equilibrium with
an electron flow to provide the current density, but dropped the
finite orbit width effects, which we keep in order to capture
the bootstrap current. Other works [46–48] provide a phase
space Lagrangian to address the second order corrections in
the Larmor radius over the system size; they restricted con-
sideration to the electrostatic limit, which therefore provides a
benchmark in the Lagrangian formulation of the electromag-
netic theory presented here.

The reminder of the paper is organised as follows. In
section 2 we describe the magnetic topology and coordin-
ate system. In section 3 we introduce the general kinetic
equation in guiding centre coordinates. This is followed by
the calculation in section 4 of the equilibrium distribution
function, expanding it in powers of ρϑ/L (ρ∼ ρϑ, where ρ
is the particle Larmor radius and ρϑ is the poloidal Lar-
mor radius)4 up to second order to ensure consistent order-
ing. The latter also ensures that the equilibrium solution

4 The particle species indices are omitted for simplicity and to be introduced
only when it is necessary to distinguish ions and electrons.

is consistent with the MHD equilibrium in situations when
the bootstrap current is large. In section 5 we proceed to
the calculation of the fluctuating distribution function and
derive a set of gyrokinetic equations to ensure, first, consist-
ent ordering, second, incorporating current density gradient
effects, third, Bϑ/B0 ∼ 1. The set of equations presented in
section 5 is integro-differential. In section 5 we also consider
the limit ofBϑ/B0 ≪ 1 to recover the Frieman–Chen nonlinear
gyrokinetics [39]. In section 6 we discuss limitations associ-
ated with adopting a local (flux tube) approximation. This is
followed by conclusions and a summary in section 7.

2. Magnetic topology and coordinates

We consider an axisymmetric tokamak plasma with an equi-
librium magnetic field given by

B0 = I(ψ)∇ϕ+∇ϕ×∇ψ, (1)

where I= RBϕ depends on the poloidal current, R is the toka-
mak major radius, and Bϕ is the toroidal component of the
magnetic field. Here,ψ is the poloidal flux function introduced
to label nested magnetic flux surfaces, and ϕ denotes the tor-
oidal angle. We choose the orthogonal coordinate system with
the basis formed by the unit vectors (b,e2,e3), where

b=
B0

B0
, e2 =

∇ψ

RBϑ

, e3 =
B0 ×∇ψ

RB0Bϑ

(2)

with Bϑ being the poloidal component of the magnetic field
and B0 = |B0|. Note, b= e2 × e3, e2 · de3/dt=−e3 · de2/dt
and e2 · de2/dt= 0 and so on, where d/dt denotes the time
derivative following the actual particle orbit.

To distinguish between equilibrium and perturbed
quantities, we write

Y= Y0 + Ỹ, Ỹ= Y ′ + Y ′ ′ +O(∆3Y0), (3)

where Y denotes an arbitrary field. Here Y0 describes the
equilibrium piece, and Ỹ is the fluctuating piece with Y ′ =
O(∆Y0), Y ′ ′ =O(∆2Y0) etc. Ameasure of the size of the per-
turbation is then

∆∼
Y′

Y0
∼
Y′′

Y′
≪ 1.

For the distribution function we write

f= F+ δf, δf= δf0 + δf1 +O(∆3F0), (4)

where

δf0
F

∼
δf1
δf0

∼∆≪ 1. (5)

Considering rapid spatial variations of the field/distribution
function perturbations, in gyrokinetics all equilibrium quant-
ities evolve on transport time scales, which we neglect, i.e.

∂Y0
∂t

= 0,
∂F
∂t

= 0.

3
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We note

∇∥Y0 ∼
Y0
L
, |∇⊥Y0| ∼

Y0
L
, ∇∥F∼

F
L
, |∇⊥F| ∼

F
L

if∇ acts on unperturbed quantities and

∇∥Ỹ∼
Ỹ
L
,
∣∣∣∇⊥Ỹ

∣∣∣∼
Ỹ
ρ
, ∇∥δf∼

δf
L
, |∇⊥δf| ∼

δf
ρ

if ∇ acts on perturbed quantities with ∆= ρ/L≪ 1, in
accordance with the conventional gyrokinetic ordering. Here
∥/ ⊥ denotes the vector component along/across the equilib-
rium magnetic field lines. The second small parameter we
define is

δ =
ρϑ
L

∼
∆

Θ
≪ 1,

where Θ= Bϑ/B0. We allow Θ∼ 1 and hence

δ ∼∆. (6)

The E×B and magnetic drifts are estimated as

VE
Vt

∼∆,
VD
Vt

∼∆,

respectively, whereV t is the particle thermal velocity.Wewrite
the velocity as

V= u+ s, (7)

where

u= ub≡ (V · b)b (8)

is parallel and

s= s(e2 cosα+ e3 sinα)≡ sŝ (9)

is perpendicular to the equilibrium magnetic field. Here α
denotes the gyrophase angle. The Larmor radius vector is
then

ρ=
b× s
ωc

= ρ(e3 cosα− e2 sinα)≡ ρρ̂, (10)

where ωc = eZB0/m is the cyclotron frequency, eZ and m are
the particle charge and mass, respectively; ρ= s/ωc. The pos-
ition of the guiding centre is then defined as

X= x−ρ, (11)

where x is the actual position of the particle. We define
the magnetic moment (per unit mass) as µ= s2/2B0. The
total energy (per unit mass) is defined as U= µB0 + u2/2+
eZΦ0/m, where Φ0 is the equilibrium electrostatic potential.
The equation of motion for these particles then reads

m
d(u+ s)

dt
= eZE−mωcsρ̂+ eZV× B̃, (12)

where eZV×B0 =−mωcsρ̂, B̃ is the perturbed magnetic field
and E= E0 + Ẽ is the electric field.

3. General kinetic equation in {t,X,U,µ,α} space

The general kinetic equation for the particle distribution func-
tion, f, in {t,X,U,µ,α} space reads

df
dt

≡
∂f
∂t

+
dX
dt

·
∂f
∂X

∣∣∣∣
U,µ,α

+
dµ
dt

∂f
∂µ

∣∣∣∣
X,U,α

+
dU
dt

∂f
∂U

∣∣∣∣
X,µ,α

+
dα
dt

∂f
∂α

∣∣∣∣
X,U,µ

= C( f) . (13)

The collisional effects are described by the collision operator,
C (unspecified, its form depends on the particular problem of
interest). The left hand side contains the Vlasov operator writ-
ten in terms of the guiding centre coordinates, X. From the
equation of motion, equation (12), it can be shown that

dX
dt

= u+V×

[
(V ·∇)

(
b
ωc

)]
+

1
B0

[
E+V× B̃

]
× b,

(14)

dµ
dt

=−
s2

2B2
0

(V ·∇)B0 −
u
B0
s · [(V ·∇)b]

+
eZ
mB0

s ·E+
eZ
mB0

u [V× b] · B̃, (15)

dU
dt

=
eZ
m
V · Ẽ (16)

and

dα
dt

=−ωc−
u
s2

[(V ·∇)b] · [b×V] + e2 · [(V ·∇)e3]

+
eZ
ms2

E · [b×V] +
eZ
ms2

[
u(B̃ ·V)− B̃∥V

2
]
. (17)

The derivation is similar to that presented in [49]. Here we
have introduced B̃∥ = B̃ · b. Equations (14), (15) and (17) can
be further simplified to

dX
dt

= u+VD+
µ0s2

2B0ωc
j∥b+

1
B0

[
Ẽ+V× B̃

]
× b+

∂CX
∂α

,

(18)

dµ
dt

=
eZ
m
∂Cµ

∂α
+
ωc
B2
0

[
s · Ẽ+ u [V× b] · B̃

]
(19)

and

dα
dt

=−ωc+Cα +
eZ
ms2

[
Ẽ · [b×V] + u(B̃ ·V)− B̃∥V

2
]
.

(20)

Here j∥ is the component of the equilibrium current density
along the equilibrium magnetic field lines, and the drift velo-
city is defined as VD = VE0 +Vd with

VE0 =
E0 × b
B0

, Vd =
1
ωc
b×

[
s2

2
∇ lnB0 + u2 (b ·∇)b

]
.

4
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CX, Cµ and Cα are defined as

CX =
u
ωc
b× [[[V× b] ·∇]b] + u [V× b]×

[
(b ·∇)

(
b
ωc

)]

−
s2

4ωc
[Ec sin(2α)−Es cos(2α)]b

+
s2

4ωc
[∇ lnB0 − (b ·∇ lnB0)b]

−
s2

2ωc
([̂s× b] ·∇ lnB0) [̂s× b] , (21)

Cµ =−s ·VD−
us2

4ωc
[Es sin(2α)+Ec cos(2α)] (22)

and

Cα =
eZ
ms2

E0 · [b×V] +
u
s2

[(V ·∇)b] · [V× b]

+ e2 · [(V ·∇)e3] .

Here

Es = Es · b= [(e3 ·∇)e3 − (e2 ·∇)e2] · b,

Ec = Ec · b= [(e2 ·∇)e3 +(e3 ·∇)e2] · b

and

∇ · b=−b ·∇ lnB0 =− [(e2 ·∇)e2 +(e3 ·∇)e3] · b,
µ0j∥
B0

= [(e3 ·∇)e2 − (e2 ·∇)e3] · b.

Equation (13) with equations (16), (18)–(20) provides the gen-
eral form of the kinetic equation in the guiding centre coordin-
ates and is equivalent to

−ωc
∂f
∂α

∣∣∣∣
t,X,U,µ

+ L̄f+ L̃f= C( f) , (23)

where

L̄=
∂

∂t
+

[
u+VD+

µ0s2

2B0ωc
j∥b+

∂CX
∂α

]
·
∂

∂X

∣∣∣∣
U,µ,α

+
eZ
m
∂Cµ

∂α

∂

∂µ

∣∣∣∣
X,U,α

+Cα

∂

∂α

∣∣∣∣
X,U,µ

(24)

and

L̃=
1
B0

[[
Ẽ+V× B̃

]
× b
]
·
∂

∂X

∣∣∣∣
U,µ,α

+
ωc

B20

[
s · Ẽ+ u [V× b] · B̃

]
∂

∂µ

∣∣∣∣
X,U,α

+
eZ
m

(V · Ẽ)
∂

∂U

∣∣∣∣
X,µ,α

+
eZ
ms2

[
Ẽ · [b×V] + u(B̃ ·V)− B̃∥V

2
]
∂

∂α

∣∣∣∣
X,U,µ

. (25)

4. Equilibrium

In accordance with equation (4), we write the particle distri-
bution function in a form:

f= F+ δf, (26)

where F describes the equilibrium piece (in gyrokinetic
ordering) and δf is the fluctuating piece. F satisfies the
equation:

−ωc
∂F
∂α

∣∣∣∣
t,X,U,µ

+ L̄F= C(F). (27)

Note, to include turbulence effects on the neoclassical
transport, one should add ⟨L̃δf⟩X⊥

to the left hand

side of equation (27), where ⟨Y⟩X⊥
= ⟨Y0 + Ỹ⟩X⊥

≡
´

YdX⊥/
´

dX⊥ = Y0, i.e. ⟨Ỹ⟩X⊥
= 0 and X⊥ corresponds

to rapid spatial variations [39]. However, it can be demon-
strated that (1) ⟨L̃δf⟩X⊥

is only required to calculate the
α independent part of the O(δ2F0) equilibrium solution,
which does not contribute to the fluctuation equation and (2)

⟨−⟨L̃δf⟩X⊥
⟩
X

α
= 0, where ⟨. . .⟩Xα represents 1/(2π)

¸

. . .dα at

fixed X. Therefore, ⟨L̃δf⟩X⊥
will be omitted.

