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Abstract

Joyce structures were introduced by T. Bridgeland in the context of the space of

stability conditions of a three-dimensional Calabi–Yau category and its associated

Donaldson–Thomas invariants. In subsequent work, T. Bridgeland and I. Strachan

showed that Joyce structures satisfying a certain non-degeneracy condition encode a

complex hyperkähler structure on the tangent bundle of the base of the Joyce structure.

In this work we give a definition of an analogous structure over an affine special Kähler

(ASK) manifold, which we call a special Joyce structure. Furthermore, we show that it

encodes a real hyperkähler (HK) structure on the tangent bundle of the ASK manifold,

possibly of indefinite signature. Particular examples include the semi-flat HK metric

associated to an ASK manifold (also known as the rigid c-map metric) and the HK

metrics associated to certain uncoupled variations of BPS structures over the ASK

manifold. Finally, we relate the HK metrics coming from special Joyce structures to

HK metrics on the total space of algebraic integrable systems.
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1 Introduction

The motivation for this work comes mainly from two sources: on the one hand, the

work of T. Bridgeland and I. Strachan on Joyce structures and their associated complex

hyperkähler (C-HK) structures [8]; and on the other hand, the work in the physics

literature of D. Gaiotto, G. Moore and A. Neitzke, which associates a real hyperkähler

(HK) structure to a variation of BPS structures over an affine special Kähler (ASK)

manifold [14].

Given a three-dimensional Calabi–Yau triangulated category D, the notion of Joyce

structure was introduced in [6] to describe a certain geometric structure on the space

of stability conditions Stab(D), encoded by the Donaldson–Thomas invariants of D.

Assuming certain non-degeneracy conditions are satisfied, the starting point of a Joyce

structure is a holomorphic symplectic manifold M with a compatible flat and torsion-

free connection. The data of a Joyce structure over M associate a family of flat

holomorphic Ehresmann connections Aζ on π : T M → M parametrized by ζ ∈

C× = C\{0}, which must be symplectic and satisfy certain additional properties

that we omit for the sake of brevity. Joyce structures are locally encoded in a single

holomorphic function W on an open subset of T M, known as the Plebański function,

which must satisfy a set of partial differential equations called Plebański’s second

heavenly equations (see [8, Equation 1]). The way Joyce structures over Stab(D) are

built in the known examples (see [6, Section 8, 9 and 10], [7] and [4]) is by solving a

certain Riemann–Hilbert (RH) problem determined by the DT invariants and natural

structures on Stab(D) [5]. The solutions of the RH problem are then used to define the

corresponding family Aζ of flat holomorphic Ehresmann connections. In subsequent

work by T. Bridgeland and I. Strachan [8], they showed that a Joyce structure over

M naturally encodes a C-HK structure on (an open subset of) T M. Since Joyce

structures are locally encoded by the Plebański function W , the same holds true for

the associated C-HK structure.

On the other hand, there is a strong parallel between the way Joyce structures are

constructed and previous work in the physics literature by D. Gaiotto, G. Moore and

A. Neitzke [14]. In their work, they start with an ASK manifold M together with a

123



Special Joyce structures and hyperkähler metrics Page 3 of 45 124

variation of BPS structures over M .1 Variations of BPS structures were introduced in

[5] and can be thought as abstracting the natural structures present in Stab(D) together

with the associated DT invariants, or as abstracting natural structures appearing in the

context of 4d N = 2 supersymmetric field theories (or the supergravity counterparts)

and their BPS indices. From these data they construct a real HK manifold on the cotan-

gent bundle T ∗M by solving a certain RH problem which is related, but different, to

the RH problem considered by T. Bridgeland. Physically, this HK metric is an instan-

ton corrected metric of a moduli space associated to a 3d effective theory, obtained

from the 4d N = 2 theory by compactifying on S1. The construction of [14] is math-

ematically well-understood when the variation of BPS structures is uncoupled2 (see,

for example, [10, Section 3] for a mathematical treatment of this case). The harder and

not well-understood case of coupled variations of BPS structures is quite interesting

and important, since particular cases are conjectured to give rise to the HK metrics of

certain Higgs bundles moduli spaces [15, 17, 18]. Some results hinting that this might

be true have been obtained in the mathematics literature, for example [11, 13].

In this work, we try to relate the above two perspectives by encoding a real HK

geometry on the tangent bundle of an ASK manifold by something similar to a Joyce

structure. Given an ASK manifold M , we define a structure involving a C×-family

of complexified3 flat Ehresmann connections Aζ on π : T M → M . Since such a

structure is defined over a special Kähler manifold, we will call it a special Joyce

structure. We nevertheless emphasize that these are not particular cases of the Joyce

structures defined in [6], but only similar structures. We show in Theorem 3.15 that

special Joyce structures encode a real HK structure on T M , possibly of indefinite

signature. Analogously to Joyce structures, the family Aζ of a special Joyce structure is

also determined by a complex-valued function J on (an open subset of) T M . Contrary

to usual Joyce structures, the function J must now be smooth (instead of holomorphic)

and must satisfy a more complicated set of partial differential equations (3.43) which

nevertheless have similarities to the Plebański’s second heavenly equations (3.58)

appearing in [8, Equation 1].

We will see that particular examples of special Joyce structures recover the semi-

flat HK metric [1, 12], and the HK metrics associated to uncoupled variations of BPS

structures from [14] discussed in detail in [10]. While these examples of HK metrics

are more naturally defined in T ∗M instead of T M , we will see that the HK structure

on T M given by the special Joyce structure is related to the one in T ∗M by the natural

identification ω : T M ∼= T ∗M , X → ω(X ,−) given by the Kähler form ω of the

ASK structure on M . Furthermore, even though in general the HK metrics that we get

from special Joyce structures might be of indefinite signature, in the examples from

above it is known how to control the signature of the resulting HK manifolds in terms

of the signature of the ASK metric (see [10, Section 3]).

The HK metrics constructed from special Joyce structures have a close connection

to algebraic integrable systems. Indeed, when the ASK structure on M is described

1 We remark that they did not have the notion of variation of BPS structures, since this was introduced later

in [5]. Hence, that terminology does not appear in [14].

2 Also known as mutually local.

3 A complexified Ehresmann connection is not in general the complex linear extension of an Ehresmann

connection. However, the latter gives examples of complexified Ehresmann connections. See Sect. 2.2.
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by a period structure (M, Ŵ, Z) (see Sect. 4.2.1), then provided the HK geometry on

T M induced by the special Joyce structure is invariant under fiberwise translations by

2π · Ŵ ⊂ T M ,4 we obtain an HK metric on X := T M/(2π · Ŵ). We will then see

that the canonical projection π : X → M has the structure of an algebraic integrable

system compatible with the HK structure on X . The examples mentioned above of

semi-flat metrics and HK metrics associated to uncoupled variations of BPS structures

are instances of this.

The particular form of the family Aζ appearing in the definition of special Joyce

structures (3.38) is motivated by trying to generalize the family Aζ that occurs for HK

metrics associated to uncoupled variations of BPS structures, discussed in Sect. 4.2.

Nevertheless, it is currently unknown to the author whether special Joyce structures

are able to capture the missing case of HK metrics associated to coupled variations

of BPS structures. We comment on a possible strategy for checking this in Appendix

B.5 If the HK metrics corresponding to coupled variations of BPS structures are not

included in the HK metrics encoded by special Joyce structures, then this missing case

is likely described by a structure that generalizes the current definition of special Joyce

structures. In any case, the current definition seems to be general enough to possibly

allow other HK metrics beyond the examples discussed in Sect. 4. For instance, the

function J defining the family Aζ must in general satisfy a set of non-linear Plebański-

like PDE’s (3.43), while in the particular case of uncoupled variation of BPS structures,

the corresponding PDE’s satisfied by J simplify to linear PDE’s (4.31).

Finally, we note that part of the definition of Joyce structures from T. Bridgeland

requires the data of a holomorphic Euler vector field of M. While in general we do

not have the analog of this in the definition of special Joyce structure over M , what the

analog should be is obvious when M is conical affine special Kähler (CASK) instead of

just ASK. In such a case M comes equipped with a (real) Euler vector field, satisfying

similar properties to the holomorphic Euler vector field from Joyce structures. Further-

more, in [10] it was shown that HK metrics associated to uncoupled variation of BPS

structures over a CASK manifold admit an infinitesimal rotating action together with

a hyperholomorphic line bundle6. One can then apply the HK/QK correspondence to

obtain a quaternionic-Kähler (QK) manifold from the HK manifold. These QK met-

rics are related to QK structures of certain moduli spaces associated to Calabi–Yau

compactifications of type IIA/B string theory. Whether a similar construction holds

for HK manifolds associated to a special Joyce structure over a CASK base will be

deferred to future work.

4 In the work of T. Bridgeland [6], this kind of property is included in the definition of Joyce structure.

5 The author would like to thank S. Alexandrov and B. Pioline for suggesting this.

6 Here by infinitesimal rotating action we mean a Killing vector field which leaves invariant one of the

Kähler forms of the HK structure, and rotates the other two. On the other hand, by hyperholomorphic line

bundle we mean a line bundle with connection over the HK manifold, whose curvature is of type (1, 1) with

respect to the three complex structures of the HK structure.
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1.1 Structure of the paper

• In Sect. 2 we start by recalling some well-known facts about affine special Kähler

(ASK) manifolds and some particular sets of coordinates adapted to the ASK

structure. Everything we say about ASK manifolds is either contained in [12] or

[1]. We also recall the notion of Ehresmann connection and a slight extension of

it, called complexified Ehresmann connection, and give some facts that will be

useful for later.

• In Sect. 3 we start discussing certain families Aζ of complexified Ehresmann con-

nections parametrized by ζ ∈ C× and their relation to hypercomplex structures.

We then specialize the previous family Aζ and discuss the notion of almost special

Joyce structure. When the family Aζ associated to the almost special Joyce struc-

ture is flat for each ζ ∈ C× and satisfies a certain compatibility property with the

ASK structure on M , we obtain the notion of special Joyce structure (see Defini-

tion 3.12). Given a special Joyce structure over M , we show that one can associate

a natural hyperhermitian structure on T M . The main theorem (see Theorem 3.15)

shows that this hyperhermitian structure is actually hyperkähler.

• In Sect. 4 we discuss two classes of examples. The first corresponds to the trivial

special Joyce structure over an ASK manifold, which recovers the semi-flat HK

metric associated to the ASK manifold. The second class is a lot more interesting,

and recovers HK manifolds associated to uncoupled variations of BPS structures

over an ASK manifold. In particular, we write a function J specifying the special

Joyce structure explicitly (see (4.28)) and check that the required PDE’s (3.43) are

satisfied. For the convenience of the reader, we recall the notion of special period

structure and variations of BPS structures, required to understand the example.

• In Sect. 5 we discuss the relation between special Joyce structures and algebraic

integrable systems. Namely, we consider the case where the ASK manifold comes

from a special period structure (M, Ŵ, Z) (see Definition 4.2) and the special

Joyce structure is compatible with the period structure. In such a case, one obtains

an HK structure on X = T M/(2π · Ŵ), and the HK structure induces on the

canonical projection X → M the structure of an algebraic integrable system. All

our examples from Sect. 4 will be instances of this.

1.2 Conventions

Unless otherwise stated, all objects and morphisms are smooth. We will frequently

disregard the signature of pseudo-Riemannian metrics and refer to pseudo-Kähler,

pseudo-hermitian or pseudo-hyperkähler manifolds simply as Kähler, hermitian or

hyperkähler. All Hamiltonian vector fields and Poisson brackets are with respect to

the symplectic structure on the vertical bundle induced by the special Kähler form (see

Sect. 3.2.1). Einstein summation convention is used throughout the paper.
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2 Preliminaries

In this section we discuss some well-known facts about affine special Kähler (ASK)

manifolds, and some basic facts about Ehresmann connections and the related notion

of complexified Ehresmann connections. All the results about ASK manifolds can be

found in [1, 12], but we include some proofs in order to be as self-contained as possible

and to fix notations.

