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A Reduced Order Model for Sea Water
Intrusion Simulation Using Proper
Orthogonal Decomposition
by Mohammadali Geranmehr1 , Domenico Bau2 , Alex S. Mayer3 , and Weijiang Yu2

Abstract

Sea water intrusion (SWI) simulators are essential tools to assist the sustainable management of coastal aquifers. These
simulators require the solution of coupled variable-density partial differential equations (PDEs), which reproduce the processes
of groundwater flow and dissolved salt transport. The solution of these PDEs is typically addressed numerically with the use of
density-dependent flow simulators, which are computationally intensive in most practical applications. To this end, model surrogates
are generally developed as substitutes for full-scale aquifer models to trade off accuracy in exchange for computational efficiency.
Surrogates represent an attractive option to support groundwater management situations in which fast simulators are required
to evaluate large sets of alternative pumping strategies. Reduced-order models, a sub-category of surrogate models, are based on
the original model equations and may provide quite accurate results at a small fraction of computational cost. In this study, a
variable-density flow reduced-order model based on proper orthogonal decomposition (POD) and utilizing a fully coupled flow and
solute-transport model is implemented with a finite-difference (FD) approach for simulating SWI in coastal aquifers. The accuracy
and computational efficiency of the FD-POD approach for both homogeneous and—more realistic—heterogeneous systems are
investigated using test cases based on the classic Henry’s problem (Henry 1964). The findings demonstrate that the combined
FD-POD approach is effective in terms of both accuracy and computational gain and can accommodate the output of the most
popular variable-density flow models, such as those from USGS’s MODFLOW family.

Introduction

Coastal regions globally face mounting challenges

in managing groundwater resources. These aquifers are

increasingly stressed due to escalating demand and the

compounding effects of climate change, sea-level rise,
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and variations in groundwater recharge patterns (Ketabchi

et al. 2016; Alfarrah and Walraevens 2018; Befus

et al. 2020; Panthi et al. 2022). Among the most pressing

issues confronting coastal aquifers is SWI, a phenomenon

where saline water infiltrates freshwater aquifers driven

by density variations. This intrusion not only jeopardizes

water quality but also escalates management costs and

threatens the sustainability of groundwater resources.

To address the complexities of coastal groundwater

systems, groundwater models have emerged as indis-

pensable tools for water administrators and stakeholders.

Models such as SUTRA (Voss 1984), MODFLOW 6

(MF6) (Langevin et al. 2017), and SEAWAT (Guo and

Langevin 2002; Langevin et al. 2008), which is based

on MODFLOW-2005 (Harbaugh 2005) and MT3DMS

(Zheng and Wang 1999), play a pivotal role by simulating

groundwater flow and solute transport. Notably, these

models are considered “coupled” variable-density models,

as the migration of salt affects density, consequently

impacting flow dynamics, which in turn affects salt trans-

port. This intricate relationship underpins the coupling

between flow and transport processes in coastal aquifers.

Achieving solutions to the coupled PDEs under-

lying groundwater flow and solute transport relies on

NGWA.org Groundwater 1



sophisticated numerical techniques. Discretization meth-

ods, including FD, used in SEAWAT, finite elements (FE),

used in SUTRA, and finite volumes (FV), used in MF6,

are employed to transform PDEs into systems of ordinary

differential equations (ODEs). However, the computa-

tional demands of these models, necessitating fine grid

resolution and iterative coupling, present significant chal-

lenges. For example, the computational intensity and data

requirements of groundwater models often hinder their

application in practical management applications. Ideally,

models should balance computational efficiency with

accuracy to enable repeated simulations for optimization,

risk analysis, and decision support. To address these

challenges, surrogate models have emerged as viable

alternatives, trading off accuracy for computational speed.

These models can be grouped into three main categories:

data-driven surrogates, multi-fidelity surrogates, and

model-driven surrogates. A comprehensive review of

surrogates may be found in Asher et al. (2015).

Data-driven surrogates rely on “observations” to gen-

erate predictions based on statistical or machine-learning

techniques to learn patterns directly from the data. The

definition of observations is somewhat loose in that these

can be compiled from actual field data or generated from

full-scale model training runs. For example, in the case

of field observations, machine learning techniques have

been widely applied to water level modeling in large-

scale aquifers. These techniques include, among others,

artificial neural networks (ANNs) (Coulibaly et al. 2001;

Krishna et al. 2008; Mohanty et al. 2010), adaptive

neuro-fuzzy inference systems (ANFIS) (Jalalkamali

et al. 2010; Emamgholizadeh et al. 2014), genetic pro-

gramming (Fallah-Mehdipour et al. 2013), and support

vector machines (SVMs) (Rajaee et al. 2019). In the con-

struction of surrogates for full-scale models, data-driven

approaches have been widely adopted for applications in

contaminant transport simulation (Shekofteh et al. 2012;

Arabgol et al. 2016) and water quality simulation

(Haggerty et al. 2023). These techniques have also

been widely adopted for variable-density flow models,

most typically in simulation-optimization approaches

to assist coastal groundwater management (Kourakos

and Mantoglou 2009; Sreekanth and Datta 2011;

Ataie-Ashtiani et al. 2014; Roy and Datta 2017;

Christelis et al. 2018; Lal and Datta 2018; Ranjbar and

Mahjouri 2018; Song et al. 2018; Kopsiaftis et al. 2019;

Yang et al. 2021) and also to conduct sensitivity analyses

for uncertainty quantification (Rajabi et al. 2015; Koohbor

et al. 2019; Rajabi 2019).

