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Abstract: Axio-dilaton models are among the simplest scalar-tensor theories that contain

the two-derivative interactions that naturally compete at low energies with the two-derivative

interactions of General Relativity. Such models are well-motivated as the low energy fields

arising from string theory compactification. We summarize these motivations and compute

their cosmological evolution, in which the dilaton acts as dark energy and its evolution

provides a framework for dynamically evolving particle masses. The derivative axion-dilaton

couplings play an important role in the success of these cosmologies. We derive the equations

for fluctuations needed to study their implications for the CMB anisotropy, matter spectra

and structure growth. We use a modified Boltzmann code to study in detail four benchmark

parameter choices, including the vanilla Yoga model, and identify couplings that give viable

cosmologies, including some with surprisingly large matter-scalar interactions. The axion

has negligible potential for most of the cosmologies we consider but we also examine a
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simplified model for which the axion potential plays a role, using axion-matter couplings

motivated by phenomenological screening considerations. We find such choices can also

lead to viable cosmologies.

Keywords: Cosmological perturbation theory in GR and beyond, dark energy theory,

modified gravity, string theory and cosmology

ArXiv ePrint: 2408.10820
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1 Introduction

Cosmology is a Tale of Two Cities. It is the best of times (precision measurements spectacularly

constrain our understanding of the recent universe); it is the worst of times (the concordance

ΛCDM model reigns supreme). It is the epoch of belief (General Relativity — GR — cannot

be improved upon); it is the epoch of incredulity (modifications to GR are everywhere). It is

the season of light (cosmic microwave backround — CMB — observations get better and

better); it is the season of darkness (95% of the universal energy content consists of unknown

Dark Matter — DM — and Dark Energy — DE). It is the Spring of hope (small tensions in

the data might undermine the cosmological consensus); it is the Winter of despair (systematic

error is hard to quantify). We have everything before us (a cosmological constant describes

well the evidence for Dark Energy); we have nothing before us (UV physics seems unable

to give the observed cosmological constant in a technically natural way). Such times invite

new ideas but ruthlessly cull those that do not measure up.

In this paper we compute the cosmological implications of axio-dilaton scalar-tensor

models, whose precise definition is given in section 2. This section also argues them to define

– 1 –
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a broad class of minimal yet well-motivated two-field scalar-tensor theories whose broader

implications for testing gravity are largely unexplored. For these models we here compute the

evolution of both background fields and the linearized perturbations about these backgrounds

required for computing CMB anisotropies and the growth of large-scale structure.

These models are well-motivated in two independent ways. First, two fields are the

minimum number that allow the two-derivative sigma-model self-interactions that general

power-counting arguments [1, 2] show compete most efficiently with the two-derivative

interactions of GR at very low energies. Because both GR and the sigma-model interactions

share the same number of derivatives they are able to compete at low energies without

undermining the low-energy approximation on which the use of semiclassical methods in

gravity ultimately relies [3, 4]. It is because these interactions require at least two scalars that

single-scalar models are usually driven to study higher-derivative interactions like those arising

within the Horndeski program [5] (at least once the dangerous zero-derivative interactions

of the scalar potential are suppressed using shift symmetries).

Axio-dilaton models are also well-motivated because they encode features that are not

unusual from the point of view of physics at much higher energies. Axio-dilatons are very

commonly found amongst the low-energy fields in string vacua for robust symmetry reasons

— they capture the low-energy pseudo-Goldstone boson physics arising from the interplay of

spontaneously broken internal symmetries (the axion) and approximate scaling symmetries

(the dilaton) that are generic in string compactifications [6]. This makes their presence at

low energies likely more robust than it would be if it only relied on conjectures about what is

possible in principle at very high energies. Axio-dilatons would also be expected to be generic

occupants of the Dark Sector in the (not unlikely [7]) event that the gravity sector should

prove to be more supersymmetric than is the low-energy particle physics sector we explore

in collider experiments. Finally, they also play a central role in attempts to understand

Dark Energy in a technically natural way that exploit the nontrivial low-energy interplay

between supersymmetry and scaling symmetries [8].

Section 2 fleshes out some of these motivations and defines more precisely the class of

Lagrangians we use to define what we mean by axio-dilaton models, as well as the choices

one is free to make within this class and some of the non-cosmological constraints they

face. Section 3 then specializes the field equations found in section 2 to cosmology, both for

homogeneous background fields and for linearized fluctuations about these backgrounds.

An important theme emerges from these equations: many of the implications for cosmology

arise because particle masses are field-dependent (in Planck units) and so can vary in space

and time as the fields themselves do. By doing so they provide a concrete dynamical

framework within which to better test ideas (such as changing the value of the electron mass

near recombination [9]) that have been proposed to help solve various cosmological tensions.

Having a dynamical framework makes it possible to relate the values of masses at different

epochs — nucleosynthesis, recombination, during structure formation and at the current

epoch — and thereby find new ways to confront them with observations.

Section 4 contains our main results, defining four benchmark choices of parameters whose

properties we explore numerically using a modified version of the Cosmic Linear Anisotropy

Solving System code (CLASS) [10], which we employ to compute both the matter power

– 2 –
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Model Features Comment on background evolution

Universal Yoga Model g = − ζ
2
, ζ =

√

2
3

Likely not viable: axion not sufficiently

sourced to keep dilaton in local mini-

mum; larger axion couplings drain

baryon density significantly.

Yoga with opposite coupling gB = − ζ
2
, gC = − gB

x
Realistic background evolution for

1 ≲ x ≲ 13.

Reduced ζ g = − ζ
2
, ζ = x Realistic background evolution for

x ≲ 0.1.

General dilaton-matter coupling g = −x, ζ =
√

2
3

Realistic background evolution for x ≲

0.05.

Table 1. Summary of the axiodilaton models considered in this paper. gB is the Brans-Dicke coupling

strength between the dilaton and baryonic matter, gC is its analog for the dilaton-DM coupling and

when these are equal they are both denoted simply g with no subscript. ζ is the strength of the

kinetic axion-dilaton coupling (∂χ)2 +W 2 (∂a)2, where W (χ) = e−ζχ, in (3.1).

spectrum and the CMB angular spectra. The coupling choices for these benchmarks are

summarized for convenience in table 1, together with a short summary of what we find for the

viability of their cosmologies. As can be seen from the table the most restrictive choice for

couplings — including in particular the cosmology described in detail in [8] — seems to be ruled

out, but the other three variations on the theme are not (including examples with the large

dilaton-matter couplings required in [8] by the naturalness arguments for the Dark Energy).

The difference between success and failure for the two models with strong dilaton-matter

couplings hinges on the choices made for how the dilaton couples to Dark Matter.

None of the four of the benchmarks studied in section 4 include an axion potential

and all assume the simplest possible linear coupling between axions and matter. These

assumptions are relaxed in section 5 which recomputes evolution for a simple choice for axion

potential and for a quadratic matter-axion interaction that is motivated by phenomenological

and screening considerations [11]. We find that the inclusion of an axion potential makes

the cosmologies easier to work and based on this we hope to explore these directions more

systematically in future.

Some conclusions are briefly summarized in section 6.

2 Multiple scalar motivations

Our focus is on cosmological tests for multi-field scalar-tensor theories, so we first pause

to define the models and motivate why they are interesting. Scalar fields are among the

simplest possible deviations from GR with observable consequences, and as a result their

implications for late-time cosmology have been widely studied.

Most of such work — with some exceptions, see e.g. [12–22] — specialises when doing so

to the case of a single scalar field (such as a Brans-Dicke field or an axion). Indeed, naturalness

issues make this restriction to single fields seem reasonable: if light scalar fields are difficult to

obtain from UV physics then we should be lucky to find even one of them relevant to late-time

– 3 –
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cosmology. This restriction to single scalar fields — and the introduction of approximate

shift symmetries to ensure they remain light — in turn motivates the widespread study of

higher derivative (e.g. ‘Horndeski’) interactions: for single scalar fields these are the only

scalar self-interactions of scalar-tensor theories that are consistent with shift symmetries.

2.1 Multiple scalars

But this focus on single-field models comes with its own problems. The first problem is

with the higher derivative interactions to which they lead. These interactions are a problem

whenever they compete with GR because it is ultimately the derivative expansion that

justifies using classical reasoning in cosmology (for reviews see [3, 4]); so higher-derivative

interactions can only compete with the two-derivative interactions of GR when the entire

semi-classical approximation is starting to fail [1, 2] (DBI models provide one of the few

known exceptions to this general statement1 [24]).

The general power-counting arguments of [1, 2] show (unsurprisingly) that it is two-

derivative ‘σ-model’ interactions2

L2−deriv =
1

2
M2

p

√−g
[

R− Gab(ϕ) ∂µϕ
a ∂µϕb

]

, (2.1)

amongst N scalars and the metric that dominate at low energies once shift symmetries are

used to suppress the dangerous zero-derivative interactions of the scalar potential. (We note

in passing that the shift symmetries δϕa = ξa(ϕ) used to suppress V (ϕ) can be completely

consistent with Gab being ϕ-dependent.) It is the σ-model interactions contained within the

ϕ-dependence of Gab that want to compete at low energies with the two-derivative interactions

of GR. The positive definite matrix of functions Gab(ϕ) transform under field redefinitions as

would a symmetric tensor on the N -dimensional target space spanned by the dimensionless

fields ϕa and so can be viewed as a metric on the target space.

It turns out that interactions like (2.1) have no physical effect (beyond the minimal

coupling to gravity) when the target-space geometry associated with Gab is flat because it is

then always possible to arrange Gab = δab by performing an appropriate field redefinition. That

is why the Gab interactions never play a role for single-scalar models: all one-dimensional target

space manifolds are flat. A focus on single-field models accidentally removes the possibility

of two-derivative σ-model interactions, potentially missing the important class of couplings

that is expected naturally to compete with GR at the low energies accessible to cosmology.

Having multiple light scalars can also be just as natural as having just one, at least in

a world with a small vacuum energy [25]. This is because the natural extension of (2.1) to

include a scalar mass adds the small shift-symmetry breaking term

Lpot = −√−g v4S(ϕ) , (2.2)

where v is a mass scale and S(ϕ) is an order-unity dimensionless function of the dimensionless

ϕa. The cosmological constant problem asks why v is as small as is currently observed,

1Notice that the dangerous wavelengths from this point of view are those much shorter than the curvature

radius and so these conclusions are more restrictive than the ones often quoted in cosmology, which study

scales for which the background curvatures can be competitive (see e.g. [23]).
2We use a positive signature metric and MTW curvature conventions and relate the Planck mass to

Newton’s constant by M−2
p = 8πGN.

– 4 –
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but once this has been answered the mass predicted for ϕa by combining (2.1) and (2.2)

is generically v2/Mp provided only that S(ϕ) and its derivatives are all order unity. Any

gravitationally coupled scalars would therefore be expected to have a Hubble-sized mass in

a world where the potential is small. The cosmological constant problem itself (why is v

small) is the only naturalness problem in such a world and the existence of multiple light

gravitationally coupled scalars need not be additionally unnatural.

2.2 Well-motivated two-field examples

Given the motivation to explore 2-derivative σ-model interactions amongst multiple light

scalars, two-scalar models are natural places to start because they have the minimal number

needed to allow their existence. The freedom to perform field redefinitions ensures that the

most general two-dimensional target space metric can always be locally written in terms

of a single nonvanishing function Z(ϕ, ψ), with

L2−deriv = −1

2
M2

p

√−g Z2(ϕ, ψ)
[

(∂ϕ)2 + (∂ψ)2
]

. (2.3)

This, together with the choices for scalar potential and for how the scalars couple to matter,

still leaves a large class of models to be explored. To make further progress it is helpful to

narrow the class of models under consideration still further. The axio-dilaton class of models

provides a well-motivated subclass worthy of more detailed study.

