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Fisher’s legacy of directional statistics, and beyond to statistics on manifolds

Kanti V. Mardiaa,∗

aUniversity of Leeds and University of Oxford

Abstract

It is not an exaggeration to say that R.A. Fisher is the Albert Einstein of Statistics. He pioneered almost

all the main branches of statistics, but it is not as well known that he opened the area of Directional Statistics

with his 1953 paper introducing a distribution on the sphere which is now known as the Fisher distribution. He

stressed that for spherical data one should take into account that the data is on a manifold. We will describe this

Fisher distribution and reanalyze his geological data. We also comment on the two goals he set himself in that

paper, and on how he reinvented the von Mises distribution on the circle. Since then, many extensions of this

distribution have appeared bearing Fisher’s name such as the von Mises-Fisher distribution and the matrix Fisher

distribution. In fact, the subject of Directional Statistics has grown tremendously in the last two decades with

new applications emerging in life sciences, image analysis, machine learning and so on. We give a recent new

method of constructing the Fisher type distributions on manifolds which has been motivated by some problems

in machine learning. The number of directional distributions has increased since then, including the bivariate

von Mises distribution and we describe its connection to work resulting in the 2024 Nobel-winning AlphaFold

(in Chemistry). Further, the subject has evolved as Statistics on Manifolds which also includes the new field

of shape analysis, and finally, we end with a historical note pointing out some correspondence between D’Arcy

Thompson and R.A. Fisher related to shape analysis.

Keywords: Distributions on manifolds, Fisher distribution, Machine Learning, Remanent magnetism, von

Mises distribution, Wrapped tangent distributions.

2020 MSC: Primary; 62H11, 62R30, 62E10, Secondary: 62H15, 62F03

1. Introduction

Fisher opened the area of Directional Statistics with his pioneering 1953 paper, Fisher [18], introducing

what is now known as the Fisher distribution on the sphere. He stressed that for spherical data one should take

into account that the data is on a manifold. Since then, many extensions of this distribution have appeared each

bearing Fisher’s name, as we will describe. In fact, the subject of Directional Statistics has grown tremendously

in the last two decades with new applications emerging in life sciences, image analysis, machine learning, and

so on.

One of the features of Fisher’s work is that the starting point was often a motivating application brought

to Fisher by scientists or applied statisticians. For Directional Statistics, this was the problem of pole reversal

raised by the geologists Mr J. Hospers and Professor S.K. Runcorn.

In Sections 2 and 3, we give an overview of the subject and discuss in particular the extension of the

Fisher distribution on the sphere to the hypersphere, which is now known as the von Mises-Fisher distribution,

examined in Section 4. In Section 2.1, we describe some features of the seminal paper of Fisher [18] and his

reasoning on why linear statistics is not meaningful in the context of his practical applications. Also we describe

how this work was taken up by Geoffrey Watson (starting with Watson [55] which was written in May 1955) who

1Based on “The 40th Fisher Memorial Lecture” delivered in November 2022, Oxford. For the link to the talk, visit http :

//www.senns.uk/FisherWeb.html. The first topic of the lecture is covered in Mardia [33] and this is the second topic.
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made it more accessible and popular. Historically, it is important to learn that though Fisher’s paper appeared

in 1953, he already formed these ideas in the 1920’s. It was the pole-reversal geological application that made

him go back and reactivate this work (Section 2.2). We reanalyse his geological data in Section 6.

In general, the maximum likelihood methods for directional distributions are not computationally straight-

forward. A new approach, the score matching estimate, will be presented for the von Mises-Fisher distribution in

Section 5. However, in his paper, Fisher produced estimators using the distribution of some summary statistics,

and we examine closely his approach in Section 5.1. He dealt with two cases, known pole and known axis; in the

second case, his estimation method is somewhat questionable and has not been used. It is not commonly known

that Fisher derived the von Mises distribution independently; his aim was to promote his fiducial argument (see

Section 7). He mentioned that his paper has two goals and we assess these in Section 8.

The subject of Statistics on Manifolds is still evolving, including a new method to construct the Fisher type

matrix distribution which has been motivated by some problems in machine learning. We examine this new

approach in Section 9. Moreover, in Section 10, we give a glimpse of my journey into Directional Statistics,

including work with colleagues in Denmark and Leeds on protein structure prediction, whose methods helped

inform the 2024 Nobel prize-winning AlphaFold technology. Finally, in Section 11, we give a historical note

pointing out some correspondence between D’Arcy Thompson (the pioneer of shape analysis) and R.A. Fisher

where we could have gained Fisher’s insight into shape analysis; however, this collaborative work did not

materialise.

2. Statistics on manifolds/directional statistics

Big data, high dimensional data, and sparse data are all new frontiers of statistics. Changing technologies

have created this flood of data and it’s associated challenges, and have led to a substantial need for new modelling

strategies and data analysis. There are data which are essentially not Euclidean and the data sit on a manifold.

Even for the simplest non-Euclidean manifold, the circle, with angular data, using the arithmetic average cannot

make sense, as is well known. Consider that the arithmetic average of the two angles 1◦ and 359◦ is

1◦ + 359◦

2
= 180◦ .

Of course, it should be 0◦. That is, the non-Euclidean setting throws up many major challenges, both mathemati-

cal and statistical, and so more care is needed. In simple terms, Statistics on Manifolds deals with non-Euclidean

variables driven mainly by the underlying geometrical space. Examples include circle, sphere, torus, and shape

spaces.

The subject of Directional Statistics has grown tremendously, especially since the 1980’s, with advances

in Statistics on Manifolds leading to new distributions on the hypersphere, torus, Stiefel manifold, Grassmann

manifold and so on. The progress in this area can be seen through several books published since then in the

1980s and later: Nick Fisher et al. [16], Nick Fisher [15], Mardia and Jupp [36], Jammalamadaka and Sengupta

[22] and Ley and Verdebout [24, 25]. There has been a recent special issue of Sankhyā edited by Bharath

and Dey [4]. Further, Pewsey and Garcı́a-Portugués [47] have given a comprehensive survey of Directional

Statistics and in the discussion to the paper Mardia [31] has given a brief history of the subject. Particularly, to

note that the methods of Principal Component Analysis on the torus are now well established (see, for example,

Mardia et al. [42], Wiechers et al. [59]). Another major development is the new area of discrete distributions in

Directional Statistics, see [38] and Mardia and Sriram [39]; these two papers, in particular, take forward Karl

Pearson’s challenges of the 1890’s related to his roulette wheel problem (which did not draw the attention of

Fisher).