Multi-fidelity surrogate models (Asher et al. 2015;

Zhou et al. 2016) are a particular category of physically

based models that combine information from computa-

tionally efficient low-fidelity numerical models (i.e., with

reduced numerical resolution, larger tolerance, and/or

simplified physics), with “data” from higher-fidelity

models to construct a surrogate that integrates both types

of data. Multi-fidelity surrogates have also been applied

to SWI simulation (Kerrou and Renard 2010; Christelis

and Mantoglou 2016; Christelis and Mantoglou 2019;

Dey and Prakash 2020; Christelis 2021; Christelis and

Hughes 2022).

Reduced-order models (ROMs) constitute a third

important category of physically based surrogates, which

most often rely on projection methods (Asher et al. 2015)

to capture the essential modes of the system dynamics

to mitigate computational complexity. One of the earlier

applications of projection techniques to groundwater flow

models was reported by Vermeulen et al. (2004), who

used State-Space Projection and Galerkin Projection tech-

niques based on empirical orthogonal functions (EOFs)

and proper orthogonal decomposition (POD) to extract

dominant modes of variability from high-dimensional data

using the Karhunen–Loève expansion (Newman 1996).

Numerous studies have since highlighted the versatility

of POD in engineering applications (Lu et al. 2019), and

particularly for subsurface flow simulation, which makes

it a powerful tool for groundwater management (Mcphee

and Yeh 2008). Approaches for optimizing the selection

of dominant modes (Siade et al. 2010; Di et al. 2012),

implementing ROMs for Monte Carlo simulation (Pasetto

et al. 2011), and estimating hydraulic conductivity spatial

distributions in inverse problems (Winton et al. 2011)

are among the earlier reported applications of POD for

developing surrogates of groundwater flow simulators.

More recently, Boyce and Yeh (2014) applied

POD for parameter-independent model reduction in

transient groundwater flow in confined aquifers. Boyce

et al. (2015) extended this method to unconfined ground-

water flow based on Galerkin projection and the Newton

formulation of MODFLOW (Niswonger et al. 2011). Of

related interest are the works of Stanko et al. (2016),

who combined POD and discrete empirical interpolation

methods to create a reduced model implemented within

the MODFLOW framework, Ushijima and Yeh (2017),

who developed system matrices in a parameterized

approach for creating a reduced-order groundwater

model, and Gosses et al. (2018), who developed POD

based reduced-order models that can handle complex

Dirichlet, Neumann, and Cauchy boundaries conditions.

More recently, Dey and Dhar (2020) applied POD to sim-

ulate flow in randomly heterogeneous confined aquifers,

Xia et al. (2020) combined POD with moment equations

for Monte Carlo flow simulation, Ushijima et al. (2021)

coupled POD with metaheuristic algorithms to optimize

design parameters in aquifers, and Dey and Dhar (2023)

integrated POD within the OpenFOAM framework (Jasak

et al. 2007) for groundwater flow applications.

POD-based model reduction techniques have been

applied for subsurface solute-transport modeling as well.

For example, Li et al. (2013) used POD to construct

ROMs of transient mass transport in heterogeneous

media, Dehghan and Abbaszadeh (2018) used POD

with local radial basis functions and differential quadra-

ture, Rizzo et al. (2018) applied POD to model solute

transport in heterogeneous porous media, and Stanko

and Yeh (2019) used POD to model solute transport in

the presence of nonlinear sorption. POD was used for

nitrate transport simulation by Noori et al. (2020), who

2 M. Geranmehr et al. Groundwater NGWA.org
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developed PODMT3DMS, a modified version of the pop-

ular transport model MT3DMS (Zheng and Wang 1999),

and by Dehghan et al. (2022), who combined POD with

a finite-element (FE) reactive transport model under

advection-dominated flow conditions.

In the simulation of variable-density flow in coastal

aquifers, POD approaches to model reduction have

received limited attention, likely due to the computational

challenges posed by the coupling between the flow and

the transport processes. Li and Hu (2013) applied POD

to a Galerkin FE model, to simulate SWI in coastal

aquifers. They used singular value decomposition (SVD)

to create basis functions for reducing the model size

and demonstrated that POD is a promising method for

developing surrogate variable-density models.

This study aims to further investigate to applica-

tion of POD-based projection methods for developing

ROMs that can support SWI management. The coupling

of POD with FD solution of the coupled flow and

transport equation is proposed to address the compu-

tational challenges posed by the complex dynamics of

variable-density flow observed in coastal aquifers. The

model framework is tested by focusing on the classic

Henry’s problem (Henry 1964), under the hypothesis

of advection–diffusion salt transport in heterogeneous

systems. This structured approach aims to enhance the

computational efficiency of the SWI simulation while

minimizing the accuracy loss with respect to the full-

scale model, thereby providing an ideal tool to assist the

sustainable management of coastal groundwater resources.

This article is structured as follows: Section

“Methodology” outlines the methodology devised to con-

struct, the FD-based variable-density flow model, which

is then reduced by means of the POD scheme. In section

“Numerical Experiments,” Henry’s problem is defined and

solved using the FD-POD approach, in the case of both

homogeneous and heterogeneous porous media. Results

of these investigations are then reported and discussed

comprehensively. Finally, section “Conclusions” offers a

conclusion summarizing the key findings of the study.

