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Abstract. In recent years, there is a growing interest of using and implementing data driven
control in structural dynamics. This study considers applying Nonlinear Model Predictive
Control (NMPC) to flexible structures by utilising recent developments in models which have
been learnt from example data, i.e. machine learning approaches. The Gaussian process (GP)
is a Bayesian machine learning algorithm identified for use as a black-box model in NMPC; it
provides both the prediction of the system output and the associated confidence. In a control
context, a GP can be utilised as a discrepancy model for linear or nonlinear flexible dynamic
structures within MPC or even as the nonlinear model of the system itself. The Nonlinear
Output Error model (GP-NOE) is a popular GP structure for dynamic systems that is utilised
in predictive control strategies and requires predictions to be propagated to the control horizon.
This novel framework is evaluated on a cantilever beam with light damping, and the results
demonstrate robust control performance in both tracking and regulator tasks. The positive
results inspire additional investigation into the proposed technique, particularly in the setting
of a fully nonlinear system with unknown dynamics, such as an actuator within the flexible
structure.

1. Introduction

Vibration control in structural dynamics is still an active area of research, yet data-driven
approaches to modelling and control in active vibration applications have not been thoroughly
explored [1]. One of the reasons for the lack of implementation of these recent advances is
the difficulty in developing a reliable dynamic model of linear or nonlinear dynamic systems,
particularly when applied in control systems [2]. Furthermore, flexible structures are susceptible
to environmental effects, resulting in excitations, as well as issues related to damage, degradation,
and uncertainty [3]. Therefore, there is an urgent need to investigate whether data-driven control
can improve the control performance of an active vibration system, particularly using nonlinear
model predictive control (NMPC) and Gaussian process (GP) techniques.

GP is a probabilistic nonparametric modelling approach and its popularity in dynamic system
identification stems from its ability in predicting the output value of the system associated with
the measure of its confidence. More importantly, the GP can be used in a time series model
to highlight parts of the input space where there is insufficient data and model systems which
exhibit nonlinearity [4]. The Gaussian Process Nonlinear AutoRegressive model with eXogenous
input (GP-NARX) has been extensively employed in structural dynamic applications such as
wind turbines [5], and bridges [6]. In the structural health monitoring context, GP-NARX can



XIVth International Conference on Recent Advances in Structural Dynamics
Journal of Physics: Conference Series 2909 (2024) 012004

IOP Publishing
doi:10.1088/1742-6596/2909/1/012004

2

be formed into One Step Ahead (OSA) prediction, and Model Predicted Output (MPO) [7].
While MPO is a GP structure in which previous predictions are fed back into the model, OSA
prediction involves a model making a single-step prediction into the future based only on previous
measured outputs. Having said that, the GP-NARX model is only one step ahead prediction in
control systems, whereas the multiple predictions ahead while when previous predictions are fed
back into the model is called the Gaussian Process Nonlinear Output Error model (GP-NOE)
[11]. Consequently, this work follows the terminology in control systems engineering.

Furthermore, the popularity of system identification using GPs has sparked interest in NMPC,
particularly given the efficacy of data-driven modelling in control engineering. One of the main
advantages of NMPC is its ability to deal with practical constraints, such as input energy or
state limits. As a result, GPs have been integrated into NMPC to benefit from its prediction
uncertainty, with control input adjusted to take the region of uncertainty into account. This
control strategy was originally used in a first-order process system as a theoretical approach in
[8], and later in a chemical system in [9]. Although the use of a GP model in a control system is
not new in control applications such as car racing [2] and unmanned quadrotor [10], including
a fully offline GP model into an NMPC has been rare [11]. The contribution of this work is
implementing GP as a black box model trained and fixed offline in which it gives the prediction
of the output while optimising inside NMPC. A simulated cantilever beam serves as a case study
to validate the proposed methods.

The layout of this paper is as follow, Section 2 provides a brief introduction to GP and
fundamental procedures for system identification of dynamic systems. Section 3 presents the
NMPC theoretically, as well as the controller and reference trajectory designs. Section 4
describes the application of the GP-NMPC framework to a flexible structure, namely a cantilever
beam. Section 5 contains the concluding remarks and future work from this project.