2.1. Fisher 1953’s paper: A landmark paper in directional statistics, and the role of Geoffrey Watson

The paper of R.A. Fisher entitled “Dispersion on a sphere” appeared in 1953, motivated by remanent mag-

netism data. He began with justifying the need for such work, as the following quotes from the paper shows:

• “ The theory of errors was developed by Gauss primarily in relation to the needs of astronomers and

surveyors, making rather accurate angular measurements. Because of this accuracy it was appropriate to

develop the theory in relation to an infinite linear continuum, or, as multivariate errors came into view, to a
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Euclidean space of the required dimensionality. The actual topological framework of such measurements,

the surface of a sphere, is ignored in the theory as developed, with a certain gain in simplicity.

• It is, therefore, of some little mathematical interest to consider how the theory would have had to be

developed if the observations under discussion had in fact involved errors so large that the actual topology

had had to be taken into account.

• The question is not, however, entirely academic, for there are in nature vectors with such large natu-

ral dispersions. The remanent magnetism found in igneous and sedimentary rocks, . . . , do show such

considerable dispersion that an adequate theory for the combination of such observations is now needed.

• My examples are drawn from the very fine body of data on the remanent magnetism of Icelandic lava

flows, historic and prehistoric, put at my disposal by Mr J. Hospers . . . ”

In fact, this subject took off when the 1953 paper came to the attention of Geoffrey Watson, one of the pioneers

of Directional Statistics. It is interesting to record how this happened. In his conversation with Rudy Beran and

Nick Fisher (Beran and Fisher [3]), Watson says:

“We sent a food parcel to his daughter, Joan, in England, at his request. As a “thank you” note he sent me a

reprint of his 1953 paper which is not easy reading . . . Anyhow I had a look at it and suddenly saw that I could

clarify things.” (This is referring to Joan Box, a daughter of Fisher who wrote his biography, Box [9]).

We want to recall that Fisher visited Melbourne University while Watson was Senior Lecturer in Statistics from

1951 and an Acting Head of the Department; Watson looked after him during his visit, Watson [56]. In fact, Fig.

1 shows one of the Fisher’s photos taken during this period by Watson in a picnic; this was given to the author

personally by Geoffrey.

Fig. 1: Fisher 1953 in a Picnic in Australia; Photo by Geoffrey Watson – Gifted this version to the author in 1990.

Following that, Geoffrey Watson and Michael Stephen made several key contributions in 1956 – 1970 (start-

ing from Watson’s first paper of 1956, Watson [55], written in May, 1955). In 1970-1980 the subject came into

the limelight, partly with my 1972 directional book Mardia [27] but perhaps more so with my discussion paper
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in the Journal of the Royal Statistical Society (Mardia [28]) which included many eminent discussants, David

Cox, Henry Daniel, David Kendall, John Kingman, among others. There was something of a lull in the subject

during 1990 to 1999, though a few books came out, see Mardia [31] for more details. From 2000, a resurgence

of interest led to many new advances, mainly because of the recognition by Image Analysts and Life Scientists

of its importance. This momentum now continues as most of statisticians do regard Directional Statistics as a

mainstream statistical topic.

2.2. When was the material of the 1953 paper written?

There has been some discussion on why and when was the material written for the 1953 paper. We first quote

Box [9], p. 439 on the roles of Fisher, Hospers and Runcorn (Hospers was Runcorn’s student who collected the

data):

• Runcorn was at once struck by the fact that these lavas grouped themselves into those along the present

field and those opposite, in a manner strongly suggesting that the direction of magnetization of the earth

had been reversed at some periods of its history.

• Runcorn explained these results to Fisher and asked him how the particular statistical problems of testing

homogeneity should be solved. Fisher, pulling out some old notes he had made before 1930 in connection

with his paper of 1929 “Tests of significance in harmonic analysis”, Fisher [17], set to work to apply the

method he had then devised to the data now in hand.

• Hospers quickly used the method in three very important papers which laid the basis for the paleomagnetic

work in the Tertiary Age.

Hospers used Fisher’s 1953 paper’s preprint for his three papers described above. In Section 6, we give full

details of Hospers’ data used by Fisher.

Another version on this point is given as follows in Nick Fisher et al. [16], pp. 12–13, quoting George

Barnard (letter to Nick Fisher, 30 June 1981.)

• Fisher sent me an offprint of his paper “Dispersion on a sphere” when it came out, . . . while I saw you

could use the length of the vector sum to test isotropy, I had not seen how to do estimation. He replied

that it was easier for him, since he had, in the twenties, asked himself what would be the analogue, on the

sphere, of the normal density in the plane, and had made some notes on it.

• When approached by (I presume) Hospers he was able to go to his filing cabinet and pull out the notes,

and answer the question on the spot . . . the figure 1922 comes into my head, for Fisher’s first work. This

seems rather early; but he was in touch with Eddington, the astronomer, in 1920, and may well have gone

on thinking about the problems he had raised.

Another account of this paper has been given by Persi Diaconis in 1988 (Diaconis [12], p. 171) which we

now quote.

• I cannot resist reporting some background on Fisher’s motivation for working with the distribution dis-

cussed above. This story was told to me in 1984 by the geologist Colin B.B. Bull. Dr. Bull was a student

in Cambridge in the early 1950’s, . . . Fisher asked what area Bull worked in. Bull explained that a group

of geologists was trying to test Wegener’s theory of continental drift. Wegener had postulated that our

current continents used to nest together.

• They searched for data that were closer to geology. They had hit on the distribution of magnetization

angle in rocks. This gave points naturally distributed on the sphere. They had two distributions (from

matching points on two continents) and wanted to test if the distributions were the same.

• Fisher took a surprisingly keen interest in the problem and set out to learn the relevant geology. In addition

to writing his famous paper (which showed the distributions were different) he gave a series of talks at the

geology department to make sure he’d got it right.
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• Why did Fisher take such a keen interest? A large part of the answer may lie in Fisher’s ongoing war

with Harold Jeffries. They had been rudely battling for at least 30 years over the foundations of statistics.

Jeffries has never really accepted (as of 1987!) continental drift. It is scarcely mentioned in Jeffries’ book

on geophysics.

These extracts point to the fact that Fisher has developed the distribution around 1922 and his subsequent

contacts with geologists in the early 1950’s led to his 1953’s paper.

3. The Fisher distribution and other directional distributions

We first recall some manifolds before giving some relevant directional distributions.

Sphere. The sphere

S p = {x ∈ Rq : xT x = 1}, q = p + 1, (1)

represents the space of unit vectors or “directions” in R
q. We have the circle when p = 1.

Real projective space. The real projective space consists of the “axes” or “unsigned directions” ±x. In some

sense this space is half of a sphere; it can also be represented as the space of rank 1 projection matrices,

RPp = {P ∈ Rq×q : P = PT , P2 = P, tr P = 1}. (2)

A rank one projection matrix (P) can be written as P = xxT where x is a unit vector.