To solve equation (27) for F, we expand it in powers of
δ (e.g. see [50–52]), allowing equation (6). This perturbative
treatment of equation (27) with F= F0 +F1 +F2 +O(δ3F0)
provides the following straightforward result:

∂F2

∂α

∣∣∣∣
t,X,U,µ

=
1

B0 (X)
∂Cµ

∂α

∂F1

∂µ

∣∣∣∣
X,U,α

+
1
ωc

∂C̄X
∂α

·
∂F0

∂X

∣∣∣∣
U,µ,α

,

(28)

where

C̄X = CX+
u
ωc

[(s ·∇)b] . (29)

Cµ and CX are given by equations (21) and (22), respect-
ively. Note that the collision frequency is assumed to be small
compared to the cyclotron frequency to ensure that the lead-
ing order equilibrium distribution function is independent of
α at fixed X. We also anticipate that the difference between
the collision operator and its gyro-averaged form can be neg-
lected5. The first term in equation (28) is O(δ∆F0), while the
second one is O(∆2F0), and therefore only the first term is
to be retained in F2 in the limit of Bϑ ≪ B0. An equivalent
approach to obtain equation (28) at Bϑ ≪ B0 would be to con-
sider the magnetic moment extended to higher order in ∆,
i.e. µ+ µ̃(x,V) with µ̃= Cµ/B0 + ⟨µ̃⟩=O(∆µ), where ⟨µ̃⟩
is independent of the gyrophase angle (e.g. see [37, 38, 40, 49,
53] etc), and then to expand F around µ:

F(X,U,µ+ µ̃) = F(X,U,µ)+ µ̃
∂F
∂µ

(X,U,µ) ,

5 This statement is correct, for example, for a like-species Fokker–Planck
collision operator in the drift kinetic approach [49], i.e. for averaging over
α at fixed x. When the finite Larmor radius effects are retained, this
depends on a particular form of the collision operator, and hence we assume
(

⟨C⟩Xα −C
)

F0 ≪ (Vt/L)F0.

5
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which is equivalent to equation (28) up to O(δ∆) with Bϑ ≪
B0 and the following replacement: F(X,U,µ) = F0(X,U)+
F1(X,U,µ). Note, ⟨µ̃⟩ is typically found to ensure that µ̃ is
an adiabatic invariant: ⟨µ̃⟩=−(uµ/ωc) [∇× b] · b [54]. As
we shall see below, at Bϑ ≪ B0 this extension to the equilib-
rium distribution function results in an extended source term,
e.g. equation (35) of [38] for the linear or equation (48) of [39]
for the nonlinear case6.

Based on the O(∆0δ1 VtL F0) equilibrium equation [50],
averaged over α at fixed X, we can estimate the size of the
deviation fromMaxwellian, FM , employed in the conventional
gyrokinetic theory for F0, by considering the edge pedestal
region of an H-mode plasma, which we know has a pres-
sure gradient close to the ideal MHD ballooning boundary,
αMHD ∼ (Rq2/B2

0)dp/dr∼ 1, where q is the safety factor, p
is the plasma pressure, and r is the varying tokamak minor
radius. Interestingly, the plasma scenarios being considered
for STEP are in a similar regime [11]. This then yields

Iu
ωc

∂FM
∂ψ

∼
αMHD
εβϑ

δFM,

where ε is the tokamak inverse aspect ratio and βϑ is the ratio
of the thermal energy density of the plasma to the magnetic
energy density in the poloidal component of themagnetic field.
This is a factor orderB0/Bϑ larger than the finite Larmor radius
correction to the Maxwellian.

There are some important consequences from incorporating
the correction F1 into the equilibrium distribution function: (a)
it introduces an equilibrium flow and current density, which
are strong in regions of high density/temperature gradient; (b)
it introduces some additional anisotropy into the equilibrium
distribution function, and (c) the equilibrium distribution func-
tion is not constant on a flux surface. While F1 captures the
neoclassical physics, including the bootstrap current associ-
ated with the finite banana orbit widths of trapped particles,
the gyro-angle dependent part of the second order correction
to the equilibrium distribution, F2, must be retained as well to
ensure the ordering is fully consistent.

5. Perturbations: gyrokinetic theory

The plasma response to the fluctuating electromagnetic field
is described by δf:

δf= δf0 + δf1 +O(∆3F0)

that is to be determined from

−ωc
∂δf
∂α

∣∣∣∣
t,X,U,µ

+ L̄δf+ L̃F+ L̃δf= C(δf) , (30)

6 A similar approach can be applied to reconstruct the second term on the right
hand side of equation (28) to allow Bϑ ∼ B0. It would require an iterative
procedure to obtain the X dependence of ρ in equation (11), i.e. X= x−
ρ(x,V) with ρ(x,V) = ρ(X,V)+ (ρ ·∇)ρ+O(∆2

ρ).

Figure 1. Equilibrium and gyrokinetic ordering scheme. δ ordering
increases horizontally,∆ ordering increases vertically. The first line
corresponds to the equilibrium solution, F= F0 +F1 +F2(α).
Blue/green rectangles correspond to conventional (e.g. [27])/
generalised [38, 39] gyrokinetics. Blue/yellow dashed rectangles
indicate partial contributions to the O(∆1 Vt

L F0)/ O(∆2 Vt
L F0)

equation.

provided F satisfies equation (27). To capture turbulence
effects in the equilibrium solution, one should add ⟨L̃δf⟩X⊥

to the left hand side of equation (27), and hence to ensure
consistency, −⟨L̃δf⟩X⊥

should contribute to the left hand
side of equation (30). However, it can be demonstrated that

⟨⟨L̃δf⟩
X
α⟩X⊥

= 0, and hence ⟨L̃δf⟩X⊥
will be omitted. The

O(∆0 Vt
L F0) equation then reads

−ωc
∂δf0
∂α

∣∣∣∣
t,X,U,µ

= 0, (31)

where we learn that δf0 is independent of α at fixed X. δf0 is to
be determined from the solubility condition on theO(∆1 Vt

L F0)
equation that reads

−ωc
∂δf1
∂α

∣∣∣∣
t,X,U,µ

+ L̄δf0 + L̃1F= C(δf0) . (32)

The O(∆2 Vt
L F0) equation is

−ωc
∂δf2
∂α

∣∣∣∣
t,X,U,µ

+ L̄δf1 + L̃1δf0 + L̃2F= C(δf1) . (33)

Equation (32), together with the solubility condition from
equation (33), provides δf1. Here L̃1 and L̃2 are given
by equation (25) with (Ẽ, B̃) being replaced with (E ′,B ′)
and (E ′ ′,B ′ ′), respectively, and δf2 =O(∆3F0). Note that
equation (33) contains certain nonlinearO(∆1 Vt

L F0) terms that

contribute to equation (32), and L̃2δf0 + L̃1δf1 contains non-
linear O(∆2 Vt

L F0) corrections that contribute to equation (33)
(see figure 1). Splitting the fluctuating distribution function
into an adiabatic response and a resonant piece:

6
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δf=
eZ
m

[
Φ̃
∂F
∂U

∣∣∣∣
X,u

−
uÃ∥

B0

∂F
∂µ

∣∣∣∣
X,U

]
+ g+ h, (34)

where

∂

∂U

∣∣∣∣
u

=
∂

∂U

∣∣∣∣
µ

+
1
B0

∂

∂µ

∣∣∣∣
U

and F= Feqm +F2 with Feqm = F0 +F1 being independent of
α at fixed X, and F2 = F2(X,U,µ,α), we write

δf0 =
eZ
m

[
Φ ′ ∂Feqm

∂U

∣∣∣∣
X,u

−
uA ′

∥

B0

∂Feqm

∂µ

∣∣∣∣
X,U

]

+ g0 + g1 +O
(
∆δ2F0

)
(35)

and

δf1 =
eZ
m

Φ ′ ′ ∂F0

∂U

∣∣∣∣
X,µ

+ h0 +O(∆2δF0). (36)

Here we have defined g= g0 + g1 +O(∆δ2F0) and h= h0 +
O(∆2δF0) in accordance with figure 1. Note that the distinc-
tion between g and h is that g is driven by the fields Y ′ =
O(∆1Y0) and the equilibrium distribution function, F, while h
is driven by Y ′ ′ =O(∆2Y0) and higher order nonlinear terms
associated with Y ′ and g.

5.1. The O
(
∆1 Vt

L F0

)
equation and O

(
∆2 Vt

L F0

)
corrections

In this subsection, we focus on the second line in figure 1,
which contains conventional, O(∆1 Vt

L F0), gyrokinetics as
well as theO

(
∆1δ1 VtL F0

)
andO

(
∆2 Vt

L F0
)
corrections driven

by the O(δ∆F0) and O(∆2F0) terms in the equilibrium solu-
tion, equation (28), respectively. The majority of the gener-
alised gyrokinetic theories contain the O

(
∆1δ1 VtL F0

)
correc-

tions only, capturing the equilibrium neoclassical physics but
implicitly (e.g. [38, 39]) or explicitly (e.g. [37, 40, 41]) requir-
ing Bϑ/B0 ≪ 1 (or ε≪ 1 to allow finite q values).