2.2.1 Axio-dilatons

Axio-dilaton models are defined by two assumptions: target-space axion shift symmetry and

dilaton-like matter couplings, each of which is discussed in more detail below.

The axionic shift symmetry assumes Gab is invariant under constant shifts of one of the two

fields (which we call3 an ‘axion’ and so denote by a): a → a+ c for constant c. This makes the

target-space metric ‘axisymmetric’ inasmuch as it is independent of a. In this case the function

Z is independent of a and (2.3) can be written in either of the following two equivalent ways:

L2−deriv = −1

2
M2

p

√−g Z2(ϕ)
[

(∂ϕ)2 + (∂a)2
]

= −1

2
M2

p

√−g
[

(∂χ)2 +W 2(χ)(∂a)2
]

, (2.4)

where Z(ϕ)dϕ = dχ and W (χ) = Z[ϕ(χ)]. The target space geometry that results has

line element

ds2
axio−dilaton = dχ2 +W 2(χ)da2, (2.5)

and so describes the hyperbolic 2-plane, with constant negative curvature scalar

Raxio−dilaton = −2W,χχ

W
. (2.6)

It is this target-space curvature that obstructs finding a field redefinition that removes

the sigma-model interactions, and so allows the nontrivial energy exchange between the

dilaton and the axion.
3We here follow that part of the literature that calls any axion-like Particle — or ALP — an axion and

thereby alienate that other part of the literature that reserves the word axion for the specific QCD axion

whose potential existence was recognized [26, 27] to arise in solutions to the strong-CP problem [28, 29].

– 5 –
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The second assumption is that the field ϕ couples to matter like a dilaton; i.e. like a

pseudo-Goldstone boson for an approximate scaling symmetry. In practice, we take this to

mean that ϕ couples to matter as does a Brans-Dicke scalar: with matter Lagrangian density

Lm = Lm[g̃µν , a, ψ] , (2.7)

where ψ collectively denotes any matter fields and the ‘Jordan frame’ metric is defined by4

g̃µν = C2(χ) gµν where C(χ) = egχ , (2.8)

for some coupling constant g. That is, the dilaton couples to matter solely through a

conformal coupling function C(χ) that is exponential, with a universal coupling constant

g. Later we consider variations on this theme that relax the assumption that the dilaton

couples universally to all matter fields, allowing baryons and dark matter to couple to different

Jordan-frame metrics of the form given in (2.8) but with different couplings gB ̸= gC. The

model then becomes a scalar-tensor theory with multiple couplings to different matter species.

Brans-Dicke couplings arise very commonly in UV completions of gravity, with ϕ and

a often appearing as the real and imaginary parts of a complex field that is part of a

supersymmetric multiplet (making the dilaton a ‘saxion’: the scalar super-partner of an

axion). A commonly arising example within such constructions [6] has target space

Gab∂µϕ
a ∂µϕb =

(∂ϕ)2 + (∂a)2

ζ2ϕ2
, (2.9)

for a constant ζ, and so

Z(ϕ) =
1

ζϕ
which implies ϕ = eζχ and W (χ) =

1

ζ
e−ζχ . (2.10)

In this case the metric Gab is the SL(2, R)-invariant metric on the hyperbolic upper-half plane

so we call this the SL(2, R)-invariant axio-dilaton (or the Angle-Saxion model). The target

geometry that results describes the hyperbolic 2-plane, with constant negative scalar curvature

Raxio−dilaton = −2ζ2 . (2.11)

This influences the dynamics of the axion and the dilaton.

2.2.2 Yoga models

Yoga models [8] are a specific subset of the axio-dilaton class of two-scalar theories that

is motivated by an approach to the cosmological constant problem based on a ‘natural

relaxation’ mechanism (hence the name). The relaxation mechanism assumes that a scaling

symmetry and supersymmetry survive to low energies in the dark sector, such as can arise as

accidental approximate symmetries within the gravitationally coupled sector within string

compactifications [6].

4The choice (2.8) with exponential function C(χ) in Einstein frame is equivalent to — and much more

useful than — the more traditional Brans-Dicke definition [30]. The coupling g defined in (2.8) is related to

the traditional Brans-Dicke parameter ω by 2g
2 = (3 + 2ω)−1.

– 6 –
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In these models the fields ϕ and a are the real and imaginary parts of a complex scalar

and for the present purposes what is important is that the underlying symmetries predict

Z2 = 3
2/ϕ

2 and so ϕ = eζχ with ζ =
√

2
3 . The scaling symmetry requires ordinary baryons

to couple to the dilaton with a Jordan-frame metric g̃µν = gµν/ϕ and so predicts the Higgs

expectation value (and so also non-neutrino particle masses) to be proportional to ϕ−1/2 and

implies a Brans-Dicke coupling to matter of size gB = −1
2ζ = − 1√

6
.

These models by design predict a scalar potential for the dilaton of the form

VYoga =
UM4

p

ϕ4
= M4

p U e
−4ζχ , (2.12)

where U is a function of lnϕ (or, equivalently, of χ). The point of the models is that these

structures can be technically natural. Because U depends only logarithmically on ϕ it can

easily allow minima for which ϕ is exponentially large. (The simplest examples choose U

to be quadratic in lnϕ with coefficients of order 50 in size.) With these choices χ can

easily be minimized at a value χmin ∼ 60, in which case ϕmin is order (Mp/MW )2 ∼ 1028

where MW ∼ 100 GeV is the weak scale (of order the mass of electroweak bosons). For

such values particle masses are predicted to be of order m ∼ Mp/
√
ϕmin ∼ MW while

VYoga(ϕmin) ∼ M4
p /ϕ

4
min ∼ (M2

W
/Mp)4, both of which have the right order of magnitude.5 As

a bonus, if neutrino masses are generated by the dimension-5 Weinberg operator [31, 32] then

they would have size mν ∼ Mp/ϕmin ∼ M2
W
/Mp which is also successful in order of magnitude.

No prediction is made in these models for what the couplings of Dark Matter should be

to ϕ, since the model does not specify what the Dark Matter is. (For instance, if DM were

primordial black holes - pBHs - then the no-hair theorem would predict the DM-χ coupling

to be zero.) However it was also observed in [8] that if Dark Matter were also to have masses

proportional to ϕ−1/2 then the model might be able to realise the mechanism proposed in [9]

to resolve the Hubble tension by changing the electron mass at recombination. (Indeed part

of the motivation for the paper you are now reading is to explore more systematically how

these models fare when compared with the CMB.) If this were the case then the Brans-Dicke

coupling of χ to Dark Matter would also be gC = − 1√
6
. For later purposes we call this

specific form of the Yoga proposal the ‘Universal’ Yoga model.

2.3 Potentials and non-cosmological constraints

Although the focus of the rest of this paper is cosmology it is worth remarking here on

the various non-cosmological challenges that these models face. These involve constraints

on the matter couplings of both the dilaton and the axion, which we briefly summarize

here. These constraints also motivate some of the choices we make for the model’s axion

potential and matter-axion couplings.

2.3.1 Dilaton constraints

The couplings of a Brans-Dicke scalar are strongly constrained by tests of gravity within

the solar system, such as by tests of Shapiro time delay by the Cassini probe [33]. For

scalars with Compton wavelengths much larger than typical solar system scales (such as are

5As ever, the devil is in the details and [8] explores more precisely how small VYoga(ϕmin) can be.

– 7 –
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considered here) these require the scalar-matter coupling to satisfy ♣gB♣ ≲ 10−3 in order to

have been too small to have been detected. The simplest option when considering cosmology

is simply to restrict gB to satisfy this bound. This in particular would exclude the Yoga

models, which predict gB = −1/
√

6.

We do not impose this condition here and instead ask whether viable cosmologies can

exist even with Yoga-sized O(1) dilaton couplings. We do so because it need not be true

that the coupling gB appearing in cosmology is the same coupling that is constrained in

non-cosmological tests. In theories where fields couple nonlinearly to one another and to

matter it can happen that the dilaton coupling relevant to a macroscopic object (like the

Sun, in solar system constraints) is not simply the sum of the dilaton coupling to each of

its constituent particles. When macroscopic couplings are much smaller than the sum of

microscopic couplings the force is said to be ‘screened’ and a variety of mechanisms have

been found [34–36] to accomplish screening in scalar-tensor theories (including explorations

within the axio-dilaton class of models considered here [11, 37, 38]).

The search for screening mechanisms in axiodilaton models remains young and so we do

not restrict to specific models for which a detailed screening mechanism is known, instead

exploring parameter choices that seem broadly promising for screening.

2.3.2 Axion constraints

The axion’s couplings to matter are also a potential worry since these are also subject to a

wealth of constraints [39]. In principle these constraints are more model-dependent than are

those for the dilaton because there is considerable latitude in choosing the axion potential

and its couplings to matter.

A generic worry when ϕ is as large as chosen for the Yoga models is the size of the axion

kinetic term (2.9). For any specific value χ = χ̄ the canonically normalized axion field is

ac = f a where f(χ̄) = MpW (χ̄) = Mp/ϕ̄ provides one definition of the axion decay constant.

When ϕ̄ = ϕmin ∼ (Mp/MW )2 the value predicted for f then is of order M2
W
/Mp (and so is of

order the eV scale). This seems in immediate conflict with some axion constraints (such as

cooling rates from red giant stars) that generally require the decay constant F appearing

in matter couplings to satisfy F ≳ 109 GeV.

Whether this is really a problem proves to be a model-dependent issue because it is

not always appropriate to identify the physical decay constant with the coefficient of the

axion kinetic term (some explicit UV completions for axions for which this is true are given

in [38]). We therefore treat the quantity f defined by the kinetic term and F defined by

the matter couplings as independent. In what follows we typically find F = f/γ for some

parameter γ, whose value is then checked to be sufficiently small. (In the examples we

explore γ ∼ (MW/Mp)2 and so F ∼ Mp.)

2.3.3 Scalar potentials

Up to this point little has been said — apart from (2.12) — about the nonderivative couplings

of ϕ and a. In the spirit of [8] for most of our analysis we neglect any axion-dependence

of the scalar potential, assuming (2.12) provides the dominant contribution. Part of the
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reason for this is to see whether interesting cosmology can arise when both ϕ and a are

free to evolve even relatively recently.

But again following [8], and motivated by the screening discussion above, we do allow

non-derivative couplings between a and matter. The idea behind the screening constructions

is: if matter can couple to both the axion and the dilaton then the nonlinear interactions

amongst these two fields can reduce the dilaton field outside a macroscopic source like the

Sun. (See [11] for the most promising proposal along these lines so far.) For concreteness’

sake we here regard this to arise microscopically as an axion-dependence to particle masses

mf = mf0(χ) Uf (a), (2.13)

for some choice of functions Uf (a).

Motivated by the QCD axion one might also expect symmetry-breaking matter-axion

interactions with matter to come hand in hand with an axion dependence of the scalar

potential in vacuum. This indeed can — but need not — arise depending on the strength of

the couplings that lead to nontrivial Uf (a). In the specific case of Yoga models this would be

expected to imply that the function U appearing in (2.12) acquires a dependence on a.

The screening mechanism proposed in [11] relies on a taking values near the minimum of

U(a) within ordinary matter and on this minimum differing from the minimum of the axion’s

vacuum potential. Axion constraints, like those coming from energy loss from hot stars, also

are less stringent if a sits near the minimum of U(a) within the radiating objects. We therefore

in section 5 make a preliminary attempt to assess the viability of cosmology consistent with

these types of interactions, assuming a simplified scalar potential V = V (a) + VYoga(ϕ) when

doing so (rather than having U appearing within VYoga also be a-dependent).