Rotation matrices. The special orthogonal group of r × r rotation matrices (X) is defined by

S O(r) =
{

X ∈ Rr×r : det X = 1, XT X = Ir

}

. (3)

On each of these spaces, there is a unique uniform distribution which is invariant under rotations. Further

each of these spaces is naturally embedded in a Euclidean space. A natural “linear-exponential” family of

distributions can be generated by letting the density (with respect to the uniform measure) be proportional to the

exponential of a linear function of the embedded variables. We now list some distributions with their names and

space as listed in Table 1.

• The von Mises-Fisher distribution of x (with respect to Lebesgue measure) on S p, parameter α ∈ Rq, q =

p + 1, has its density:

f (x) ∝ exp(αT x), α, x ∈ Rq, xT x = 1,

where usually we write α = κµwith µT
µ = 1, κ ≥ 0. The distribution is analogous to (for the concentrated

case) a p-dimensional isotropic normal distribution. More details on this distribution are given in Section

4.

• The Bingham distribution of x (with respect to Lebesgue measure) on S p, symmetric parameter matrix

A(q × q); A and A + λIq define the same distribution, and has its density:

f (x) ∝ exp(−xT Ax) = exp{−tr(AxxT )}, x ∈ Rq, xT x = 1,

that is, quadratic-exponential on S p and linear-exponential on RPp. The distribution is analogous to (for

the concentrated case) a p-dimensional general normal distribution.

• The matrix Fisher distribution of X on S O(r), parameter matrix F(r × r) has its density,

f (X) ∝ exp
{

tr
(

FT X
)}

, X ∈ S O(r),

with respect to the underlying invariant “Haar” measure. It is unimodal about a fixed rotation matrix

determined by F. For the concentrated case, the distribution can be connected to the Wishart distribution.

For further details on these distributions, see, for example, Mardia and Jupp [36].
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Table 1: Some common directional distributions in exponential family: spaces and names.

Space Notation Distributions

circle S 1 von Mises (p = 1)

sphere S p Fisher (p = 2)

von Mises-Fisher (p ≥ 1),

Fisher-Bingham

real projective space RPp Bingham

special orthogonal group S O(r) matrix Fisher

4. The von Mises-Fisher distribution

The von Mises-Fisher distribution of x on S p has the density with respect to Lebesgue measure

f (x) = cp(κ) exp(κµT x), x ∈ Rp+1, κ ≥ 0, µT
µ = 1, xT x = 1, (4)

where

cp(κ) =
κ(p−1)/2

(2π)(p+1)/2I(p−1)/2(κ)
, (5)

and Iν(.) is the modified Bessel function of the first kind and order ν. For p = 1, it is the von Mises distribu-

tion and for p = 2, the Fisher distribution. The distribution has a mode at the mean direction µ and for large

concentration parameter κ, it has a p-dimensional isotropic normal distribution. For κ = 0, we have the uniform

distribution on the hypersphere. It is also known as the Langevin distribution since a generalised form was given

by Langevin in 1905 in the context of the theory of magnetism (Langevin [23]).

The Fisher distribution. Let θ denote the colatitude 0 ≤ θ ≤ π and φ be the longitude 0 ≤ φ ≤ 2π in the spherical

polar coordinates. Fisher (1953) with p = 2 took the north pole as the mean direction (µ = (0, 0, 1)T ) so θ then

represented the angular displacement from the true mean direction, and the Fisher density of θ in (4) simplifies

to
κ

2 sinh κ
exp{κ cos θ} sin θ, 0 ≤ θ ≤ π, κ ≥ 0, (6)

and θ is independent of φ which is distributed uniformly on a circle. In general, the distribution has a mode at

the mean direction. Let us write

x =
√
κ θ cos φ, y =

√
κ θ sin φ (7)

then for large κ, (x, y) has an isotropic bivariate normal distribution with zero means and unit variances. For

κ = 0, we have the uniform distribution on the sphere.

Summary statistics on a sphere. Let x1, . . . , xn, be n observations on S p. Then the location of these observations

can be summarised by their sample mean vector in Rq, which is

x̄ =
1

n

n
∑

i=1

xi. (8)

Write the vector x̄

x̄ = R̄x̄0, 0 ≤ R̄ ≤ 1, (9)

where x̄0 is the sample mean direction and R̄ (= ∥x̄∥) is the mean resultant length. Note that x̄ is the centre of

gravity with direction x̄0, and R̄ is its distance from the origin. For the circular case, we have x̄T
0
= R̄(cos θ̄, sin θ̄)

where θ̄ is the mean direction.

For further details on the von Mises-Fisher distribution and data analysis, see, for example, Mardia and Jupp

[36]. In the next section, we deal with some estimators for this distribution.
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5. Estimation for the von Mises-Fisher distribution

Let x1, . . . , xn, be a random sample drawn from the von Mises-Fisher distribution given by (4) then the

maximum likelihood estimates (MLE) of µ, κ are given by

µ̂MLE = x̄0, κ̂MLE = A−1
p (R̄), (10)

where

Ap(κ) = I(p+1)/2(κ)/I(p−1)/2(κ).

Assuming that µ is known and writing in the polar coordinates with µT x = cos θ, then Mardia et al. [37] have

shown that the Score Matching Estimate (SME) of κ is simply

κ̂S ME = p

∑

cos θi
∑

sin2 θi

;

there are now no Bessel functions in this expression and it has been proved that there is only a moderate loss of

efficiency compared to the MLE.

5.1. Fisher’s Estimation

We now write the probability density function (pdf) of the Fisher distribution given by (4) in 3D as

f (x) = B(κ) exp(κµT x), x ∈ R3, κ ≥ 0,µT
µ = 1, xT x = 1, (11)

where, for simplicity, we have written here the constant c2(κ) in (5) as B(κ) which has a simple expression given

by

B(κ) = κ/(2 sinh κ).

The pdf is again with respect to the Lebesgue measure. Fisher [18] in his Section 2.1 dealt with Case 1: the

known pole case (i.e. the mean direction µ is given) and in his Section 2.2 dealt with Case 2: the known axis

case (i.e. µ is an axis) to estimate κ. In both these cases, he focused on the distribution of some summary

statistics to get an estimate of κ. In Case 1, this approach leads to the maximum likelihood estimate (mle) of

κ but not for Case 2. This paper predates what is now known as the Fisher-Neyman factorization theorem and

sufficient statistic. In the following, we will use Fisher [18]’s notation wherever possible so the results can be

compared with his paper.