Writing L̄δf0 + L̃1F explicitly in equation (32) (see
appendix A) and expanding g in powers of δ, we obtain

−ωc
∂g0
∂α

∣∣∣∣
X
= 0, (37)

i.e. g0 is independent of α at fixed X, from the O
(
∆0δ0 VtL F0

)

equation. The O
(
∆1δ0 VtL F0

)
corrections in equation (32)

with the retained nonlinear O
(
∆1 Vt

L F0
)

corrections of
equation (33) provide an equation for g0 and the α dependent
part of h0 + g1:

−ωc
∂h0
∂α

∣∣∣∣
X
−ωc

∂g1
∂α

∣∣∣∣
X
− iωg0 +

[
u+VD+

∂CX
∂α

]
·
∂g0
∂X

∣∣∣∣
α

+
eZ
m
∂Cµ

∂α

∂g0
∂µ

∣∣∣∣
X,U,α

= C

(
g0 +

eZ
m
Φ ′ ∂F0

∂U

∣∣∣∣
µ

)
+
eZ
m
iω
(
Φ ′ −V ·A ′

) ∂F0

∂U

∣∣∣∣
µ

+
1
B0

[
∇
(
Φ ′ −V ·A ′

)
× b
]
·
∂F0

∂X
+

1
B0

[
(V ·∇)A ′ × b

]
·
∂F0

∂X

+
eZ
m

{
1
ωc

[
∇
(
Φ ′ −V ·A ′

)
× b+(V ·∇⊥)A

′ × b
]
·

[
∂

∂X
+
ωc
s2
V
∂

∂α

∣∣∣∣
X

]

+

[
(s ·∇⊥Φ

′)
∂

∂U

∣∣∣∣
u

− u
[
(V ·∇⊥)A

′
]
· b

1
B0

∂

∂µ

∣∣∣∣
U

]}(
g0 +

eZ
m
Φ ′ ∂F0

∂U

∣∣∣∣
µ

)
. (38)

Here −iω is to be understood as ∂/∂t when acting on
fluctuating quantities. Note that, in the absence of nonlin-
ear terms, the gyro-averaging of equation (38) provides the
conventional linear gyrokinetic equation (e.g. [27] for elec-
trostatic fluctuations). Gyro-averaging equation (38) over α
at fixed X eliminates the first two terms on the left hand
side of equation (38) and provides a solubility condition to
be solved for g0 = g0 (t,X,U,µ). Substituting the obtained

g0 into equation (38) and integrating equation (38) over α
at fixed X provides the α dependent part of h0 + g1 ≡ H=
H̃(α)+ H̄, denoted by H̃. The α independent part of h0 +
g1, i.e. H̄= H̄(t,X,U,µ), is to be determined from a com-
bination of the O

(
∆1δ1 VtL F0

)
and O

(
∆2 Vt

L F0
)
equations,

in accordance with the perturbation theory and figure 1.
Indeed, proceeding to O

(
∆2 Vt

L F0
)

in equation (32), we
write

7
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−ωc
∂g2
∂α

∣

∣

∣

∣

X

− iωg1 +

[

u+VD +
∂CX
∂α

]

·
∂g1
∂X

∣

∣

∣

∣

U,µ,α

+
µ0s2

2B0ωc
j∥b ·

∂g0
∂X

∣

∣

∣

∣

α

+
eZ

m

∂Cµ

∂α

∂g1
∂µ

∣

∣

∣

∣

X,U,α

+Cα
∂g1
∂α

∣

∣

∣

∣

X,U,µ

= C

(

eZ

m

[

Φ ′ ∂F1

∂U

∣

∣

∣

∣

u

−
uA ′

∥

B0

∂F1

∂µ

∣

∣

∣

∣

U

]

+ g1

)

+
eZ

m

{

iω
(

Φ ′ −V ·A ′
)

(

∂

∂U

∣

∣

∣

∣

µ

+
1

B0

∂

∂µ

∣

∣

∣

∣

U

)

F1

+
1

ωc

[

∇
(

Φ ′ −V ·A ′
)

× b
]

·
∂F1

∂X
− u(b ·∇)

(

Φ ′ −V ·A ′
) 1

B0

∂Feqm

∂µ

∣

∣

∣

∣

U

}

+
eZ

m

{

Φ ′

[

V ·∇ lnB0 −ωc
∂Cµ

∂α

(

∂

∂U

∣

∣

∣

∣

µ

+
1

B0

∂

∂µ

∣

∣

∣

∣

U

)]

+
1

s2
[b×V] ·∇⊥Φ ′ ∂Cµ

∂α

}

1

B0

∂F1

∂µ

∣

∣

∣

∣

U

+
eZ

m

(

s ·∇⊥Φ ′
)

(

∂

∂U

∣

∣

∣

∣

µ

+
1

B0

∂

∂µ

∣

∣

∣

∣

U

)

F2 −
ωc

B2
0

u
[

(V ·∇⊥)A ′
]

· b
∂F2

∂µ

∣

∣

∣

∣

U

+
ωc

B2
0

{

A ′
∥ [(V ·∇)b] ·V+ u [(V ·∇)b] ·A ′ − uA ′

∥V ·∇ lnB0 +
eZ

m
uA ′

∥

∂Cµ

∂α

∂

∂µ

∣

∣

∣

∣

U

−
1

s2
[b×V] ·

[

∇⊥

(

V ·A ′
)

− (V ·∇⊥)A ′
] ∂Cµ

∂α

}

∂F1

∂µ

∣

∣

∣

∣

U

+
Φ ′

B0
[b×∇ lnB0] ·

∂F0

∂X

−
uA ′

∥

B0

[

b×
[(

1+
s2

2u2

)

∇ lnB0 − (b ·∇)b
]]

·
∂F0

∂X
−

1

B0

[

iωA ′ × b−
[

(V ·∇)A ′
]

× b
]

·
∂F1

∂X

−
eZ

m
Φ ′ ∂C̄X

∂α
·
∂

∂X

(

∂F0

∂U

∣

∣

∣

∣

µ

)

+
1

B0s2
[

∇⊥

(

Φ ′ −V ·A ′
)

+(V ·∇⊥)A ′
]

· [b×V]
∂C̄X
∂α

·
∂F0

∂X

∣

∣

∣

∣

U,µ,α

.

(39)

Note, in equation (39) we have omitted the O(∆2δ1F0)
term in δf1 as it is not relevant for the subsequent derivations.
Averaging equation (39) over α at fixed X annihilates the first
term on the left-hand side of equation (39) and provides the
first part of the O

(
∆2 Vt

L F0
)
equation to be solved for the α

independent part of h0 + g1.

5.2. The O
(
∆2 Vt

L F0

)
equation

In this subsection, we focus on the third line in figure 1.
Writing L̄δf1 + L̃1δf0 + L̃2F explicitly in equation (33)
and neglecting the O

(
∆2δ VtL F0

)
corrections (or higher),

we find

−ωc
∂δf2
∂α

∣

∣

∣

∣

X

+ L̄h0 = C(δf1)+
eZ

m
iω
(

Φ ′ ′ −V ·A ′ ′
) ∂F0

∂U

∣

∣

∣

∣

µ

+
1

B0

[

∇⊥

(

Φ ′ ′ −V ·A ′ ′
)

× b+(V ·∇⊥)A ′ ′ × b
]

·
∂F0

∂X

+
eZ

m

(

s ·∇⊥Φ ′ ′
) ∂F1

∂U

∣

∣

∣

∣

u

−
ωcj

B2
0

u
[

(V ·∇⊥)A ′ ′
]

· b
∂F1

∂µ

∣

∣

∣

∣

U

−
iω

B0

[

A ′ × b
]

·

[

∂

∂X
+

ωc

s2
V

∂

∂α

∣

∣

∣

∣

X

]

(

g0 +
ωc

B0
Φ ′ ∂F0

∂U

∣

∣

∣

∣

µ

)

+
eZ

m

{

1

ωc

[

∇
(

Φ ′ −V ·A ′
)

× b+(V ·∇⊥)A ′ × b
]

·

[

∂

∂X
+

ωc

s2
V

∂

∂α

∣

∣

∣

∣

X

]

+

[

(

s ·∇⊥Φ ′
) ∂

∂U

∣

∣

∣

∣

u

− u
[

(V ·∇⊥)A ′
]

· b
1

B0

∂

∂µ

∣

∣

∣

∣

U

]}

[

g1 + h0 +
ωc

B0

(

Φ ′ ′ ∂F0

∂U

∣

∣

∣

∣

µ

+Φ ′ ∂F1

∂U

∣

∣

∣

∣

u

−
uA ′

∥

B0

∂F1

∂µ

∣

∣

∣

∣

U

)]

+
eZ

m

{

1

ωc

[

−∇̄
(

V ·A ′
)

× b+(u ·∇)A ′ × b+
(

s · ∇̄
)

A ′ × b
]

·

[

∂

∂X
+

ωc

s2
V

∂

∂α

∣

∣

∣

∣

X

]

+

−u
([

(u ·∇)A ′
]

· b+
[(

s · ∇̄
)

A ′
⊥

]

· b
) 1

B0

∂

∂µ

∣

∣

∣

∣

U

}

(

g0 +
ωc

B0
Φ ′ ∂F0

∂U

∣

∣

∣

∣

µ

)

+
eZ

m

{

1

ωc

[

∇
(

Φ ′ ′ −V ·A ′ ′
)

× b+(V ·∇⊥)A ′ ′ × b
]

·

[

∂

∂X
+

ωc

s2
V

∂

∂α

∣

∣

∣

∣

X

]

+

[

(

s ·∇⊥Φ ′ ′
) ∂

∂U

∣

∣

∣

∣

u

− u
[

(V ·∇⊥)A ′ ′
]

· b
1

B0

∂

∂µ

∣

∣

∣

∣

U

]}

(

g0 +
ωc

B0
Φ ′ ∂F0

∂U

∣

∣

∣

∣

µ

)

+
eZ

m

(

s ·∇⊥Φ ′ ′ ′
) ∂F0

∂U

∣

∣

∣

∣

µ

+
eZ

m

{

[

iωuA ′
∥ − u(b ·∇)

(

Φ ′ −V ·A ′
)

] 1

B0

∂

∂µ

∣

∣

∣

∣

U

+
[

u
(

b ·∇Φ ′
)

− iω
(

V ·A ′
)] ∂

∂U

∣

∣

∣

∣

u

}

(

g0 +
ωc

B0
Φ ′ ∂F0

∂U

∣

∣

∣

∣

µ

)

,

(40)
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where h0 is related to δf1 via equation (36). In equation (40)
we have taken into account that L̃3F+ L̃2δf0 + L̃1δf1 contains
the O

(
∆2 Vt

L F0
)
corrections that have to be retained in the

O
(
∆2 Vt

L F0
)
equation as well (see appendix B). Equation (40)

contains the O
(
∆1δ1 VtL F0

)
and O

(
∆2 Vt

L F0
)
corrections and

provides the second part of the O
(
∆2 Vt

L F0
)
equation to be

solved for the gyro-angle independent part of h0 + g1. Here
we have defined ∇̄ as∇ acting on equilibrium quantities, e.g.(
s · ∇̄

)
A ′ × b= (s ·∇)b× bA ′

∥ +
(
s · ∇̄

)
A ′
⊥ × b.