We find sensible cosmologies can exist with axion potentials of this type, motivating a

more detailed study of more realistic potentials. We defer this more systematic exploration

of axion-dependent potentials to future work, but with an eye to this work we derive our

analytic expressions for the axio-dilaton cosmology in the next section assuming a completely

general dependence of the potential on the axion and dilaton.

3 Axio-dilaton cosmology

This section derives the field equations needed to describe both background cosmologies and

fluctuations around these for two-scalar models of the axio-dilaton class.

3.1 Field equations

The effective field theory (EFT) whose equations we wish to solve has the action

S =
1

2

∫

d4x
√−g

{

M2
p g

µν
[

Rµν − ∂µχ∂νχ−W 2(χ) ∂µa ∂νa

]

− 2V (χ, a)
}

+ Lm , (3.1)

where Lm parameterizes the contribution from the standard model and dark matter. The

dilaton χ and the axion a are kinetically coupled to each other via the function W (χ) and in

this section we allow the potential V to depend quite generally on both scalar fields. The
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matter action is assumed to have the form given in (2.7), with matter coupling to χ only

through a minimal coupling to a Jordan-frame metric

g̃µν = C2(χ) gµν , (3.2)

though its couplings to a can be more general (and are specified in more detail below).

Varying the action with respect to the metric gives us the modified Einstein equations

Gµν −


∂µχ∂νχ− 1

2
gµνg

ρσ∂ρχ∂σχ



−W 2


∂µa∂νa − 1

2
gµνg

ρσ∂ρa∂σa



+
1

M2
p



gµνV − Tµν



= 0 , (3.3)

where we define the (Einstein-frame) energy-momentum tensor as

Tµν =
2√−g

∂Lm

∂gµν
. (3.4)

The dilaton field equation similarly is

□χ−W W,χ ∂µa∂
µ
a − V,χ

M2
p

= − gT

M2
p

, (3.5)

where T := gµνT
µν and the dilaton-matter coupling is g := C,χ/C. In practice we choose

C = exp(gχ) with g a constant, in which case χ couples to matter in the same way as would

a Brans-Dicke scalar. Later sections entertain the option of having the value for the dilaton

coupling g differ for ordinary matter and for dark matter.

Finally, the axion field equation is6

□a +
2W,χ
W

∂µχ∂
µ
a − V,a

W 2M2
p

= − J
W 2M2

p

, (3.6)

which denotes ∂Lm/∂a =
√−g J .

In these expressions ordinary (and dark) matter contribute through the stress-energy

tensor Tµν and the axion source function J . Their contribution to the stress energy is (as usual

for cosmological applications) obtained by writing Tµν as the sum of perfect-fluid contributions

Tµν
(f) = (ρf + pf )uµ

fu
ν
f + pfg

µν , (3.7)

with f = B,C or R (for baryons, cold dark matter and radiation, respectively). Each fluid

has a local 4-velocity, uµ
f , energy density, ρf , and pressure, pf , related by an appropriate

equation of state. After recombination stress energy is separately conserved for each of these

fluids but because electromagnetic interactions allow baryons and photons to equilibrate they

can exchange energy before recombination and so are not then separately conserved.

6Notice that the fluid modification to the scalar field equations follow directly from their couplings to

matter and the requirement that energy is exchanged between the scalars and matter in such a way that the

total energy-momentum tensor is conserved [40]. They are unrelated to frictional or dissipative couplings

sometimes entertained in cosmologies in other contexts.
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In what follows we assume the microscopic axion-matter couplings arise as an axion-

dependence to particle masses, as in (2.13). If so the axion source evaluated in a nonrelativistic

fluid can be written

J = −
∑

f



∂mf

∂a



nf , (3.8)

where nf is the particle’s local number density and the sum runs over all species of particles

that share the axion-dependent contribution U(a). In the applications to follow we imagine

the axions to couple only to nonrelativistic species, in which case

J = −
∑

f

gafρf ≃ −gaρB , (3.9)

where ρf ≃ mfnf is the particle energy density and gaf := U ′
f/Uf . The final approximate

equality assumes the summed energy density is dominated by the energy density of baryons.

Using this in (3.6) shows that the axion moves as if governed by an effective potential

Veff(a, ρB) ≡ V (a) +
∑

f

mf (a)nf ≃ V (a) + ρB(a) , (3.10)

and so in particular can be interpreted to have a density-dependent effective mass

W 2M2
pm

2
(eff)(a, ρB) = Vaa(a) +

∑

f

mf0 Uaa(a)nf ≃ Vaa(a) +

Uaa

U



ρB. (3.11)

For axions both V and U are usually periodic functions of a, but in what follows we (like

much of the literature) evolve using simpler approximate forms for these functions (that are

specified in more detail in section 4) and section 5.

Notice that it is the decay constant f = MpW that appears on the left-hand side

of (3.11), whereas eq. (3.9) shows that the decay constant F setting the physical size of

matter interactions is given by F−1 = ga/f , which can be very different. It is the quantity

F that is subject to non-cosmological constraints like those coming from cooling rates from

red giants and supernovae.

The equations governing the evolution of the components of the cosmic fluid are obtained

from the flow of conserved quantities (e.g. stress-energy and baryon number). The ability of

the cosmic fluids to exchange energy with the scalar fields implies that the stress energy for

each fluid component is not separately conserved (even in the absence of the equilibrating

baryon-photon interactions mentioned above). That is, although the total energy-momentum

tensor is covariantly conserved (i.e. ∇µT
µ
ν = 0), at lowest order in a derivative expansion

the exchange of energy amongst the fluid components and between the fluids and the scalars

can be expressed as

∇µT
µν
(f) = Jν

(f)eq +Qχ
(f) g

νλ∂λχ+Qa

(f) g
νλ∂λa , (3.12)

where the coefficients Jν
(f)eq and Qi

(f) are determined below following earlier derivations for

more general scalar-tensor setups [14, 40–44].
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First, the coefficients Qi
(f) can be read off from the coupling of the fluid component f to

each scalar field by demanding that the energy flow out of the fluid exactly cancel the energy

flow into the scalar field, as dictated by the field equations (3.5) and (3.6). For instance the

dilaton field equation (3.5) suggests Qχ
(B) = −gB ρB for its coupling to baryons. Assuming

a similar Brans-Dicke style coupling to cold dark matter similarly implies Qχ
(C) = −gC ρC.

The Universal Yoga model of section 2.2.2 assumes gC = gB, but in what follows we also

explore other options because the Yoga mechanism is mute on the nature of dark matter

and so does not require a particular choice for gC. The axion field equation (3.6) and (3.9)

similarly suggests Qa

(B) = −ga ρB. Because we assume no axion coupling to dark matter we

choose Qa

(C) = 0. These agree with results [40] for general scalar-tensor models for which

cosmic fluids couple to scalars ϕa through a conformal rescaling of the metric, g̃µν = C(f)gµν ,

which imply Qa
(f) = gaT(f) where ga = d lnC(f)/dϕ

a and T(f) is the trace of the fluid’s

energy-momentum tensor.

Next, Jν
(f)eq describing photon-baryon exchange is given by the usual expression involving

the Thomson cross section (see for instance [45]) in which we use the dilaton-dependent

electron mass me(χ) = C(χ)me0 predicted by the axio-dilaton framework. This follows

from the rescaling of the metric between the Jordan and the Einstein frames. In practice

we implement this by evolving the linearized photon and baryon fluids numerically using

CLASS [10], adjusted to include both a field-dependent Thomson scattering cross section

and to include the fluid-scalar energy exchange terms Qi
(f) mentioned above. We drop the

contributions from Jν
(f)eq when analytically exploring post-recombination structure formation

in later sections.

We next use these equations to describe linearized fluctuations about homogeneous and

isotropic cosmological background solutions for this system.

3.2 Background dynamics

We assume a background describing a homogeneous and isotropic universe, and so choose

a Friedmann-Lemaître-Robertson-Walker (FLRW) metric,

ds2 = a2
[

−dη2 + δij dxidxj
]

, (3.13)

where a = a(η) and we assume flat spatial slices. Homogeneity and isotropy also imply

space-independent background scalar field configurations, χ̄ = χ̄(η) and ā = ā(η), so the

equations describing the evolution of the background simplify to

H2 =
1

3M2
p



χ̄′2

2
+
W 2

ā
′2

2



M2
p + a2V + a2ρ̄

]

,

χ̄′′ + 2Hχ̄′ −WW,χ ā
′2 +

a2

M2
p



V,χ +gB ρ̄B + gC ρ̄C



= 0 , (3.14)

ā
′′ + 2Hā

′ +
2W,χ
W

ā
′χ̄′ +

a2

M2
pW

2



V,a +ga ρB



= 0 .

where ρ̄ = ρ̄B + ρ̄C + ρ̄rad, the Hubble expansion rate is H = a′/a and primes denote

differentiation, d/dη, with respect to conformal time. Subscripts ,χ and ,a respectively denote

differentiation with respect to the corresponding fields.
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Assuming no CDM-axion coupling the continuity equation (3.12) for the energy density

of dark matter becomes

ρ̄′
C

+ 3Hρ̄C = gC ρ̄C χ̄
′ . (3.15)

This equation has a simple physical interpretation: it describes an Einstein-frame energy

density ρ̄C = nCmC(χ) with a number density nC ∝ a−3 (as appropriate for a fixed number

of particles) and a dilaton-dependent mass mC = m exp(gC χ).

The conservation equation for the background energy in radiation is the standard one that

implies ρ̄rad ∝ a−4. Conservation of baryon number similarly ensures nB ∝ a−3. Conservation

of energy for the baryon fluid is modified to7

ρ̄′
B + 3Hρ̄B = ρ̄B



gB χ̄
′ + ga ā

′


, (3.16)

which has an interpretation similar to the dark matter evolution equation, but with a particle

mass that depends on both χ and a.

In summary, equations (3.14) through (3.16) describe the background evolution of the

fields χ̄ and ā and how these exchange energy with the components of the cosmic fluid. We seek

to explore the significance of this energy transfer for late-time cosmology and how this depends

on the choices made for the parameters gB, gC, ga and the kinetic coupling function W .

3.3 Perturbations

In order to investigate the effects of axio-dilaton cosmologies on structure formation and the

CMB, we now perturb the field equations to linear order. We work in the conformal-Newtonian

gauge and assume only scalar perturbations, with metric

ds2 = a2(η)
[

−(1 + 2Φ)dη2 + (1 − 2Ψ)dx2
]

, (3.17)

where η again denotes conformal time. The components of the perturbed 4-velocity are denoted

u0
f =

1

a
(1 − Φ) and ui

f =
∂ivf

a
, (3.18)

for each fluid, while the perturbed energy densities and scalar fields are

ρB ≡ ρ̄B(1 + δB) , ρC ≡ ρ̄C(1 + δC) , χ ≡ χ̄+ δχ and a ≡ ā + δa , (3.19)

and we assume in the following that the anisotropic stress vanishes (Σij = 0).

7Notice that the equilibrating baryon-photon energy flow Jν
(B)eq is proportional to the difference between

the baryon and photon expansion and so vanishes for the background evolution.
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Going to Fourier space, the perturbed (0, 0), (0, i) and (i, j) components of the Einstein

field equations (3.3) respectively read

k2Ψ+3HΨ′ +
1

2



χ̄′δχ′ +W 2
ā

′δa′


+
1

2
WW,χ ā

′2δχ

+
a2

2M2
p



2ΦV +V,χ̄ δχ+V,ā δa


= − a2

2M2
p

(δρ+2Φρ̄) , (3.20)

k2(Ψ′ +HΦ)− k2

2



χ̄′δχ+W 2
ā

′δa


=
a2ρ̄

2M2
p

Θ , (3.21)

Ψ′′ +H
(

Φ′ +2Ψ′)+


2H′ +H2


Φ+


χ̄′2 +W 2
ā

′2


Φ

−1

2



W 2
ā

′δa′ + χ̄′δχ′ +W,χW ā
′2δχ



+
a2

2M2
p



V,χ̄ δχ+V,a δa


= 0 , (3.22)

where W = W (χ̄) and V = V (χ̄, ā) and their derivatives are evaluated at the background

configuration. The quantity Θ appearing in (3.21) is a sum over fluid components, Θ =
∑

f Θf ,

where Θf is defined for each component by Θf = −k2vf where vf is defined in (3.18).