Methodology

Variable Density Flow Model

Variable-density groundwater flow models rely on

solving two coupled PDEs. The first PDE governs density-

dependent flow in saturated porous media and is written

as (Langevin et al. 2008):

∇

[

ρK

(

∇h +
ρ − ρf

ρf

∇z

)]

= ρSS

∂h

∂t
+ θ

∂ρ

∂c

∂c

∂t
− ρsqs

(1)

where ∇ is the gradient operator (1/m), h is the equivalent

freshwater head (m), ρ is the generic water density

(kg/m3), which depends on the salt concentration c

(kg/m3), ρf is the freshwater density (kg/m3), ρs is the

sink and source density (kg/m3), q s is the volumetric flow

rate per unit volume, representing sink and source terms

(1/day), θ is the porosity, S s is the specific elastic storage

(1/m), and K is the hydraulic conductivity tensor (m/day).

The second PDE is the solute-transport equation,

which reads (Bedekar et al. 2016):

∂c

∂t
= ∇(D∇c) − ∇(vc) −

qs

θ
cs (2)

where v is the pore velocity vector (m/day), calculated

as v = −K∇h/θ through Darcy’s law, and D is the

hydrodynamic dispersion tensor (m2/day). In this study,

no mechanical dispersion is considered, so that D is a

diagonal matrix that accounts solely for chemical diffusion

and is obtained by multiplying the effective molecular

diffusion coefficient D* by the 3 × 3 identity matrix.

Hence the simulation of variable density flow is

based on the solution of two PDEs (Equations 1 and 2),

which are “coupled” through the two dependent variables

h and c. The solution proposed here relies on an FD

discretization over the aquifer domain, which transforms

the two PDEs into the two following systems of ordinary

differential equations (ODEs):

Λ · h + f = β ·
dh

dt
(3)

Λ′ · c + f′ = β′ ·
dc

dt
(4)

In Equations 3 and 4, h and c are the vectors of

head and concentration at the model cells, Λ and β are

the stiffness and the capacity matrices for the hydraulic

head, respectively, Λ′, β′ are the stiffness and the capacity

matrices for the concentration, respectively, and f and f′

represent generic sink and source terms for water and salt,

respectively. The two ODE systems (Equations 3 and 4)

are solved by discretizing the time-derivatives at the right-

hand side by finite differences, that is:

dh

dt
∼=

ht+�t − ht

�t
(5)

dc

dt
∼=

ct+�t − ct

�t
(6)

where �t represents a time step. Following an implicit

scheme, the estimation of h and c at the generic time

t + �t , given their values at time t , is obtained by solving

the following systems of equations:
(

β

�t
− Λ

)

· ht+�t =
β

�t
· ht + f (7)

(

β′

�t
− Λ′

)

· ct+�t =
β′

�t
· ct + f′ (8)

which can be expressed in a simpler form as:

A · ht+�t = b (9)

A′ · ct+�t = b′ (10)

NGWA.org M. Geranmehr et al. Groundwater 3
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In Equations 9 and 10, A and A′ are square matrices

of size N equal to the number of FD cells, and b and b′ are

N × 1 column vectors. The systems (Equations 9 and 10)

are generally non-linear and coupled to one another due to

the dependency of A and b on ct+�t , and the dependency

of A′ and b′ on ht+�t . After imposing the prescribed ini-

tial and boundary conditions for the flow and the transport

models, their solution is tackled by devising an iterative

Picard procedure. In essence, the system flow component

(Equation 9) is solved using first the concentration

evaluated at the previous time step ct to calculate A and

b. The obtained head field ht+�t is then used to update

the velocity field using Darcy’s law to calculate A′ and

b′, for the transport solution (Equation 10). The obtained

concentration field ct+�t is next used to update the density

field, which is fed back into the system (Equation 9). This

process is repeated iteratively until numerical convergence

is reached for both ht+�t and ct+�t . FD discretization

details are presented in the Appendix A section.

Proper Orthogonal Decomposition

The POD approach relies upon converting a system

of linear equations of size N to a smaller system of linear

equations of size R (R ≤ N ). To apply this method, the

use of orthogonal basis functions is essential. The main

concept behind the POD is to separate, or decompose, the

spatial and temporal behaviors of the system. The basis

functions represent the spatial nature of the system, which

depends on its spatial properties and are key elements for

reducing the system’s complexity. The temporal compo-

nents can be calculated once the basis functions are identi-

fied. This decomposition is mathematically formulated by

the Karhunen–Loève theorem (Newman 1996), according

to which, the hydraulic head h(x ,y ,z ,t) and the concentra-

tion c(x ,y ,z ,t) are expressed as (Vermeulen et al. 2004):

h(x, y, z, t) = h0(x, y, z) +

∞
∑

k=1

Uk(x, y, z)Hk(t) (11)

c(x, y, z, t) = c0(x, y, z) +

∞
∑

k=1

Wk(x, y, z)Ck(t) (12)

where h0 and c0 are “steady-state” functions, H k (t) and

U k (x , y , z ) are time and space-dependent functions for the

hydraulic head, and C k (t) and W k (x , y , z ) are time and

space-dependent functions for the concentration, respec-

tively. Both sets of U k and W k space-dependent functions

are orthogonal (i.e., the spatial integral of their product

equals zero). By selecting a finite number R of represen-

tative basis functions, and discretizing h and c on the N

cells of the FD grid, the hydraulic head and concentration

vectors may be approximated as (Li et al. 2013):

h(t) = h0 +

R
∑

k=1

Uk · Hk(t) = h0 + U · Ht (13)

c(t) = c0 +

R
∑

k=1

Wk · Ck(t) = c0 + W · Ct (14)

where U and W are N × R matrices, whose columns

include the basis function values at the FD grid cells,

whereas Ht and Ct are R × 1 column vectors including

the time functions Hk (t) and Ck (t), where k = 1, 2, R.