5.1.1. Case 1: Known pole

If we know the true pole µ, then a sufficient statistic is

x =
∑

cos θi =
∑

µ
T yi, (12)

where yi is i-th observed direction vector, i ∈ {1, . . . ,N}. Fisher [18] has shown that the distribution of x is

gN(x) = B(κ)N exp{κx}P(x,N), (13)

where

P(x,N) =
1

(N − 1)!
{(N − x)N−1 − N(N − 2 − x)N−1 + · · · − · · · (−1)r

(

N

r

)

(N − 2r − x)N−1}, (14)

and r is the largest integer less than 1
2
(N − x). Now, Fisher maximised (13) with respect to κ to get his estimate

of κ, that is, this estimate is the solution of the equation

coth(κ) − 1/κ = x/N, κ > 0. (15)

This is, of course, the MLE estimate of κ which we would have got by working directly on (11). Further, we note

that the Fisher-Neyman factorization theorem does not need the distribution (13) of the sufficient statistic x for

the estimation but was used by Fisher rather then going directly to the likelihood. He used his same procedure

for Case 2 as we now show.
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5.1.2. Case 2: Known axis

Fisher [18] continued to use the summary statistics x for known axis given by (12) in the form defined in his

paper (see, the extract in Fig. 2 of this section in his paper), though it is no longer a sufficient statistic. If all we

know is that the true axis ±µ, then x =
∑

cos θi =
∑

µ
T yi is not observable, and for this case, we have to include

both +x and −x given in (11) finding the probability of x given by (12). One approach is to arbitrarily choose

Fig. 2: Section 2.2 of Fisher [18] showing his approach to estimation using the distribution of the summary statistic x for the known axis

case.

a direction for µ and then x is defined for any N. When N > 1, we must pick a head and a tail for µ and then

x =
∑

µ
T yi is well defined, but we do not know whether its sign is correct. Both possibilities x =

∑

µ
T yi and

x = −
∑

µ
T yi need to be included in its distribution, then the pdf of x is

gN(x, κ) + gN(−x, κ) = B(κ)N exp(κx)P(x,N) + B(κ)N exp(−κx)P(−x,N), (16)

where gN(·, κ) is given by (13). It can be seen from (14) that P(x,N) = P(−x,N) in (16) leading to (see, Fig. 2)

his pdf as

2B(κ)N cosh(κx)P(x,N). (17)

Fisher maximises this sampling distribution (17) with respect to κ to get an estimate of κ (see, Fig. 2), leading

to the solution of the equation

coth(κ) − 1/κ = (x/N) tanh(κx/N). (18)

Note that it can be shown that for large N, the estimate for Case 1 given by (15) is the same as that from (18).

The MLE for the axial case. Let ν be the upper hemisphere representation of the known axis and x =
∑

(νT yi).

Then x is well defined but we do not know if x =
∑

(µT yi) or x = −
∑

(µT yi) where µ is the true pole.

Fisher does not give the MLE for this case as his aim again was to use an appropriate summary statistics. We

can formulate the estimation problem in this case as follows to get the MLE. There are two unknown parameters,

κ ≥ 0 and, say, λ with values −1 and +1 such that µ = λν. The parameter κ is estimated by the solution to (15)

with x =
∑

(νT yi), and λ is estimated by sign(
∑

(νT yi)).

We note that in practice, the case when only the axis of the mean direction is known (Case 2) is rare and the

estimate of Fisher [18] has not been used. Indeed, even in this own paper, he does not give any example for this

case.

6. Hospers’ remanent magnetism data sets

Fisher [18] used two Hospers’ remanent magnetism data to illustrate his analysis which we revisit; we label

these as Remanent magnetism Data 1 and Remanent magnetism Data 2. In fact, Hospers, in a paper published
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Fig. 3: Hospers‘ Remanent magnetism Data 1: Spherical representation.

Fig. 4: Hospers‘ Remanent magnetism Data 1: The Lambert equal area projection.

in 1951 in Nature (Hospers [21]) on remanent magnetism of rocks thanks Fisher as follows:

“Prof. R.A. Fisher for the calculation of the estimates of precision. . . ”

That is, Hospers and Fisher had already been applying the methodology to Hospers’ data several years before

Fisher published his 1953 paper.

Remanent magnetism Data 1. This data is from the Iceland lava flow of 1947–1948 with sample size n = 9

where the full data is given in the paper with the mean direction and is plotted in Fig. 3. It is found that

κ̂MLE = 39.53 so it is highly concentrated and we might have used linear statistics. One way is to use the tangent

projection at the mean direction and then use a linear method. Let (θ, φ) be the spherical polar coordinates as

used in (6). It can be shown that the Lambert equal area projection (see, for example, Mardia and Jupp [36],

p. 160) is given by (2 sin(θ/2) cos φ, 2 sin(θ/2) sin φ). Fig. 4 shows the data under this projection and one could

use these projected values as drawn from a bivariate normal distribution as κ is large. Equivalently, we can

simply take the observed values of (θ, φ) from its mean direction and carry out the analysis assuming these are

drawn from a bivariate normal distribution. Fisher must have realised this as a possible option for this data after

the analysis, and his remanent magnetism Data 2 described below in the paper which is not concentrated so it

provides a better illustration.
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Remanent magnetism Data 2. For the early Quaternary data of Hospers, n = 45, Fisher examined the Hospers’s

hypothesis that these observations are almost diametrically opposite to the simple dipole field (current) which

has the mean direction (+0.9724,+0.2334, 0)T . That is, we need to test the reversal hypothesis, and in the

modern terminology, our null hypothesis is

H0 : µ = (−0.9724,−0.2334, 0)T .

From these 45 observations, the sample mean direction is

µ̂MLE = (−0.9545,−0.2978,+0.0172)T

which is very close to µ under H0. Note that the angle between µ and µ̂MLE is 3.9◦ only. In fact, using the

Fisher distribution, it is found that H0 is accepted with a large p-value. Here κ̂MLE = 7.51 so the data is not

concentrated and linear statistics will not be appropriate. Further details are available, for example, in Mardia

and Jupp [36].

The topic continues to be of interest and Watson [57] has given more details of Fisher [18] related to paleo-

magnetism and continental drift. In Rao [48] p. 135, C.R. Rao has commented that

“Fisher (1953) used his model to estimate the true direction (θ) of remnant rock magnetism in lava flow assuming

that the observations collected over a geographical area are independent. He did not consider the possibility of

spatial correlations which may have some effect on estimation.”

Very recently Scealy et al. [49] have reassessed Fisher [18], allowing for the site differences in Hospers type

remanent magnetism data.

We end this section with a Fisher’s photo (see, Fig. 5) showing one of his field trips for geological data. We

quote Box [9], p. 445,

“Fisher continued to the last to be fascinated by the geophysical explorations and to encourage and befriend the

explorers.”

Note that his geological explorations are not as well known like his genetic experiments (see, for example, one

of his genetic experiments on mice, Box [9], pp. 379–381).