The perturbed scalar field equations similarly become8

δχ′′ + 2Hδχ′ +



k2 − ā
′2


W,2χ +WW,χχ



+
a2

M2
p

V,χ̄χ̄

]

δχ− χ̄′ (Φ′ + 3Ψ′)

− 2WW,χ ā
′δa′ +

a2

M2
p



2V,χ Φ + V,χ̄ā δa


(3.23)

= − a2

M2
p

[

gB



δB + 2Φ


ρ̄B + gC



δC + 2Φ


ρ̄C

]

,

and

δa′′ + δa′


2H + 2χ̄′W,χ
W



+



k2 +
a2

M2
p

V,aa
W 2



δa +
2a2

M2
p

V,a Φ

W 2
+ 2ā′W,χ

W
δχ′

+ δχ



2χ̄′
ā

′


W,χχ

W
−


W,χ
W

2


+
a2

M2
p



V,āχ̄

W 2
− W,χ
W 3

V,ā



]

−
(

Φ′ + 3Ψ′)
ā

′

= − a2

M2
pW

2
ρ̄B



ga



δB + 2Φ − 2
W,χ
W

δχ+
ga,aδa

ga



. (3.24)

Finally, the perturbed continuity equations for baryons and cold dark matter are

δ′
B + ΘB − 3Ψ′ = gBδχ

′ + gaδa
′ + ā

′ga,aδa , (3.25)

δ′
C

+ ΘC − 3Ψ′ = gCδχ
′ , (3.26)

while the Euler equations for these fluid components are

Θ′
B + ΘBH − k2Φ = −

[

gB



χ̄′ΘB − k2δχ


+ ga



ā
′ΘB − k2δa

]

+ J(B)eq , (3.27)

Θ′
C

+ ΘCH − k2Φ = −gC



χ̄′ΘC − k2δχ


, (3.28)

8Here we work in the conformal Newtonian gauge. These expressions can be related to geometric descriptions

of the perturbed action in terms of target-space curvatures, whose expressions at second order in the flat

gauge can be found in [46, 47].
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where [45]

J(B)eq =
4ρ̄γ

3ρ̄B

ane σT



Θγ − ΘB



, (3.29)

and σT is the Thomson cross section (including the field-dependence of the electron mass).

The evolution of Θγ does not depend at all on the scalar fields because the conformal

invariance of the Maxwell action implies photons do not directly couple to the dilaton (and

we assume no axion-photon coupling), and because the much larger entropy of the photon

fluid means it is largely unchanged by the energy exchange with the baryons.

These are the equations we code into CLASS [10] when seeking implications of these

models for the CMB. We do not discuss radiation or neutrino components to the cosmic

fluid in the above because for these we allow CLASS to evolve perturbations without new

scalar-field complications.9

3.4 The quasistatic régime

As a qualitative alternative to the numerical evolution of the equations at the perturbative

level, it is helpful to examine how they appear under the quasistatic (QS) approximation [48],

which is particularly relevant for the later stages of the cosmological evolution such as

large-scale structure formation.

The QS approximation applies deep inside the cosmological horizon, k2 ≫ a2H2, which

is the regime most relevant to the formation of large-scale structure. The observation is

that in this regime the time derivatives of fields evolving on Hubble times (such as the

gravitational potential) can be dropped relative to spatial gradients. More specifically, the

two assumptions underlying the QS approximation are

♣X ′♣ ≲ H ♣X♣ and k2 ≫ H2 , (3.30)

where X represents any field in the sub-horizon limit, which are considered to be sufficiently

slow-varying and lack highly oscillatory behaviour.

Since structure formation is of interest, we assume in this section that the energy density,

ρ̄m = ρ̄B + ρ̄C , in nonrelativistic matter is larger than that in radiation. In this regime ρ̄ ≃ ρ̄m

and the conservation equations like (3.15) and (3.16) imply that the fluid densities evolve

adiabatically and so remain approximately constant over sub-Hubble timescales. Neglect of

time derivatives in the Friedmann and background scalar equations then implies the values

of the scalar fields and of the Hubble scale are set by

H2 ≃ a2

3M2
p



ρ̄m + V


, V,χ ≃ −gρ̄B − gC ρ̄C , V,a ≃ −gāρ̄B . (3.31)

In terms of these background values we define the quantities

m2
χ =

V,χχ

M2
p

, m2
χa =

V,χa
M2

p

and m2
a =

V,aa
M2

p

, (3.32)

9Leaving neutrino evolution unchanged in axiodilaton models is a simplifying assumption and is not

required. Indeed, reasonable choices for neutrino-scalar interactions in these models allow — but do not

require — neutrino masses to be of the same order of magnitude as the dark energy density. We nonetheless

defer studies of changes to cosmological neutrino evolution for future work.
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and also define

k2
a ≡ k2

a2
+
m2

a

W 2
+

ga,aρ̄B

W 2
and k2

χ ≡ k2

a2
+m2

χ . (3.33)

With these definitions eqs. (3.20), (3.23) and (3.24) become the quasi-static versions of the

perturbed Poisson, dilaton and axion equations, respectively:

k2Ψ ≈ − a2

2M2
p

[

ρ̄CδC + ρ̄BδB −


gC ρ̄C + gBρ̄B



δχ− gaρ̄Bδa
]

, (3.34)

δχ ≈ − 1

k2
χ



1

M2
p



gC ρ̄CδC + gBρ̄BδB



+m2
χaδa

]

, (3.35)

δa ≈ − 1

W 2k2
a



m2
χaδχ+ ga

ρ̄B

M2
p

δB − ga

W,χ
W

ρ̄B

M2
p

δχ



. (3.36)

Because we work in the quasistatic approximation we have ignored terms that vary on the

Hubble time scale, such as (χ′/a3)
[

a3δχ
]′

in the Poisson equation [48].

Finally, the Newtonian limits of (3.25) and (3.26) are equivalent to dropping time

derivatives in the conservation equations for each species, resulting in

δ′
B

≃ −ΘB and δ′
C

≃ −ΘC . (3.37)

Substituting these results into the relevant Euler equation (3.27) and (3.28), in which we

drop no terms, gives the quasistatic version of the growth equations for δB and δC . Explicitly,

using (3.34), (3.35) and (3.36) gives

δ′′
B

+ δ′
B

[

H + gBχ̄
′ + gaā

′] = 4πa2GB
eff(B)ρ̄BδB + 4πa2GC

eff(B)ρ̄CδC , (3.38)

δ′′
C

+ δ′
C

[

H + gCχ̄
′] = 4πa2GB

eff(C)ρ̄BδB + 4πa2GC

eff(C)ρ̄CδC , (3.39)

where the effective gravitational constants relevant for the evolution of δB are

GB

eff(B) =
1

8πM2
p



1 − 1

A2



gB



2 k2

a2
+

gC

gB

ρ̄C

M2
p

+
ρ̄B

M2
p





ga

W 2
m2

χa − gBk
2
a



+ga



2 k2

a2
+

ρ̄B

M2
p



gB

W 2



m2
χa − W,χ

W
ga

ρ̄B

M2
p



− ga

W 2
k2

χ





, (3.40)

GC

eff(B) =
1

8πM2
p



1 − 1

A2



− gBgCk
2
a



2 k2

a2
+

gC

gB

ρ̄C

M2
p

+
ρ̄B

M2
p



+
gc ga

W 2



2 k2

a2
+

ρ̄B

M2
p



m2
χa − ga

W,χ
W

ρ̄B

M2
p





, (3.41)
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while those appearing in the evolution of δC are

GB

eff(C) =
1

8πM2
p



1 − 1

A2



gC



2 k2

a2
+

ρ̄C

M2
p

+
gB

gC

ρ̄B

M2
p





ga

W 2
m2

χa − gBk
2
a



+
ρ̄B

M2
p

ga



gB

W 2



m2
χa − W,χ

W
ga

ρ̄B

M2
p



− ga

W 2
k2

χ





, (3.42)

GC

eff(C) =
1

8πM2
p



1 − 1

A2



− g2
C
k2
a



2 k2

a2
+

ρ̄C

M2
p

+
gB

gC

ρ̄B

M2
p



+gC

ρ̄B

M2
p

ga

W 2



m2
χa − ga

W,χ
W

ρ̄B

M2
p





. (3.43)

These equations define the quantity

A2 = k2
ak

2
χ −



m2
χa

W 2
− W,χ

W

ga

W 2

ρ̄B

M2
p



m2
χa . (3.44)

In eqs. (3.38) and (3.39) the first-derivative terms on the left-hand side show that the friction

experienced by the fluctuations is modified due to the couplings of the two fluids to the scalar

fields. This leads to the matter species experiencing a cosmological ‘drag’ that influences

the typical Newtonian motion of the particles.

These expressions also reveal how the scalar fields modify the effective gravitational New-

ton’s constant that controls the strength of the attraction towards local overdensities. These

modifications, given in eqs. (3.40) through (3.43), arise due to the additional scalar-moderated

forces acting between matter species. The scalar field responsible for the modification can be

identified by the coupling strength appearing in each term. For instance, terms proportional

to g2 and g2
a describe the effects of direct scalar-matter couplings. Terms proportional to

g ga indicate indirect interactions allowed by mixing between the axion and dilaton, such

as is produced by nonzero cross derivatives like V,aχ. Terms cubic in coupling constants

also have their roots in indirect interactions, this time mediated by nonzero W,χ in the

axio-dilaton kinetic coupling.

4 Evolution with constant axion-baryon couplings

Since the CMB is the grave on which most models come to die, a serious study of axio-

dilaton cosmologies must examine both the background and the evolution of cosmological

perturbations. This section describes the results of such an analysis, performed using the

Cosmic Linear Anisotropy Solving System code, CLASS [10], modified to compute the

dynamics of multiple scalar fields and their couplings to matter.

Recall that in addition to the changes to the perturbation equations discussed in the

previous section, our analysis also takes into account the evolution of the electron mass. A

time-varying electron mass affects the recombination history by changing the recombination

redshift10 z∗. In this work we do not perform a comprehensive data analysis using Planck

and other cosmological data. Instead we focus on identifying axio-dilaton models that show

promise and highlight their features for future work.

10Such changes need not be bad; [49] uses them to help with the Hubble tension.
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4.1 Benchmark models

Up to this point we have kept our options open for the precise form taken by the functions

W (χ), V (χ, a) and U(a) and on the size and species dependence of the dilaton-matter couplings

gB and gC. We now focus on a more specific class of four benchmark models in order to

explore their predictions in more detail. To this end we zero in on the class of Angle-Saxion

models discussed in section 2.2.2, for which W (χ) = e−ζχ and ζ is a parameter to be specified.

This includes in particular the Yoga models [8] for which ζ is predicted to be ζ =
√

2/3.

To further specify the model we choose the vacuum scalar potential. In this section we

assume V to be independent of the axion — but we revisit this choice and introduce an axion

potential in section 5 below. We further assume the dilaton dependence to have the form

V = Ue−λχ , (4.1)

with λ = 4ζ and the prefactor U chosen to be a quadratic polynomial of χ

U(χ) = V0



1 − u1χ+
u2

2
χ2


, (4.2)

along the lines used in [25, 50–52] (and more recently11 in [8]). With these papers in mind

we choose coefficients to ensure a local minimum that gives the present-day dark energy

density, doing so for field values χmin ∼ 70. (Although not required by cosmology such a

large size of χmin is used in these models to provide a common explanation for the size of

the electroweak, neutrino and dark energy hierarchies [8].)