Capturing the spatial basis functions can be achieved

by constructing “snapshot sets,” that is, system states (h

and c), evaluated using the full-scale model at different

times and for different dynamic simulation scenarios

for sink/source terms and/or boundary conditions.

For example, in aquifers subject to pumping and spatio-

temporally variable groundwater recharge, these scenarios

may include different well locations, extraction rates and

schedules, and different groundwater recharge patterns.

Notably, the quantity of snapshots and the selection of

representative simulation scenarios is crucial as they affect

the quality of the basis functions, which in turn accuracy

of the POD model. If “unseen” pumping schemes and

recharge patterns fall within the range of behaviors

represented by these scenarios, the ROM is likely to

closely reproduce the results of the full-scale model.

Otherwise, new scenarios are required and the ROM will

need to be updated to include the corresponding snapshot

sets. This flexibility is a key feature of the POD approach.

In this work, a “snapshot” represents the N × 1

vectors h and c at a specific time. With T time steps, the

collection of snapshots over time creates an N × T matrix

for both h and c. For Q simulations, representing different

dynamic simulation scenarios, snapshots are collected for

each scenario, resulting in as many N × T matrices, which

are then concatenated horizontally into the two N × M

matrices (M = Q ·T ) Hobs and Cobs .

Once these matrices are assembled, the basis function

can be derived using the SVD algorithm. The SVD

(Golub and Kahan 1965), a widely used method for

identifying important patterns and structures within data,

relies on extracting and compressing information from

data into linear combinations of orthogonal eigenfunctions

multiplied by low-order time-dependent weights (Golub

and Van Loan 2013). With the SVD, the matrices Hobs

and Cobs , are factorized as:

Hobs = Uh · Σh · Vh
T (15)

Cobs = Uc · Σc · Vc
T (16)

In Equations 15 and 16, Uh and Uc are orthonormal

N × N matrices (with rows and columns forming a

set of orthogonal unit vectors), Σh and Σc are N × M

diagonal matrices containing “singular values,” and Vh

and Vc are orthonormal M × M matrices. Uh and Uc

contain the eigenvectors of the matrices Hobs · Hobs
T and

Cobs · Cobs
T, respectively, whereas Vh and Vc contain

eigenvectors of the matrices Hobs
T · Hobs and Cobs

T · Cobs,

respectively. The “singular” values in Σh and Σc are the

square root of the M eigenvalues of Hobs
T · Hobs and

Cobs
T · Cobs, respectively. Ranking these eigenvalues in

decreasing order allows the identification of the dominant

modes of variability in the data, which is instrumental

for dimensionality reduction. In practice, this is achieved

4 M. Geranmehr et al. Groundwater NGWA.org
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by selecting the R larger singular values (R ≤ M), and

since in Equations 15 and 16 Uh and Uc include spatial

components and Σh · Vh
T and Σc · Vc

T include time

components of the head and concentration snapshots, the

basis function matrices U and W (Equations 13 and 14)

are formed by selecting the first R columns of Uh and Uc.

Variable Density Flow Reduced Order Model

The FD model reduction is achieved by substituting

the head and concentration vectors h and c given by

Equations 13 and 14 into the ODE systems (Equations 3

and 4), and pre-multiplying them by the transpose matri-

ces UT and WT, respectively. This leads to expressing

these in terms of the R time functions Hk(t) and Ck(t)

(k = 1, . . . , R). Using an FD discretization for these as

in Equations 5 and 6, and adopting implicit schemes as

in Equations 7 and 8, leads ultimately to transforming

the coupled systems (Equations 9 and 10) into:

[

UT · A · U
]

· Ht+�t = UT · b (17)

[

WT · A′ · W
]

· Ct+�t = WT · b′ (18)

Equations 17 and 18 represent a system of 2 · R

equations in 2 · R unknowns, which needs to be solved at

each time step. The computational gain of this approach

stems from reducing the number of unknowns from 2 · N

in Equations 9 and 10 down to 2 · R. Once the H

and C solutions are calculated, the hydraulic head and

the concentration vectors h and c are estimated using

Equations 13 and 14.

The ROM framework is described in Figure 1. The

initial step consists of the compilation of the snapshot

datasets Hobs and Cobs . This step relies on the use of a

full-scale variable density-flow simulation model, which,

from a computational perspective, is the most expensive

part of the process. Next, an SVD algorithm is applied

to reconstruct the basis function matrices U and W,

which are then applied to solve the reduced order systems

(Equations 17 and 18).