7. Fisher on the von Mises distribution

Fisher in his second edition of “Statistical Methods and Scientific Inference”, 1959, p. 137, goes back to

support his fiducial argument. In so doing, he incidentally derives the von Mises distribution as follows. Readers

not familiar with fiducial inference of Fisher, see for example, Efron and Hastie [14], p. 200. From a practical

point of view, confidence intervals and fiducial limits have the same objective but their derivations differ.

Let x1, . . . , xn, be a random sample drawn from a bivariate normal distribution with the mean vector µ, unit

variances and zero correlation so the density is given by

f (x) = c exp{−1

2
(x − µ)T (x − µ)}, x,µ ∈ R2,

where c is a normalizing constant. Assume µT = (ρ sin θ, ρ cos θ) with ρ known; the aim is to find the confidence

interval (fiducial limits) for µ. The sample mean x̄ is the minimal sufficient statistics for µ and the ancillary

statistic is the resultant R̄ = ∥x̄∥. Then he shows that the distribution of θ̂ given R̄ is the von Mises distribution

f (θ̂|R̄) =
exp{nR̄ρ cos(θ̂ − θ)}

2πI0(nR̄ρ)
.

He seems not to be aware of the von Mises paper (von Mises [43]).

There are two cases for the conditional distribution depending on R̄:

Case A: R̄ < ρ, and Case B: R̄ > ρ; and R̄ = ρ is a singular case. Suppose under Case A and Case B, we have

observed R̄1 and R̄2 respectively. These will give θ̂1 and θ̂2 respectively from the von Mises distribution so we
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Fig. 5: Fisher 1953 circa in a geological field trip in Australia; author’s personal collection.

have for Case A: θ̂ = θ̂1, and for Case B: θ̂ = θ̂2. Now our inference can be based on f (θ̂1|R̄1) and f (θ̂2|R̄2).

Hinkley [20] has provided more details.

We note an important point which is usually not recognized is that the way Fisher reached the von Mises

distribution here has implicitly given a way to construct directional distributions by conditioning an appropriate

multivariate normal distribution, for example, the Fisher distribution can be obtained by conditioning a trivariate

normal distribution (see, Mardia and Jupp [36], p. 173).

8. The two primary goals of Fisher’s 1953 paper

We note from the paper Fisher [18], there are possible two primary goals of the paper.

Goal 1. “To provide methodology for the analysis of more or less widely dispersed measurements of direction

11



such as frequently arise in geology.”

and

Goal 2. “Finally, it is the opinion of the author that certain misapprehensions as to the nature of inductive

inference have arisen in examples drawn from the theory of the normal distribution, by reason of the peculiar

characteristics of that distribution, and that the examination of these questions, in an analogous though analyti-

cally different situation, will exhibit them in a clearer light.”

The Fisher distribution has become a principal tool for analysing spherical data so Goal 1 is achieved but its

role as a non-standard example of fiducial inference has not received comparable attention so the assessment of

his Goal 2 still continues, see, for example, Bingham [5].

9. Wrapped tangent distributions

For very concentrated data on a sphere, Gauss used a tangent projection, leading to linear statistics. We have

already pointed out that Fisher [18] introduced his spherical distribution when the data is not concentrated.

Another approach is to construct directional distributions by wrapping a multivariate distribution in the

tangent space of a manifold using an “exponential map” with a base point on the manifold (see, Mardia and

Jupp [36], Section 13.4.2). In particular, this gives rise to a distribution on the sphere as an alternative to the

Fisher distribution. Recently, this construction has been used for the matrix Fisher type distribution in Benton

et al. [2], motivated by problems in machine learning on manifolds. However, the matrix Fisher distribution

given in Section 3 is the established distribution in this area.

We will show that their matrix distribution has some serious limitations (though not for a very concentrated

data). We first treat spherical case and then comment on their matrix distribution. Let x be a point in the tangent

space in R
q−1 which can be mapped to a point y on the sphere S q−1 as follows; for the circular case (q = 2), the

tangent space is simply a straight line. Let f (x) be a pdf in the tangent space and we will obtain the “wrapped

tangent” pdf g(y) (with respect to the uniform measure on the sphere) using its exponential map of x on the

sphere with origin at the north pole (0, . . . , 0, 1).

We can write x as x = rv where r ≥ 0 and v is a unit vector ∈ Rq−1, i.e., a point in S q−2. Further, the point y

∈ S q−1 can be written as

y =

(

v sin θ

cos θ

)

, 0 ≤ θ ≤ π. (19)

It can be shown that

dx = rq−2dr[dv], [dy] = sinq−2 θ dθ[dv],

where [dv] is the uniform measure on S q−2. An isotropic pdf (with respect to dx) in R
q−1 can be written as

f ∗(r) = f (x) so that
∫

f ∗(r)dx =

∫

f ∗(r)rq−2dr

∫

[dv] = 1.

Similarly, an axially symmetric pdf (wrt [dy]) on S q−1 can be written as g∗(θ) = g(y) so that

∫

g∗(θ)[dy] =

∫

g∗(θ) sinq−2 θ dθ[dv].

For r ≥ 0, 0 ≤ θ ≤ π, we define the exponential map φ(r) = θ as

either r mod 2π = θ, or r mod 2π = −θ. (20)

Note that a point x with its radial part r wraps to a point y with colatitude θ. Take any such point x in the

tangent plane and put a thin annulus in R
q−1 with radii r and r + dr, with volume rq−2πq−2dr where πq−2 is the

surface area of the unit sphere S q−2. This maps to an ”annulus” between two small circles with colatitudes θ and

θ ± dθ (dθ = dr). The small circle annulus has volume sinq−2 θ πq−2 dθ. Hence contribution of f at x to g at θ is

{rq−2/ sinq−2 θ} f ∗(r).
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Now on the mapping (20) we get two different r, leading to the pdf of y given by

g(y) = (1/ sinq−2 θ)

∞
∑

k=0

{rq−2

1,k
f (r1,kv) + r

q−2

2,k
f (−r2,kv)}, q ≥ 3, (21)

where r1,k = θ+2πk, r2,k = 2π(k+1)−θ. Except for the term involving r1,0 at θ = 0, all the remaining terms have

a singularity at θ = 0 and at θ = π. In particular, this wrapped distribution on the sphere cannot be unimodal for

q ≥ 3.