5.3. Source term

Averaging equations (38) and (39) and equation (40) over α at
fixed X, we obtain:

〈
L̄
〉X
α
g0 +

〈
L̄(g1 + h0)

〉X
α
= ⟨C(δf0 + δf1)⟩

X
α +S10

L +S11
L

+S20
L + T 20

L +S1
NL+S2

NL+S3
NL,
(41)

with the right hand side (source term) given by (see
appendix C)

S10
L =

eZ
m
iω
〈
Φ ′ −V ·A ′

〉X
α

∂F0

∂U

∣∣∣∣
µ

+
1
B0

〈
∇
(
Φ ′ −V ·A ′

)
× b
〉X
α
·
∂F0

∂X
, (42)

S11
L =

eZ
m
iω
〈
Φ ′ −V ·A ′

〉X
α

∂F1

∂U

∣∣∣∣
u

+
1
B0

〈
∇
(
Φ ′ −V ·A ′

)
× b
〉X
α
·
∂F1

∂X

+
eZ
m

[−u(b ·∇)X−VD ·∇⊥

+u(b ·∇ lnB0)]
〈
Φ ′ −V ·A ′

〉X
α

1
B0

∂F1

∂µ

∣∣∣∣
U

(43)

S20
L =−

eZ
m

〈
Φ ′ − uA ′

∥

〉X
α
[u(b ·∇)X+VD ·∇⊥]

∂Feqm

∂U

∣∣∣∣
µ

−
eZ
m

u
B0

〈
Φ ′ − uA ′

∥

〉X
α
(b ·∇)X

∂Feqm

∂µ

∣∣∣∣
U

+
1
B0

〈{
u
ωc

µ0j∥
B0

b×∇⊥ −
s

2ωc

[
([b× ŝ] ·∇ lnB0)b×∇⊥

− b× ŝ([b×∇ lnB0] ·∇⊥)
]}(

Φ ′ −V ·A ′)
〉X

α

·
∂F0

∂X

+
1
B0

〈
(s ·∇⊥)A

′
⊥ × b

〉X
α
·
∂Feqm

∂X

+
1
B0

〈
u
[
(b ·∇)A ′

⊥

]
× b− iωA ′

⊥ × b
〉X
α
·
∂F0

∂X
, (44)

T 20
L =

eZ
m
iω
〈
Φ ′ ′ −V ·A ′ ′

〉X
α

∂F0

∂U

∣∣∣∣
µ

+
1
B0

〈
∇⊥

(
Φ ′ ′ −V ·A ′ ′

)
× b
〉X
α
·
∂F0

∂X
, (45)

S1
NL =

1
B0

〈
∇
(
Φ ′ −V ·A ′)× b

〉X
α
·
∂

∂X
(g0 + H̄)

+
1
B0

〈
[(
V · ∇̄

)
A ′ × b− ∇̄

(
V ·A ′)× b− iωA ′ × b

]

·

[
∂

∂X
+
ωc
s2
V
∂

∂α

∣∣∣∣
X

](
g0 +

ωc
B0

Φ ′ ∂F0

∂U

∣∣∣∣
µ

)〉X

α

+
1
B0

〈[
∇
(
Φ ′ −V ·A ′)× b+(V ·∇⊥)A

′ × b
]

·

[
∂

∂X
+
ωc
s2
V
∂

∂α

∣∣∣∣
X

]
H̃

〉X

α

+
eZ
mB0

⟨Φ ′[∇
(
Φ ′ −V ·A ′)× b

+(V ·∇⊥)A
′ × b]⟩Xα ·

∂

∂X

(
∂F0

∂U

∣∣∣∣
µ

)
, (46)

S2
NL =

eZ

m

〈[(
s ·∇⊥Φ

′) ∂

∂U

∣∣∣∣
u

− u
[
(V ·∇⊥)A

′] · b 1
B0

∂

∂µ

∣∣∣∣
U

]
H̃

〉X

α

+
eZ

m

〈[
− u(b ·∇)

(
Φ ′ −V ·A ′) 1

B0

∂

∂µ

∣∣∣∣
U

− iω
(
A ′ · s

) ∂

∂U

∣∣∣∣
u

− iωuA ′
∥
∂

∂U

∣∣∣∣
µ

+ u
(
b ·∇Φ ′) ∂

∂U

∣∣∣∣
u

−u
[(
V · ∇̄

)
A ′] · b 1

B0

∂

∂µ

∣∣∣∣
U

](
g0 +

ωc
B0

Φ ′ ∂F0

∂U

∣∣∣∣
µ

)〉X

α

(47)

and

S3
NL =

1
B0

〈
∇
(
Φ ′ ′ −V ·A ′ ′

)
× b
〉X
α
·
∂g0
∂X

. (48)

Here S10
L contains the O

(
∆1δ0 VtL F0

)
terms which corres-

pond to the source term of the conventional linear gyrokin-
etic equation. S11

L contains the O
(
∆1δ1 VtL F0

)
corrections

associated with the first term on the right hand side of
equation (28) and provides the generalised gyrokinetics of
[38]. S20

L is driven by the O
(
∆2F0

)
contribution to the equi-

librium solution, i.e. the second term on the right hand side of
equation (28). T 20

L is theO
(
∆2 Vt

L F0
)
contribution provided by

equation (40). S1
NL, S

2
NL and S3

NL are the nonlinear corrections
from equation (40), in accordance with figure 1. The paral-
lel streaming operator in guiding centre coordinates, (b ·∇)X,
is related to b ·∇ via equation (D.3) (see appendix D for a
detailed derivation).

In the limit of low collisions, a combination of
equations (42)–(44) can be further simplified. Indeed, assum-
ing that the particle collision frequency is much smaller com-
pared to the free streaming along the equilibrium magnetic

9
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field lines/characteristic drift frequency in the equilibrium
solution and differentiating the gyro-averaged, O(∆0δ1 VtL F0)
equation for F1 [50] with respect to µ and U, one can find

[u(b ·∇)X+VD ·∇⊥]
∂Feqm

∂U

∣∣∣∣
µ

+
u
B0

(b ·∇)X
∂Feqm

∂µ

∣∣∣∣
U

=−
1
ωc

[b×∇ lnB0] ·
∂F0

∂X
, (49)

and hence

S10
L +S11

L +S20
L =

eZ
m
iω
〈
Φ ′ −V ·A ′

〉X
α

∂Feqm

∂U

∣∣∣∣
u

+
1
B0

〈
∇
(
Φ ′ −V ·A ′

)
× b
〉X
α
·
∂Feqm

∂X

+
eZ
m

[
−u(b ·∇)X −VD ·∇⊥

]
〈
Φ ′ −V ·A ′

〉X
α

B0

∂Feqm

∂µ

∣∣∣∣
U

+
1
B0

〈
Φ ′ − uA ′

∥

〉X
α
[b×∇ lnB0] ·

∂F0

∂X

+
1
B0

〈{
u
ωc

µ0j∥
B0

b×∇⊥ −
s

2ωc

[
([b× ŝ] ·∇ lnB0)b×∇⊥

− b× ŝ([b×∇ lnB0] ·∇⊥)
]}(

Φ ′ −V ·A ′
)
〉X

α

·
∂F0

∂X

+
1
B0

〈
(s ·∇⊥)A ′

⊥ × b
〉X
α
·
∂Feqm

∂X

+
1
B0

〈
u
[
(b ·∇)A ′

⊥

]
× b− iωA ′

⊥ × b
〉X
α
·
∂F0

∂X
. (50)

Equation (37) is theO
(
∆0 Vt

L F0
)
equation, where we learn that

g0 is gyrophase independent. Proceeding to O
(
∆1 Vt

L F0
)
in

equation (41), which is equivalent to equation (38) averaged
over α at fixed X, we obtain

− iωg0 +(u+VD) ·
∂g0
∂X

∣∣∣∣
α

=

〈
C

(
g0 +

eZ
m
Φ ′ ∂F0

∂U

∣∣∣∣
µ

)〉X

α

+
eZ
m
iω
〈
Φ ′ −V ·A ′

〉X
α

∂F0

∂U

∣∣∣∣
µ

+
1
B0

〈
∇
(
Φ ′ −V ·A ′

)
× b
〉X
α
·
∂(F0 + g0)

∂X
. (51)

Equation (51) reproduces the leading order, conventional
gyrokinetics and can be solved for g0 = g0(t,X,U,µ). Pro-
ceeding to O

(
∆2 Vt

L F0
)
in equation (41), we write

〈(
L̄−C

)(
H̃+ H̄

)〉X
α
=−

µ0s
2

2B0ωc
j∥b ·

∂g0
∂X

∣∣∣∣
α

+

〈
C

(
eZ
m

[
Φ ′ ′ ∂F0

∂U

∣∣∣∣
µ

+Φ ′ ∂F1

∂U

∣∣∣∣
u

−
uA ′

∥

B0

∂F1

∂µ

∣∣∣∣
U

])〉X

α

+S11
L +S20

L + T 20
L +S1

NL

(
g0, H̄, H̃

)
+S2

NL

(
g0, H̃

)
+S3

NL(g0).
(52)

Note, S1
NL on the right hand side of equation (52) should

exclude the nonlinear O(∆1 Vt
L F0) correction already

employed in equation (51). Substituting g0 obtained as a
solution of equation (51) into equation (38) and integrating
equation (38) over α at fixed X provides H̃ with the con-
stant of integration, H̄= H̄(t,X,U,µ), being determined from
equation (52) as follows:

〈
L̄−C

〉X
α
H̄=−

µ0s
2

2B0ωc
j∥b ·

∂g0
∂X

∣∣∣∣
α

+

〈
C

(
eZ
m

[
Φ ′ ′ ∂F0

∂U

∣∣∣∣
µ

+Φ ′ ∂F1

∂U

∣∣∣∣
u

−
uA ′

∥

B0

∂F1

∂µ

∣∣∣∣
U

])〉X

α

+S11
L +S20

L + T 20
L +S1

NL

(
g0, H̄, H̃

)

+S2
NL

(
g0, H̃

)
+S3

NL(g0)−
〈(
L̄−C

)
H̃
〉X
α
. (53)

The Bϑ ∼ B0 ordering is equivalent to ∆∼ δ and thus ulti-
mately requires solving for the gyro-angle dependent piece of
the fluctuating distribution function when retaining neoclas-
sical physics in the equilibrium plasma. The latter is relev-
ant, for example, to the edge pedestal region of a tokamak
where pressure gradients are strong or to a spherical toka-
mak core plasma. We note that in the absence of collisions,
the integration over α is straightforward for the right hand

side of equation (38) and allows one to express ⟨L̄H̃⟩
X
α on the

right hand side of equation (53) in terms of g0 and Y
′

analytic-
ally. One can then combine equations (51) and (53) to obtain
a single equation for g0 + H̄ which is gyrophase independent.
The latter is addressed in section 5.4 for electrostatic and in
section 5.5 for electromagnetic fluctuations.