Without the prefactor U the dilaton would continuously roll down the exponential slope

in the absence of the other parts of the cosmological fluid. This need not be a problem if

λ is small enough because slow-roll evolution down an exponential potential produces an

equation of state parameter w + 1 ≃ 1
3λ

2/(1 + 1
6λ

2). Requiring w + 1 ≲ 0.1 implies λ ≲ 0.5.

So constant U is not viable for the Yoga-model choices λ = 4ζ and ζ =
√

2
3 ≃ 0.8, but it

potentially becomes an option if λ is not too much smaller — a case considered in detail in

section 4.2.3. For larger λ a minimum for U is required to allow the potential to dominate

the energy density at late times. In what follows we work with (4.2) so we can explore

cosmologies with both small and large λ.

Our final choice for this section is to choose the form of the axion-matter coupling.

Although ga as defined above is typically a periodic function of a, it can suffice to approximate

it as a constant if a does not move very far during the cosmological epochs of interest. It

could be chosen to be an approximately linear function of a if it does not move far but

starts near a zero of ga.

In this section we assume the axion is not near a zero of ga and so approximate ga

as being constant. (This choice is relaxed in section 5, which explores the vicinity of a

zero of ga.) More specfically, we choose the function U = (1 + γ a) and choose γ small

enough that γa remains very small throughout the observable history of the universe. We

11Refs. [50, 51] correspond to the special case of [25] evaluated at g = 0 (no matter-dilaton coupling), and

all three of these differ from [8] by omitting the axion and in the size taken for λ, with the earlier papers

choosing λ ∼ O(0.01) and [8] taking λ ∼ O(1).
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check ex post facto that γa actually remains small. With this choice baryon masses and

baryon-axion couplings are given by

mB = m(1 + γ a) egBχ ≃ megBχ and ga =
U ′

U =
γ

1 + γ a
≃ γ. (4.3)

Requiring γa to be small also ensures the cosmological evolution of baryon masses is dominated

by the evolution of the dilaton χ. In all of our benchmark models we choose λ = 4ζ so the

free parameters are12 the values of gB, gC, γ and ζ.

In the remainder of this section we explore the cosmological implications of these choices,

focussing on the following four specific cases (see also table 1):

1. Universal Yoga Model: this model is defined by the choices g := gB = gC = −1
2 ζ

and ζ =
√

2
3 . We choose the axion-matter coupling to be γ = −8 × 10−29.

2. Opposite-coupling Yoga Model: this model is defined by the choices gB = −1
2 ζ

and ζ =
√

2
3 but with gC = −gB/x with x of order 1-10. The axion-matter coupling is

again γ = −8 × 10−29.

3. Small-ζ Angle-Saxion Model: this model is defined by the choices g := gB = gC =

−1
2 ζ but where ζ = x is varied through values much smaller than unity. Reducing ζ

causes a large increase in the axio-dilaton kinetic coupling W (χ), increasing the decay

constant F . To compensate for this we take γ = −4 × 10−2 in this case.

4. General coupling Angle-Saxion Model: this model is defined by the choices

g := gB = gC = x and ζ =
√

2
3 where x is varied through values much smaller than

unity. The axion-matter coupling is again γ = −8 × 10−29.

For each of these choices we first numerically integrate the background configurations

to verify that a viable background cosmology is possible for which the background densities

and equations of states (in particular for the Dark Energy) are acceptable. We require the

background parameters to reproduce the present-day values H0 = 100h km/s Mpc−1 with

h = 0.6756, ΩBh
2 = 0.022, and ΩCh

2 = 0.12. For large λ = 4ζ and/or gB the scalar potential

and/or matter couplings tend to strongly drive the dilaton to larger values so the issue is

whether or not there are initial conditions for which the dilaton gets trapped at the minimum

of its potential and so achieves the correct late-time equation of state for Dark Energy.

For those models with successful background evolutions we then numerically evolve

the cosmological fluctuations, assuming adiabatic gaussian initial conditions for the power

spectrum taken from the 2018 Planck LCDM best fit [53]. This sets the spectral index

ns = 0.966, the pivot scale kpiv = 0.05 M−1
pc and scalar amplitude As = 2.10 × 10−9.

The results of these simulations are now described in detail, fleshing out the brief

summary given in table 1.

12We note in passing that in our conventions the choice Wmin = W (χmin) ∼ (MW /Mp)2
∼ 10−28 implies

the kinetic-term decay constant is f = MpWmin ∼ 0.1 eV and so γ ∼ 10−28 corresponds to the decay constant

relevant to present-day matter interactions being F = f/γ ∼ Mp.
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4.2 Background evolution

The background axio-dilaton equations of motion with the above choices are

χ̄′′ + 2Hχ̄′ + ζe−2ζχ
ā

′2 +
a2

M2
p



V,χ +gC ρ̄C + gB ρ̄B



= 0 , (4.4)

with V given by eqs. (4.1) and (4.2) and

ā
′′ + 2Hā

′ − 2ζā′χ̄′ + ga ρ̄B

a2

M2
p

e2ζχ = 0. (4.5)

We know that viable background cosmologies for these equations should exist for small

enough ζ and g because the implications of dilaton evolution (4.4) (with matter couplings

but without an axion) were studied in some detail some time ago [25]. Viable cosmologies

were possible provided ζ ≲ O(0.01). In this limit both the scalar potential and the matter

coupling tend to drive χ to larger values but for small ζ Hubble friction can prevent the

dilaton from over-shooting the minimum, allowing it to be trapped and to become a late-time

cosmological constant. Dilaton overshoot could not be avoided when ζ ∼ O(1).

Ref. [8] explored background cosmologies including also the axion, assuming slightly

different couplings than we use here ([8] chose an axion-matter source J = gynB for constant

gy, without specifying that this coupling arose from an axion-dependent matter mass). They

found that the presence of the axion allowed viable cosmologies to become possible even

for ζ ∼ O(1). The axion makes all the difference because the presence of W (χ) implies

a nonzero ā
′ introduces a new effective potential for the evolution of χ and unlike all the

others this pushes χ to smaller values. It is the existence of this resistance to χ evolving to

larger values that allows the dilaton not to overshoot despite the stronger force from the

potential that larger ζ implies. If the coupling chosen in [8] is interpreted as arising due

to an axion-dependent mass it corresponds in the present notation to ga = gy/mB(a). We

do not here find the same successful cosmologies found in [8] for the reasons outlined in

the next subsection. (I moved the expression for the target-space curvature to the earlier

section where the model is defined.)

4.2.1 Yoga models: universal couplings

We are unable to find a viable background cosmology for the Universal Yoga model (Model

1 of table 1). The cosmology fails for one of two complementary reasons: either the axion

evolution unacceptably drains away the baryon density or the dilaton never gets trapped at

the potential’s minimum and so the dilaton energy density never resembles the Dark Energy.

In the absence of the dilaton-axion coupling the dilaton runaway arises — despite not

doing so for [25, 50, 51] — because the choice ζ =
√

2
3 is much larger than the values for ζ

entertained in these earlier papers. The larger value of ζ causes a dilaton runaway because in

the early universe the dilaton-matter coupling dominates over the vacuum potential and it

pushes χ to large values so quickly that it is unable to be trapped by the local minimum of

the scalar potential by the time the matter density is small enough to allow the potential

eventually to compete.
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Figure 1. Background energy density evolution in the Universal Yoga model in baryons (green),

CDM (blue), radiation (red), dilaton’s total (orange), dilaton’s potential (dashed), and axion (purple)

with g ≡ gB = gC = −
√

1/6, ζ =
√

2/3 and γ = −10−29.

As noted above, the dilaton runaway can be remedied if the axion is rolling quickly

enough because the axion-dilaton coupling mediated by W pushes the dilaton to smaller

values. And a rolling axion can be obtained by dialing up the axion-matter coupling, because

the nonzero background baryon density then acts as a source for the axion, winding it up

and causing it to roll in the absence of an axion potential.

A closer examination of (4.5) provides further insight into how baryons wind up the axion.

Before matter-radiation equality, the dominant term comes from the Hubble friction, while

matter remains sub-dominant. The third term in the equation, being oscillatory, has minimal

impact during this phase. However, as we progress to late times, where ρm/M
2
p ∼ H2, the

absence of an axion potential along with the dilaton oscillating within its potential well,

ensures that the term sourcing the axion dominates in (4.5). In such a scenario, (4.5) describes

the exponential growth of the axion velocity proportional to the baryon energy density owing

to the additional factor e2ζχ resulting from the modified geometry of the target field space.

Any increase in the axion velocity comes at the expense of baryon energy, as may be

seen from the baryon continuity equation in (3.16), causing the baryon energy density to

fall much too quickly. Keeping this drainage acceptable requires dialing down ga, since

this reduces the baryon draining effect by limiting the axion velocity. However, this takes

us back to the original problem wherein the axion rolls too slowly to prevent the dilaton

runaway. Alleviating both problems requires reducing both matter-axion and matter-dilaton

coupling strengths (which takes us beyond the domain of the Universal Yoga model). These

contradictory demands on ga have prevented our finding viable background cosmologies for

the Universal Yoga scenario, despite the potentially stabilizing effects of the axion.
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There is a caveat however because when axion motion drains energy too efficiently from

the baryons it does so only because the baryon mass evolves significantly as the axion rolls.

After all, it is only the time-dependence of the baryon mass that allows ρB to deviate from its

usual 1/a3 falloff as the universe expands. Furthermore, the baryon mass is unbounded from

below when it is modelled by (4.3) because it depends linearly on a when ga is approximately

constant. Catastrophic energy loss to axions only occurs when γa does not remain small and

this means the obstruction to building successful cosmologies is being found in a regime where

the assumption that ga remain constant is a poor approximation for the periodic potential

U(a) Yoga-type models actually predict, even if its size is chosen small enough to evade

constraints on baryonic mass variation. Further exploration of Universal Yoga cosmology

using more realistic oscillatory masses is warranted to close this loophole.

We next turn to the remaining three cases, whose fluid energy densities are plotted in

figure 2, and suggest potentially viable cosmologies are possible. We also plot in figure 3 the

evolution of the axion-baryon coupling strength γa in all three of these scenarios to ensure

the linear coupling approximation we use remains viable. This figure shows that the coupling

term remains small in all three cases, justifying our use of the linear coupling approximation.

4.2.2 Yoga Models with modified dilaton-DM couplings

While the previous example shows how large matter-dilaton couplings can obstruct being

able to find viable cosmological evolution, the next example shows it need not be a deal

breaker. This second model differs from the Universal Yoga model only by making different

assumptions about how the dilaton couples to Dark Matter (Model 2 of table 1). Having Dark

Matter couple differently than ordinary matter is quite possible within the Yoga assumptions,

since these are mute about what the Dark Matter candidate is.

We here explore the case where ordinary matter couples with Yoga-motivated strength,

gB = −1
2 ζ and ζ =

√

2
3 , but where the Dark Matter coupling is varied seeking an acceptable

cosmology. We find that satisfying cosmological tests can be possible if we choose gC opposite

in sign to gB and approximately an order of magnitude smaller. For example, the numerical

evaluation of the cosmic fluid densities is shown in the top row of figure 2 for the choice

gC ≃ −1
5 gB, and shows how the dilaton is completely stabilized and dominated by potential

energy as required to describe the Dark Energy.

In this case stabilization is possible because the opposite sign dilaton coupling allows the

dilaton’s interaction with the Dark Matter density to drive χ towards smaller values long

enough to allow it to be trapped at the minimum of VYoga. A slightly smaller coupling suffices

due to the larger density available in Dark Matter relative to baryons. The choice gC ≃ −1
5 gB

is most efficient in stabilising the dilaton due to the ratio ΩC/ΩB ≃ 5 throughout the late

time cosmology. This causes the two matter coupling terms in (4.4) to cancel approximately

and so large deviations do not occur due to the matter couplings.