Similar to the full-scale systems (Equations 9 and

10), the reduced order systems (Equations 17 and 18)

are nonlinear and coupled to one another due to the

dependencies of A and b on ct+�t , and A′ and b′ on

Figure 1. Flowchart for variable-density flow reduced order model.
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ht+�t their solution at any given time step is thus carried

out using the Picard iteration scheme described in section

“Variable Density Flow Model.” Convergence is ensured

through a Picard iteration scheme, where the solution is

iteratively refined until the changes between successive

iterations fall below a predefined tolerance (Algorithm 1).

The pseudocode of the proposed model is as follows:

It is important to point that the snapshot datasets

hobs and cobs that are used to reconstruct the basis

function matrices U and W should not necessarily be

assembled using the same FD variable density flow model

(Equations 9 and 10) that is then used to construct the

reduced order systems of Equations 17 and 18. Indeed,

it is possible to use any other variable density flow

model, so long as this complies with the same spatial

and temporal discretization, input parameters, initial and

boundary conditions, and sources and sink inputs as the

FD variable density flow model presented in section

“Variable Density Flow Model.”

Numerical Experiments

Henry’s problem is a classical benchmark for testing

SWI models. This problem (Henry 1964) considers

a confined porous medium characterized by a 2 × 1

(m × m) rectangular domain, whose vertical cross-section

is depicted in Figure 2. Flow-wise, both the top and

bottom boundaries of the domain are assumed to be

impermeable. At the left boundary, a constant and

uniform specified flux is assumed, mimicking inland

boundary conditions. At the right boundary, a uniform

and constant head is prescribed, representing a hydrostatic

pressure distribution at the seashore interface. Top and

bottom boundaries are considered impermeable also

transport-wise. The salt concentration is fixed at 35 g/L

Algorithm 1: POD Model for Variable-Density Flow

1 BEGIN.

2 // Step 1: Initialization.

3 Set model // Initialize model domain, parameters, etc.

4 Get R // Order of POD model.

5 Get tolerance // Tolerance for Picard iteration scheme.

6 // Step 2: Compute Snapshots.

7 for t in range(T ): // Loop through time steps.

8 while |ct+1 − ct+1,old| > tolerance // Picard iteration for snapshots.

9 get ht+1 by Equation 9 // Compute head at t + 1.

10 set ct+1,old = ct+1 // Update previous concentration.

11 get ct+1 by Equation 10 // Compute concentration at t + 1.

12 // Step 3: Compute Basis Functions.

13 get Uh by Equation 15 // Compute basis functions for head.

14 get Uc by Equation 16 // Compute basis functions for concentration.

15 // Step 4: Construct POD model.

16 for t in range(T ): // Loop through time steps for POD mode.

17 while |ct+1 − ct+1,old| > tolerance // Picard iteration for POD model.

18 get Ht+1 by Equation 17 // Compute head time function at t + 1.

19 get ht+1 by Equation 13 // Compute head at t + 1.

20 set ct+1,old = ct+1 // Update previous concentration.

21 get Ct+1 by Equation 18 // Compute concentration time function at t + 1.

22 get ct+1 by Equation 14 // Compute concentration at t + 1.

23 // Step 5: Results Output.

24 Print h and c // Print final head and concentration matrices.

25 END.

Figure 2. Henry’s benchmark problem: vertical cross-section of the model domain including flow and transport boundary
conditions.
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at the right boundary, and to zero at the left boundary,

signifying influx of freshwater.

Henry (1964) provided a semi-analytical solution for

this problem, laying the foundation for understanding

SWI in coastal aquifers. Henry’s solution assumes salt

migration is driven solely by advection and diffusion

processes, excluding hydrodynamic dispersion due to

heterogeneity in the hydraulic conductivity. The solution

describes a steady-state density stratification, with denser

salt water infiltrating below the lighter freshwater, forming

a characteristic sea water wedge that mediates the

advection of freshwater entering the aquifer from the left

boundary with the inland diffusion of sea water originating

from the right boundary, which modifies the water density.

The model parameters adopted in this work are those

taken from (Guo and Langevin 2002). The domain is

discretized with a uniform 2D grid of 200 × 100 grid

blocks (N = 20,000), each of size 0.02 m × 0.02 m. The

effective molecular diffusion D* is assumed to be equal

to 0.57024 m2/d and the porosity θ is 0.35.

While the Henry’s problem considers steady-state

conditions, the numerical tests presented in the following

are conducted in transient state, with steady-state achieved

at “large” time, which, for the problem at hand, is

practically reached at t = 500 min. In all simulations,

initial conditions (at t = 0) assume that the freshwater

hydraulic head h is equal to 1.0 m and the solute

concentration C is equal to zero throughout the domain.

The snapshot datasets hobs and cobs (section “Proper

Orthogonal Decomposition”) are assembled by using the h

and C model output at each time step, with �t = 1 min ,

so that both matrices have a size N × M of 20,000 × 500.

Scenario 1: Homogenous System

The first testing scenario is based on the original

Henry’s problem, in which the system is assumed to be

homogeneous with a hydraulic conductivity K of 864 m/d.

Four different solvers are applied and compared: (a) FD:

the developed FD full-scale model (Equations 9 and 10);

(b) FD-POD: a POD-based reduced order FD model

(Equations 17 and 18) with snapshots generated using the

FD full-scale model; (c) MF6: the FV-based MODFLOW

6 code; and (d) FD-POD-MF6: a POD-based reduced

order FD model (Equations 17 and 18) with snapshots

generated using MODFLOW 6.