5.4. The nonlinear electrostatic case

In the absence of collisions and the fluctuating vector potential,
integrating equation (38) over α at fixed X provides

H̃=
1
ωc

[−iω+ u(b ·∇)X+VD ·∇X]g0α+
Cµ

B0

∂g0
∂µ

∣∣∣∣
U

+
1
ωc
C̄X ·

∂g0
∂X

−
iω
B0

ˆ

dαΦ ′ ∂F0
∂U

∣∣∣∣
µ

−
1

B0ωc

ˆ

dα
[
∇Φ ′ × b

]
·
∂

∂X
(F0 + g0)

+
ω2
c

B20

Φ ′2

2
∂2F0
∂U2

∣∣∣∣
µ

+
ωc
B0

Φ ′ ∂g0
∂U

∣∣∣∣
u

, (54)

which can then be substituted into equation (53). A sum of
equations (51) and (53) then provides

10
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〈
L̄
〉X
α
G=

eZ
m
iω

〈
Φ ′ +Φ ′ ′ +

Cµ

B0

∂Φ ′

∂µ
+

1
ωc
C̄X ·

∂Φ ′

∂X
−
Cα

ωc
Φ ′

〉X

α

∂

∂U

∣∣∣∣
u

(Feqm +G)

+
1
B0

[
b×

∂

∂X
(Feqm +G)

]
·
∂

∂X

〈
Φ ′ +Φ ′ ′ +

Cµ

B0

∂Φ ′

∂µ
+

1
ωc
C̄X ·

∂Φ ′

∂X
−
Cα

ωc
Φ ′

〉X

α

−
eZ
m

[u(b ·∇)X+VD ·∇⊥]
⟨Φ ′⟩

X
α

B0

∂

∂µ

∣∣∣∣
U

(Feqm +G)+
⟨Φ ′⟩

X
α

B0
[b×∇ lnB0] ·

∂

∂X
(Feqm +G)

+
1
B0

〈{
u
ωc

µ0j∥
B0

b×∇⊥ −
s

2ωc
[([b× ŝ] ·∇ lnB0)b×∇⊥

−b× ŝ([b×∇ lnB0] ·∇⊥)]

}
Φ ′

〉X

α

·
∂

∂X
(Feqm +G) (55)

where we have defined G= g0 + H̄. As discussed in section 4,
an alternative approach to obtain equation (55) is to retain the
O(∆µ) and O(∆ρ) corrections in the magnetic moment and
the guiding centre variable, respectively. For example,

Φ′

(
X,U,µ+

Cµ

B0
,α

)
=Φ′ (X,U,µ,α)

+
Cµ

B0

∂Φ′

∂µ
(X,U,µ,α) .

Imposing a straight, constant magnetic field approximation
and taking into account equations (35) and (36), it can
be demonstrated that equations (55) and (56) contain those
equations provided by the recursive approach of [55] for non-
linear electrostatic fluctuations. Note that the equation presen-
ted in appendix A of [55] for the gyrophase angle independent
piece of the fluctuating distribution function can be further
simplified to the form of equation (55) when the second order,
gyrophase angle dependent correction, i.e. g̃i2 of [55], is sub-
stituted explicitly. As discussed in [55], the main difference
between equation (19) of [55] or equation (55) of this paper
and the electrostatic limit of the nonlinear Frieman–Chen
gyrokinetics [39] is that [39] contains the leading order, E×B

nonlinearity only. As discussed in section 4, the latter is due
to the assumptions associated with the form of the equilibrium
distribution function employed in [39].

5.5. The nonlinear electromagnetic case

Retaining the fluctuating vector potential, we obtain

H̃=
1
ωc

[−iω+ u(b ·∇)X+VD ·∇X]g0α+
Cµ

B0

∂g0
∂µ

∣∣∣∣
U

+
1
ωc
C̄X ·

∂g0
∂X

−
iω
B0

ˆ

dα
(
Φ ′ −V ·A ′

) ∂F0

∂U

∣∣∣∣
µ

−
1

B0ωc

ˆ

dα
[
∇
(
Φ ′ −V ·A ′

)
× b
]
·
∂

∂X
(F0 + g0)

+
1
B0

[
A ′ × b

]
·
∂

∂X
(F0 + g0)+

ω2
c

B2
0

Φ ′2

2
∂2F0

∂U2

∣∣∣∣
µ

+
ωc
B0

[
Φ ′ ∂g0

∂U

∣∣∣∣
u

−
uA ′

∥

B0

∂g0
∂µ

∣∣∣∣
U

]
, (56)

and therefore

〈
L̄
〉X
α
G=

eZ
m
iω

〈
χ ′ +χ ′ ′ +

Cµ

B0

∂χ ′

∂µ
+

1
ωc
C̄X ·

∂χ ′

∂X
−
Cα

ωc
χ ′

〉X

α

∂

∂U

∣∣∣∣
u

(Feqm +G)

+
1
B0

[
b×

∂

∂X
(Feqm +G)

]
·
∂

∂X

〈
χ ′ +χ ′ ′ +

Cµ

B0

∂χ ′

∂µ
+

1
ωc
C̄X ·

∂χ ′

∂X
−
Cα

ωc
χ ′

〉X

α

−
eZ
m

[u(b ·∇)X+VD ·∇⊥]

〈
χ ′

B0

〉X

α

∂

∂µ

∣∣∣∣
U

(Feqm +G)

+

〈
Φ ′ − uA ′

∥

〉X
α

B0
[b×∇ lnB0] ·

∂

∂X
(Feqm +G)

+
1
B0

〈{
u
ωc

µ0j∥
B0

b×∇⊥ −
s

2ωc
[([b× ŝ] ·∇ lnB0)b×∇⊥

11
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−b× ŝ([b×∇ lnB0] ·∇⊥)]

}
χ ′

〉X

α

·
∂

∂X
(Feqm +G)

−
1
B0

〈
A ′
⊥ × (V ·∇)b

〉X
α
·
∂

∂X
(F0 + g0)−

〈
L̄

(
1
B0

)[
A ′ × b

]〉X

α

·
∂

∂X
(F0 + g0) (57)

for a sum of equations (51) and (53) in the absence of col-
lisions. Here, we have defined χ ′ =Φ ′ −V ·A ′ and χ ′ ′ =
Φ ′ ′ −V ·A ′ ′. In the limit of low collisions in the equilibrium
solution, the F0 contribution to the last line of equation (57)
can be rearranged using equation (49) to provide

eZ
m

〈
A′
⊥ · s

〉X
α
[u(b ·∇)X+VD ·∇⊥]

∂Feqm

∂U

∣∣∣∣
µ

+
eZ
m

u
B0

〈
A′
⊥ · s

〉X
α
(b ·∇)X

∂Feqm

∂µ

∣∣∣∣
U

.

Note, the g0 contribution to the last line of equation (57) can be
rewritten in a similar way if one split equation (57) into a sys-
tem of gyrokinetic equations for g0 =O(∆F0) (equation (51))
and H̄=O(∆2F0). Therefore, equation (57) has the structure
of equation (55) with Φ ′ and Φ ′ ′ being replaced with the gen-
eralised potential, χ ′ and χ ′ ′, respectively.

In appendix E, we construct the particle and energy bal-
ance equations associated with equation (57) in the absence of
collisions to illustrate how equation (57), retaining the equi-
librium current density gradient physics, extends the conven-
tional ‘gyrokinetic-fluid’ model associated with the conven-
tional gyrokinetic equation of [27].

5.6. The Bϑ ≪ B0 limit

For benchmarking purposes, in this section we discuss how
certain existing extended gyrokinetic models, including the
Frieman–Chen nonlinear gyrokinetics of [39], are contained
in equation (57). In the limit of Bϑ ≪ B0, ∆≪ δ and there-
fore only the first term on the right hand side of equation (28)
is to be retained. While the magnetic moment variation is
captured in the equilibrium solution, no second order finite
Larmor radius effects are required when defining the guiding
centre coordinate, and hence X= x−ρ(X,V). Equations (51)
and (53) (or equation (57) in the absence of collisions) then
reduce to

− iωg0 +
(
u+VD+V ′

E,eff

)
·
∂g0
∂X

∣∣∣∣
α

= ⟨C(δf0)⟩
X
α +

eZ
m
iω
〈
Φ ′ −V ·A ′

〉X
α

∂Feqm

∂U

∣∣∣∣
u

+
1
B0

〈
∇
(
Φ ′ −V ·A ′

)
× b
〉X
α
·
∂Feqm

∂X

−
eZ
m

[u(b ·∇)X+VD ·∇⊥]

〈
Φ ′ −V ·A ′

B0

〉X

α

∂Feqm

∂µ

∣∣∣∣
U

,

(58)

where V ′
E,eff = (1/B0)E

′
eff × b and E ′

eff =−⟨∇(Φ ′ −V ·A ′)⟩
X
α.

g0 contains the O(∆1 Vt
L F0) and O(∆1δ1 VtL F0) contributions.