As also noted in [8], it is noteworthy that these cosmologies robustly predict that particle

masses generically differ near recombination relative to their present-day values, and moreover

they do so even if they are chosen with initial conditions at nucleosynthesis that precisely

agree with present-day values. This occurs because the underlying scale invariance of the

field equations implies the dilaton field χ very generically falls into a scaling solution of its
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Figure 2. Background evolution for the three viable cases in table 1. Top row: model 2 with

couplings gC = −gB/5, gB = −ζ/2 and ζ =
√

2/3 with γ = −8 × 10−29. Middle row: model 3 with

couplings g ≡ gB = gC = −ζ/2 and ζ = 0.04, with γ = −4 × 10−2. Bottom row: model 4 with

couplings g = −0.03 and ζ =
√

2/3, with γ = −8 × 10−29. All cases show the evolution of energy

densities in baryons (green), CDM (blue), radiation (red), dilaton’s total energy (orange), dilaton’s

potential energy (dashed), and axion total energy (purple).
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Figure 3. Evolution of the product γa for the three viable cases of table 1 using the same parameters

as were used in figure 2. These confirm that γa remains small.

field equations in which its energy density likes to scale with the dominant energy density

in the universe at any given time. As a result it very generically goes through an excursion

around matter-radiation equality as the dominant type of tracker solution changes.

The resulting evolution is shown in the first row of panels in figure 4, where it can be seen

that the sign of the particle mass shift depends on the magnitude of the dilaton coupling to

Dark Matter. This is of interest once we explore how fluctuations evolve in the next section

because it provides a potential dynamical realization of mechanisms like those proposed

in [9] for which the Hubble tension is reduced by raising the electron mass by several percent

(which makes the precise epoch of recombination occur a little earlier).

4.2.3 Weakly coupled SL(2,R) axio-dilatons

The remaining two benchmark models involve the Angle-Saxion SL(2,R)-invariant axio-

dilaton framework but take a more straightforward approach to suppressing the dilaton

runaway: reducing the size of the dilaton-matter couplings. We consider here two possible

scenarios. In one (Model 3) we keep g = −1
2 ζ for both Dark Matter and baryons but

treat the size of ζ as a free parameter. The other scenario (Model 4) involves breaking the

relationship between g and ζ and instead regarding g as a free parameter while holding

ζ =
√

2
3 — and so the strength of the axio-dilaton coupling — fixed. In both cases the

weaker dilaton-matter couplings allow the dilaton to remain at smaller values of χ long

enough to become trapped at the potential’s minimum and stabilize the dilaton similar to

what happens in axion-free models.
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Figure 4. Evolution of dilaton field and percentage change in baryon masses for the three viable

cases in table 1. Top row: model 2 with couplings gB = −ζ/2 and gC = −gB/5, −gB/9, −gB/3 in

orange, green and red respectively with γ = −8 × 10−29 and ζ =
√

2
3
. Middle row: model 3 with

couplings g ≡ gB = gC = −ζ/2 and ζ = 0.04, 0.1, 0.15 in orange, green and red respectively with

γ = −4 × 10−2. Bottom row: model 4 with couplings g ≡ gB = gC = −0.02,−0.025,−0.03 in orange,

green and red respectively and for g = 0.02, 0.025, 0.03 in purple, brown and pink respectively with

γ = −8 × 10−29 and ζ =
√

2
3
.
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Model 3: preserving g := gB = gC = −

1

2
ζ and varying ζ. Re-scaling ζ modifies all

things dilaton related. For smaller λ = 4ζ the dilaton’s potential becomes less steep as do the

dilaton-matter couplings and the axio-dilaton sigma-model interactions. The dynamics of the

small-ζ limit resembles the behaviour of the single-field quintessence models studied in [25].

Small ζ also allows another simplification. In this regime the prefactor U of the dilaton

potential can be taken to be constant because an adequate Dark Energy equation of state

becomes possible as the dilaton rolls down the exponential hill. So, in this case we simplify

the dilaton’s potential to be

V (χ) = V0 e
−4ζχ , (4.6)

where V0 is a constant. For constant U it is always possible to shift χ by a constant and

compensate for this by scaling V0 and all masses appropriately.

The second row of figure 2 shows the background cosmology in such a scenario. The

shown solutions use ζ = 0.04 with g = gB = gC = −ζ/2. It turns out that reducing ζ by a

factor of ∼ 20 relative to O(1) suffices to produce a cosmology extremely similar to ΛCDM,

including for fluctuations. At the background level dilaton runaway can be avoided for ζ ≲ 0.1

before the dilaton’s potential becomes steep enough and the matter coupling becomes strong

enough to ruin agreement with the Dark Energy equation of state ωχ ≃ −1. For ζ ≳ 0.5

the dilaton is drawn into the scaling solutions that stop it dominating at late times and

being a good model of Dark Energy. Notice that all of these values are larger than the value

♣g♣ ≲ 10−3 required in the absence of screening by solar system tests of gravity.

The effects of χ not having a minimum for V can be seen in the second row of figure 4,

which shows how χ (and particle masses) vary over cosmological times. The absence of a

minimum removes the oscillatory behaviour at late times that arises as χ gets trapped by the

local minimum. It also shows that mass evolution falls below the percent level for ζ ≲ 0.04.

The evolution of particle masses is an important prediction and is likely to provide

important constraints (or discovery potential) for this class of models for processes sensitive

to particle masses like big bang nucleosynthesis (BBN), baryon acoustic oscillations and

quasar spectral lines. The details very much depend on the initial conditions passed on from

earlier-universe evolution and on the subsequent dynamics of the dilaton and axion field. For

example, comparing the first two rows of figure 2 shows how the predicted mass differences

at BBN can be minimized if the dilaton potential has a local minimum and happens to be

near it at the BBN epoch. The mass differences to BBN are larger in the absence of a local

minimum that forces the dilaton back to its original value at late times.

Dilaton evolution also causes spectral features — like quasar spectral lines — to evolve

with redshift, though because all Standard Model mass ratios and the fine-structure constant

are predicted not to vary all spectral lines would be expected to evolve in the same way,

leading to no signal in searches like those of [54, 55]. A challenge for searches for dilaton-

dependent evolution would be separating dilaton-dependent effects from those with more

mundane origins like peculiar velocities. A thorough analysis of these effects goes beyond the

scope of this work, so we do not pursue such constraints here though consider their more

systematic exploration to be worth pursuing.
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Model 4: holding ζ fixed and reducing g. Our final Yoga variant fixes ζ =
√

2
3 and

achieves realistic cosmological background evolution promoting g := gB = gC to a free

parameter. The third row of figure 2 shows the background evolution found when choosing

g = −0.03 and reducing ga accordingly. In this case, the modifications to the Universal

Yoga Model are minimal and the dilaton’s potential well acts as a stabilization mechanism

allowing us to achieve slightly larger values of g than in the previous case without spoiling

the background evolution.

In the end, for both scenarios (small g = −1
2 ζ and small g but fixed ζ =

√

2
3) we find

cosmology leads to similar constraints on the upper size allowed for g (both of which are less

restrictive than would be the solar-system constraint ♣g♣ ≲ 10−3 in the absence of screening).

Both of these scenarios also predict the evolution of particle masses near recombination

relative to their present-day values, as can be seen for Model 4 from the second column

of panels in figure 4. In this case particle masses turn out to be reduced for all of our

parameter choices, because although the sign of χ depends on the sign of g the mass shift

only sees the product gχ.

4.3 CMB anisotropies and matter power spectra

We next explore the evolution of cosmological fluctuations for the three benchmark scenarios

that allow viable background cosmologies. The relatively large dilaton-matter coupling

strengths used in our benchmark scenarios lead to a number of important effects with

implications for cosmological perturbations:

• Particle masses are generically field-dependent (in Planck units). Although the Dark

Matter mass depends on the dilaton field only, Standard Model particle masses (like

the electron) depend in principle on both the dilaton and the axion. Even if the

dilaton is ultimately trapped at the minimum of its potential, its generic excursion

around recombination means that its oscillatory approach to this minimum continues

to relatively late times in potentially observable ways (such as for quasar spectra).

• Mass evolution implies the CDM energy density no longer falls inversely with universal

volume, instead ρm ∝ egχ/a3. This has implications for structure formation because

gravitational potentials are no longer constant during matter domination. Their evolu-

tion can affect the Integrated Sachs-Wolfe (ISW) contribution to the CMB anisotropy

power spectrum. The degree to which the potentials change and hence the severity of

this departure from ΛCDM is proportional to the dilaton-matter coupling strength.

• The electron mass depends dominantly on the dilaton field and the resulting time

evolution changes the Thomson cross section and modifies when recombination happens.

Depending on the sign of the effect this can either delay recombination or cause it to

happen earlier, shifting CMB peaks relative to the best fit ΛCDM model.

• Although the ratio of Standard Model masses is field independent the ratio of Dark

Matter to ordinary masses can vary if gC ̸= gB (or to the extent that axion evolution is

important). This can allow the ratio ρbaryons/ρCDM to differ at recombination relative

– 27 –



J
C
A
P
1
2
(
2
0
2
4
)
0
5
8

Figure 5. Angular and matter power spectra for the three different viable cases in table 1. Top

row: model 2 with couplings gB = −ζ/2 and gC = −gB/5, −gB/9, −gB/3 in orange, green

and red respectively with γ = −8 × 10−29 and ζ =
√

2
3
. Middle row: model 3 with couplings

g ≡ gB = gC = −ζ/2 and ζ = 0.04, ζ = 0.1, ζ = 0.15 in orange, green and red respectively with

γ = −4 × 10−2. Bottom row: model 4 with g = −0.02,−0.025,−0.03 in dashed orange, green, red

respectively with γ = −8 × 10−29 and ζ =
√

2
3
.
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to today by an amount dependent on the difference gC − gB or on the axion coupling

strength.

All of these effects can cause the CMB to deviate visibly relative to ΛCDM, even when

the coupling g is an order of magnitude below the value required for successful background

cosmology. Figure 5 shows the results for the CMB and the matter power spectrum obtained

by numerically evolving fluctuations within the three types of viable benchmark axio-dilaton

cosmologies (Models 2 through 4) of table 1. These plots confirm that a viable picture of

fluctuations requires smaller couplings than are required simply for a consistent background

cosmology (though larger than the 10−3 required by evasion of solar-system tests of gravity).

In summary, we find deviations from ΛCDM to be small for Model 1 when gC ≈ −gB/5

for Model 2 when ζ ≲ 0.1 and for Model 3 when ♣g♣ ≲ 0.02 . Note that these qualitative

constraints are only true when assuming cosmological parameters consistent with the best-fit

ΛCDM values. A full MCMC data analysis is needed to understand if the same holds in

general. We now highlight the specific features of each case and discuss how they differ.

Model 2: Yoga Models with modified dilaton-DM couplings. This scenario allows

the dilaton to couple more strongly to baryons than do the other two scenarios, meaning the

deviations from ΛCDM associated with the changing of baryon masses are more important.

This can be seen from the large deviations in baryon masses in the first row of figure 4.

Varying gB too far on either side of gC ≈ −gB/5 allows for excursions of the dilaton to a new

effective minimum during matter domination, with significant implications for the evolution

of cosmological perturbations. The top row of figure 5 shows the imprint on both the CMB

anisotropy power spectrum and the matter power spectrum in this scenario.

This figure shows in particular how different CDM coupling strengths can have large

effects on the second and third peaks of the angular power spectrum. This happens because

the CDM coupling acts as a dilaton stabilization mechanism within its local well, with

increasingly eccentric oscillations arising as the CDM coupling moves away from gC ≈ −gB/5.