2.1 Affine special Kähler manifolds

Definition 2.1 An affine special Kähler (ASK) manifold is a tuple (M, I , ω,∇) such

that:

• (M, I , ω) is a pseudo-Kähler manifold, where I is the complex structure and ω

the Kähler form. The possibly indefinite metric is given by g(−,−) = ω(−, I−).

• ∇ is a flat, torsion-free connection on M .

• ∇ω = 0 and d∇ I = 0, where in the latter we think of I as an element of

�1(M, T M) (i.e., 1-form with values in T M) and d∇ is the natural extension of

∇ : �0(M, T M) → �1(M, T M) to higher degree forms d∇ : �k(M, T M) →

�k+1(M, T M).

We now recall some well-known results from [1, 12].

Lemma 2.2 Given an ASK manifold (M, I , ω,∇), there exist locally flat Darboux

coordinates (x i , yi ) for ω. That is

ω = dx i ∧ dyi , ∇(dx i ) = ∇(dyi ) = 0 . (2.1)

Proof Let vi be a local flat frame of T ∗M with respect to ∇ around p ∈ M . There is a

constant linear change of frame (vi )i=1,...,2dimC(M) → (ξ i , ξi )i=1,...,dimC(M) such that

at p ∈ M

ω|p = ξ i ∧ ξi |p . (2.2)

Since ∇ω = 0 and (ξ i , ξi ) are flat, (2.2) holds on an open set containing p. On the

other hand, the torsion-free condition can be written as

d∇(IdT M ) = 0 , (2.3)

where IdT M ∈ �1(M, MT ) is the identity map on T M . Letting (ηi , η
i ) be the flat

frame of T M dual to (ξ i , ξi ), we conclude from (2.3) and IdT M = ξ i ⊗ ηi + ξi ⊗ ηi

that

dξ i ⊗ ηi + dξi ⊗ ηi = 0 . (2.4)

It then follows that dξ i = dξi = 0, and hence, locally there is a coordinate system

(x i , yi ) such that

dx i = ξ i , dyi = ξi . (2.5)

The result then follows. ⊓⊔

123



Special Joyce structures and hyperkähler metrics Page 7 of 45 124

Definition 2.3 Coordinates (x i , yi ) on an ASK manifold as in Lemma 2.2 are called

affine special coordinates.

Lemma 2.4 [1, Theorem 1] Given an ASK manifold (M, I , ω,∇), locally around

any point p ∈ M there are two associated systems of holomorphic coordinates

(Z i )i=1,...,dimC(M) and (Zi )i=1,...,dimC(M) for (M, I ) such that Re(Z i ) = x i , Re(Zi ) =

−yi define affine special coordinates.

Proof Consider the projection π1,0 : T M ⊗ C → T 1,0 M into (1, 0) vectors with

respect to I given by

π1,0 =
1

2
(IdT M − iI ) . (2.6)

It can be thought as an element of �1,0(M, T M ⊗ C). The fact that d∇(I ) = 0 and

the torsion freeness of ∇ (2.3) imply that

d∇π1,0 = 0 . (2.7)

By the Poincaré lemma, there is locally a complex vector field ξ1,0 such that

∇ξ1,0 = π1,0 . (2.8)

Let (γi , γ
i ) be a local flat Darboux frame of T M with respect to ω around p ∈ M .

Then

ξ1,0 =
1

2
(Z iγi − Ziγ

i ) (2.9)

for some locally defined complex-valued functions Z i and Zi on M . But then

π1,0 = ∇ξ1,0 =
1

2
(dZ i ⊗ γi − dZi ⊗ γ i ) ∈ �1,0(M, T M ⊗ C) (2.10)

implies that dZ i , dZ i ∈ �1,0(M), and hence Z i and Zi are holomorphic functions on

(M, I ). Note that

2Re(π1,0) = IdT M (2.11)

implies that (x i = Re(Z i ), yi = −Re(Zi )) is a local coordinate system around p ∈ M

and that γi = ∂x i , γ i = ∂yi
. Hence, (x i , yi ) is flat and Darboux with respect to ω.

We now show that both sets of holomorphic functions (Z i ) and (Zi ) define coor-

dinates systems on M . To see this, note that (x i , yi ) defines a Lagrangian splitting of

T ∗M (with respect to ω−1)

T ∗
p M = Lx⊕L y, Lx := span{dx i }i=1,...,dimC(M), L y := span{dyi }i=1,...,dimC(M) .

(2.12)

Due to the compatibility of ω and I , by possibly performing a constant symplectic

linear change of coordinates, we can assume that

Lx ∩ I ∗Lx = {0}, L y ∩ I ∗L y = {0}. (2.13)
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Noting that

dZ i = dx i − iI ∗dx i , dZi = −dyi + iI ∗dyi , (2.14)

it then follows from the independence of the dx i (resp. dyi ) that the dZ i (resp. dZi )

are independent at p ∈ M , and hence locally around p ∈ M . It follows that (Z i ) and

(Zi ) are holomorphic coordinate systems of M . ⊓⊔

Definition 2.5 Two systems of holomorphic coordinates (Z i ) and (Zi ) on an ASK

manifold obtained as in (2.9) are called a conjugate systems of holomorphic special

coordinates.

Lemma 2.6 Consider a conjugate system of holomorphic special coordinates (Z i )

and (Zi ) for an ASK manifold. Define τi j by

dZi = τi j dZ i . (2.15)

Then there exists a local holomorphic function F(Z i ) such that

τi j =
∂2F

∂ Z i∂ Z j
. (2.16)

In particular, we must have τi j = τ j i , and with respect to the holomorphic coordinates

(Z i ) we have

ω =
i

2
Im(τi j )dZ i ∧ dZ

j
. (2.17)

Proof Note that writing as in the proof of Lemma 2.4

ξ1,0 =
1

2

(
Z i ∂

∂x i
− Zi

∂

∂ yi

)
(2.18)

we find

π1,0 =
1

2

(
dZ i ⊗

∂

∂x i
− τi j dZ j ⊗

∂

∂ yi

)
. (2.19)

Evaluating the above at ∂Z i one finds

∂Z i =
1

2

(
∂

∂x i
− τ j i

∂

∂ yi

)
. (2.20)

On the other hand, using that ω is of type (1, 1), we find

0 = ω

(
∂

∂ Z i
,

∂

∂ Z j

)
=

1

4
(τ j i − τi j ) (2.21)

so that τi j = τ j i . It follows that the holomorphic 1-form

Zi dZ i (2.22)
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is closed, and hence, locally there is a holomorphic function F such that

dF = Zi dZ i , �⇒ Zi =
∂F

∂ Z i
, τi j =

∂2F

∂ Z i∂ Z j
. (2.23)

Finally, note that

ω

(
∂

∂ Z i
,

∂

∂ Z
j

)
=

1

4
(τ j i − τ i j ) =

i

2
Im(τi j ) (2.24)

so that

ω =
i

2
Im(τi j )dZ i ∧ dZ

j
. (2.25)

⊓⊔

2.2 Complexified Ehresmann connections

Consider a smooth submersion π : N → M and let Vπ := Ker(dπ) ⊂ T N denote the

vertical bundle associated to π . This gives rise to the short exact sequence of vector

bundles over N

0 −→ Vπ
i

−→ T N
dπ

−→ π∗(T M) −→ 0 . (2.26)

Definition 2.7 An Ehresmann connection on π : N → M is a splitting of the above

short exact sequence. That is, a vector bundle map A : π∗(T M) → T N such that

dπ ◦A = 1. Given X ∈ π∗(T M) we use the notation AX := A(X) for the evaluation.

Definition 2.8 Let π : N → M as before and consider the complexified short exact

sequence

0 −→ Vπ ⊗ C
i

−→ T N ⊗ C
dπ

−→ π∗(T M) ⊗ C −→ 0 . (2.27)

A complexified Ehresmann connection on π : N → M is a complex vector bundle

map A : π∗(T M) ⊗ C → T N ⊗ C such that dπ ◦ A = 1

Definition 2.9 An Ehresmann connection (resp. complexified Ehresmann connection)

A is flat if the distribution Im(A) ⊂ T N (resp. Im(A) ⊂ T N ⊗ C) is involutive.

Namely, given any local sections of X , Y of Im(A) → N , [X , Y ] is also a local

section of Im(A) → N .

Remark 2.10 We frequently abuse notation and evaluate A on local sections of T M →

M (resp. T M ⊗C → M), with the understanding that we evaluate it on the canonically

induced local section X◦π ofπ∗T M → N (resp.π∗T M⊗C → N ). Note in particular

that since π∗(T M) → N admits local frames of such pullback sections, in order to

check flatness it is enough to check that for every local frame (ei ) of T M → M , we

have

[Aei
,Ae j

] ⊂ span{Aei
}i=1,..,dim(M) . (2.28)

We will also make frequent use of the following lemma
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Lemma 2.11 Assume that N = T M, and π : T M → M is the canonical projection.

Then an Ehresmann connection A (resp. complexified Ehresmann connection) on

π : T M → M is flat if and only if for all local sections X , Y of T M → M (resp.

T M ⊗ C → M) we have

[AX ,AY ] = A[X ,Y ] . (2.29)

Proof We do the proof for an Ehresmann connection, with the proof for a complexified

Ehresmann connection following identically. If (2.29) holds, by Remark 2.10 the

connection is flat. On the other hand, assume that the connection is flat and take local

coordinates x i on M . They induce coordinates (x i , ϕi ) on T M . By the definition of an

Ehresmann connection, we must have (with the usual abuse of notation from Remark

2.10)

A ∂

∂xi
=

∂

∂x i
+ f k

i

∂

∂ϕk
(2.30)

for some functions f k
i on T M . In particular,

[A ∂

∂xi
,A ∂

∂x j
] =

(
∂ f k

j

∂x i
−

∂ f k
i

∂x j

)
∂

∂ϕk
. (2.31)

But since the latter is a section of Vπ , the flatness of A implies that the above quantity

must be zero, and hence [
A ∂

∂xi
,A ∂

∂x j

]
= 0 . (2.32)

Now note that if X , Y are local sections of T M → M , then with respect to the local

coordinate system (x i , ϕi ) from before

[AX ,AY ] = X iA ∂

∂xi
(Y j )A ∂

∂x j
− Y iA ∂

∂xi
(X j )A ∂

∂x j
+ X i Y j

[
A ∂

∂xi
,A ∂

∂x j

]

= X i ∂

∂x i
(Y j )A ∂

∂x j
− Y i ∂

∂x i
(X j )A ∂

∂x j

= A[X ,Y ] .

(2.33)

where we used that the functions X i and Y j depend only on x i (since X and Y are

local section of T M → M). ⊓⊔

For future reference, we note that a connection ∇ on M induces a natural Ehresmann

connection A on π : T M → M as follows. Let V ∈ Tp M and X ∈ Tp M , so that

(V , X) ∈ π∗(T M). Furthermore, let γ be a curve in M such that γ (0) = p and

γ̇ (0) = X , and let

Pγ,t : Tγ (0)M → Tγ (t)M (2.34)

denote the parallel transport induced by ∇. We then obtain the curve t → Pγ,t (V ) in

T M and define

A(V ,X) :=
d

dt
Pγ,t (V )

∣∣∣
t=0

∈ TV (T M) . (2.35)
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It is easy to check that A(V ,X) is well defined (i.e., it does not depend on the curve γ

chosen such that γ (0) = p and γ̇ (0) = X ). Indeed, if (x i ) are local coordinates on

M and (x i , ϕi ) the induced coordinates on T M , then one easily checks that

A(V ,X) =
d

dt
Pγ,t (V )

∣∣∣
t=0

= X i

(
∂

∂x i
− V jŴk

i j

∂

∂ϕk

)
,

where X = X i ∂

∂x i
, V = V i ∂

∂x i
, (2.36)

and Ŵk
i j are the Christoffel symbols of ∇ with respect to the coordinates (x i ). From

(2.36) it immediately follows that A as defined in (2.35) gives an Ehresmann connec-

tion on π : T M → M .