Equation (58)matches the nonlinear gyrokinetics of [39] when
the collisional effects are neglected and the parallel stream-
ing operator is written in terms of x via equation (D.3). In
the absence of nonlinear effects, equation (58) matches (1) the
generalised gyrokinetics of [38] 7 and (2) [37, 40, 41] in the
absence of the fluctuating vector potential. Equation (58) can
be further simplified to

− iωH0 +
(
u+VD+V ′

E,eff

)
·
∂H0

∂X

∣∣∣∣
α

= ⟨C(δf0)⟩
X
α +

eZ
m
iω
〈
Φ ′ −V ·A ′

〉X
α

∂Feqm

∂U

∣∣∣∣
µ

+
1
B0

〈
∇
(
Φ ′ −V ·A ′

)
× b
〉X
α
·
∂Feqm

∂X
, (59)

where

g0 = H0 −
eZ
m

〈
Φ ′ −V ·A ′

〉X
α

∂Feqm

B0∂µ

∣∣∣∣
X,U
. (60)

Note, the first line of equation (44) reduces from O(∆δ VtL F0)

toO(∆2 Vt
L F0) in the limit of low collisions (see equation (49))

and thus is not captured in [38, 39].
The plasma turbulent transport is driven by micro-

instabilities that are typically described by the gyrokinetic
simulations, and can be sensitive to the collisional effects.
The latter requires the gyro-averaged collision operator with
the retained finite Larmor orbit width effects. As discussed
above, for the second order gyrokinetics, an additional com-
plication arises from the fact that X= x−ρ(X+ρ,V). In this
paper, we do not discuss the gyrokinetic collision operator.
There are a number of works and reviews [56] (and references
therein) that address this, e.g. [57–59] for multiple ion spe-
cies linearised model collisions, for the gyrokinetic linearised
Landau/Fokker-Planck collision operator [60, 61] etc.

5.7. Maxwell’s field equations in gyrokinetics

To ensure a self-consistent description of the nonlin-
ear gyrokinetic system, equations (38), (51) and (53) (or
equation (57) for collisionless plasmas) must be coupled to
the gyrokinetic Maxwell equations. Poisson’s equation (which

7 Equation (35) of [38] and equation (43)/(48) of [39] can be significantly
simplified if (1) b ·∇ is rewritten in terms of the guiding centre variable, as
shown in equation (58), and (2) the O(∆µ) term in the magnetic moment is
written explicitly via VD. Note, Cµ/B0 is equivalent to µ1 −⟨µ1⟩ in equation
(23) of [38] and equation (22) of [39].

12
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typically reduces to the quasi-neutrality condition) consistent
with equation (57) reads

∇
2 (Φ ′ +Φ ′ ′)=−

1
ε0

∑

j

eZj

ˆ

Z

{
Gj+ H̃j (Gj)

+
eZj
mj

[
(
Φ ′ +Φ ′ ′) ∂F0,j

∂U

∣∣∣∣
µ

−
uA ′

∥

B0

∂F1,j

∂µ

∣∣∣∣
U

]}
δ (X− x+ρ) ,

(61)

where ε0 is the permittivity of free space, and Z denotes the
phase space integral [55]. j is the particle species index. For a
system of equations (38), (51) and (53), we must separate the
first and second order contributions and hence equation (61)
reduces to

∇
2Φ ′ =−

1
ε0

∑

j

eZj

ˆ

Z

(
g0,j+

eZj
mj

Φ ′ ∂F0,j

∂U

∣∣∣∣
µ

)
δ (X− x+ρ),

∇
2Φ ′ ′ =−

1
ε0

∑

j

eZj

ˆ

Z

{
H̄j+ H̃j (g0,j)+

+
eZj
mj

[
Φ ′ ′ ∂F0,j

∂U

∣∣∣∣
µ

−
uA ′

∥

B0

∂F1,j

∂µ

∣∣∣∣
U

]}
δ (X− x+ρ) ,

(62)

coupled to equations (51) and (53), respectively. In a similar
way, Ampère’s law consistent with equation (57) can be writ-
ten as

∇×
(
B ′ +B ′ ′

)
= µ0

∑

j

eZj

ˆ

Z

(δf0,j+ δf1,j)Vδ (X− x+ρ),

(63)

where µ0 is the magnetic permeability of free space. The
parallel and perpendicular components of equation (63) then
provide A ′

∥, A
′ ′
∥ and B ′

∥, B
′ ′
∥ , respectively. In the absence of the

B̃∥ effects that are generally weak for gyrokinetic simulations
[20], equation (63) reduces to

∇
2 (A ′

∥ +A ′ ′
∥

)
=

−µ0

∑

j

eZj

ˆ

Z

u

[
Gj+ H̃j (Gj)+

eZj
mj

Φ ′ ∂F1,j

∂U

∣∣∣∣
u

]
δ (X− x+ρ) .

(64)

For a system of equations (38), (51) and (53), equation (64)
then provides

∇
2A′∥ =−µ0

∑

j

eZj

ˆ

Z
ug0,jδ (X− x+ρ),

∇
2A′′∥ =

−µ0
∑

j

eZj

ˆ

Z
u

[
H̄j+ H̃j (g0,j)+

eZj
mj

Φ′ ∂F1,j

∂U

∣∣∣∣
u

]
δ (X− x+ρ) ,

similar to equation (62). Equations (61) and (63) are general
and match the Maxwell system of [62] for truncated gyrokin-
etics and the Poisson equation in the recursive approach of
[55] etc. When the flux tube approximation is employed,

equations (61) and (63) reduce to a system of local gyrokin-
etic Maxwell equations, e.g. equations (10)–(12) of [63] (in
the absence of neoclassical physics). In the following section,
we address limitations of the local, flux tube approximation
illustrated by MHD simulation results.

6. Limitations of the ballooning transform for
tokamak pedestal

Since the perturbed fields are allowed to vary significantly
over the Larmor radius length scale, equations (38), (51)
and (53) (or equations (55) and (57) for collisionless plas-
mas) form a system of integro-differential equations. Conven-
tionally, such an integro-differential form can be reduced to
a differential system by employing an eikonal approximation
for the fast spatial variation of fluctuations (e.g. see [27] or
[64] for the extended Fourier-ballooning transform that allows
one to reconstruct the radial mode structure). A local form of
equation (58), for example, which is valid in a low Bϑ limit,
is provided by equation (50) of [39] or by equation (41) of
[38] for a linearised model. Employing the eikonal approx-
imation for the higher order gyrokinetic theory is associated
with certain complications. For example, the eikonal func-
tion, S, defined such that b ·∇S(x) = 0 is typically expanded
around the guiding centre coordinate up toO(∆S), i.e. S(x) =
S(X)+ρ ·∇S, which does not provide a sufficient accuracy in
the limit of ∆∼ δ. Furthermore, while the local form allows
internal modes, it is insufficient to capture modes that couple
to a resonant surface outside the plasma (‘external’).

Indeed, let us illustrate the structure of the kink mode in
the pedestal by considering ideal MHD. One then finds that
instabilities exist that involve a coupling between the curvature
drive (pressure gradient) and the kink drive (current gradient).
These are called peeling-ballooning modes. The most robust
kink drive occurs when the instability can tap into the rational
surface just outside the plasma. This situation is shown in
figure 2 (left) for a n= 20 peeling-ballooning mode derived
using ELITE [65], which shows that when the pressure gradi-
ent peaks near the plasma edge, the eigenfunction has a large
amplitude there. The plasma radial displacement is decom-
posed into poloidal Fourier harmonics, labelled by poloidal
mode number, m, and the radial variation of each is plotted
in figure 2 (right). Note that there are a significant number
of harmonics, each peaking at their rational surface, where
m= nq. They are all in phase, resulting in a poloidal mode
structure that peaks on the outboard (low field) side of the
tokamak plasma. Furthermore, each of the harmonics reson-
ant inside the plasma has qualitatively the same shape, and
only differs from its neighbours by the relative amplitude. This
(ballooning) symmetry is exploited in ‘local theories’ (e.g.
[66] in ideal MHD or [25] in gyrokinetics), which to lead-
ing order describes the radial shape of the Fourier amplitudes,
and then the higher order provides their relative size. However,
the Fourier harmonics, which are resonant outside the plasma
(i.e. those increasing towards the plasma edge) do not have
the same shape as the harmonics resonant inside the plasma.
Therefore in this situation, the ballooning symmetry breaks
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Figure 2. αMHD (left) and poloidal Fourier harmonics of the plasma
radial displacement, Um, (right) are plotted as a function of the
normalised poloidal flux function, ψN . ψN = ψ/ψa with ψa being
the poloidal flux at the plasma boundary. The result is derived from
an ideal MHD calculation using ELITE of an instability with a
strong kink drive.

Figure 3. The same as figure 2 but the peak in αMHD is shifted into
the plasma region.

down and local theory must be replaced with a general set of
equations (38), (51) and (53) (or equation (55)/(57) for col-
lisionless plasmas) coupled to Poisson’s equation or plasma
quasi-neutrality and Ampère’s law for perturbed fields to close
the system. Such a gyrokinetic-Maxwell system can be further
simplified, e.g. employing a full spectral decomposition of the
fluctuating quantities [65, 67].

We consider a special case in figure 3, where we show the
effect of moving the peak in the normalised pressure gradient,
αMHD, further into the plasma. The eigenfunction now peaks
away from the plasma edge, close to where αMHD is a max-
imum, and we see that the largest amplitude Fourier harmonics
now do have qualitatively the same shape. Thus, in this situ-
ation we do expect to be able to describe the dominant instabil-
ity characteristics with a local theory. Although the coupling to
the Fourier harmonics resonant in the vacuum is much reduced
in this case, the kink drive is still significant — looking at the
contributions to the perturbed energy, about 60% arises from
the curvature drive compared to 40% from the kink.

7. Conclusions

The principal motivation for the calculations presented in
this paper is to ensure that the effects associated with sharp
pressure gradients and the consequential high bootstrap and
Pfirsch–Schluter currents are fully captured in the nonlinear

electromagnetic gyrokinetic theory, while allowing arbitrary
magnetic field configurations and finite orbit width effects and
ensuring consistent ordering. Bootstrap current can readily
be incorporated into the ideal MHD Grad–Shafranov solution
for the equilibrium, which can then be analysed for micro-
instabilities using standard gyrokinetic tools. However, such
gyrokinetic analysis usually explore fluctuations by expanding
about an equilibrium distribution function that is Maxwellian,
which is then not consistent with a large bootstrap current (and
hence the physics of kink modes).

In ideal MHD, the kink term represents the instability drive
from current density gradients, and therefore originates from
the contribution to force balance j∥b×B ′, where j∥b is the
equilibrium current density which flows parallel to the mag-
netic field. In the gyrokinetic formalism, this requires the treat-
ment of the term

[
V×B ′

]
·∇VF which contributes to the

force balance (i.e. the first velocity moment of the kinetic
equation) from the part of the equilibrium distribution func-
tion, F, which carries flow. While the flow is carried out by the
first order correction in a δ expansion of the equation, describ-
ing the equilibrium distribution function, this equationmust be
expanded to second order in δ to be self-consistent, and cap-
ture the kink drive. To see this, consider

[
V×B ′

]
·∇VF= iuA ′

∥

[
(k⊥ · s)

1
B0

∂F
∂µ

−
k⊥ · (s× b)

s2
∂F
∂α

]

−B ′
∥

∂F
∂α

, (66)

where we have employed the local approximation for illustra-
tion. It is immediately apparent that an isotropic distribution
function F= F(U) does not contribute to this term, and there-
fore one must include physics in the equilibrium beyond the
Maxwellian, as captured by the first order equilibrium solu-
tion, F1. The first term gyro-averages to zero when acting on
F1, which is independent of α and so will not contribute to
the current. Thus, only the α-dependent parts of F, embodied
in the second order correction, F2, can contribute to this drive
term. This reinforces the importance of capturing the physics
of F2.