2. Gaussian Process in system identification

To help comprehend the proposed framework, a brief overview of GP and dynamic system
identification is provided by summarising the existing literature [11] and [12].

2.1. Gaussian Process Regression

The Gaussian process is a Bayesian approach and it is defined as a collection of random variables
which have a joint multivariate Gaussian distribution [12]. Within the context of regression
problems, a GP formulates a prior over the latent function f(x), which is depicted in Equation
(1). Here, x represents a vector of training inputs and X represents a matrix comprised of
multivariate input data, and y represents the associated vector of output data obtained for
training. The noise component is modeled as a Gaussian-distributed random variable with zero
mean and noise variance σ2

n, ϵ ∼ N (0, σ2
n).

y = f(x) + ϵ (1)

where,

f(x) ∼ GP (µ(x), k(x, x∗)) (2)

The function f represents a hidden variable that is not directly observable. A GP is
comprehensively described by its mean function, denoted by µ(·), and its covariance function,
denoted by k(·, ·). These functions encapsulate the prior assumptions about the nature of the
underlying latent function. The mean function can be articulated as any linear combination
of basis functions dependent on x, with the flexibility to extend to different input spaces.
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Meanwhile, the covariance function is responsible for quantifying the extent of covariance
between any two points within the input space.

As we obtain a training dataset {X, y}Nn=1
, we can update the GP prior based on this dataset

to establish a posterior distribution y∗ for a new unseen input x∗. Following the methodology
outlined in [12], standard Gaussian equations provide us with an explicit formulation for the
posterior distribution of y∗,

p(y∗|x∗, X, y, θ) = N (µ[y∗],Σ[y∗]), (3)

where the expected mean value µ and variance Σ are defined as:

µ[y∗] = K(x∗, X)(K(X,X) + σ2
nI)

−1y, (4)

Σ[y∗] = K(x∗, x∗)−K(x∗, X)(K(X,X) + σ2
nI)

−1K(X,x∗). (5)

Defining a covariance function typically requires selecting several hyperparameters θ, which can
include coefficients for a mean function. These hyperparameters modify the kernel’s behaviour
and usually have an interpretable meaning. For instance, a common parameter in many kernels
is the length scale, which practically determines the required proximity of inputs in the same
dimension to affect each other. The Gaussian process framework allows for a systematic approach
to estimate these hyperparameters by maximizing the model’s marginal likelihood, also known
as the model evidence.

2.2. GP model setup

The challenge with GP system identification is that selecting a GP model set is quite hard
especially when the relationship between the input and target training data is nonlinear. For
simplicity, this section provides a general overview of establishing an accurate model. The first
step in the identification process begins with the purpose of the model in which it leads to level
of details. Since the aim of this work is control, that requires a higher number of sample data.
However, obtaining a high number of sample data leads to extensive computing.

Identifying the GP structure is the second step. As mentioned, GP-NOE model has been
identified because GP-NOE provides prediction for a number of steps ahead . GP-NOE used a
regressor that included output estimates ŷ(k − i) and input values u(k − i). The mathematical
description is as follows:

ŷ(k) = f(ŷ(k − 1), ŷ(k − 2), . . . , ŷ(k − L), u(k − 1), u(k − 2), . . . , u(k − L)) (6)

where L represents the number of lags. There are two types of simulations when GP-NOE
utilised as GP structures: naive simulation and approximation. The main difference is that naive
simulation does not propagate uncertainty and Equations (4) and (5) can be used. Although
the approximation simulation has been applied in [12], this work uses naive simulation for
computational efficiency. The key success of the GP-NOE is also based on choosing a suitable
model order. In other words, the number of lags required to capture the dynamics of the system.
This step requires a number of objective measures for comparison such as the standardised Mean
Square Error (SMSE) [12].

Finally, the remaining step to complete the set up of the GP model is selecting the covariance
function k(x, x∗). In practice, squared exponential (SE) is the most used covariance function
in modelling physical systems. However, SE with automatic relevance determination (ARD) is
the most commonly used covariance function in predictive control with GP, especially when the
model is fixed and trained offline. The SE-ARD is shown as follows:
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kSE−ARD(x, x∗) = v1 exp

(

−
1

2

D
∑

d=1

wd(xdi − xdj )
2

)

+ v0 (7)

where [w1, . . . , wD, v, v0]
T represents a hyperparameter vector θ. While D represents the length

of the regressor vector x, parameter v determines the magnitude of the covariance, and wi

represents the relative importance of each component xd of the regressor vector. v0 denotes the
white noise variance. The importance of this function is that the length scale is optimised for
each lag of the delayed output and input values.