3 Special Joyce structures and hyperkähler structures

In this section we study certain families Aζ of complexified Ehresmann connections

on π : T M → M , and associated geometric structures on T M . We start with a rather

general family Aζ related to hypercomplex structures on T M , and then focus on a

more particular family to define special Joyce structures. A special Joyce structure

has a natural hyperhermitian structure defined in terms of the ASK structure and the

family Aζ , and the main theorem (see Theorem 3.15) states that the hyperhermitian

structure is actually hyperkähler.

3.1 Complexified Ehresmann connections and hypercomplex structures

In this section we take a complex manifold (M, I ) and take N := T M with the natural

projection π : N → M . We furthermore denote by T M ⊗ C = T 1,0 M ⊕ T 0,1 M the

usual splitting given by the eigenspaces of I . We consider a complex vector bundle

map

h : π∗(T 1,0 M) → T N ⊗ C , (3.1)

together with an anti-linear7 complex vector bundle map

v : π∗(T 1,0 M) → Vπ ⊗ C = Ker(dπ) ⊗ C . (3.2)

That is, for X ∈ π∗(T 1,0 M) and λ ∈ C we have

vλX = λvX . (3.3)

We further assume the non-degeneracy condition

T N ⊗ C = Im(h) ⊕ Im(h) ⊕ Im(v) ⊕ Im(v) , dπ ◦ h X = X , dπ ◦ h X = X . (3.4)

7 The reason for taking v complex anti-linear instead of complex linear is only a matter of convention. The

convention is such that in complex structure I3 on N (to be defined later), the (1, 0) vectors are spanned by

h X and vX for X ∈ T 1,0 M , instead of h X and vX for X ∈ T 1,0 M .
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Remark 3.1 If we wish, we can extend the definition of h, and for X ∈ π∗(T 1,0 M)

let,

h X := h X . (3.5)

It then follows that h is the complex linear extension of a real vector bundle map

h : π∗(T M) → T N . (3.6)

The last two conditions in (3.4) then say that h defines an Ehresmann connection on

π : T M → M . A similar extension can be done for the definition of v, so that it

comes from the complex anti-linear extension of a real vector bundle map

v : π∗(T M) → Vπ . (3.7)

Nevertheless, we will continue think of h and v as in (3.1) and (3.2).

From these data, we want to consider a family of complexified Ehresmann connec-

tions Aζ on π : N → M parametrized by ζ ∈ C× := C\{0}. We assume that Aζ is

given as follows for X ∈ π∗(T 1,0 M)

A
ζ
X = h X −

1

ζ
vX

A
ζ

X
= h X + ζvX .

(3.8)

By (3.4), it immediately follows that Aζ is a complexified Ehresmann connection.

However, note that we always have

A
ζ
X �= A

ζ

X
(3.9)

so Aζ is not the complex linear extension of an Ehresmann connection.

We also let for ζ = 0,∞ and X ∈ π∗(T 1,0 M)

A
ζ=0
X := ζA

ζ
X |ζ=0 = −vX , A

ζ=0

X
:= A

ζ

X
|ζ=0 = h X

A
ζ=∞
X := A

ζ
X |ζ=∞ = h X , A

ζ=∞

X
:=

1

ζ
A

ζ

X
|ζ=∞ = vX

(3.10)

Note that Aζ=0 and Aζ=∞ are not complexified Ehresmann connections on π :

T M → M .

For future reference, we reformulate the flatness condition of Aζ for each ζ ∈ C×

in the following lemma.

Lemma 3.2 The family of complexified Ehresmann connections Aζ defined in (3.8)

is flat for all ζ ∈ C× if and only if the following equations hold for all X , Y local
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holomorphic sections of T 1,0 M → M:

[h X , hY ] = h[X ,Y ], [h X , vY ] + [vX , hY ] = v[X ,Y ], [vX , vY ] = 0

[h X , hY ] = [vX , vY ], [h X , vY ] = 0 .
(3.11)

Proof We make use of Lemma 2.11. From the condition [AX ,AY ] = A[X ,Y ] and the

definition (3.8) we obtain the constraints

[h X , hY ] = h[X ,Y ], [h X , vY ] + [vX , hY ] = v[X ,Y ], [vX , vY ] = 0 . (3.12)

With similar constraints from [AX ,AY ] = A[X ,Y ], namely the conjugate from the

above

[h X , hY ] = h[X ,Y ], [h X , vY ] + [vX , hY ] = v[X ,Y ], [vX , vY ] = 0 . (3.13)

Finally, since X and Y are holomorphic, we have [X , Y ] = 0. Hence, from [AX ,AY ] =

A[X ,Y ] = 0 we obtain

[h X , hY ] = [vX , vY ], [h X , vY ] = 0, [vX , hY ] = 0 . (3.14)

⊓⊔

Remark 3.3 Recall from Remark 3.1 that we can think of h as coming from an Ehres-

mann connection on T M → M , and hence as a complexified Ehresmann connection

by extending complex linearly. Note that while the first equation in (3.11) is a flat-

ness condition when X and Y are holomorphic sections of T 1,0 M → M , we only

have [h X , hY ] = [vX , vY ], so flatness of h as a complexified Ehresmann connec-

tion is not guaranteed. In fact, in the main example of Sect. 4.2 one can check that

[h X , hY ] �= 0 = h[X ,Y ], so in that case h is non-flat.

3.1.1 The associated hypercomplex structure

Now note that for ζ ∈ C× or ζ = 0,∞ it follows from the definitions (3.8), (3.10),

together with (3.4) that

T N ⊗ C = Im(Aζ ) ⊕ Im(Aζ ) . (3.15)

Hence, we can define almost complex structures Iζ on N by letting Im(Aζ ) be the −i-

eigenspace and Im(Aζ ) the i-eigenspace of Iζ . We furthermore define Ii for i = 1, 2, 3

to be Iζ for ζ = i,−1, 0 respectively.

Proposition 3.4 The almost complex structures Ii on N satisfy the quaternion relations

I1 I2 = I3, Ii I j = −I j Ii for i �= j . (3.16)

In particular, (N , I1, I2, I3) is an almost hypercomplex manifold.
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Proof From the definitions of Ii , it easily follows that

I3(h X ) = ih X , I3(vX ) = ivX

I1(h X ) = vX , I1(vX ) = −h X

I2(h X ) = −ivX , I2(vX ) = ih X ,

(3.17)

with the other evaluations at h X and vX determined by the fact that the Ii are real

operators. From the above, the required quaternion relations follow. ⊓⊔

We remark that we can express the “twistor" family of almost complex structures

Iζ for ζ ∈ C ⊂ CP1 in terms of the Ii via the stereographic projection formula

Iζ =
i(−ζ + ζ )I1 − (ζ + ζ )I2 + (1 − |ζ |2)I3

1 + |ζ |2
. (3.18)

Corollary 3.5 If Aζ is flat for all ζ ∈ C×, then the almost complex structures I j are

integrable. In particular, (N , I1, I2, I3) is a hypercomplex manifold.

Proof The flatness of Aζ for all ζ ∈ C× implies that the distribution of −i-eigenspaces

of Iζ is involutive for ζ ∈ C×, so in particular I1 = Iζ=i and I2 = Iζ=−1 are integrable.

On the other hand, by Lemma 3.2 (in particular (3.11)) it follows that I3 = Iζ=0 is

also integrable.

⊓⊔

3.2 Special Joyce structures and the associated hyperkähler structure

We take as starting point an affine special Kähler manifold (M, I , ω,∇) and let N =

T M with the canonical projection π : N → M . In the following, we introduce several

structures required to define special Joyce structures.

3.2.1 The induced symplectic structure on the vertical bundle

We first describe the symplectic structure on the vector bundle Vπ → N induced

from the ASK structure on M . The same discussion holds when we consider the

complexified bundle Vπ ⊗ C → N .

On π : T M → M we have a flat Ehresmann connection

H : π∗(T M) → T N (3.19)

induced from the flat and torsion-free connection ∇ via the corresponding parallel

transport (recall the end of Sect. 2.2). In terms of affine special coordinates (x i , yi )

on M (which in particular are flat with respect to ∇) and the induced coordinates

(x i , yi , ϕ
i , ϕi ) on N = T M , it follows from (2.36) that

H ∂

∂xi
=

∂

∂x i
, H ∂

∂ yi

=
∂

∂ yi

. (3.20)
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If we consider a conjugate system of holomorphic special coordinates (Z i ) and (Zi )

inducing the affine special coordinates (x i , yi ) (recall Lemma 2.4), we conclude from

(2.20) and (3.20) that

H ∂

∂ Zi
=

∂

∂ Z i
. (3.21)

Furthermore, we have the canonical identification of vector bundles over N

ν : π∗(T M) → Vπ = Ker(dπ) (3.22)

given by

ν(Vp, Wp) =
d

dt
(Vp + tWp)

∣∣
t=0

∈ Vπ |Vp . (3.23)

We will use the same notation that we use for the evaluation of Ehresmann connections

and for X ∈ π∗(T M) denote νX := ν(X). As in the case of Ehresmann connections,

we will also sometimes abuse notation and evaluate ν on local sections of T M → M ,

with the understanding that we evaluate it on the canonical pullback section. In terms

of the above coordinates (x i , yi , ϕ
i , ϕi ) on N , we have

ν ∂

∂xi
=

∂

∂ϕi
, ν ∂

∂ yi

=
∂

∂ϕi

, (3.24)

while for future reference, we note that from (2.20) we find that the complex linear

extension of ν satisfies

ν ∂

∂ Zi
=

1

2

(
∂

∂ϕi
− τi j

∂

∂ϕ j

)
. (3.25)

We now use ν to induce from ω a symplectic structure ων on the vector bundle

Vπ → N . More precisely, letting p2 : π∗(T M) → T M denote the projection into the

second factor p2(X p, Wp) = Wp, and given V1, V2 ∈ Vπ |X p where X p ∈ Tp M ⊂ N

we define

ων
X p

(V1, V2) := ωp(p2(ν
−1(V1)), p2(ν

−1(V2))) . (3.26)

In terms of affine special coordinates (x i , yi ) for (M, I , ω,∇) where

ω = dx i ∧ dyi , (3.27)

one easily checks that with respect to the induced coordinates (x i , yi , ϕ
i , ϕi ) on N ,

we can write

ων = dϕi ∧ dϕi . (3.28)

In what follows, whenever we consider Hamiltonian vector fields (denoted by

Ham f ) or Poisson brackets (denoted by {−,−}), we do with respect to the sym-

plectic structure ων on Vπ → N . Namely, for V ∈ Vπ ⊂ T N and f ,g functions on

N we let

V f = ων(V , Ham f ), { f , g} = ων(Ham f , Hamg) . (3.29)
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More concretely, in terms of the coordinates (x i , yi , ϕ
i , ϕi ) on N from before

Ham f =
∂ f

∂ϕi

∂

∂ϕi

−
∂ f

∂ϕi

∂

∂ϕi
, { f , g} =

∂ f

∂ϕi

∂g

∂ϕi

−
∂ f

∂ϕi

∂g

∂ϕi
. (3.30)

We will also frequently use the relation

[Ham f , Hamg] = Ham{ f ,g} . (3.31)

Finally, given X ∈ π∗(T M)|Vp and a function f on N , we will frequently write

HamHX f , HamνX f ∈ Vπ |Vp . (3.32)

Since HX f and νX f are just numbers, we clarify what we mean by the above expres-

sions. First note that X canonically extends to a section X̂ of p1 : π∗(T M)|Tp M →

Tp M , where p1 : π∗(T M) → T M is the canonical projection in the first factor.