These oscillations then lead to oscillations in the electron mass around recombination, and

so locally change the time of recombination. Similar effects are observed in [56] and can be

used to place tight constraints on deviations away from gC ≈ −gB/5.

Model 3: preserving g := gB = gC = −

1

2
ζ and varying ζ. As previously mentioned,

in this case it is most economical to take U to be constant and simply allow the dilaton

to evolve down its exponential potential. In this scenario ζ controls both the slope of the

potential and the strength of the matter coupling, and so increasing ζ causes the dilaton

to roll faster, eventually producing an unacceptable dark energy equation of state with ωχ

too far from −1. For example, when ζ ≈ 0.1 one finds ω(χ0) ≈ 0.96, and this produces

significant deviations in the angular and matter power spectrum from ΛCDM, as shown in

the middle row of figure 5. Removing the quadratic minimum also removes the mechanism

forcing particle masses back to their pre-recombination values at late times. As the dilaton

rolls down it’s exponential between matter domination and today particle masses will evolve

with it, as shown in the middle row of figure 4. We can see that taking ζ = 0.1 results in

baryon masses being reduced by ∼ 4%. Although this places additional constraints on the
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size of ζ to stop baryon masses varying too much between recombination and today for a pure

exponential dilaton potential, small enough ζ can produce acceptably small mass variations

which could be used as a prediction in the search for late time stringy physics.

Model 4: holding ζ fixed and reducing g. Although g = −0.05 is enough to achieve

an acceptable background cosmology, slightly smaller values for g are required to obtain

acceptable CMB ansiotropy and matter power spectrum. This can be seen in the lower row

of figure 5 with the model being almost indistinguishable from ΛCDM when ♣g♣ < 0.02.

Figure 4 shows the evolution of the dilaton field and the associated deviations in the

masses of standard model particles for this scenario. These deviations are largest just after

matter-radiation equality, when the matter coupling term in 4.4 first dominates over the

Hubble friction term. In the reduced g case, this has a smaller effect on the angular power

spectrum than the models with Yoga strength baryon couplings as the dilaton’s oscillations

within its potential well are much lower in amplitude. Although such reduced oscillations

might help evade late-time constraints (e.g. from quasar spectra) they also suppress the

effects that could have interesting implications for the resolution of the Hubble tension,

such as discussed in [9, 49].

4.4 A closer look at structure growth

We close this section with a discussion of the linearised equations governing the density contrast

of baryons and cold dark matter at subhorizon scales within the axio-dilaton framework.

In the quasistatic limit the equations in (3.38) and (3.39) simplify to

δ′′
B

+ δ′
B

[

H + gBχ̄
′ + gaā

′] (4.7)

= 4πa2GN





1 + 2 g2
B

k2
ph

k2
χ

+ 2
g2
a

W 2



ρ̄BδB +



1 + 2 gBgC

k2
ph

k2
χ



ρ̄CδC



,

and

δ′′
C

+ δ′
C

[

H + gCχ̄
′] = 4πa2GN



1 + 2 gBgC

k2
ph

k2
χ



ρ̄BδB +



1 + 2 g2
C

k2
ph

k2
χ



ρ̄CδC

]

, (4.8)

where kph = k/a, k2
χ = k2

a2 +m2
χ and GN is Newton’s gravitational constant. These equations

capture the linearized physics of structure formation in the sub-horizon regime.

In particular, these equations highlight the impact of coupling the axion to baryons but

not to CDM. For baryons both the dilaton and the axion mediate a fifth force interaction

that affects growth while only the dilaton does so for Dark Matter, with implications for the

evolution of the baryon density contrast relative to CDM. As a result we expect different

growth rates for density fluctuations of baryons and cold dark matter. Furthermore, (4.7)

and (4.8) show that the masslessness of the axion field implies the axion-baryon modification

is present across all length scales. The dilaton-matter modification, by contrast, is suppressed

on length scales larger than its Compton wavelength: m2
χ ≫ k2

a2 . The axion contribution is

important because its occurs with Planck strength (i.e. F ≃ Mp for the parameters used in the

plots) while the dilaton-matter coupling is suppressed by g2 relative to gravitational strength.
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Figure 6. Evolution of the deviations of the effective gravitational couplings from Newton’s constant

for baryon-baryon (blue), CDM-CDM (red), baryon-CDM (orange), CDM-baryon (green dashed)

interactions for k = 0.125h M−1
pc . On the left we have chosen gC = gB = −0.03, whereas on the right

we set gC = −gB/5 and gB = −ζ/2. For both cases we set γ = −8 × 10−29.

The evolution of the effective Newton’s constants in (4.7) and (4.8) is shown in figure 6

for two of the models considered above. This shows that even in the reduced coupling case —

i.e. when gB = gC — the additional axion clumping term gives rise to an extra contribution

to baryon-baryon clustering, provided the axion coupling strength is large enough to compete

with the dilaton’s. For the Yoga model with opposite sign dilaton-CDM and dilaton-baryon

couplings, this effect is overshadowed by the extremely strong baryon coupling required by the

Yoga model, which increases the strength of baryon-baryon and CDM-CDM clustering while

diminishing baryon-CDM interactions. The example shown in figure 6 uses gC = −gB/5, and

in this case it is interesting to note that increasing the baryon-baryon clustering strength by

∼ 30% results in negligible deviations from ΛCDM in both the angular and matter power

spectra, as can be seen in figure 5.

The second terms on the left-hand side of (4.7 and 4.8) depict the modified Hubble

friction, associated with the slowing of the growth of structure formation due to the expansion

of the universe. When the net velocity of the fields is positive, their coupling to the matter

species reduces these friction effects, as seen with the axion, thereby boosting the growth of

baryonic structures even more. In a typical single-field dark energy model with an exponential

potential one would expect that these adjustments (the increased effective Newton’s constant

and the decreased Hubble friction terms) would accelerate the early stages of structure

formation, as observed in [57]. The introduction of a potential well for the dilaton, however,

turns out to drastically change the dynamics of structure growth. In such a scenario, the

dilaton’s restricted evolution within the well stops any net contributions from reducing the

Hubble friction. Additionally, its displacement from the minimum of its well during matter

domination, shown in figure 4, acts to increase the Hubble rate. Both of these factors can

actually result in decreased structure growth.
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Figure 7. Here we show fσ8 for the General dilaton-matter coupling (Model 3, on the left) and

the Reduced ζ (Model 4, on the right) cases. On the left ζ =
√

2
3

and the couplings are chosen to

be g ≡ gB = gC = −0.03, −0.025, −0.02 in blue, green and orange respectively. On the right the

couplings are g ≡ gB = gC = −ζ/2 and ζ = 0.15, 0.1, 0.04 blue, green and orange respectively. The

data points used are taken from [58] and the black lines give the ΛCDM prediction.

We can parameterise these effects using the linear growth rate of each species, defined as

fi(z, k) :=
1

H
δ′

i(z, k)

δi(z, k)
. (4.9)

A quantity sensitive to this parameter that can be directly probed by observations of redshift

space distortions [59] is given by

fσ8 =
σ8(z, kσ8)

H
δ′

m(z, kσ8)

δm(z, kσ8)
, (4.10)

where kσ8 = 0.125h Mpc−1, δm = (δρB + δρC)/(ρB + ρC) and σ8 is the variance of the mass

fluctuations within a sphere of radius R = 8h−1Mpc, defined by

σ2
8 =

∫

dk

k
♣W(kR)♣2∆2(k) , (4.11)

where W(kR) is the Fourier transform of the real-space top-hat window function and ∆2(k)

is the dimensionless power spectrum defined by ∆2(k) = k3P (k)/2π2.

Figure 7 shows the evolution of this quantity between matter domination and today for the

reduced g and reduced ζ benchmark scenarios (Models 3 and 4). In contrast to the reduced-ζ

case (Model 3) — which takes the dilaton’s potential to be a pure exponential — the existence

of the potential well in the reduced g case (Model 4) ensures that larger coupling strengths

correspond to smaller fσ8 at late times. This is because larger couplings result in larger

excursions of the dilaton from the minimum of its potential, as shown in figure 4, providing

an extra contribution to the Hubble rate and hence decreasing structure growth even more.

This effect also leads to a reduction in the parameter σ8 at the present epoch, inde-

pendently of the linear growth rates, warranting a more thorough data analysis of dark

energy models with such a potential well.
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5 Quadratic axion-matter couplings

In this section we finish our analysis with a preliminary discussion of how the above cosmologies

change in the presence of an axion scalar potential and if the function U(a) that controls

the axion-dependence of particle masses has a local minimum. We show here that these

additions seem to be consistent with successful cosmology.

5.1 Motivations and benchmark model

These are interesting modifications to the axio-dilaton models for many reasons, not least

because within matter such a choice can cause a to be dynamically driven to a point where

U ′ (and so also ga) vanishes. This kind of dynamics can dramatically change the strength of

axion constraints (such as by reducing the axion emission rate within hot stars [60]).

Such modifications are also motivated by the solar-system sized elephant in the room:

axio-dilaton models with Brans-Dicke couplings ♣gB♣ ≳ 10−3 are at face value ruled out

by solar system tests of gravity. This need not be an issue for either of the low-coupling

Angle-Saxion scenarios described above, for which ♣gB♣ ≲ 10−3 can be chosen consistent with

successful cosmology and the axion does not play an important role in stabilizing the dilaton.

But it is potentially a problem for the Yoga-style models with larger dilaton-matter couplings.

Such models only make sense for cosmology within the context of some sort of screening

mechanism that allows them to evade non-cosmological constraints.

Screening mechanisms are relatively poorly explored for multiple-scalar models like the

axio-dilatons of interest here, but one was recently proposed in ref. [11]. This mechanism

relies on three ingredients: (i) there is an axion contribution V (a) to the scalar potential;

(ii) the function U(a) has a local minimum; and (iii) the functions V (a) and U(a) are

minimized for different values a± of the axion field. With these ingredients parameters

can be chosen so that the axion energy is minimized for different field values inside and

outside of matter, which sets up gradients in the axion near a macroscopic object’s surface.

These gradients then work through the derivative axion-dilaton interactions to suppress the

object’s coupling to the dilaton.

This section presents a preliminary attempt to see whether these ingredients can be

consistent with sensible cosmological evolution. We explore how the previously described

cosmology might change in the presence of quadratic axion-matter couplings and a vacuum

axion potential.

We take the same basic setup as for the Yoga model and for concreteness do so with the

best-case opposite-coupling scenario (Model 2) described in 4.2.2 with gC = −gB/5. The

scalar potential is the sum of the dilaton potential VYoga given in (2.12) and a vacuum axion

potential13 V (a). The axion-matter coupling ga is then modified just enough to allow the

function U to have a nontrivial minimum.

Although we know that both V (a) and U(a) are likely to be periodic functions within

any real microscopic formulation, we expect the axion dynamics to be largely dominated by

13Although easier to calculate with, strictly speaking this choice for scalar potential strays from the Yoga

program for which axion dependence would actually enter as an a-dependence of U appearing in VYoga rather

than as a separate additive term (whose zero value at the minimum is not explained).
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evolution near their minima and so for simplicity assume the easy-to-compute-with form

ga = γ̂2(a − a−) and V (a) =
1

2
µ2
aM

2
p (a − a+)2 , (5.1)

and we choose a− < a+. Although this expression for ga is convenient for numerical

calculations it is also deceptively simple. Recalling ga = U ′/U it corresponds to choosing

the function U(a) to be

U(a) = exp



1

2
γ̂2(a − a−)2



≃ 1 +
1

2
γ̂2(a − a−)2 + · · · , (5.2)

where the approximate equality holds only if γ̂♣a − a−♣ ≪ 1. In order for (5.1) to mimic an

approximately quadratic function for U(a) we must check that γ̂(a − a−) never gets too large.