Simulation results are presented in Figures 3 and 4,

which display maps of the hydraulic head and the solute

concentration, respectively, for the case in which R = 10

is selected.

Results in Figures 3 and 4 show that, at all assessed

times (10, 50, 100, 500 min), the FD model (Section

“Variable Density Flow Model”) produces results that

are close but do not perfectly match MF6’s results,

which are considered here as the benchmark solution.

This is not surprising as the two models adopt different

numerical schemes. The freshwater head from the FD and

POD-based FD model match very closely. In addition,

it is observed that the POD-based FD model obtained

using snapshots generated by MF6, produces freshwater

head distributions that match MF6’s better than when

Figure 3. Freshwater hydraulic head for Henry’s Problem (Scenario 1), after (a) 10 min, (b) 50 min, (c) 100 min, and (d)
500 min.
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Figure 4. Concentrations for Henry’s Problem (Scenario 1), after (a) 10 min, (b) 50 min, (c) 100 min, and (d) 500 min.

Table 1
Comparison of POD Models for the Original Henry’s Problem at t = 500 min

Freshwater Head (m) Concentration (kg/m3)

Snapshot Generation POD Rank R r
2 RRMSE r

2 RRMSE

FD 10 0.9999988 10.12 × 10−6 0.9999639 7.33 × 10−6

20 0.9999991 8.47 × 10−6 0.9999709 6.65 × 10−6

50 0.9999992 8.39 × 10−6 0.9999716 6.53 × 10−6

MF6 10 0.9913467 8.37 × 10−4 0.9956631 7.94 × 10−4

20 0.9914066 8.34 × 10−4 0.9958612 7.72 × 10−4

50 0.9918227 8.14 × 10−4 0.9962977 7.31 × 10−4

these snapshots are generated with the FD model. As

for salt concentration, results from all four models

match generally well particularly at larger times, with

MF6 results being slightly higher than other models,

particularly at lower times.

Table 1 summarizes model comparisons from

the application of the POD-based RO approaches for

increasing values of R. These comparisons are conducted

in terms of the coefficient of determination r2 and the

relative root mean squared error (RRMSE) calculated

for freshwater head and concentration by considering

the outputs of the full-scale models versus those from

the POD-based ROMs at t = 500 min. Results show a

slight general improvement for values of R that increase

from 10 to 50, indicating that selecting R equal to 10 is

acceptable in this case. In terms of computational gain,

the reduction in model size is observed to lead to a drastic

reduction in calculation time, which results at least one

order of magnitude smaller. Because with the same R

for flow and solute transport model, not equal precision

is achieved, which is likely due the complexity of the

solute transport PDE, in comparison with the flow PDE.

Scenario 2: Heterogeneous System

To test the POD-base model reduction approaches

under more complex conditions, a heterogeneous spatial

distribution of the hydraulic conductivity K is hypothe-

sized (Figure 5). This is generated as a single realization

of stochastic log-normal process characterized by an

average μln K = 6.761 (i.e., ln(864)) and an anisotropic

exponential covariance function with variance σln K2 = 1,

and correlation scales λx = 2 m and λz = 0.1 m in the

horizontal and vertical directions. As in Scenario 1,

the solutions from four different models are compared.

8 M. Geranmehr et al. Groundwater NGWA.org
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Figure 5. Heterogeneous K field, (a) exact values, (b) natural logarithmic values.

Figure 6. Freshwater hydraulic head for Henry’s Problem in the case of a heterogeneous aquifer, after (a) 10 min, (b) 50 min,
(c) 100 min, and (d) 500 min.

Figures 6 and 7 display model results for freshwater head

and concentration, respectively. These results show a

general good agreement for such a complex stochastic K

field. The FD model and the FD-POD model with R = 10

show h and C outputs that are always practically the same

but differ, however slightly, from those calculated with

MF6 and the POD reduced model constructed using MF6

snapshots with R = 10. Such a difference is generally

more pronounced for the h field than for the C field.

Table 2 displays r2 and RRMSE calculated for h

and C at t = 500 min by comparing the POD-based

reduced order model outputs to those from the full-scale

models. Results show the FD-POD model matches the

FD model results quite well already with R equal to 10.

The FD-POD model with snapshots generated by MF6

does not perform as well in terms of accuracy with

respect to MF6, indicating that values of R of the order

of 50 or larger are preferable.

Considering the more complex heterogeneous

Henry’s problem, the challenges associated with accu-

rately capturing SWI dynamics become apparent.

Heterogeneity introduces irregularities in the aquifer

properties, requiring a larger number of POD components

to accurately represent the spatial patterns. Despite this,

the FD-POD approach demonstrates promising results,

with high r2 values and relatively low RRMSE values

for both the freshwater head and concentration compared

with the MF6 models.

Overall, these results highlight an interesting feature:

by generating a set of snapshots with MF6, a POD model

NGWA.org M. Geranmehr et al. Groundwater 9
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Figure 7. Concentrations for heterogeneous Henry’s Problem, after (a) 10 min, (b) 50 min, (c) 100 min, and (d) 500 min.