Some previous works (e.g. [37–39, 43]) extend the gyrokin-
etic equation to incorporate these effects; however, implicitly
or explicitly requiring an extra expansion parameter,Bϑ/B0 ≪
1, which is typically a good approximation for conventional
tokamaks but must be relaxed for a spherical tokamak plasma.
TheO(∆2 Vt

L F0) termswhose estimates containBϑ/B0 are also
anticipated to play a role for a full treatment of the current
density gradient physics in situations when the equilibrium
profile gradients are steep (specifically in transport barrier
regions). In this paper, we have extended a nonlinear elec-
tromagnetic gyrokinetic formalism to a set of equations valid
for any tokamak geometry and plasma beta, allowing Bϑ ∼ B0.
This gyrokinetic system is provided by a set of equations (38),
(51) and (53) with no restrictions on the plasma collisional-
ity. For collisionless plasmas, this reduces to equation (55) for
nonlinear electrostatic and equation (57) for electromagnetic
fluctuations. We have demonstrated that to allow Bϑ ∼ B0,
a gyrokinetic formalism correct to third order in ρ/L must
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be derived which ultimately requires solving for the gyro-
angle dependent part of the fluctuating distribution function
(or alternatively retaining the O(∆µ) and O(∆ρ) corrections
in the magnetic moment and the guiding centre variable). Note
that current gyrokinetic codes are typically valid up to the first
order in ρ/L.

To explore internal modes when the fraction of boot-
strap current is large, one can exploit a local version of
equations (38), (51) and (53). However, in making this sim-
plification, we restrict the applicability of our formalism. For
example, such a local approach requires equilibrium quant-
ities to vary slowly from one rational surface to the next,
and that may not be compatible with the strong gradients
required to drive the kink dynamics. The classical local
approximation (e.g. [26]) is commonly applied to reduce the
global integro-differential problem to a differential system.
The extended local/hybrid models (e.g. [34, 64]) allow one to
retain slow radial profile variations of the density/temperat-
ure gradients. Both incorporate the Fourier-ballooning trans-
form, whose symmetry breaks down at the boundary that sep-
arates the plasma from the vacuum. Thus, the local version
of gyrokinetics is only suitable to capture modes that are
contained inside the plasma (i.e. internal modes). To capture
external modes, a global version must be employed. Global
effects are expected to be important for capturing all of the key
dynamics associated with kink mode physics, so it is neces-
sary to retain the equilibrium profile effects. Note that, while
the system of global equations derived in section 5 is accurate,
it remains computationally expensive, especially when colli-
sional effects are retained. As part of future work, we will
address possible ways for its reduction, while keeping the for-
mulation global and capturing the plasma-vacuum interface.

The approach presented here is iterative. Therefore, des-
pite consistent ordering, it is not generally obvious that
the gyrokinetic equation obtained by the iterative method
can be rewritten in a phase space conserving form or a
form that exactly conserves an energy-like quantity. This
problem is well illustrated in [55]. In contrast, it might
be necessary to retain certain higher order corrections to
ensure that the equations have an exact energy-like invari-
ant [46, 55, 68] which generally violates consistent order-
ing in the gyrokinetic-Maxwell system. In section 5.4 we
briefly discussed how equation (55) (coupled to equation (61))
for electrostatic fluctuations is related to the nonlinear
electrostatic gyrokinetic equation of [55] for straight field
lines, which is energy and phase space conserving. We
leave an investigation of the conservative properties (and

the higher order gyrokinetic field theory in particular8) of
equation (55) for electrostatic fluctuations in general geometry
and equation (57) for electromagnetic fluctuations for future
work.

We started our motivation by exploring kink physics in the
pedestal, showing that the kink drive can be significant up to
large/intermediate toroidal mode numbers in ideal MHD cal-
culations (e.g. see figure 4.19 of [14]). It is therefore expected
to be important for electromagnetic drift instabilities, and the
associated turbulence, as found in the pedestal or in reactor-
grade spherical tokamak plasmas (e.g. STEP [11]). In toka-
mak plasmas, gyrokinetic theory is employed to describe these
instabilities. Equations (38), (51) and (53) extend conven-
tional gyrokinetics, capturing the kink/peeling (current density
gradient) physics for any equilibrium magnetic field configur-
ation. While equations (38), (51) and (53) (or equation (57)
for collisionless plasmas) can readily be incorporated into the
existing gyrokinetic community codes (e.g. ORB5 [21, 22]),
the problem with the boundary conditions for external modes
remains. Indeed, coupling to the fluctuating magnetic field
in the vacuum is important for those MHD instabilities, and
understanding how gyrokinetic plasma instabilities couple to
the vacuum will need further work and is important for a full
understanding of pedestal physics.
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Appendix A. Derivation of L̄δf0 + L̃1F

Since

(
L̄+ iω

)
Φ′ = V ·∇Φ′ +ωc

∂Φ′

∂α

∣∣∣∣
X

and(
L̄+ iω

)
(uA′

∥) = (V ·∇+ a ·∇V)(uA
′
∥)+ uωc

∂A′
∥

∂α

∣∣∣∣∣
X

in the O(∆1 Vt
L F0) equation, where a is the acceleration

provided by the equilibrium component of the Lorentz force
and ∇V is the velocity space gradient at fixed x, L̄δf0 + L̃1F
can be reduced to

L̄δf0 + L̃1F= L̄g+
eZ
m

{
− iω

(
Φ ′ −V ·A ′

)
(

∂

∂U

∣∣∣∣
µ

+
1
B0

∂

∂µ

∣∣∣∣
U

)
Feqm

−
1
ωc

[
∇
(
Φ ′ −V ·A ′

)
× b
]
·
∂Feqm

∂X
+ u(b ·∇)

(
Φ ′ −V ·A ′

) 1
B0

∂Feqm

∂µ

∣∣∣∣
U

}

+
eZ
m

Φ ′

{
u ·

∂

∂X

(
∂F0

∂U

∣∣∣∣
µ,X

)
+ u ·

∂

∂X

(
∂F1

∂U

∣∣∣∣
µ,X

)
+VD ·

∂

∂X

(
∂F0

∂U

∣∣∣∣
µ,X

)

+ u ·
∂

∂X

(
∂F1

∂µ

∣∣∣∣
U

)
1
B0

−V ·∇ lnB0
1
B0

∂F1

∂µ

∣∣∣∣
U

+
eZ
m
∂Cµ

∂α

∂

∂µ

∣∣∣∣
U

(
∂

∂U

∣∣∣∣
µ

+
1
B0

∂

∂µ

∣∣∣∣
U

)
Feqm

+
µ0s2

2B0ωc
j∥b ·

∂

∂X

(
∂F0

∂U

∣∣∣∣
µ

)
+
∂CX
∂α

·
∂

∂X

(
∂F0

∂U

∣∣∣∣
µ

)}
−
ωc
B0

(s ·∇⊥Φ
′)
∂F2

∂U

∣∣∣∣
u

−
eZ
ms2

[∇⊥

(
Φ ′ −V ·A ′

)
+(V ·∇⊥)A

′] · [b×V]
∂F2

∂α

∣∣∣∣
X

+
ωc
B2
0

{
−A ′

∥ (V ·∇)u− u [(V ·∇)b] ·A ′ + uA ′
∥V ·∇ lnB0 −

eZ
m
uA ′

∥

∂Cµ

∂α

∂

∂µ

∣∣∣∣
U

}
∂Feqm
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∣∣∣∣
U

−
eZ
mB0

uA ′
∥u ·

∂
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(
∂Feqm

∂µ

∣∣∣∣
U

)
+

1
B0

[
iωA ′ × b−

[
(V ·∇)A ′

]
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]
·
∂Feqm
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+
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B2
0

u
[
(V ·∇⊥)A
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· b
∂F2
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+
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−
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]
, (A.1)

where

L̃1F2 =−
ωc
B0

(
s ·∇⊥Φ

′) ∂F2

∂U

∣∣∣∣
u

+
ωc

B2
0

u
[
(V ·∇⊥)A

′] · b ∂F2

∂µ
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−
eZ
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∇⊥

(
Φ′ −V ·A′)+(V ·∇⊥)A
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X

+O

(
∆δ2

Vt
L
F0

)
,

and the O
(
∆δ2 VtL F0

)
corrections or higher have been neg-

lected. Note, here u= ub(x). Equation (A.1) is to be sub-
stituted into equation (32). In the limit of low collisions,
equation (A.1) can be further simplified. One can write

ub(X) ·
∂

∂X

(
∂F1

∂µ

∣∣∣∣
U

)

=−
B0

ωc

{
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[(
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2u2
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·
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∣∣∣∣
µ

)

=
1
ωc

{
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[
s2

2u2
∇ lnB0 − (b ·∇)b

]}
·
∂F0

∂X
, (A.2)

provided the perturbative treatment of collisions is allowed in
the equilibrium solution9. Equilibrium quantities on the right

9 To obtain equation (A.2), one would need to differentiate the gyro-averaged,
O(∆0δ1 Vt

L
F0) equation for F1 with respect to µ and U.
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hand side of equation (A.2) should be treated as functions of X,
and F1 is then to be determined from the collisional constraint

in accordance with the conventional neoclassical theory. Sub-
stituting equation (A.2) into equation (A.1) provide

L̄δf0 + L̃1F= L̄g+
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m
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Appendix B. The O
(
∆2 Vt

L F0
)
corrections from

higher order gyrokinetics

L̃3F+ L̃2δf0 + L̃1δf1 includes
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]
·
∂δf0
∂X

−
eZ
m

[(
s ·∇⊥Φ

′′) ∂

∂U

∣∣∣∣
u

− u
[
(V ·∇)A′′] · b 1

B0

∂

∂µ

∣∣∣∣
U

]
δf0

−
eZ
ms2

[
∇
(
Φ′′ −A′′ ·V

)
+(V ·∇)A′′] · [b×V]

∂δf0
∂α

∣∣∣∣
X

+O

(
∆2δ

Vt
L
F0

)

and

L̃1δf1 =−
1
B0

[
∇
(
Φ′ −V ·A′)× b+(V ·∇)A′ × b

]
·
∂δf1
∂X

−
eZ
m

[(
s ·∇⊥Φ

′) ∂

∂U

∣∣∣∣
u

− u
[
(V ·∇)A′] · b 1

B0

∂

∂µ

∣∣∣∣
U

]
δf1

−
eZ
ms2

[
∇
(
Φ′ −A′ ·V

)
+(V ·∇)A′] · [b×V]

∂δf1
∂α

∣∣∣∣
X

+O

(
∆2δ

Vt
L
F0

)

that must be added to the O
(
∆2 Vt

L F0
)
equation.