Indeed, if X = (Vp, Wp), then we have

X̂ Z p = (Z p, Wp), Z p ∈ Tp M . (3.33)

We then have that H
X̂

f and ν
X̂

f are functions on Tp M , and hence we can compute

the Hamiltonian vector fields HamH
X̂

f , and Hamν
X̂

f on Tp M . We then set

HamHX f := HamH
X̂

f |Vp , HamνX f := Hamν
X̂

f |Vp . (3.34)

Again, in terms of the coordinates (x i , yi , ϕ
i , ϕi ) from above, if

X =

(
Vp , W i ∂

∂x i

∣∣∣∣
p

+ Wi

∂

∂ yi

∣∣∣∣
p

)
(3.35)

then

HamHX f = W i

(
∂2 f

∂ϕ j∂x i
(Vp)

∂

∂ϕ j

∣∣∣∣
Vp

−
∂2 f

∂ϕ j∂x i
(Vp)

∂

∂ϕ j

∣∣∣∣
Vp

)

+Wi

(
∂2 f

∂ϕ j∂ yi

(Vp)
∂

∂ϕ j

∣∣∣∣
Vp

−
∂2 f

∂ϕ j∂ yi

(Vp)
∂

∂ϕ j

∣∣∣∣
Vp

)

HamνX f = W i

(
∂2 f

∂ϕ j∂ϕi
(Vp)

∂

∂ϕ j

∣∣∣∣
Vp

−
∂2 f

∂ϕ j∂ϕi
(Vp)

∂

∂ϕ j

∣∣∣∣
Vp

)

+Wi

(
∂2 f

∂ϕ j∂ϕi

(Vp)
∂

∂ϕ j

∣∣∣∣
Vp

−
∂2 f

∂ϕ j∂ϕi

(Vp)
∂

∂ϕ j

∣∣∣∣
Vp

)
. (3.36)

Note that the above quantities only depend on the vector X ∈ π∗(T M)|Vp instead of

X̂ , which justifies the notation in (3.34).
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3.2.2 Special Joyce structures

We now specialize the family Aζ of complexified Ehresmann connections given in

(3.8). The particular form of the maps h and v defined in (3.1) and (3.2) is motivated

by trying to generalize what happens in our main example in Sect. 4.2.

Definition 3.6 Given an ASK manifold (M, g, ω,∇), an almost special Joyce structure

over M is the data of a family of complexified Ehresmann connections Aζ of the form

(3.8) such that h and v satisfy (3.4), and such that for some J : N → C we have8

h X = HX + HamHX J , vX = 2π i(νX + HamνX J ), X ∈ π∗(T 1,0 M) . (3.37)

Namely, the family Aζ is given by

A
ζ
X = HX + HamHX J +

2π i

ζ

(
νX + HamνX J

)

A
ζ

X
= HX + HamHX J + 2π iζ

(
νX + HamνX J

)
.

(3.38)

The expressions (3.38) should be compared with the analogous but simpler expres-

sion in [6, Equation 40]. There, if (M,�,∇) is a holomorphic symplectic manifold

with a compatible flat, torsion-free connection ∇, the relevant family of (holomorphic)

Ehresmann connections Ãǫ on π : T 1,0M → M, ǫ ∈ C×, has the form

Ãǫ
X = HX + HamνX J̃ + ǫ−1νX , X ∈ π∗(T 1,0M) , (3.39)

where now H is a flat holomorphic Ehresmann connection on T M → M induced

from ∇, J̃ is a holomorphic function on T M, and HamνX J̃ is computed again by an

induced symplectic structure on the vertical bundle Vπ → T 1,0M. Note in particular

that Ãǫ is only defined for X ∈ π∗(T 1,0M) and not for X ∈ π∗(T 0,1M) .

Remark 3.7 Note that there are several functions J : N → C specifying the same

almost special Joyce structure Aζ . In fact, it is clear for (3.38) that if J specifies Aζ ,

then all other functions specifying Aζ have the form J + f where f ∈ C∞(N , C)

satisfies that

HamHX f = HamνX f = 0 , for all X ∈ π∗(T 1,0 M) . (3.40)

One easily checks using (3.36) that in terms of the coordinates (x i , yi , ϕ
i , ϕi ) on N

from above, such a function must have the local form

f (x i , yi , ϕ
i , ϕi ) = ciϕ

i + ciϕi + g(x i , yi ), for some ci , ci ∈ C . (3.41)

As in [6], one could impose certain symmetries on J to fix the above freedom. For

example, in our examples in Sect. 4, J is invariant under the involution ι : N → N

8 Recall that v is complex anti-linear and the discussion in Sect. 3.2.1 regarding the expressions HamHX J

and Hamν
X

J .
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given by ι(Vp) = −Vp, which reduces the freedom of choosing J to adding the

pullback of a function from the base. In [6] a similar symmetry is imposed, where the

corresponding J̃ is odd under the involution ι.

It will be convenient to write in detail the flatness condition for the family Aζ in

the particular case of an almost special Joyce structure.

Proposition 3.8 Consider an almost special Joyce structure Aζ over an ASK manifold

M. Furthermore, let J : N → C be any function describing Aζ as in (3.38). Then the

family of complexified Ehresmann connections Aζ is flat for all ζ ∈ C× if and only if

the following holds for all local holomorphic sections X , Y of T 1,0 M → M9:

• The following local functions on N = T M descend to the base M

{HX J ,HY J }, {νX J , νY J } , {HX J , νY J } . (3.42)

• The following equations are satisfied, up to addition of functions that descend to

the base M

νX (HY (J − J )) − νY (HX (J − J )) = {νY J ,HX J } − {νX J ,HY J }

HX (HY (J − J )) + 4π2 · νX (νY (J − J )) = {HX J ,HY J } − 4π2{νX J , νY J } .

(3.43)

Proof In what follows, we translate the flatness equations obtained in Lemma 3.2 to

the specific case of an almost special Joyce structure.

Using the flatness of H and (3.31), it easily follows that

[h X , hY ] = h[X ,Y ] ⇐⇒ [HamHX J , HamHY J ] = Ham{HX J ,HY J } = 0 . (3.44)

This in turn implies that {HX J ,HY J } must descend to a function on the base, since

the Hamiltonian vector fields are taken with respect to the induced vertical symplectic

structure.

On the other hand, using [νX , νY ] = 0, Eq. (3.31) and

[νX , HamνY J ] − [νY , HamνX J ],= Ham[νX ,νY ]J = 0 (3.45)

it follows that

[vX , vY ] = 0 ⇐⇒ Ham{νX J ,νY J } = 0 (3.46)

so {νX J , νY J } must descend to a function on the base.

Now, if (Zi ) and (Z i ) are a conjugate system of holomorphic special coordinates

on M , we have the relation

dZi = τi j dZ j (3.47)

9 Recall that in the expressions below we mean the evaluation of H and ν in the corresponding pullback

local sections of π∗(T 1,0 M) → N .
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for holomorphic functions τi j on M symmetric in i and j (recall Lemma 2.6). In

particular, by taking exterior derivatives we obtain the identity

∂τik

∂ Z j
=

∂τ jk

∂ Z i
. (3.48)

Using the above, one can verify using (3.25) and (3.21) that

[HX , νY ] − [HY , νX ] = ν[X ,Y ] . (3.49)

Using the previous equation, we see that

[h X , vY ] + [vX , hY ] = v[X ,Y ] (3.50)

reduces to

[HX , HamνY J ] − [HY , HamνX J ] + [νX + HamνX J , HamHY J ]

−[νY + HamνY J , HamHX J ]

= Hamν[X ,Y ] J . (3.51)

Which can be rewritten using (3.49) and

[νX , HamHY J ] = HamνX (HY J ), [HX , HamνY
J ] = HamHX (νY J ) (3.52)

as

HamνX (HY (J−J ))−νY (HX (J−J )) = Ham{νY J ,HX J }−{νX J ,HY J } . (3.53)

We then obtain that the following equality holds, up to additions of functions descend-

ing to the base M

νX (HY (J − J )) − νY (HX (J − J )) = {νY J ,HX J } − {νX J ,HY J } . (3.54)

Continuing with the equations from Lemma 3.2, using [HX , νY ] = 0, the equation

[h X , vY ] = 0 , (3.55)

similarly gives that {HX J , νY J } should descend to a function on the base.

Finally, using that [HX ,HY ] = 0 (since X and Y are holomorphic and H is flat)

and [νX , νY ] = 0, the equation

[h X , hY ] = [vX , vY ] (3.56)

reduces to the condition that, up to the addition of functions descending to the base

M ,

HX (HY (J − J ))+4π2 ·νX (νY (J − J )) = {HX J ,HY J }−4π2{νX J , νY J } . (3.57)

⊓⊔
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Remark 3.9 • Equation (3.43) should be compared to the Plebański equations encod-

ing the flatness of the family of holomorphic Ehresmann connections Ãǫ of [6].

Following the notation of (3.39), the flatness of Ãǫ reduces to imposing that the

holomorphic function J̃ should satisfy the following equation for local holomor-

phic sections X , Y of T 1,0M → M up to addition of functions descending to the

base M (see [8, Equation 13])

νX (HY J̃ ) − νY (HX J̃ ) = {νX J̃ , νY J̃ } . (3.58)

In the above setting, J̃ can always be redefined so that (3.58) is satisfied exactly

(see below [6, Equation 14]). To write (3.58) in coordinates, it is convenient to

choose flat holomorphic Darboux coordinates (Z i , Zi ) on M and (Z i , Zi , ϕ
i , ϕi )

the induced holomorphic coordinates on T 1,0M. Note that the coordinates ϕi , ϕi

are complex in this case. With respect to the above coordinates

H ∂

∂ Zi
=

∂

∂ Z i
, H ∂

∂ Zi

=
∂

∂ Zi

, ν ∂

∂ Zi
=

∂

∂ϕi
, ν ∂

∂ Zi

=
∂

∂ϕi

, (3.59)

while the Poisson bracket is given by the induced vertical symplectic form dϕi ∧

dϕi .

• Similarly, if one wishes to write the equations in Proposition 3.8 in coordinates, a

convenient set of coordinates on T M is given by (x i , yi , ϕ
i , ϕi ) as in the begin-

ning of Sect. 3.2.1. Namely, (x i , yi ) are affine special coordinates on M and

(x i , yi , ϕ
i , ϕi ) the induced coordinates on T M . If (Z i ) and (Zi ) denote conju-

gate systems of holomorphic special coordinates on M associated to (x i , yi ), then

we have

H ∂

∂ Zi
=

∂

∂ Z i
=

1

2

(
∂

∂x i
− τi j

∂

∂ y j

)
,

ν ∂

∂ Zi
=

1

2

(
∂

∂ϕi
− τi j

∂

∂ϕ j

)
, dZi = τi j dZ j . (3.60)

Using (3.60) together with (3.30) one can write explicitly the equations in Propo-

sition 3.8 in coordinates by taking X = ∂Z i , Y = ∂Z j as holomorphic sections of

T 1,0 M → M . Note that contrary to the case of (3.58), there is a special geometry

relation imposed in (3.60), and the coordinates ϕi , ϕi are real.

Assume now that we have an almost special Joyce structure Aζ over M such that

the family Aζ is flat for all ζ ∈ C×. By Corollary 3.5 we obtain a hypercomplex

structure (N , I1, I2, I3) on N . We now want to extend this hypercomplex structure

to a particular hyperhermitian structure. That is, a tuple (g, I1, I2, I3) where g is a

(pseudo)-Riemannian metric, and Ii are complex structures satisfying the quaternionic

relations and preserving g:

g(Ii−, Ii−) = g(−,−) . (3.61)
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For this, we will require the following lemma, which will also motivate the definition

of special Joyce structure.