Table 2
Comparison of POD Models for the Heterogeneous Henry’s Problem at t = 500 min

Freshwater Head (m) Concentration (kg/m3)

Snapshot Generation POD Rank R r
2 RRMSE r

2 RRMSE

FD 10 0.99999977 6.04 × 10−6 0.9997752 1.25 × 10−5

20 0.99999983 5.12 × 10−6 0.9999181 1.18 × 10−5

50 0.99999984 5.01 × 10−6 0.9999343 1.06 × 10−5

MF6 10 0.99589707 9.45 × 10−4 0.9895655 13.16 × 10−4

20 0.99687873 8.29 × 10−4 0.9961524 7.99 × 10−4

50 0.99706948 8.07 × 10−4 0.9973246 6.66 × 10−4

can be constructed as a faster surrogate, replacing the

original MF6 model. This capability significantly reduces

computational costs, making the FD-POD approach an

attractive option for SWI simulations.

Discussion

The essence of the POD model lies in the reduced

computational cost that can be achieved by retrieving

the approximated models (Equations 13 and 14), which

ultimately allows for the solution of the reduced-order sys-

tems (Equations 17 and 18) instead of the full-scale sys-

tems (Equations 9 and 10). The ROM accuracy depends

ultimately on the quality of basis functions stored in the

matrices H and W. Such a quality depends on the repre-

sentativeness of the boundary condition scenarios consid-

ered in the calculation of the snapshot sets, referred to as

Hobs and Cobs, and the reduced number R of orthonormal

basis functions selected to approximate the state functions

h(x ,y ,z ,t) and c(x ,y ,z ,t). While the selection of R can be

somehow “automated” by selecting the higher eigenval-

ues (e.g., by selecting only those exceeding a prescribed

threshold fraction [e.g., 0.01] of the maximum eigen-

value), the selection of representative boundary condition

scenarios, depends on the complexity of the boundary

conditions themselves. Nonetheless when addressing the

balance between efficiency and precision, of course, one

cannot run the full-scale model for any unseen boundary

condition set as this would basically void the compu-

tational gain of the ROM approach. However, it seems

reasonable to assess the accuracy of the POD-based model

through comparison with a smaller set of full-scale simu-

lations. For example, if the ROM was used to substitute a

full-scale model in a simulation-optimization framework,

10 M. Geranmehr et al. Groundwater NGWA.org
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the smaller set of validating simulations could be chosen

from the optimal sets of solutions or in the “surrounding”

them. If the POD model is deemed to be sufficiently

accurate, then it can be trusted for further simulations.

Regarding “model complexity,” the tests presented in our

article generally show that larger R values are needed in

the case of highly heterogeneous systems, but this does

not appear to reduce efficiency significantly. In terms of

the size of snapshot sets, adequate values should be deter-

mined based on the range of conditions (e.g., pumping

rates, boundary conditions) captured in the simulations.

Note that in our test only one scenario was tested (bound-

ary conditions are constant and constant), and additional

snapshots should be considered, for example, if also

effects of pumping wells on SWI were to be considered.

Conclusions

In this study, a novel approach has been introduced

to merge POD with FD methods to address the compu-

tational challenges associated with variable-density flow

in coastal aquifers. Focusing on simulating SWI, partic-

ularly addressing Henry’s problem in both homogeneous

and heterogeneous media, the aim was to enhance compu-

tational efficiency while maintaining accuracy compared

with full-scale models.

The significance of combating SWI challenges in

coastal aquifers cannot be overstated. The proposed FD-

POD approach emerged as a potent tool for groundwater

management, leveraging reduced-order models to navigate

the complexities of variable-density flow dynamics. By

emphasizing the balance between efficiency and precision,

the approach offers promising solutions for sustainable

coastal groundwater resource management.

Benchmarking the FD-POD model against estab-

lished methods like MF6 reveals compelling findings. The

model yields results comparable to traditional methods,

showcasing its efficacy in capturing the essential dynamics

of density-dependent flow and solute transport. Moreover,

while minor discrepancies exist, the overall computational

gains outweigh these, emphasizing the model’s ability to

strike a balance between efficiency and accuracy.

The strengths of the POD-based reduced-order model

are manifold. Its computational efficiency, evidenced by

significant reductions in model size and calculation time,

makes it a cost-effective solution for simulating SWI in

coastal aquifers. Moreover, its accuracy ensures reliable

simulations while simplifying the computational com-

plexity of variable-density flow dynamics. For instance,

when a model needs to be run several times, such as in

optimization-simulation approaches, the POD presents a

unique advantage. A set of snapshots could be generated

with MF6 to create basis functions, and subsequently, a

POD model could be constructed as a faster surrogate

model, replacing the original MF6 model.

While FD-POD may provide a computationally

efficient and accurate surrogate model, its effectiveness

hinges on the diversity and representativeness of the

snapshots used in its construction. For example, in

simulation-optimization applications for groundwater

management in coastal aquifers, it is crucial to generate

snapshots across a broad spectrum of potential well

configurations, pumping rates, and schedules. This

ensures that the ROM can accurately capture the system’s

behavior under various operating conditions.

Practically, the model facilitates rapid decision-

making in coastal groundwater management, allowing for

timely responses to changing environmental conditions.

Its adoption supports sustainable resource management by

assessing the impact of SWI on water quality and aquifer

sustainability. Moreover, it enhances decision support

systems, aiding in the development of effective strategies

to mitigate intrusion and protect freshwater resources.

Looking forward, several avenues for future research

and development emerge. Refinement of model calibra-

tion processes could enhance accuracy under varying

hydrogeological conditions. Integration of uncertainty

quantification techniques could assess the impact of

uncertainties on model predictions. Validation in diverse

real world scenarios is imperative for understanding

performance under complex real world conditions.