If the axion is canonically normalized for a specific choice of background value χ̄ the

parameter µa corresponds to a vacuum axion mass

ma =
µaMp

f
=

µa
W (χ̄)

. (5.3)

The coupling γ̂ similarly defines a new scale Λa = Mp/γ̂ in terms of which the axion-matter

coupling is characterized by a ‘decay constant’

F̂ :=
f

γ̂
=
W (χ̄)Mp

γ̂
= W (χ̄)Λa . (5.4)

In the presence of matter the axion field moves as if in a matter-dependent effective potential,

Veff(a, ρB), given explicitly by (3.10). This implies the axion also has a matter-dependent

mass (compare to (3.11))

W 2m2
eff(a, ρB) =

1

M2
p



Vaa(a) +

Uaa

U



ρB



= µ2
a +

[

1 + γ̂2(a − a−)2
]ρB

Λ2
a

, (5.5)

and so m2
eff ≃ m2

a + (ρB/F̂
2) in the regime γ̂(a − a−) ≪ 1.

Motivated by the discussion in [11] we choose benchmark values µaΛa = maF̂ ∼ 1 eV2,

chosen so that the density where the two terms in (5.5) compete occurs not too far above

cosmologically interesting densities and not too from the surface of terrestrial and solar-system

objects. (For the purposes of comparison notice that in these units terrestrial objects have

an average density of ρter ∼ 1 g/cm2 ∼ 4 × 1018 eV4 while the current cosmic energy is of

order ρvac ∼ 10−3eV4.) When needed we also choose ma ∼ 10−15 eV and F̂ ∼ 106 GeV in

order to arrange present-day screening depths to be conveniently smaller than solar-system

objects. See [11] for a discussion of particle-physics constraints on F̂ .

5.2 Cosmological evolution

From the cosmological point of view these choices imply ma ≫ H and so the axion field

oscillates around the minimum of its potential with a frequency much faster than the Hubble

rate. Such quick oscillations are difficult to simulate numerically over cosmological timescales

and so we sidestep this by using the Madelung formalism for a scalar field fluid ([61]; see
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e.g. [62] for a summary and review in the context of scalar field DM and [63] for its use

in the case of self-interacting DM).

This approach assumes the axion field begins its evolution sufficiently close to the

minimum of Veff(a, ρB) and splits the axion field into an adiabatic part, ā(ρm), that tracks

the minimum of the effective potential, plus a rapidly oscillating part describing the fast

oscillations around this value:

a = ā(ρB) +
1√
2



e−i
∫ t

0
dt m(t)ψ + ei

∫ t

0
dt m(t)ψ⋆



, (5.6)

where factoring out the oscillatory factor means ψ evolves much more slowly. m(t) here

denotes meff as given in (5.5).

The dynamics of the background axion field is given by solving V ′
eff(a, ρB) = 0 and so

ā =
µ2
aM

2
p a+ + γ̂2ρB a−

µ2
aM

2
p + γ̂2ρB

. (5.7)

The evolution of the slowly evolving field ψ(x, t) defines an effective axion fluid density, as is

most easily seen by re-expressing it in terms of its modulus and phase:

ψ =

√
ρa

W (χ̄)meff
eiS , (5.8)

where S(x, t) denotes the phase and the modulus is written so that ρa(x, t) is related to

the physical axion energy density — i.e. the 00 component of the axion energy-momentum

tensor — by T 00 = 1
2ρa

[

1 + m2
a

m2
a(ρm)

]

.

Defining the axion fluid velocity by v⃗a ≡ ∇S/[m(t)a], energy conservation for ψ can be

obtained by substituting (5.6) and (5.8) into the axion Lagrangian, leading to the fluid-like

equation

ρ′
a + 3Hρa − m′

m
ρa + (∇ · v⃗a)ρa = 0 , (5.9)

where again m(t) = meff(ρB). At the background level this has the solution

ρ̄a =
Cmeff(ρB)

a3
, (5.10)

where C is an integration constant determined by the initial axion fluid energy density.

In cosmological evolution our numerical parameter choices ensure the mass meff(ρB)

approaches the vacuum value ma at sufficiently late times and so the axion fluid evolves as

ρa ∝ 1/a3, behaving like dust in the usual way. At earlier times the higher baryon density

eventually implies m2
eff ∝ ρB and so ρa ∝ √

ρB/a
3 ∝ 1/a9/2. We conclude from this that

because the axion fluid falls more quickly than radiation in the early universe that its share

of the universal energy density is diluted, ensuring it is subdominant for late time cosmology.

For the present analysis we therefore set C = 0 and disregard the axion fluid altogether.

(A more complete treatment of this fluid is performed in [64].) A similar story applies to

ψ fluctuations: the super-Hubble value for the local mass at the minimum of the effective

potential ensures that these perturbations quickly decay away, justifying their neglect.
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(blue), radiation (red) dilaton total (orange), dilaton potential (brown dashed) axion field total

(purple), axion field potential (dashed pink). Top right shows the normalised axion field evolution.

Bottom row depicts the dimensionless angular and matter power spectra for different couplings

compared to the LCDM best fit in blue. In the background plots gC = −gB/5 = 1

5
√

6
, and for all

plots ma = 4 × 10−15eV, Λa = 5 × 105GeV, and a+ − a− = 2 × 104GeV.

Under these circumstances the axion field can simply be replaced by ā. The remaining

dilaton and Friedmann equations then become

χ̄′′ + 2Hχ̄′ + ζe−2ζχā′2 +
a2

M2
p

[V,χ (χ̄, ā) + gBρ̄B + gC ρ̄C ] = 0 , (5.11)

H2 =
1

3M2
p



χ̄′2

2
+W 2 ā′2

2



M2
p + a2V (χ̄, ā) + a2ρ̄

]

, (5.12)

and it is these equations that we integrate numerically to evolve the background and cosmo-

logical fluctuations, for the opposite coupling Yoga model with gC = −gB/5 = 1
5
√

6
. Figure 8

shows the result of such a calculation, showing the evolution of the energy density of each

fluid as well as the computed form for the CMB angular distributions and the power spectrum.

We see from the figure that sub-dominant nature of the axion ensures the deviations from
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the best fit ΛCDM are minimal within this scenario, for both background evolution and

for the angular and matter power spectrum. Note that the axion evolution (shown in the

top-right panel) is small, justifying the use of a quadratic expansion around the minima

of the potential and coupling.

Although these results are only preliminary they are encouraging inasmuch as they

suggest that axio-dilaton screening mechanisms like that discussed in [11] can be embedded

into the large-coupling Yoga model in a way that is consistent with both solar system and

cosmological observations.

6 Conclusions and outlook

In this paper we provided a detailed study of the cosmological implications of axio-dilaton

scalar-tensor theories. We analysed the cosmological background evolution from deep inside

the radiation dominated epoch to the present day and presented, for the first time for such

models, the results for the CMB anisotropy power spectrum and the matter power spectrum.

In doing so, we focused on four cases, summarized in table 1. The models differ by the size of

the couplings of the dilaton and axion to matter (collectively denoted by g, gB and gC) and the

choice of the kinetic coupling parameter ζ. We find that the universal Yoga model, formulated

with equal DM and baryon couplings, is most likely not viable because of two conflicting

constraints. Either the axion-matter coupling is weak and the large dilaton coupling to matter

prevents the dilaton from finding the minimum of its potential. But if the axion coupling is

made larger then the large axion-matter coupling causes the baryon mass to evolve too much.

We find two categories of theories that lead to a more realistic background evolution. In

one the dilaton couples to matter with large Yoga-sized strength, but the couplings to baryons

and CDM (that is gB and gC) are not equal. The second category of viable model allows the

couplings to be universal, but smaller than in the universal Yoga model. Such models can

also lead to realistic predictions for the CMB anisotropy and matter power spectra.

Going beyond these minimal four benchmark models, we also present a preliminary

discussion of a model in which the axion potential is not vanishing and the axion coupling

function has a local minimum. We find that such a model also can lead to a viable cosmology

and our results provides a new avenue for model building. They also suggest exploring more

systematically how strongly mass evolution can be bounded by late-time observations.

Although our calculations find viable cosmologies, viability depends on using a particular

type of initial condition (at least for those models where the dilaton potential has a minimum).

We assume that the initial value of the dilaton deep in the radiation epoch is not far from

its present-day value, since having particle masses too different in the past could ruin the

successes of Big Bang nucleosynthesis. A more complete model might hope to explain why

the dilaton should start off this way. (Interestingly there is not also a strong restriction

on the dilaton’s initial velocity at these early times because there can be ample time for

Hubble friction to drain this away.) Because the present-day field lies close to the potential

minimum, and the initial dilaton field cannot be too far away from there, that overshoot of

the minimum can become a problem when dilaton-matter couplings are too strong. A proper

theory of initial conditions might require information about the UV completion and/or any

earlier inflationary history (about which we remain agnostic in this paper).
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These models suggest a number of interesting directions that remain to be explored. One

such asks whether the axion alone can be the DM if it is given an appropriate potential.

Such a framework would seek to build an axionic DM model out of the axiodilaton’s axion,

explaining DM as arising from the oscillations of the axion field around the minimum of

its potential. The question is whether having the axion couple to baryons and the dilaton

as envisaged here ruins the success of such models. Can standard production mechanisms

for axionic DM be incorporated? How would the predictions for CMB anisotropies and the

matter power spectrum be different from the cases we have explored here? We intend to

address some of these issues in a future publication [65].

Another interesting extension to the work presented here would conduct a full MCMC

data analysis of the viable scenarios presented here. Although this goes beyond the scope of

the present work, the dynamical ability to alter particle masses described in these models

could be relevant to mechanisms aimed at various cosmological tensions. These include

the role of the electron mass variations proposed to alleviate the Hubble tension [49], and

the role of the dilaton oscillating in its dark energy potential well in reducing structure

growth rates at late times. Because axio-dilaton theories are simple and string-friendly they

provide a framework for introducing both late time and early time new physics through more

complicated choices in the axio-dilaton potential and couplings than those studied here.

Axio-dilaton scalar-tensor theories also provide a rich phenomenology for the very early

universe, where they have long been studied in the context of embedding inflationary models

into string theory (for a review see [66]). Having multiple scalar fields play important

cosmological roles also suggests more novel cosmological epochs, some of which are explored

in [66, 67], such as by allowing post-inflationary epochs of kination, tracker and moduli-

domination that can considerably delay the onset of radiation domination even just before

big bang nucleosynthesis.

Constraints on isocurvature perturbations provide an observational window on these

earlier epochs, and we satisfy these here by restricting ourselves to strictly adiabatic initial

conditions for the cosmological perturbations. The absence of isocurvature fluctuations can

be assured if the relevant degrees of freedom pass through an epoch of thermal equilibrium

in the remote past, or more generally if the scalar and fluid initial conditions share a

common origin. But otherwise isocurvature perturbations are generic for multi-field models,

making their observed absence informative of very early universe dynamics [43]. Exploring

these implications is another topic beyond the scope of the present paper that we leave

for future work.

In real compactifications (including modulus-stabilization mechanisms - for a review

see [68]) the underlying approximate scaling symmetries often ensure the existence of tracker

solutions that eventually settle into a local minimum [67, 69]. Similar things occur in the

specific models explored here; the relaxation field present in Yoga models is an attractive

inflaton candidate [70], which both alleviates some of the η-problems encountered by other

approaches and suggests an interesting post-inflationary history.

Having common ingredients at both early and late times might suggest new mechanisms

for solving old problems and new observational windows for exploring the much earlier

universe. A good place to start are the minimal models, such as extending the late-universe
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axion-dilaton system described here into the very early universe in more detail to understand

if it can give rise to interesting modifications to early-universe dynamics.
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