Lemma 3.10 Consider the almost complex structure I3 induced on N by an almost

special Joyce structure Aζ . Then the almost complex structure I3 on N restricts to

an almost complex structure on the bundle Vπ → N. Furthermore, the symplectic

structure ων on Vπ → N is of type (1, 1) with respect to I3 if and only if for all local

sections X , Y of T 1,0 M → M we have

{νX J , νY J } = 0 . (3.62)

Proof The fact that I3 restricts to an almost complex structure on Vπ → N follows

directly from (3.17). Now consider the local holomorphic sections ∂

∂ Z i of T 1,0 M → M

given by holomorphic special coordinates on M . By (3.4) we have that

vi := v ∂

∂ Zi
, v j := v ∂

∂ Z j
, (3.63)

give a local frame of Vπ ⊗ C → N . Furthermore, by (3.17) the vi (resp. v j ) are of

type (1, 0) (resp. (0, 1)) with respect to I3. Since ων is real, to check that it is of type

(1, 1) with respect to I3 it is enough to check that

ων(vi , v j ) = 0 (3.64)

for all i, j . Denoting νi = ν ∂

∂ Z
i
, a direct computation using (3.37), (3.25), (3.28) and

(3.29) shows that

ων(vi , v j ) = −4π2dϕk ∧ dϕk(νi + Hamνi J , ν j + Hamν j J )

= −π2(τi j − τ j i ) − 4π2[νi , ν j ]J − 4π2{νi J , ν j J }

= −4π2{νi J , ν j J } ,

(3.65)

since τi j is symmetric and [νi , ν j ] = 0. The result then follows. ⊓⊔

Remark 3.11 Note that from Remark 3.7 it follows that (3.62) is independent of the

function J used to represent Aζ , so it only depends on Aζ . Condition (3.62) can be

thought as a compatibility condition between the ASK structure on M and the almost

special Joyce structure Aζ .

The previous remark motivates the following10

Definition 3.12 Consider an almost special Joyce structure Aζ on (M, I , ω,∇). We

say that Aζ is a special Joyce structure if

• The family Aζ is flat for each ζ ∈ C×.

• The symplectic structure ων on Vπ → N is of type (1, 1) with respect to I3.

10 Ultimately, what really motivates this definition is that it guarantees the existence of an HK structure on

TM, due to Theorem 3.15.
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3.2.3 The hyperhermitian structure associated to a special Joyce structure

Consider a special Joyce structure Aζ over M . We now extend the associated

hypercomplex structure (N , I1, I2, I3) from Proposition 3.4 and Corollary 3.5 to a

hyperhermitian structure (N , g, I1, I2, I3). To define g, we first define a real non-

degenerate 2-form ω3 on N as follows11

ω3(vX , vY ) = ω3(hY , h X ) := −
1

4π2
ων(vX , vY ), X , Y ∈ π∗(T 1,0 M) , (3.66)

with all the other pairings being 0. From (3.66), (3.17) and the second condition in

Definition 3.12 it follows that ω3 is real, non-degenerate and preserved by I3.

Proposition 3.13 Given the real two-form ω3 as in (3.66), let

g(−,−) := ω3(−, I3−). (3.67)

Then g is a pseudo-Riemannian metric preserved by Ii , i = 1, 2, 3. In particular,

(N , g, I1, I2, I3) is an almost hyperhermitian manifold. Furthermore, given a conju-

gate system of holomorphic special coordinates (Z i ) and (Zi ) for M and denoting

hi = h∂
Zi

, vi = v∂
Zi

, νi = ν∂
Zi

, we can write12

ω3 = ω j i h
i ∧ h j + ωi jv

i ∧ v j ,

g = −2iω j i h
i h j − 2iωi jv

iv j ,

ωi j = −ω j i =
i

2
Im(τi j ) + νiν j (J − J ) − {νi J , ν j J },

(3.68)

where (hi , vi , hi , vi )i=1,...,dimC M is the dual frame of (hi , vi , hi , vi )i=1,...,dimC M and

τi j = ∂ Zi/∂ Z j .

Proof Since ω3 is preserved by I3, it follows that g is a pseudo-Riemannian metric

preserved by I3. To check that it is preserved by I1, using (3.17) and (3.66) note that

g(I1h X , I1hY ) = g(vX , vY ) = −iω3(vY , vX ) = −iω3(h X , hY ) = g(h X , hY ) ,

(3.69)

with an analogous computation showing that g(I1vX , I1vY ) = g(vX , vY ). Similarly,

g(I1vX , I1hY ) = g(−h X , vY ) = −iω3(h X , vY ) = 0 = −iω3(vX , hY ) = g(vX , hY ) .

(3.70)

The computations showing that I2 preserves g follow in the same way using (3.17) and

(3.66). Finally, since the almost complex structures from (3.17) satisfy the quaterion

relations, it follows that (N , g, I1, I2, I3) is almost hyperhermitian.

11 We remark that the −1/4π2 factor is only conventional, and it is chosen in order to match certain

conventions when we discuss examples.

12 Recall that the map v : π∗(T 1,0 M) → Vπ ⊗ C is defined to be complex anti-linear, while ν is complex

linear.
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To check (3.68) we note that the first identity for ω3 with

ωi j = −
1

4π2
ων(vi , v j ) (3.71)

follows immediately from (3.66), while the expression for g follows from (3.17). The

last expression in (3.68) for ωi j follows from Lemma 3.16 below, while ωi j = −ω j i

follows immediately from the formula of ωi j and [νi , ν j ] = 0 (or the reality of ω3). ⊓⊔

Besides ω3, we also define for i = 1, 2

ωi (−,−) := g(Ii−,−) , (3.72)

and

� := ω1 + iω2 . (3.73)

It is easy to check using (3.17) and

� = ω3(−I2 + iI1−,−) (3.74)

that � is of type (2, 0) in the almost complex structure I3, and that

�(h X , hY ) = �(vX , vY ) = 0, �(h X , vY ) = 2iω3(vX , vY ) . (3.75)

Definition 3.14 Given a special Joyce structure over an ASK manifold M , we call

the hyperhermitian structure (g, I1, I2, I3) from Proposition 3.13 the hyperhermitian

structure associated to the special Joyce structure.

We would like to now show that the hyperhermitian structure (N , g, I1, I2, I3) is

actually hyperkähler. For this, it is enough to show that the forms ωi are closed for

i = 1, 2, 3. Our main result is then as follows

Theorem 3.15 Given a special Joyce structure Aζ over (M, I , ω,∇), the associated

hyperhermitian structure (N , g, I1, I2, I3) is hyperkähler.

We give the proof of this theorem in the following section.

3.2.4 Proof of the main theorem

In order to prove Theorem 3.15, we discuss several preliminary results.

Lemma 3.16 For X , Y local sections of T 1,0 M → M, we have the expression (recall

that vX is anti-linear, while νX is linear)

ω3(vX , vY ) = ω(Y , X) + νX (νY (J − J )) −
{
νX J , νY J

}
(3.76)
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Proof Consider (Z i ) and (Zi ) a conjugate system of holomorphic special coordinates,

(x i , yi ) the associated affine special coordinates, and (x i , yi , ϕ
i , ϕi ) the induced coor-

dinates on N . We compute locally with respect to holomorphic special coordinates

(Z i ) and the coordinates (Z i , ϕi , ϕi ) on N . Denoting vi := v∂/∂ Z i , νi := ν∂/∂ Z i ,

νi = ν
∂/∂ Z

i , and using (3.66), (3.28), (3.37), (3.29) and (3.25), we find

ω3(vi , v j ) = −
1

4π2
ων(vi , v j ) = −dϕk ∧ dϕk(νi + Hamνi J , ν j + Hamν j J )

=
i

2
Im(τi j ) − νiν j J + ν jνi J − {νi J , ν j J }

=
i

2
Im(τi j ) + νiν j (J − J ) − {νi J , ν j J } ,

(3.77)

where on the last line we used that [ν j , νi ] = 0.

The final expression (3.76) then follows by taking into account that v is complex

anti-linear, while ν is complex linear. ⊓⊔

Lemma 3.17 The forms ωi are closed if and only if with respect to any system of

holomorphic special coordinates (Zi ) on M and the associated hi := h∂/∂ Z i , vi :=

v∂/∂ Z i we have

viω3(v j , vk) = v jω3(vi , vk)

h jω3(vi , vk) = ω3(vi , [h j , vk])

ω3([vi , hk], v j ) = ω3([v j , hk], vi )

viω3(v j , vk) = ω3(vi , [v j , vk])

(3.78)

Proof The proof amounts to computing dω3 and d�, and then simplifying the equa-

tions obtained by setting dω3 = d� = 0 using the flatness conditions from Lemma

3.2, together with the definition of ω3 (3.66) and the relation between � and ω3 in

(3.75). Since the computations are rather long (but simple), we write the detailed

computations in Appendix A. ⊓⊔

We now check the above equations one by one. We recall that in the computations

below the Hamiltonian vector fields and Poisson bracket are with respect to the vertical

symplectic structure from Sect. 3.2.1.

Lemma 3.18 Given a special Joyce structure, the equation

viω3(v j , vk) = v jω3(vi , vk) (3.79)

holds.
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Proof By Lemma 3.16 and (3.37), we obtain

viω3(v j , vk) = 2π i(νi + Hamνi J )(ν jνk(J − J ) − {ν j J , νk J })

= 2π i(νiν jνk(J − J ) + (−νi {ν j J , νk J } + Hamνi J (ν jνk(J − J )))

− Hamνi J {ν j J , νk J })

(3.80)

Now note that since [νi , ν j ] = 0 (recall (3.25)), the quantity

νiν jνk(J − J ) (3.81)

is symmetric in i and j . On the other hand, using (3.29) and the Jacobi identity for the

Poisson bracket

Hamνi J {ν j J , νk J } = {νi J , {ν j J , νk J }}

= −{ν j J , {νk J , νi J }} − {νk J , {νi J , ν j J }}

= Hamν j J {νi J , νk J } − {νk J , {νi J , ν j J }} .

(3.82)

Recalling from Proposition 3.8 that

{νi J , ν j J } (3.83)

must be a function that descends to the base (in fact is must be 0 by the second property

of a special Joyce structure), it follows that

{νk J , {νi J , ν j J }} = 0 �⇒ Hamνi J {ν j J , νk J } = Hamν j J {νi J , νk J } . (3.84)

On the other hand, by using again that [νi , ν j ] = [νi , ν j ] = 0 and {νi J , ν j J } = 0 it

easily follows by an explicit computation that

− νi {ν j J , νk J } + Hamνi J (ν jνk(J − J )) = −νi {ν j J , νk J } + {νi J , ν jνk(J − J )}

(3.85)

is symmetric in i and j . Hence we conclude that

viω3(v j , vk) = v jω3(vi , vk) (3.86)

⊓⊔

Lemma 3.19 Given a special Joyce structure, the following holds

viω3(v j , vk) = ω3(vi , [v j , vk]) . (3.87)
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Proof On the one hand, by an explicit computation using (3.37) and (3.31) we obtain

[v j , vk] = 4π2Ham−ν j νk (J−J )+{ν j J ,νk J } = −4π2HamJ jk
(3.88)

where we have set

J jk := ν jνk(J − J ) + {νk J , ν j J } . (3.89)

On the other hand, we have

ω3(vi , [v j , vk]) = −(2π)3i(ω3(νi , HamJ jk
) + ω3(Hamνi J , HamJ jk

)) . (3.90)

Now note that by (3.66), (3.30) and (3.29)

−(2π)3iω3(Hamνi J , HamJ jk
) = 2π idϕi ∧ dϕi (Hamνi J , HamJ jk

)

= 2π i{νi J , J jk}

= 2π i(Hamνi J (ν jνk(J − J )) + Hamνi J {νk J , ν j J }) .