Integration with decision support systems and exploration

of multi-objective optimization techniques could further

enhance practical utility and identify optimal solutions

for coastal aquifer management.

In addressing these limitations and exploring future

research avenues, the FD-POD approach stands poised to

evolve and meet the evolving challenges of groundwater

management and sustainability in coastal regions. Its

potential to revolutionize SWI simulation in coastal

aquifers is evident, offering a comprehensive framework

for efficient and accurate decision-making in resource

management.
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Appendix A

Finite Difference Discretization

Considering density-dependent flow PDE as:
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By applying an FD spatial discretization Equation A1

becomes:
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where i , j , and k represent cell indices in x , y , and

z directions, respectively. The index i + 0.5 and i − 0.5

represent a property related to the cell i to i + 1 and i − 1

to i , respectively. Similarly, j + 0.5, j − 0.5, k + 0.5, and

k − 0.5 are defined. K x , K y , and K z represent hydraulic

conductivity in x , y , and z directions. Multiplying both

sides by the cell volume and using an FD approximation

in time with an implicit approach yield:
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where t is the time step index, E = ∂ρ/∂c = 0.7143

(Guo and Langevin 2002) and �x , �y , and �z are

the dimensions of each cell in x , y , and z directions.

Equation A3 can be expressed as:
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14 M. Geranmehr et al. Groundwater NGWA.org

 1
7
4
5
6
5
8
4
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://n
g
w

a.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/g

w
at.1

3
4
6
2
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

0
/0

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



where d0 to d7 are as follows:

d0 = −
�x�y

ρf

ρi,j,k+0.5K
z
i,j,k+0.5

(

ρi,j,k+0.5 − ρf

)

−
�x�y

ρf

ρi,j,k−0.5K
z
i,j,k−0.5

(

ρi,j,k−0.5 − ρf

)

+

(

θE
∂c

∂t
−

ρSs

�t

(

ht
i,j,k

)

− ρsqs

)

× (�x�y�z) (A5)

d1 =
�y�z

�x
ρi−0.5,j,kK

x
i−0.5,j,k (A6)

d2 =
�y�z

�x
ρi+0.5,j,kK

x
i+0.5,j,k (A7)

d3 =
�x�z

�y
ρi,j−0.5,kK

y

i,j−0.5,k (A8)

d4 =
�x�z

�y
ρi,j+0.5,kK

y

i,j+0.5,k (A9)

d5 =
�x�y

�z
ρi,j,k−0.5K

z
i,j,k−0.5 (A10)

d6 =
�x�y

�z
ρi,j,k+0.5K

z
i,j,k+0.5 (A11)

d7 = − (d1 + d2 + d3 + d4 + d5 + d6)

−
ρi,j,kSs

�t
(�x�y�z) (A12)

When applied to each of the FD grid cells,

Equation A4 produces a system of equations, which may

be written in matrix form as Equation 9.

The solute transport PDE with no mechanical disper-

sivity is written as:

∂c

∂t
= D

(

∂2c

∂x2
+

∂2c

∂y2
+

∂2c

∂z2

)

−
∂

∂x

(

vxc
)

−
∂

∂y

(

vyc
)

−
∂

∂z

(

vzc
)

+
qscs

θ
(A13)

Using an FD method with an implicit approach

Equation A13 is transformed to:

ct+1
i,j,k − ct

i,j,k

�t
= D

(

ct+1
i−1,j,k − 2ct+1

i,j,k + ct+1
i+1,j,k

�x2

+
ct+1
i,j−1,k − 2ct+1

i,j,k + ct+1
i,j+1,k

�y2

+
ct+1
i,j,k−1 − 2ct+1

i,j,k + ct+1
i,j,k+1

�z2

)

−
vx

i+1,j,kc
t+1
i+1,j,k − vx

i−1,j,kc
t+1
i−1,j,k

2�x

−
v

y

i,j+1,kc
t+1
i,j+1,k − v

y

i,j−1,kc
t+1
i,j−1,k

2�y

−
vz

i,j,k+1c
t+1
i,j,k+1 − vz

i,j,k−1c
t+1
i,j,k−1

2�z

+
qscs

θ
(A14)

which can be expressed as:

e1c
t+1
i−1,j,k + e2c

t+1
i+1,j,k + e3c

t+1
i,j−1,k + e4c

t+1
i,j+1,k

+ e5c
t+1
i,j,k−1 + e6c

t+1
i,j,k+1 + e7c

t+1
i,j,k = e0 (A15)

where the coefficients e0 to e7 are:

e0 = −
1

�t
ct
i,j,k −

qscs

θ
(A16)

e1 =
D

�x2
+

vx
i−1,j,k

2�x
(A17)

e2 =
D

�x2
−

vx
i+1,j,k

2�x
(A18)

e3 =
D

�y2
+

v
y

i−1,j,k

2�y
(A19)

e4 =
D

�y2
−

v
y

i+1,j,k

2�y
(A20)

e5 =
D

�z2
+

vz
i−1,j,k

2�z
(A21)

e6 =
D

�z2
−

vz
i+1,j,k

2�z
(A22)

e7 = −
2D

�x2
−

2D

�y2
−

2D

�z2
−

1

�t
(A23)

When applied to each FD grid cell, Equation A15

generates a system of equations, which may be written in

matrix form as Equation 10.
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