Appendix C. Source term

To obtain equations (42)–(44), we find it convenient to do the
following splitting based on the O(δ∆F0) and O(∆2F0) con-
tributions in equation (28):

S10
L +S11

L +S20
L = S1

l +S2
l (C.1)

with

S1
l =

eZ

m

{

iω
〈

Φ ′ −V ·A ′
〉X
α

(

∂

∂U

∣

∣

∣

∣

µ

+
1

B0

∂

∂µ

∣

∣

∣

∣

U

)

Feqm

+
1

ωc

〈

∇
(

Φ ′ −V ·A ′
)

× b
〉X
α
·
∂Feqm

∂X

}

+
eZ

m

〈{

−u(b ·∇)+V ·∇ lnB0 +
1

s2
∂Cµ

∂α
[b× s] ·∇⊥

+
∂Cµ

∂U

∣

∣

∣

∣

u

(s ·∇⊥)

}

(

Φ ′ − uA ′
∥

)

〉X

α

1

B0

∂F1

∂µ

∣

∣

∣

∣

U

+
eZ

m

〈

B ′
∥

∂Cµ

∂α
+ uA ′

⊥ · [(V ·∇)b] + uV ·
[

(b ·∇)A ′
⊥

]

〉X

α

1

B0

∂F1

∂µ

∣

∣

∣

∣

U

,

(C.2)
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and

S2
l =

1
B0

〈{
b×∇ lnB0 +

1
s2
∂C̄X
∂α

([b× s] ·∇⊥)

+
∂C̄X
∂U

∣∣∣∣
u

(s ·∇⊥)

}(
Φ ′ − uA ′

∥

)〉X

α

·
∂F0

∂X

+
1
B0

〈
u
[
(b ·∇)A ′

⊥

]
× b− iω

[
A ′

⊥× b
]
+B ′

∥

∂C̄X
∂α

〉X

α

·
∂F0

∂X

+
1
B0

〈[
(s ·∇⊥)A

′
⊥

]
× b
〉X
α
·
∂Feqm

∂X
,

(C.3)

respectively.

Appendix D. Parallel streaming operator in guiding
centre coordinates

Switching from x to X in the free streaming operator, we write

b ·∇= (b ·∇)X+ [(ρ ·∇)b] ·∇X−

[
(b ·∇)

(
b
ωc

)
×V
]
·∇X

+(b ·∇µ)
∂

∂µ

∣∣∣∣
X

+(b ·∇α)
∂

∂α

∣∣∣∣
X

, (D.1)

where b on the right hand side is a function of X
and (b ·∇)X ≡ b(X) ·∇X. Here all terms that provide the
O
(
∆2δ VtL F0

)
corrections (or higher) in the gyrokinetic

equation have been neglected. Noting that

b ·∇µ=−
u
B0

[(b ·∇)b] · s−
s2

2B0
(b ·∇ lnB0) ,

b ·∇α= [(b ·∇)e3] · e2 −
u
s
[(b ·∇)b] · [b× ŝ]

and

∂

∂µ,α

∣∣∣∣
X
=

∂

∂µ,α

∣∣∣∣
x
+

∂ρ

∂µ,α

∣∣∣∣
X
·
∂

∂x

∣∣∣∣
µ,α

,

we find

⟨(b ·∇)Φ ′⟩
X
α = (b ·∇)X⟨Φ

′⟩
X
α

+
1
ωc

〈[
[[b× s] ·∇]b+ s× (b ·∇)b

+
1
2
(b ·∇ lnB0) [b× s]

]
·∇XΦ

〉X

α

= (b ·∇)X⟨Φ
′⟩
X
α −

1
ωc

〈[
b× (s ·∇)b

+
1
2
(b ·∇ lnB0) [b× s]

]
·∇XΦ

〉X

α

, (D.2)

where Φ ′ can be replaced by any scalar fluctuating quantity,
and

〈
(b ·∇)

(
Φ ′ −V ·A ′)〉X

α

= (b ·∇)X
〈
Φ ′ −V ·A ′〉X

α
+

1
ωc

〈[
[[b× s] ·∇]b+ s× (b ·∇)b

+
1
2
(b ·∇ lnB0) [b× s]

]
·∇X

(
Φ ′ −V ·A ′)

〉X

α

−

〈[
[(b ·∇)b] · s+

s2

2u
(b ·∇ lnB0)

]
A ′
∥

〉X

α

+

〈
1
2
(b ·∇ lnB0)

(
A ′

⊥ · s
)
+ u [(b ·∇)b] ·A ′

⊥

− ([(b ·∇)e3] · e2) [b× s] ·A ′
⊥

〉X

α

. (D.3)

Appendix E. Particle and energy balance

To simplify the analysis, in this section we neglect the B̃∥

effects that are typically anticipated to be weak at low beta
values, characteristic of conventional tokamaks, and in cer-
tain finite beta cases [20]. The particle and energy bal-
ance equations are obtained by integrating equation (57)
over velocity space with appropriate scalar weights [68].
Based on equations (35) and (36), we anticipate a balance
of (a) turbulent-driven contributions associated with fluctuat-
ing quantities, g0 and g1 + h0, (b) neoclassical contributions
provided by F1 and the gyro-phase angle dependent part of
F2 and (c) adiabatic contributions associated with the exten-
ded adiabatic pieces of equations (35) and (36), as well as the
nonlinear contributions provided by the nonlinear drive on the
right hand side of equation (57). For the particle balance, we
obtain

∂

∂t

(
n(0)ad,j+ n(1)ad,j+ n(2)ad,j+ n ′

j + n ′ ′
j

)
+

(
∇∥ +

in
R
B0

Bϕ

)
Γ
(1)
ad,j∥

+
B ′
⊥

B0
·∇⊥

(
neqmu

neo
j∥

)
+∇ ·

(
Γ

′
j +Γ

′ ′
j

)
= 0.

(E.1)

Here the adiabatic contributions are defined as

n(0)ad,j =−neqm
eZj
Tj

Φ′, n(1)ad,j =−A′
∥

I
B0

dneqm
dψ

,

n(2)ad,j =−neqm
eZj
Tj

Φ′′, Γ
(1)
ad,j∥ =Φ′ I

B0

dneqm
dψ

with neqm and T j being the equilibrium plasma density and
temperature of species j. The neoclassical contribution is
provided by

neqmu
neo
j∥ =−

I
eZjB0

dpj
dψ

,

where pj is the equilibrium plasma pressure of species j. n ′
j +

n ′ ′
j are the turbulent-driven contributions to density, associated

with theO(∆F0) andO(∆2F0) parts of G, respectively. Γ
′
j +

Γ
′ ′
j is defined similar to equations (76), (77) and (80) of [68]

and includes

Γ
′
j = Γ ′

j∥b+Γ
′
L,j+Γ

′
NL,j, (E.2)
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Γ
′ ′
j = Γ ′ ′

j∥b+Γ
′ ′
L,j+Γ

′ ′
NL,j (E.3)

with

Γ′
∥ =

ˆ

dVug0, Γ′′
∥ =

ˆ

dVuH̄,

Γ
′
L =

ˆ

(VD+ uD)g0dV, Γ
′′
L =

ˆ

VDH̄dV,

Γ
′
NL =

ˆ

V′
E,effg0dV, Γ

′′
NL =

ˆ

V′
E,effH̄dV

for each particle species. Here the parallel drift velocity
is defined as uD = µ0s2/(2B0ωc)j∥b [49]. Note, uD ·∇H̄=

O(β∆3 Vt
L F0) and thus the corresponding contribution has

been neglected inΓ ′ ′
L .B

′
⊥ is the perturbed magnetic field com-

ponent across the equilibriummagnetic field lines. The energy
balance equation is obtained by multiplying equation (57) by
mV2/2 and integrating over velocity space,

∂

∂t

(
Q(0)

ad,j+Q(1)
ad,j+Q(2)

ad,j+Q ′
j +Q ′ ′

j

)
+

(
∇∥ +

in
R

B0

Bϕ

)(
3
2
TjΓ

(1)
ad,j∥

)

+
B ′
⊥

B0
·∇⊥

(
5
2
neqmTju

neo
j∥

)
+∇ ·

(
Q ′
j +Q ′ ′

j

)

=−eZj∇Φ0 ·
(
Γ

′
j +Γ

′ ′
j

)
. (E.4)

Here Γ ′
j and Γ

′ ′
j are defined as in equations (E.2) and (E.3).

Note, in equation (E.4) we have taken into account that U is
based on the total equilibrium electrostatic potential, Φ0, in
contrast to [49], where U is based on a total Φ= Φ0 +Φ̃. The
adiabatic contributions to equation (E.4) are defined as

Q(0)
ad,j =−

3
2
neqmeZjΦ

′ =
3
2
n(0)ad,jTj, Q(1)

ad,j =
3
2
n(1)ad,jTj,

Q(2)
ad,j =

3
2
n(2)ad,jTj.

Note, 5/2 in equation (E.4) includes the heat flux associ-
ated with the neoclassical contribution, (3/2)neqmTjuneoj∥ , and
the work associated with the pressure gradient, neqmTjuneoj∥ .
The energy densities, Q ′

j and Q ′ ′
j , are provided by g0 and

H̄ respectively integrated over velocity space with mjV2/2.
The turbulent-driven energy flux, Q ′

j +Q ′ ′
j , is constructed

from the O(∆F0) and O(∆2F0) parts of G, similar to
equations (E.2) and (E.3). Note, there are two additional, equi-
valent forms of equation (E.4) that can be obtained by combin-
ing equation (E.4) with equation (E.1) and the force balance
equation (not presented here).

Equations (E.1) and (E.4) obtained by direct integration of
equation (57) over velocity space provide the anticipated bal-
ance of adiabatic, neoclassical and turbulent-driven contribu-
tions. The B ′

⊥ ·∇⊥(neqmuneoj∥ ), omitted in conventional (Max-
wellian based) gyrokinetics, is typically referred to as the kink
drive term in the fluid-kinetic plasma description.
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