(3.91)

Finally, an easy computation using again (3.66), (3.30) and (3.29) shows that

− (2π)3iω3(νi , HamJ jk
) = 2π iνi J jk = 2π i(νiν jνk(J − J )−νi {ν j J , νk J }) (3.92)

Hence, we conclude using Lemma 3.16 that

viω3(v j , vk) = ω3(vi , [v j , vk]) . (3.93)

⊓⊔

Lemma 3.20 Give a special Joyce structure, the following holds

h jω3(vi , vk) = ω3(vi , [h j , vk]) (3.94)

Proof We start by noting that

[h j , vk] = 2π i
(
−[H j , νk] + HamH j νk (J−J )−{H j J ,νk J }−[H j ,νk ]J

)
(3.95)

Setting

J jk := H jνk(J − J ) − {H j J , νk J }, (3.96)

one finds that

ω3(vi , [h j , vk]) = 4π2ω3(νi + Hamνi J , [H j , νk] − HamJ jk−[H j ,νk ]J ) . (3.97)
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We compute this by parts. On the one hand, using as in the previous proposition,

(3.66), (3.30) and (3.29), together with [H j , νi ] = 0 (since τi j is holomorphic), we

find

4π2ω3(νi , [H j , νk] − HamJ jk−[H j ,νk ]J )

= 4π2ω3(νi , [H j , νk]) − 4π2ω3(νi , HamJ jk−[H j ,νk ]J )

=
1

4

∂τki

∂ Z j
+ (νi J jk − νi [H j , νk]J )

=
1

4

∂τki

∂ Z j
+ H jνiνk(J − J ) − νi {H j J , νk J }

−νi [H j , νk]J (3.98)

On the other hand, using the Jacobi identity, together with the fact that {νi J ,H j J }

is a function that descends to the base due to Proposition 3.8, we find

−4π2ω3(Hamνi J , HamJ jk−[H j ,νk ]J ) = {νi J , J jk − [H j , νk]J }

= {νi J ,H jνk(J − J )} − {νi J , {H j J , νk J }}

− {νi J , [H j , νk]J }

= {νi J ,H jνk(J − J )} − {H j J , {νi J , νk J }}

− {νi J , [H j , νk]J } .

(3.99)

The remaining term gives, using that [νi , [H j , νk]] = 0,

4π2ω3(Hamνi J , [H j , νk]) = [H j , νk]νi J = νi [H j , νk]J (3.100)

Combining everything we obtain

ω3(vi , [h j , vk]) =
1

4

∂τki

∂ Z j
+ H jνiνk(J − J ) − {H j J , {νi J , νk J }}

+ {νi J ,H jνk(J − J )} − νi {H j J , νk J } − {νi J , [H j , νk]J } .

(3.101)

We rewrite the last three terms as follows, using that [H j , νi ] = [ν j , νi ] = 0, and that

{νi J ,H j J } is a function that descends to the base

{ν
i
J , H j νk(J − J )} − ν

i
{H j J , νk J } − {ν

i
J , [H j , νk ]J }

= {ν
i
J , H j νk J } − {ν

i
J , H j νk J } − {H j νi

J , νk J } − {H j J , ν
i
νk J } − {ν

i
J , [H j , νk ]J }

= {ν
i
J , νkH j J } − {ν

i
J , H j νk J } − {H j νi

J , νk J } − {H j J , ν
i
νk J }

= −{ν
i
νk J , H j J } − H j {νi

J , νk J } − {H j J , ν
i
νk J }

= −H j {νi
J , νk J } + {H j J , ν

i
νk(J − J ); }

(3.102)
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hence, overall we have

ω3(vi , [h j , vk]) =
1

4

∂τki

∂ Z j
+ H jνiνk(J − J ) − {H j J , {νi J , νk J }}

− H j {νi J , νk J } + {H j J , νiνk(J − J )} .

(3.103)

The latter is easily seen to be equal to h jω3(vi , vk), so

h jω3(vi , vk) = ω3(vi , [h j , vk]) . (3.104)

⊓⊔

Lemma 3.21 Given a special Joyce structure, the following holds

ω3([vi , hk], v j ) = ω3([v j , hk], vi ) (3.105)

Proof Following a similar computation to before, we now have

[vi , hk] = 2π i([νi ,Hk] + HamJik
) (3.106)

where

Jik := νiHk J − Hkνi J + {νi J ,Hk J } . (3.107)

With this we find by similar computations from previous propositions

ω3([vi , hk], v j ) = −
1

4

∂τi j

∂ Z
k

− ν j Jik + [νi ,Hk]ν j J + {Jik, ν j J } . (3.108)

Now note that the first term is symmetric in i and j . Furthermore, expanding the next

two terms we see that

−ν
j
J
ik

+[ν
i
, H

k
]ν

j
J = −ν

j
ν

i
H

k
J +(ν

j
H

k
ν

i
J +ν

i
H

k
ν

j
J )−H

k
ν

i
ν

j
J −ν

j
{ν

i
J , H

k
J } .

(3.109)

In particular, using that [νi , ν j ] = 0 we see that all the terms above are symmetric in

i and j , except possibly the last. Hence, to check the identity that we want, we just

need to show that the following expression is symmetric in i and j

− ν j {νi J ,Hk J } + {Jik, ν j J } . (3.110)

We have

−ν j {νi J ,Hk J } + {Jik, ν j J } = −{ν jνi J ,Hk J }+(−{νi J , ν jHk J }+{νiHk J , ν j J })

− {Hkνi J , ν j J } + {{νi J ,Hk J }, ν j J } .

(3.111)
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The first term and the term in parenthesis are clearly symmetric in i and j . On the

other hand, {νi J , ν j J } = 0 by Definition 3.12 and Lemma 3.10, so we find that

− {Hkνi J , ν j J } = −Hk{νi J , ν j J } + {νi J ,Hkν j J } = −{Hkν j J , νi J } , (3.112)

while from the Jacobi identity and the fact {νi J , ν j J } = 0 it follows that

{{ν
i
J , H

k
J }, ν

j
J } = −{{H

k
J , ν

j
J , }, ν

i
J } − {{ν

j
J , ν

i
J }, H

k
J } = {{ν

j
J , H

k
J }, ν

i
J }

(3.113)

so the last summand is also symmetric. The lemma then follows. ⊓⊔

From the previous Lemmas 3.17, 3.18, 3.19, 3.20 and 3.21, we find that the real

2-forms ωi for i = 1, 2, 3 are closed. In particular, it follows that (N , g, I1, I2, I3) is

hyperkähler and Theorem 3.15 is proved.

4 Examples of special Joyce structures

In this section we discuss two examples. One is the case of a trivial special Joyce

structure, which recovers the semi-flat HK metric [1, 12] associated to an ASK mani-

fold, while the second concern HK metrics associated to uncoupled variations of BPS

structures over an ASK manifold [10, 14].

4.1 The trivial special Joyce structure and the semi-flat HKmetric

We start with the easiest case, where we take the family Aζ from (3.38) determined

by

J = 0 . (4.1)

In this case, the bundle maps h and v from (3.37) reduce to

h X = HX , vX = 2π iνX (4.2)

and the family of complexified Ehresmann connections reduces to

A
ζ
X = HX +

2π i

ζ
νX

A
ζ

X
= HX + 2π iζνX .

(4.3)

It is easy to check that h and v from above satisfy (3.4). Furthermore, the flatness

conditions of Proposition 3.8 are trivially satisfied, while the second point of Definition

3.12 follows from Lemma 3.10. Hence, the corresponding Aζ gives a special Joyce

structure.

The Kähler form ω3 is simply given by (recall (3.66) and Lemma 3.16)

4π2ω3(νX , νY ) = ω3(HY ,HX ) := ω(Y , X), ω3(HX , νY ) = ω3(HX , νY ) = 0 .

(4.4)
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where X , Y are local sections of T 1,0 M → M . In particular, in terms of affine special

coordinates (x i , yi ) on M and the induced coordinates (x i , yi , ϕ
i , ϕi ) on N = T M ,

we obtain using (3.66), (3.27), (3.28) and (4.4) that

ω3 = dx i ∧ dyi +
1

4π2
dϕi ∧ dϕi . (4.5)

In terms of a conjugate system of holomorphic special coordinates (Z i ) and (Zi )

inducing (x i , yi ), we can further write using Lemma 2.6

ω3 =
i

2
Im(τi j )dZ i ∧ dZ

j
+

1

4π2
dϕi ∧ dϕi . (4.6)

On the other hand, � = ω1 + iω2 can be determined by using (3.75). One finds in

local coordinates that

� = −
1

2π
dZ i ∧ (dϕi + τi j dϕ j ) . (4.7)

Now in order to compare with the semi-flat HK structure, we remark that this

structure is more naturally defined on T ∗M instead of T M . In order to relate them,

we use the natural identification T M ∼= T ∗M given by

X → ω(X ,−) , (4.8)

where ω is the Kähler form of the ASK manifold.

With such an identification, if (x i , yi ) are affine special coordinates on M ,

(x i , yi , ϕ
i , ϕi ) the induced coordinates on T M , and (x i , yi , θi , θ

i ) the coordinates

induced on T ∗M , then the identification by ω is given in terms of the above coordi-

nates by

(x i , yi , ϕ
i , ϕi ) → (x i , yi ,−ϕi , ϕ

i ) = (x i , yi , θi , θ
i ) . (4.9)

In particular, in the above coordinates on T ∗M the induced HK structure on T ∗M via

ω : T M ∼= T ∗M has the local form

ω3 = dx i ∧ dyi −
1

4π2
dθi ∧ dθ i , � =

1

2π
dZ i ∧ (dθi − τi j dθ j ) . (4.10)

Comparing with the formulas from [10, Equation (2.25) and Equation (2.26)], one

checks that the induced HK structure on T ∗M matches the usual semi-flat HK structure

associated to an ASK manifold.

4.2 HKmetrics associated to uncoupled variations of BPS structures

Here we present our main non-trivial example. In order to present this example, we

give a brief review of variation of BPS structures and a slight reformulation of certain

ASK geometries.
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4.2.1 Special period structures and ASK geometries

Consider a complex manifold M of dimension dimC(M) = n.

Definition 4.1 A period structure over a complex manifold M is a tuple (M, Ŵ, Z)

such that

• Ŵ → M is a bundle of lattices. Furthermore Ŵ has a fiberwise integral skew-pairing

〈−,−〉p : Ŵp × Ŵp → Z , p ∈ M . (4.11)

• Z is a holomorphic section of Hom(Ŵ, C) → M . If γ is a local section of Ŵ, we

can contract Z and γ to obtain a local holomorphic function on M . We denote this

contraction by

Zγ := Z(γ ) . (4.12)

Now we explain the notion of special period structure over M . As we will see below,

this should be thought as encoding an ASK structure on M where the flat connection

∇ comes from a certain “integral" structure on T M → M .

Definition 4.2 A period structure (M, Ŵ, Z) is special if

• Ŵ ⊂ T M is a bundle lattices of rank 2n = dim(M) (i.e., Ŵp ⊗ R = Tp M for all

p ∈ M) and furthermore the pairing 〈−,−〉 is non-degenerate. We assume that

around any point p ∈ M we can find a local Darboux frame (γi , γ
i ) of 〈−,−〉.

Namely

〈γi , γ
j 〉 = δ

j
i , 〈γi , γ j 〉 = 〈γ i , γ j 〉 = 0 . (4.13)

We denote by ω the non-degenerate 2-form on M induced by 〈−,−〉.

• If I is the complex structure of M , then ω is compatible with I (i.e., ω(I−, I−) =

ω(−,−)).

• If ∇ is the flat connection on M induced by Ŵ ⊂ T M and ξ1,0 is the complex

vector field on M determined by

1

2
Z = ω(ξ1,0,−) , (4.14)

then we have

π1,0 = ∇ξ1,0, (4.15)

where

π1,0 : T M ⊗ C → T 1,0 M (4.16)

is the canonical projection into (1, 0) vectors with respect to I .