For the spherical case (q = 3), with f (x) the normal distribution, we find that the pdf of the colatitude θ is

proportional to

1

sin θ

∞
∑

k=0

[(θ + 2πk) exp{−(θ + 2πk)2)/2σ2} + (2π(k + 1) − θ) exp{−(2π(k + 1) − θ)2/2σ2}], (22)

where 0 ≤ θ ≤ π. Fig. 6 gives plots of the density (22) for three values σ2 ∈ {0.1, 1.0, 2.0}. We can see visually

that as σ2 increases the bi-modality increases; though for the concentrated data with σ2 = 0.1, it looks unimodal

in this figure though there are singularities which are seen clearly for σ2 = 1.0 and σ2 = 2.0. We can can draw

similar figures for σ2 > 2 to confirm that as σ2 > 2 increases the bi-modality increases.
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Fig. 6: The pdf of colatitude θ of the wrapped tangent normal distribution with σ2 ∈ {0.1, 1.0, 2.0}, respectively.

For the circular case q = 2, the wrapped tangent pdf can be written as

g∗(θ) =

∞
∑

k=0

{ f (θ + 2πk) + f (2π(k + 1) − θ)} (23)

so this reduces to the standard circular wrapped distribution except that we have 0 ≤ θ ≤ π as θ deemed to be

“colatitude” for the circle. The standard representation by θ∗ is the full circle so we have −π ≤ θ∗ ≤ π and in the

Euclidean representation (cos θ∗, sin θ∗) is equivalent to (cos θ,± sin θ). In this case, there are no singularities.

Benton et al. [2] have used the wrapped normal distribution on S O(3) using the exponential map to illustrate

some of their work in machine learning. However, the most common distribution used on S O(3) is the Fisher

matrix distribution which has many desirable properties (see, for example, Mardia and Jupp [36]) whereas there

are again inherent singularities in this wrapping for the following reasons (see, also Mardia [32] for some further

details). Since S O(3) can be identified with S 3 (after identifying antipodal points, see Mardia and Jupp [36],

p. 285), any calculation on S O(3) can be reformulated as one on S 3 and the above discussion on singularities

for the spherical pdf applies. This singularity of the pdf is not a practical issue if f (·) is highly concentrated near

the origin on the tangent plane, but it is an issue for more diffused distributions and particularly can be an issue

when used in mixtures, see, for example, Mardia [32].

Note that the construction above can be generalised as follows. Given a base point m on the Riemannian

manifold and a vector x in the tangent space with pdf f (·), the exponential map expm(x) yields a point on a

manifold and we can go from f (·) to the pdf g(·) on the manifold.
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10. My journey into directional statistics

Recently, Mardia [31] has given a glimpse of some of my involvement with Directional Statistics. Few more

points will be added here including on how I myself came into this field. In fact, regarding my coming into this

field, I have mentioned the following in my first conversation with Mukhopadhyay [45], p. 124:

“In Newcastle, I began developing nonparametric methods by way of Hotelling’s T 2 test. But, I was never too

keen on working with ranks and asymptotics. In the latter part of 1964, I started thinking about some simple

tests. I wanted to have a slick way of doing bivariate nonparametrics and not lose much power. I centered the

two distributions, projected them on circles and worked with the uniform scores. Then I examined how these

scores in the two populations were distributed. ”

Further I added:

“ When I did this sort of thing fully in my thesis, I did not know anything about Geoffrey Watson’s work

on directional data. I did not even know what “directional data” was. Then Robin Plackett pointed out to

me that there was a short note (Wheeler and Watson, 1964) proposing a test that came to be known as the

“Wheeler–Watson test.”. . . It turned out that I had independently derived the Wheeler–Watson test.”

My non-parametric test was published in Mardia [26] but at that point Wheeler–Watson test (Wheeler and

Watson [58]) was not known to me so it was not cited in my paper, and the referees of the paper were also not

aware of this connection.

There are many other details in Mukhopadhyay [45] including writing of my book Mardia [27], how I was

helped by Toby Lewis, and the challenge in getting permission to Stephen’s tables for this book. Regarding the

tables, I said in the conversation:-

”This book needed many tables and I requested permission from Michael Stephens to reproduce some of the

tables from his published works. He was hesitant because he was also writing a book in the same area. As many

of those tables were from the journal Biometrika, I then approached its Editor, E. S. Pearson, for permission

to reproduce the tables. Pearson said that Michael Stephens could be justified in being hesitant and he hinted

that there could be a conflict of interest here because some of these tables were going to be included in the

forthcoming E. S. Pearson–H. O. Hartley (1972) volume. He was not too sure that he should give me a “go

ahead.” I was kept in suspense while I waited with an almost finished book!”

Finally, I went to see E. S. Pearson in 1970/1971 and the outcome I recorded in my conversation:

“When I saw Pearson, I sensed that he was not very comfortable with the whole episode and he was not

happy about how the events turned out and became so complicated. He was a very kind person. ... He then

suggested that I should recalculate Stephens’s tables as much as possible, but he would permit me to reproduce

the difficult parts of his tables.”

It was some relief and I followed his advice to some extent but Batschelet’s book (Batschelet [1]) with the

necessary charts also came to the rescue. One example for the permission is related to confidence intervals for

the concentration parameter for the von Mises distribution. These tables are given in Stephens [52] (a paper in

Biometrika) which would have taken time for me to recompute so used instead the related chart from Batschelet

[1] in the first edition (Mardia [27], Appendix 2.11) which were kept even in the second edition (Mardia and

Jupp [36]).

This episode might remind some readers of the problem which Fisher had with Karl Pearson in reproducing

some tables for his 1925 book as described in Stigler [53]:

”Surely R. A. Fisher played a major role in the canonization of the 5% level as a criterion for statistical sig-

nificance, although broader social factors were involved. Fisher needed tables for his 1925 book and, evidently,

Karl Pearson would not permit the free reproduction of the Biometrika tables, so Fisher computed his own.”

The subject continues to grow with several conferences in this area. One of the major sessions in this

area took place in 1989 in the European Meeting of Statisticians, Leuven where several leaders in the subject

participated including Ted Chang, Nick Fisher, Peter Jupp, John Kent, Toby Lewis, Kanti Mardia, Michael

Stephens and Geoffrey Watson (see Fig. 7). The regular conferences in this area include my “Leeds Annual

Statistical Research(LASR)” Workshops for many decades, Triennial Conferences “Advances in Directional

Statistics (ADISTA)” starting from 2014, “Virtual Symposium on Directional Statistics“ from 2000 by Florian

Paff.

Most recently, in October 2024, the Nobel Prize in Chemistry was awarded to researchers at DeepMind and

the University of Washington for their work on protein structure prediction, an area in Bioinformatics. With
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Fig. 7: A rare gathering: August 1989, the European Meeting of Statisticians, Leuven Specialists at its Directional Statistics’ session.

(From left to right: Michael Stephens, Kanti Mardia, Geoffrey Watson, Nick Fisher, Peter Jupp, Ted Chang, Toby Lewis, John Kent.)