3. Nonlinear model predictive control

The conventional MPC is often based on using the system model to predict the system output
for a number of predictions ahead at the present output measurement. The system’s prediction
of a preset cost function, while meeting input and state constraints, is then utilised to determine
the optimal values for future control inputs. In this work, a GP-NOE model serves as the system
model within MPC. The key factor of this GP model is being trained and fixed offline, meaning
the performance of NMPC is relying on prior knowledge of the system dynamics and the model’s
hyperparameters. The general description of NMPC method is described in great details in [11]
and the block diagram is depicted in Figure 1.

Figure 1. General block diagram of GP-NMPC. The main part of this method is based on the
algorithm within the NMPC block.

3.1. Controller design

The selection of appropriate cost function is a critical step in designing an NMPC controller.
Generally, NMPC solves a constrained or unconstrained control problem and can be written in
the unconstrained form as follows:

min
u

J(u, x(k), r(k)) (8)

where u is the control input, x(k) is the state at time k, and r(k) is the reference value at time
k. The NMPC, however, utilised a GP as the system model in which the NMPC is based on
a nonlinear, discrete-time system described mathematically in Equation (6). As a result, The
optimisation problem is

min
u

J(u, ŷ(k), r(k), u(k − 1)) (9)

where
J(u, ŷ(k), r(k), u(k − 1)) = [r(k + P )− E(ŷ(k + P ))]2. (10)
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Equation (10) is based on predictive functional control technique. This method requires
that the value of the reference trajectory at the coincidence point P matches to the estimated
output value of the system. Although the method’s significance comes from the fact that the
closed loop response is expected at the coincidence point, selecting the appropriate coincidence
point remains challenging. The control sequence is obtained by finding the optimal solution of
Equation (9):

uo = [uo(k), uo(k + 1), . . . , uo(k + P − 1)]. (11)

Once this optimisation problem is solved, the control law can be formed based on the receding
horizon principle. This states that the system is only excited by the first control value in
the optimised sequence, before the optimisation problem is re-solved. This repeated action of
applying the first optimised control in the sequence defines a feedback control law:

κN (x) = uo(k). (12)

3.2. Design of a reference trajectory

The remaining control design is now generating the NMPC controller’s reference trajectory.
The goal of developing the reference trajectory is not only to determine the trajectory that
the plant should take to return to the set-point trajectory, but it is also crucial in determining
the controlled plant’s closed loop behaviour. Determining the reference trajectory is firstly set
by identifying the current error between the set point trajectory w(k) and the current output
measurement value y(k) as shown below:

e(k) = w(k)− y(k), (13)

Since it is assumed that the reference trajectory is considered to approach the set point
exponentially from the current measurement output value, the next step is to calculate the
error at the number of steps (i) in the following way:

e(k + i) = e−iTs/Trefe(k), (14)

where Ts is the sampling time and Tref is the time constant of the exponential defining the speed
of the response. Then, the reference trajectory ended up being completely defined, as shown
below:

r(k + i) = w(k + i)− e(k + i) = w(k + i)− e−iTs/Trefe(k). (15)

Finally, the general algorithm used with NMPC is shown in Figure 2.

4. Identification and controlling of a cantilever beam

To demonstrate GP-NMPC in structural systems, a linear continuous cantilever beam was
employed as an illustrative example. Even though the MPC controller is nonlinear, the ultimate
purpose of this work at this stage is to develop a robust control system that provides an adequate
understanding of GP-NMPC and leads to a fully nonlinear system. The dynamics of this flexible
structure are detailed in great depth in [13], and the system is formed up of a uniform beam with
a point force actuator and sensor at the tip. Table 1 displays all of the important parameters.
For simplicity, this section is divided into three subsections. It starts with generating dynamic
data to form a relationship between the input and output of the system. Then, the process of
selecting the GP model is described in the model identification. Finally, the control design and
its performance is described in the control performance section.
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Figure 2. Steps of the GP-NMPC. The decision box represents the cost function of the NMPC
optimisation.