Proposition 4.3 Given a special period structure (M, Ŵ, Z), one obtains an ASK struc-

ture (M, ω,∇)with Kähler formω induced from the pairing 〈−,−〉and flat connection

∇ induced from Ŵ. Furthermore, given a local Darboux frame (γi , γ
i ) of Ŵ → M,

the associated holomorphic functions (Z i = Zγ i ), (Zi = Zγi
) are conjugate systems
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of holomorphic special coordinates, and the affine special coordinate system (x i , yi )

induced from (Z i ) and (Zi ) satisfies that

γi = ∂x i , γ i = ∂yi
. (4.17)

Proof Since ω is induced from the pairing 〈−,−〉 on Ŵ, and ∇ is induced from Ŵ,

then we clearly have ∇ω = 0 . Now note that if (γi , γ
i ) is a local Darboux frame of

(Ŵ, 〈−,−〉) and (δi , δi ) denotes the dual frame on Ŵ∗ ⊂ T ∗M then

Z = Z iδi + Ziδ
i , ω = δi ∧ δi (4.18)

implies that

ξ1,0 =
1

2
(Z iγi − Ziγ

i ) . (4.19)

Since π1,0 = ∇ξ1,0 and 2Re(π1,0) = IdT M , it follows that (x i = Re(Z i ), yi =

−Re(Zi )) is a coordinate system such that (4.17) holds, so in particular it must be a

flat Darboux coordinate system for ω, and hence an affine special coordinate system.

We then obtain that

ω = dx i ∧ dyi , (4.20)

so ω is closed, and hence symplectic. Since ω is compatible with I , we then obtain

that (M, I , ω) is pseudo-Käher. Furthermore, the flatness of ∇ implies d2
∇ = 0 (recall

that d∇ denotes the extension of ∇ to higher degree forms valued in T M , namely

d∇ : �k(M, T M) → �k+1(M, T M)), and hence

π1,0 =
1

2
(1T M − iI ) = ∇ξ1,0 = d∇ξ1,0 (4.21)

implies that

0 = d∇π1,0 =
1

2
(d∇(1T M ) − id∇(I )) �⇒ d∇(1T M ) = 0, d∇(I ) = 0 . (4.22)

The condition d∇(1T M ) = 0 is equivalent to the torsion freeness of ∇ (which already

follows from previous arguments), while d∇(I ) = 0 is the remaining condition needed

to obtain an ASK structure. Hence, we conclude that (M, I , ω,∇) is affine special

Kähler. It then follows from the same argument given in Lemma 2.4 that (Z i ) and

(Zi ) are conjugate systems of holomorphic special coordinates. ⊓⊔

4.2.2 Variations of BPS structures

Variations of BPS structures were introduced in [5]. As mentioned in the introduction,

they can be thought as abstracting certain natural structures associated to a triangulated

3d Calabi–Yau category, and its associated Donaldson–Thomas invariants and stability

condition space. From the physics perspective, they can also be thought as abstracting

natural structures associated to 4d N = 2 supersymmetric field theories and their BPS

states [14].
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Definition 4.4 A variation of BPS structures is a tuple (M, Ŵ, Z ,�) such that

• (M, Ŵ, Z) is a period structure.

• � : Ŵ \ {0} → Q is a function satisfying the Kontsevich–Soibelman wall-crossing

formula (see [5, 16]) and �(γ ) = �(−γ ). We will not state the wall-crossing

formula, since it requires to introduce several notions and we will restrict to a

simpler case where the statement of the wall-crossing formula becomes easier.13

The numbers �(γ ) are called the BPS indices.

• Support property: Given any compact set K ⊂ M and a choice of norm | − | on

the vector bundle Ŵ|K ⊗Z R → K , there should be a constant C such that for any

γ ∈ Ŵ|K ∩ Supp(�), we have

|Zγ | > C |γ | . (4.23)

Here Supp(�) denotes the set of γ ∈ Ŵ such that �(γ ) �= 0.

• Convergence property: for any R > 0, the series

∑

γ∈Ŵ|p

|�(γ )|e−R|Zγ | (4.24)

converges normally on compact subsets of M .

Remark 4.5 Our support and convergence property are stronger than as stated in [5],

but the same as in [10]. We use this stronger version to guarantee that certain infinite

sums involving the �(γ ) below give rise to smooth functions. We do not rule out that

weaker assumptions also guarantee the above.

Definition 4.6 A variation of BPS structures (M, Ŵ, Z ,�) is uncoupled (or mutually

local) if for any p ∈ M and γ, γ ′ ∈ Ŵp

�(γ ),�(γ ′) �= 0 �⇒ 〈γ, γ ′〉 = 0 . (4.25)

We say that (M, Ŵ, Z ,�) is coupled if it is not uncoupled.

In the case of an uncoupled variation of BPS structures, the wall-crossing formula

implies that �(γ ) must be locally constant and monodromy invariant.

4.2.3 The special Joyce structure and the associated HKmetric

Our starting point is an uncoupled variation of BPS structures (M, Ŵ, Z ,�) such that

(M, Ŵ, Z) is a special period structure. In particular, we have an ASK geometry on M

determined by (M, Ŵ, Z) according to Proposition 4.3. In [10] a hyperkäher structure

on T ∗M is constructed from this data, based on previous work in the physics literature

[14].

13 Roughly speaking, the numbers �(γ ) jump along a real codimension 1 subset of M determined by

(M, Ŵ, Z). However, they do not jump arbitrarily, but the jump is uniquely determined by the Kontsevich–

Soibelman wall-crossing formula.
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It is shown in [10, Lemma 3.14] that in the above setting, we can always find

a local Darboux frame (γi , γ
i ) of Ŵ around any point p ∈ M such that Supp(�) ⊂

spanZ{γ i }i=1,...,n . The frame (γi , γ
i ) induces a conjugate system of holomorphic spe-

cial coordinates (Z i ) and (Zi ) on M as in Proposition 4.3, which in turn induces affine

special coordinates (x i , yi ) on M . We denote as before (x i , yi , ϕ
i , ϕi ) the induced

coordinates on T M and (x i , yi , θi , θ
i ) the induced coordinates on T ∗M . Furthermore,

in such a situation if γ ∈ Supp(�) has the expression

γ = ni (γ )γ i , (4.26)

then we write

ϕγ := ni (γ )ϕi , θγ := ni (γ )θ i . (4.27)

Finally, in order to write the function J specifying the special Joyce structure, we

denote the modified Bessel functions of the second kind by Kα(x). The function J is

then defined by

J =
1

2π i

∑

γ

�(γ )
∑

n>0

einϕγ

n2
K0(2πn|Zγ |) . (4.28)

In Appendix B we discuss a relation between the function J from (4.28) and the

instanton generating function G studied in [2], which in turn is related to the formula

of the Plebański potential found in [3].

Proposition 4.7 The function J given in (4.28) defines a global smooth function on N

and it is imaginary-valued.

Proof By the same arguments given in [10, Lemma 3.9], the support property ensures

that the summands are well defined (i.e., |Zγ | �= 0), while the normal convergence of

the sum follows from the exponential decay of the Bessel functions Kα(x) as x → ∞,

together with the convergence property of the BPS structure and the support property

(which guarantees that |Zγ | → ∞ as ||γ || → ∞). The normal convergence then

implies that J is smooth. Furthermore, the monodromy invariance of the �(γ )’s and

the fact that we sum over all γ implies that the above expressions is actually a global

function on N . Finally, the fact that J is imaginary follows from the parity property

�(γ ) = �(−γ ). ⊓⊔

We can now use J to define Aζ via (3.38). The exponential decay of the terms

involving J as |Zγ | → ∞ (which follows from the same argument in [10, Section

3.2]) and the fact that (4.3) is a special Joyce structure implies that the non-degeneracy

conditions (3.4) are satisfied at least on π−1(U ) ⊂ N for some open subset U ⊂ M .

By restricting M if necessary, we assume that (3.4) holds on all of N = T M .

Proposition 4.8 The family of complexified Ehresmann connections Aζ on π : N →

M specified by the function J via (3.38) defines a special Joyce structure.

Proof Consider as before a local Darboux frame (γi , γ
i ) of Ŵ such that Supp(�) ⊂

spanZ{γ i }i=1,...,n . Furthermore, consider the corresponding induced conjugate system

of holomorphic special coordinates (Z i ) and (Zi ) as in Proposition 4.3, and the induced
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coordinate system (x i , yi , ϕ
i , ϕi ) on N . With respect to the coordinates (Z i , ϕi , ϕi )

on N , we then find that the function J only depends on (Z i , ϕi ). This implies that

all the expressions involving Poisson brackets in Proposition 3.8 vanish, while the

second condition of Definition 3.12 is satisfied due to Lemma 3.10. Hence, using that

J = −J , the condition from Proposition 3.8 that remain to be checked is that for local

holomorphic sections X , Y of T 1,0 M → M

νX (HY J ) − νY (HX J ) = 0

HX (HY J ) + 4π2 · νX (νY J ) = 0 ,
(4.29)

up to the addition of functions that descend to M . In fact, we will see that these

equations are satisfied exactly. To check this, we note that now we have

H ∂

∂ Zi
J =

∂ J

∂ Z i
, ν ∂

∂ Zi
J =

1

2

∂ J

∂ϕi
, (4.30)

where the latter is due to the fact that J is independent of the ϕi . Equation (4.29) then

simplifies to checking that

∂2 J

∂ Z i∂ϕ j
=

∂2 J

∂ Z j∂ϕi
,

∂2 J

∂ Z i∂ Z
j

+ π2 ∂2 J

∂ϕi∂ϕ j
= 0 . (4.31)

The first one follows easily, while the second follows from the following identities

involving derivatives of the Bessel functions

K ′
0(x) = −K1(x), (x K1(x))′ = −x K0(x) . (4.32)

We then conclude that the corresponding family Aζ defines a special Joyce structure.

⊓⊔

Remark 4.9 Note that in the general description of special Joyce structures in

Sect. 3.2.2 there is no reality condition imposed on the function J : N → C. Never-

theless, if one is looking for a solution of the flatness conditions (3.42) and (3.43) in

the case that J (Z i , ϕi , ϕi ) is independent of the ϕi (like in the uncoupled case from

above), only the combination J − J is relevant, since the terms with vertical Poisson

brackets vanish automatically. Hence, in this case it is natural to look for an iR-valued

J . In the above case of (4.28) we can locally deform J → J + f with any R-valued

function f (Z i , ϕi ) independent of the ϕi , and obtain a C-valued function satisfying

(3.42) and (3.43).

We now discuss the induced HK structure. The maps h and v from (3.37) in this

case reduce to

hi := h ∂

∂ Zi
=

∂

∂ Z i
+

∂2 J

∂ Z i∂ϕ j

∂

∂ϕ j

,
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vi := v ∂

∂ Zi
= π i

(
∂

∂ϕi
− τ i j

∂

∂ϕ j

+
∂2 J

∂ϕi∂ϕ j

∂

∂ϕ j

)
. (4.33)

On the other hand, from Lemma 3.16 and the fact that J is imaginary-valued we have

ω3(vi , v j ) = ω

(
∂

∂ Z j
,

∂

∂ Z
i

)
+ 2ν ∂

∂ Z
i
ν ∂

∂ Z j
(J ) =

i

2
Im(τi j ) +

1

2

∂2 J

∂ϕi∂ϕ j
. (4.34)

If we introduce the notation from [10, Equation 3.9]

Vγ :=
1

2π

∑

n>0

einϕγ K0(2πn|Zγ |)

Aγ := −
1

4π

∑

n>0

einϕγ |Zγ |K1(2πn|Zγ |)

(
dZγ

Zγ

−
dZγ

Zγ

)
,

(4.35)

we then obtain

ω3(vi , v j ) = ω3(h j , hi ) =
i

2

⎛
⎝Im(τi j ) +

∑

γ

�(γ )ni (γ )n j (γ )Vγ

⎞
⎠ ,

ω3(hi , v j ) = ω3(v j , hi ) = 0. (4.36)

One can check by an explicit computation that we can write

ω3 =
i

2
Im(τi j )dZ i ∧ dZ

j
+

1

4π2
dϕi ∧ dϕi

+
∑

γ

�(γ )

(
i

2
Vγ dZγ ∧ dZγ +

1

2π
dϕγ ∧ Aγ

)
, (4.37)

by evaluating the right-hand side of (4.37) on the local frame given by hi , hi , vi , vi

and checking that it matches with (4.36). Similarly, using (3.75) one checks that the

following expression for � holds

� = −
1

2π
dZ i ∧ (dϕi + τi j dϕ j ) +

∑

γ

�(γ )

(
dZγ ∧ Aγ +

i

2π
Vγ dϕγ ∧ dZγ

)
.