Walter Gilks, I published in 2005 a forward-looking article in Significance,“Meeting the statistical needs of

21st-century science” Mardia and Gilks [35]. The article has the headline

“Kanti Mardia and Walter Gilks consider the future role of statistics in scientific explanation and prediction,

through views expressed by eminent scientists, philosophers and statisticians and through their own experience,

particularly in the field of bioinformatics.”

With various collaborators, I have been pursuing the field of Bioinformatics from 1999 on, with particular

attention to protein structure prediction/ Protein Bioinformatics. This research is influenced by my work in

Directional Statistics, as I now describe.

10.1. The 2024 Nobel Prizes in Chemistry, and my Work

Some of my work with the highest impact in Directional Statistics turned out to be my bivariate distribu-

tion on the torus, now known as the bivariate von Mises distribution, that I introduced in my 1975 discussion

paper (Mardia [28]) and more recent developments from it. This impact has been on cutting edge applications

in Bioinformatics related to protein structure prediction, which broadly speaking, concerns predicting three di-

mensional atomic configuration (protein structure/shape) given the amino acids of the protein (simplest stated as

a sequence of one-letter codes for the 20 amino acids). Proteins are the workhorses of all living systems; these

are large molecules whose function depends on how they fold from one dimension (sequences) into structures

(3 dimensions). To understand how these molecules work, computer modeling (based on statistics, directly or

indirectly) aims to predict the folded protein structure; see, for example, Mardia [30]. My collaboration with

researchers in Copenhagen and Leeds led to the method we called PHAISTOS, for protein structure prediction

using a probabilistic model of local structure. The CASP competition is the gold standard for evaluating protein

structure prediction methods, and our entry into CASP of 2008 (Boomsma et al. [6]), for which we won the best

poster award, is described as follows in Borg et al. [8]:

“Here we present our framework, PHAISTOS, and our initial attempts of predicting protein structure from

sequence. We tested our approach rigorously by participating in the 8th Community Wide Experiment on the

Critical Assessment of Techniques for Protein Structure Prediction (CASP8); a biennial double-blind experiment

in protein structure prediction (Moult [44]). We submitted structure predictions for 5 different targets. Two of

these targets turned out to be intrinsically unstructured proteins, without a fixed structure. Nonetheless, we
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managed to predict some important substructures present in these proteins. For the remaining three globular

proteins, we successfully predicted the fold for two of them. These results are very encouraging, especially

considering the preliminary state of the nonlocal energy function and the fact that we only use the protein

sequence as input for the predictions.”

PHAISTOS is mainly based on our 2008 paper (Boomsma et al. [7]), published in Proceedings of the Na-

tional Academy of Sciences (PNAS), which provides the first probabilistic model to predict the structure “lo-

cally”. The model allows simulation (generation) of realistic protein shapes, and therefore it is a generative,

probabilistic model of local protein structure.

We now give its connection with the latest news on the Nobel Prize in Chemistry for 2024

https : //www.nobelprize.org/prizes/chemistry/2024/summary/

The Nobel Prize in Chemistry 2024 was divided, one half awarded to David Baker “for computational protein

design”, the other half jointly to Demis Hassabis and John Jumper “for protein structure prediction”. For a

popular and accessible account of this news, see Callaway [10].

In their seminal AlphaFold paper of 2019 (Senior et al. [50] ), Demis Hassabis and John Jumper describe the

work which went on to win the Nobel Prize. They cite two early important papers, namely our 2008 PNAS paper

([7]) and a second paper of 2010 describing a generative model ([60]), which also cites our PNAS paper. Indeed,

our PNAS paper is the first paper making that fundamental step in protein prediction structure methodology.

The relevant paragraph in Demis Hassabis and John Jumper (Senior et al. [50]), page 4 reads as follows.

“Most fragment assembly methods construct fragments by looking up likely fragments based on a database

of structures or angles extracted from the Protein Data Bank15,27, but previous work has also investigated gen-

erative 4 and neural-network 36 models of protein structure. ” Here, the cited paper “4” is our PNAS paper

(Boomsma et al. [7]) and “36” is [60].

Interestingly, the Nobel prize winner David Baker handled our PNAS paper (Boomsma et al. [7]) as the

assigned editor.

How and when I became interested in Bioinformatics and how the subject became our priority for more than

two decades (starting from 1999) are described in my second conversation with Nitis Mukhopadhyay [46]. We

now give some important updates, which are relevant to this section.

In 1975, Mardia [28] introduced the “full” bivariate distribution on the torus (represented by angles (φ, ψ)),

now known as the bivariate von Mises distribution, with the pdf

f (φ, ψ) = c(κ1, κ2, A) exp
{

κ1 cos(φ − µ) + κ2 cos(ψ − ν) +
[cos(φ − µ), sin(ψ − µ)]A[cos(φ − ν), sin(ψ − ν)]T }

, (24)

where the angles φ, ψ ∈ (−π, π] lie on the torus, and A is a 2 × 2 matrix; Mardia [29] has obtained an explicit

expression for the normalising constant c(.). This model has eight parameters. Various submodels with five

parameters have appeared, aiming to mimic the bivariate normal distribution. In our PHAISTOS work, including

in the PNAS paper, we used the bivariate cosine model which we introduced in 2007 (Mardia et al. [40]), with

density

fc(φ, ψ) ∝ exp{κ1 cos(φ − µ) + κ2 cos(ψ − ν) − κ3 cos(φ − µ − ψ + ν)}; (25)

where µ and ν are the mean parameters of φ and ψ respectively, and κ1 ≥ 0 and κ2 ≥ 0 are the concentration

parameters of φ and ψ respectively, and κ3 measures dependence.

Later, we pushed to extend our local methods for protein structure prediction to global prediction using the

reference ratio method (RRM), also known as the mean force potential method, for examples, 2011 in Mardia

et al. [34] and 2014 in Valentin et al. [54]. This work is ongoing but our progress is slow, partly due to lack of

funding. The same RRM methodology to go from local to global prediction was used by Hassabis and Jumper

in another seminal paper of 2020 related to deep learning, see Senior et al. [51], Supplement, page 32; this paper

also gives some additional details of their entry in CASP13.

It is worth pointing out that the LASR Proceedings highlighted these developments. The figure on the front

cover of the 2001 Proceeding is from Demchuk et al. [11], captioned “A picture of the human protein TNF-β

consisting of 220 atoms and 707 torsional angles which can be modelled using circular probability distributions;
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this is one of the key mediators of AIDS pathogenesis”; the figure on the front cover of the 2009 Proceedings

is from Borg et al. [8], captioned “Experimentally determined and predicted structures for two target proteins

in the CASP2008 competition”; while the 2011 front cover is from Mardia et al. [34], captioned “The reference

ratio method applied to sample compact protein structures”. Some of the LASR Proceedings also highlight

the pioneering contributions in Molecular Biology by William T Astbury during his long research career at the

University of Leeds (1928-1961) who coined the term ‘Molecular Biology’. Some details are given in in my

second conversation with Nitis Mukhopadhyay [46].