Table 1. Parameters of the dynamics and control system.

Element (Symbols) Value (Units)

Height (h) 25 mm
Width (b) 1 mm
Length (L) 350 mm
Modulus of Elasticity 210 GPa
Density of steel (ρ) 7850 (kg/m3)
Damping ratio (ζ) 1%

4.1. Obtaining data

Two separate sets of dynamic data were obtained as a result the GP model intended to be used
in control system. The first set was collected by exciting the cantilever beam using a random
input generator that lasted 7 seconds. The input magnitude ranged from -7 to 7 N, with a
total of 350 training points. The validation data was obtained using the same method but over
extended periods of time. The input signals were 9 seconds long, with 450 points for validation.
To obtain a full experimental design, white noise with a variance of 0.5 and a mean of zero was
applied to both the identification and validation sets of data. Figure 3 displays the cantilever
beam responses and input signals for both data sets. It is worth noting that the number of
training points affected the dimension of the covariance matrix. The drawback of obtaining a
high number of sample points is leading to longer computation time. Consequently, a thumb
rule is to choose a number of training points that capture the system dynamics sufficiently.
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Figure 3. Upper figure shows the random input signals for both sets of data. Lower figure
depicts the responses of a cantilever beam for both data sets, where the white noise effects were
visualised.

4.2. Model identification

After acquiring dynamic data, the process of selecting an appropriate GP model began by
determining the system’s order. Intuitively, the cantilever response will be dominated by its
first mode of vibration, which would imply the use of a GP-NARX model with at least two lags.
Table 2 compares several higher order models, based on some validation features. It is not clear,
however, whether the GP is able to capture richer dynamics than just the first mode since it
learns a nonlinear function of the lags rather than a linear one. In contrast, for an ARX model,
there is a direct equivalence between the number of lags and the number of dynamic modes.
The squared exponential ARD covariance function was then used, providing a specified scale for
each lag. Conjugate gradient was chosen as the optimisation approach for this project due to its
convergence properties. The hyperparameters were then trained using the maximum likelihood
method. The selected set of hyperparamters were θ = [6.5, 6.07, 10.57, 13.9, 6.23].

Figure 4 shows the GP model for the training data and it is clear that it fits the system
response quite well. The final step in this modal identification is to validate the GP model
setting with a different dynamic data sets. Even though the validation signal was longer than
the training signal, Figure 5 shows that the selecting GP model setting was also suitable for
validation data. Having said that, the GP model is now suitable for NMPC as an offline and
fixed GP model.

Table 2. Validation of the identification data based on the selecting set of GP model.

Order SMSE MSLL

1 0.092 –1.09
2 0.052 -2.62
3 0.053 -2.58
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Figure 4. The GP model fits the
response of the flexible structure by
using training data.

Figure 5. The GP model fits the
response of the flexible structure by
using validation data.

4.3. Control performance

Before demonstrating the control performance of GP-NMPC applied to the cantilever beam,
several control settings must be defined. First, selecting an adequate sample time Ts is an
important step in control design. Equation (14) sets Ts to be 0.01 second for the reference
trajectory design. The number of predictions is 9. Despite the general rule that more prediction
leads to better control performance, particularly when the system is linear, it makes the
computation time longer. Finally, the control horizon is one.

The closed loop responses of unconstrained control in both tracking and regulator tasks are
given in Figures 6 and 8. It is clear that the GP model was able to predict the dynamics of the
reference trajectory in which it leads the NMPC optimiser to provide the best control action.

5. Conclusions

This paper presents a novel GP-NMPC controller that has been applied to the dynamics of
flexible structures. The introduced framework uses GP-NOE as an offline, fixed model within
the NMPC controller. The GP predicts the output values and their uncertainty, allowing the
control optimiser to avoid regions with high uncertainty. Numerical results demonstrate the
effectiveness of this novel framework in the cantilever beam.

The value and contribution of this work can be summarised in two points. First, it is an
initial step towards clarifying some GP structure terminologies used in the GP community in
the fields of structural dynamics and control systems. Second, this framework obtains vibration
control by utilising the most recent advancements in data-driven modelling and control. The
next step with GP-NMPC control framework is to explore the efficacy of this method when the
dynamics of the system is nonlinear.
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