To give a context to this advancement, it is important to understand the terms “Local Protein Structure

Prediction” versus “Global Protein Structure Prediction” which we briefly describe.

Local Protein Structure Prediction focuses only on short-range features of the protein backbone. It predicts

the three dihedral angles (φ, ψ, ω) (also called conformational angles), and possibly the secondary structure

(helix, beta sheet, coil), for each amino acid independently or based on its immediate neighbors. We model

(φ, ψ) by the bivariate cosine model (25) whereas the angle omega, modeling the peptide bond, with binary

distribution taking values 0 or π. This local approach does not consider interactions between amino acids that

are far apart in the sequence or the overall folding of the protein in 3 dimensions. The result is a detailed

description of the backbone’s shape in small segments, but without the protein folding into a final 3 dimensional

structure.

Global Protein Structure Prediction considers the entire protein chain, including both the “backbone” and

the“side chains”, to predict the full 3 dimensional atomic arrangement of the protein molecule. It accounts

for long-range interactions, such as ”hydrophobic packing”, “hydrogen bonding” between distant amino acids,

and overall compactness. This level of prediction generates the protein’s final folded shape, which might be

spherical/globular or something else.

To close this section, let me explain our use of the word PHAISTOS. The “phaistos” is a particular disc of

fired clay from the island of Crete, dating back to the 2nd millennium BC, Many attempts have been made to

decipher the code behind the script engraved on the disk. This name ”PHAISTOS” contrasts with the name

“ROSETTA” given to the protein design method of David Baker; their program generates many putative solu-

tions and ranks them by energy, see,

https : //docs.rosettacommons.org/docs/latest/Home

The Rosetta Stone is a stele of granodiorite inscribed in 196 BC during the Ptolemaic dynasty of Egypt.

Our PHAISTOS is the first probabilistic software framework for local protein structure prediction and is

similar in spirit to the later-developed AlphaFold and AlphaFold2 for global protein structure prediction from

DeepMind. Table 2 gives a brief time-line of this narrative.

11. R.A. Fisher and D’Arcy Thompson and different manifolds

D’Arcy Thompson is the pioneer of Shape Analysis (see, for example, Dryden and Mardia [13] p. 2.); a

subject which has a different manifold than what we have mentioned for Directional Statistics. There seems

to be no record of what Thompson wrote to Fisher about a student (Miss Walker) but the letter Fig. 8 from

Fisher mentions her, as well as points to investigating the age problem in fish. Fisher wrote on 6 April 1933 to

D’Arcy Thompson (see Fig. 9 ) that the development of adequate techniques as required in the area would be

undertaken. But sadly this collaboration via the student did not happen.

We end this section with quotes from Peter Green from Green [19] (his speech at the unveiling of a plaque

to R.A. Fisher in London, on May 17th, 2002) which are very pertinent to this paper.

”Even with 40 years of intense research activity in statistics since Fisher’s death, it is striking how much of

his work is still essentially contemporary. How was Fisher able to achieve so much? The key seems to be his

great mathematical ability allied to a passion for contributing to society through science, rather than the pursuit

of narrowly technical excellence. That view of statistics in its empirical context is one that continues to be the

British tradition, and one that we should be proud to maintain.”

Further he said about Fisher

”He has many memorials, including now the plaque that we are unveiling today to commemorate his boy-

hood home in London. But his greatest memorial is the discipline he did so much to create–recognizably Fisher’s

statistics, alive and well in the 21st century.”
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Table 2: A brief time-line of my high impact joint work in protein structure prediction using Directional Statistics in relation to the 2024

Nobel Prizes in Chemistry.

1975 Mardia [28] introduces the bivariate distribution on torus (now known as the bivariate von

Mises distribution).

1999 Harshinder Singh from the National Institute for Occupational Safety and Health, West

Virginia University, invites me to collaborate on a problem in Protein Bioinformatics.

2001 We publish Demchuk et al. [11], my first paper on Protein Bioinformatics, addressing the

protein TNF-beta, the key mediators of AIDS pathogenesis.

2002 Mardia and Westhead [41] is my first Bioinformatics paper with Westhead Group, Biology

Faculty, University of Leeds.

2007 Mardia et al. [40] introduce the bivariate cosine model on the torus, a submodel of my

bivariate von Mises distribution of 1975.

2008 Collaboration with Thomas Hamelryck and his group in Copenhagen, leading to PHAIS-

TOS Boomsma et al. [6], our probabilistic local structural prediction method, that given a

sequence of amino acids, predicts the 3 dimensional protein shapes.

This is our introduction of a probabilistic generative model and is a step change in protein

structure prediction methodology.

We enter PHAISTOS into CASP8 and are awarded the prize for the best poster.

2008 We develop Torus-DBN (Dynamic Bayesian Network) based on the bivariate cosine model;

Torus-DBN provides local protein structure prediction.

Published in Boomsma et al. [7] in Proceedings of National Academy of Sciences (PNAS).

Future Nobel laureate David Baker is the assigned editor for this PNAS paper.

2009 We review our CASP8 entry for our LASR Workshop paper Borg et al. [8], pointing out

our above average performance; the cover page of this LASR Proceedings has the motifs

of our predicted protein structures.

2011 Mardia et al. [34] paper introduces use of the reference ratio method (RRM) / potentials of

mean force for the first time to do global prediction from local prediction,

a step change in protein structure prediction methodology..

2013 Mardia [30] paper ”Statistical approaches to three key challenges in protein structural

bioinformatics” appears in the Journal of the Royal Statistical Society, Series C; this paper

highlights prediction and is written for a statistical audience.

2014 Our further attempt to do global prediction from local prediction by RRM, Valentin et al.

[54], appears in Proteins: structure, function, and bioinformatics.

2019 In their seminal AlphaFold paper, Senior et al. [50], Demis Hassabis and John Jumper

cite our 2008 PNAS paper as one of the two earliest important papers utilizing generative

modelling for protein structure prediction; AlphaFold is a global generative model.

2020 Hassabis and Jumper discuss their use of our RRM methodology to go from local to global

prediction in Senior et al. [51].

2024 The Nobel Prize in Chemistry is awarded to Demis Hassabis and John Jumper, and to David

Baker.

Hassabis and Jumper submitted their (global) AlphaFold predictions to CASP13,

whereas we submitted our (local) PHAISTOS predictions to CASP8.
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Fig. 8: Letter from Fisher to D’Arcy Thompson in 1933.

Fig. 9: Letter (continued) from Fisher to D’Arcy Thompson in 1933.
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