(4.38)

As in the semi-flat case, using the identification ω : T M ∼= T ∗M given by X →

ω(X ,−), we can induce from the above HK structure an HK structure on T ∗M . After

doing so, we obtain in the coordinates (Z i , θi , θ
i ) the follows local expressions for ω3
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and �

� =
1

2π
dZ i ∧ (dθi − τi j dθ j ) +

∑

γ

�(γ )

(
dZγ ∧ Aγ +

i

2π
Vγ dθγ ∧ dZγ

)

ω3 =
i

2
Im(τi j )dZ i ∧ dZ

j
−

1

4π2
dθi ∧ dθ i

+
∑

γ

�(γ )

(
i

2
Vγ dZγ ∧ dZγ +

1

2π
dθγ ∧ Aγ

)
,

(4.39)

matching with the expressions from [10, Equation (3.10) and (3.11)]. Hence, this

special Joyce structure recovers the HK metrics associated to uncoupled variations of

BPS structures studied in [10].

5 Relation to hyperkähler metrics on algebraic integrable systems

In this section we consider an ASK manifold M whose ASK structure is given by

a special period structure (M, Ŵ, Z) (recall Definition 4.2), together with a special

Joyce structure Aζ over M . We further assume a certain simple compatibility condi-

tion between Aζ and (M, Ŵ, Z), introduced below. We then show that such special

Joyce structures induce an HK metric with a compatible algebraic integrable system

structure.

Definition 5.1 Consider a special period structure (M, Ŵ, Z) and a special Joyce struc-

ture Aζ over the induced ASK manifold (M, I , ω,∇). We say that Aζ is compatible

with the period structure (M, Ŵ, Z) if the induced hyperkäher structure on N = T M

is invariant under the action by fiberwise translations by 2π · Ŵ ⊂ T M .14

In the above situation, we get an induced HK structure on the quotient X :=

T M/2π ·Ŵ. Note that if dimC(M) = n, then the fibers X p of the canonical projection

π : X → M satisfy

X p = Tp M/2π · Ŵp
∼= (S1)2n . (5.1)

If (M, Ŵ, Z) is a special period structure, then special Joyce structures from our

examples in Sect. 4 are compatible with (M, Ŵ, Z). Indeed, note that if (γi , γ
i ) is a

local Darboux frame of Ŵ, then by Proposition 4.3 we have that the induced affine

special coordinates (x i , yi ) satisfy

γi = ∂x i , γ i = ∂yi
. (5.2)

Hence, with respect to the induced coordinates (x i , yi , ϕ
i , ϕi ) on T M , translations by

2π · Ŵ amount to the shifts

ϕi → ϕi + 2πni , ϕi → ϕi + 2πni , ni , ni ∈ Z . (5.3)

14 This type of condition is already included in the definition of Joyce structure in [6].
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It is easy to check from the expressions of the corresponding HK structures on Sect. 4

that the HK structures are invariant by translations by 2π · Ŵ.

We now recall the definition of an algebraic integrable system, taken from [12,

Section 3].

Definition 5.2 An algebraic integrable system is a tuple (π : X → M,�, [ρ]) such

that:

• π : X → M is a holomorphic submersion.

• � ∈ �2,0(X) is a holomorphic symplectic form on X .

• The fibers X p := π−1(p) are compact and Lagrangian, and hence tori.

• [ρ] gives a family of smoothly varying classes [ρp] ∈ H1,1(X p) ∩ H2(X p, Z)

defining a possibly indefinite polarization of X p.

Definition 5.3 Consider a hyperkähler manifold (X , g, I1, I2, I3) (possibly with indef-

inite signature) with associated Kähler forms ωi , i = 1, 2, 3; together with an algebraic

integrable system structure (π : X → M,�, [ρ]). We will say that the two structures

are compatible if:

• π : X → M is holomorphic with respect to the complex structure I3 on X .

• The holomorphic symplectic form ω1 + iω2 with respect to I3 equals �.

• The polarizations of the fibers of π : X → M are specified by ω3 in the sense that

[ω3|X p ] = [ρp].

Proposition 5.4 Consider a special period structure (M, Ŵ, Z) and a special Joyce

structure Aζ over M compatible with the period structure. Then the associated HK

structure (X := T M/2π · Ŵ, g, I1, I2, I3) has a compatible algebraic integrable

system structure where π : X → M is the canonical projection.

Proof To show that π is holomorphic with respect to I3 and the complex structure I

on M , it is enough to show that

dπ ◦ I3 = I ◦ dπ . (5.4)

The latter follows from (3.17). On the other hand, the fact that the fibers are Lagrangian

with respect to π follows from (3.75). Finally, note that from (3.66), we have that

ω3|Tp M = −
1

4π2
ων |Tp M . (5.5)

In particular, with respect to affine special coordinates (x i , yi ) around p and the

induced coordinates (x i , yi , ϕ
i , ϕi ) on T M , we have (recall (3.28))

ω3|Tp M =
1

4π2
dϕi ∧ dϕi . (5.6)

From this it follows that ω3|X p is a closed form defining an integral cohomology class

on X p
∼= (S1)2n . The fact that it is of type (1, 1) follows from the second condition of

Definition 3.12. Hence, the cohomology class [ω3|X p ] defines a (possibly indefinite)

polarization on X p. ⊓⊔

123



Special Joyce structures and hyperkähler metrics Page 39 of 45 124

Remark 5.5 Note that the above HK geometries obtained from special Joyce structures

satisfy a slightly stronger compatibility condition than the one from Definition 5.3.

Namely, ω3 restricted to the fibers gives the unique invariant closed (1, 1) form speci-

fying the polarizations, rather than just specifying the polarization via its cohomology

class.

Note that by [12, Theorem 3.4], given an algebraic integrable system (π : X →

M,�, [ρ]), there is an ASK structure on the base M determined by the integrable

system structure. Roughly speaking,� is used to relate X to T ∗M/�, where� ⊂ T ∗M

is a bundle of full rank lattices. One then uses the bundle of lattices � → M to

induce the flat connection on M of the ASK structure, while the Kähler form ω is

determined by the polarizations [ρp]. Suppose now that we start with an HK structure

on X = T M/(2π · Ŵ) having a compatible algebraic integrable system structure

(π : X → M,�, [ρ]). We further assume that the HK structure lifts to T M . By the

previous argument, one automatically obtains an ASK structure on M . On the other

hand, one can consider the CP1-family of complex structures Iζ determined by the

HK structure via (3.18) and the corresponding involutive distributions T
0,1
Iζ

(T M) ⊂

T (T M) ⊗ C. The question is then whether the distributions T
0,1
Iζ

(T M) for ζ ∈ C×

allows us to define complexified Ehresmann connections Aζ with the form (3.38).

Whether this “reverse" point of view on special Joyce structures holds will be deferred

for future work.
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A Proof of Lemma 3.17

In general we have

dωi (X , Y , Z) = Xωi (Y , Z) − Yωi (X , Z) + Zωi (X , Y ) − ωi ([X , Y ], Z)
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+ωi ([X , Z ], Y ) − ωi ([Y , Z ], X). (A.1)

For ω3 in particular, since ω3 is of type (1, 1) in complex structure I3, we know that

dω3 can only have a (2, 1) and (1, 2) component. Using (3.66) and Lemma 3.2, the

relevant equations for the (2, 1) component are

dω3(hi , h j , hk) = hiω3(h j , hk)−h jω3(hi , hk)+ω3([hi , hk], h j )−ω3([h j , hk], hi )

dω3(vi , h j , hk) = viω3(h j , hk) + ω3([vi , hk], h j ) − ω3([h j , hk], vi )

dω3(vi , v j , hk) = ω3([vi , hk], v j ) − ω3([v j , hk], vi )

dω3(hi , h j , vk) = ω3([hi , vk], h j ) − ω3([h j , vk], hi )

dω3(vi , h j , vk) = −h jω3(vi , vk) + ω3([vi , vk], h j ) − ω3([h j , vk], vi )

dω3(vi , v j , vk) = viω3(v j , vk) − v jω3(vi , vk) + ω3([vi , vk], v j ) − ω3([v j , vk], vi )

(A.2)

for all i, j, k = 1, ..., dimC(M). The (1, 2) component is automatically obtained by

conjugation and using the reality of ω3.

On the other hand, for � = ω1 + iω2, d� has a (3, 0) and a (2, 1) component.

Using (3.75) and Lemma 3.2, the equations relevant for the (3, 0) component are

d�(hi , h j , hk) = 0

d�(vi , h j , hk) = −h j�(vi , hk) + hk�(vi , h j )

d�(vi , v j , hk) = vi�(v j , hk) − v j�(vi , hk)

d�(vi , v j , vk) = 0

(A.3)

while for the (2, 1) component we obtain

d�(hi , h j , hk) = �([hi , hk], h j ) − �([h j , hk], hi )

d�(vi , h j , hk) = hk�(vi , h j ) + �([vi , hk], h j ) − �([h j , hk], vi )

d�(vi , v j , hk) = �([vi , hk], v j ) − �([v j , hk], vi )

d�(hi , h j , vk) = �([hi , vk], h j ) − �([h j , vk], hi )

d�(hi , v j , vk) = vk�(hi , v j ) + �([hi , vk], v j ) − �([v j , vk], hi )

d�(vi , v j , vk) = �([vi , vk], v j ) − �([v j , vk], vi ) .

(A.4)

The above equations should hold again for all i, j, k = 1, ..., dimC(M).

In order to simplify the above equations, we note that by an explicit computation

using the definitions of h and v (3.37), one finds that

[hi , h j ], [vi , h j ], [hi , v j ], [vi , v j ] ∈ span{vi , v j }i, j=1,...,dimC(M) . (A.5)
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Using the above in conjunction with (3.66), the equations for dω3 simplify to

dω3(hi , h j , hk) = hiω3(h j , hk) − h jω3(hi , hk)

dω3(vi , h j , hk) = viω3(h j , hk) − ω3([h j , hk], vi )

dω3(vi , v j , hk) = ω3([vi , hk], v j ) − ω3([v j , hk], vi )

dω3(hi , h j , vk) = 0

dω3(vi , h j , vk) = −h jω3(vi , vk) − ω3([h j , vk], vi )

dω3(vi , v j , vk) = viω3(v j , vk) − v jω3(vi , vk) + ω3([vi , vk], v j ) − ω3([v j , vk], vi )

(A.6)

while using (3.75) the ones for the (2, 1) component of d� simplify to

d�(hi , h j , hk) = �([hi , hk], h j ) − �([h j , hk], hi )

d�(vi , h j , hk) = hk�(vi , h j ) + �([vi , hk], h j )

d�(vi , v j , hk) = 0

d�(hi , h j , vk) = �([hi , vk], h j ) − �([h j , vk], hi )

d�(hi , v j , vk) = vk�(hi , v j ) − �([v j , vk], hi )

d�(vi , v j , vk) = 0

(A.7)

Hence, overall we need to check if the following expressions are 0

(1) dω3(hi , h j , hk) = hiω3(h j , hk) − h jω3(hi , hk)

(2) dω3(vi , h j , hk) = viω3(h j , hk) − ω3([h j , hk], vi )

(3) dω3(vi , v j , hk) = ω3([vi , hk], v j ) − ω3([v j , hk], vi )

(4) dω3(vi , h j , vk) = −h jω3(vi , vk) − ω3([h j , vk], vi )

(5) dω3(vi , v j , vk) = viω3(v j , vk) − v jω3(vi , vk)

+ ω3([vi , vk], v j ) − ω3([v j , vk], vi )

(6) d�(vi , h j , hk) = −h j�(vi , hk) + hk�(vi , h j )

(7) d�(vi , v j , hk) = vi�(v j , hk) − v j�(vi , hk)

(8) d�(hi , h j , hk) = �([hi , hk], h j ) − �([h j , hk], hi )

(9) d�(vi , h j , hk) = hk�(vi , h j ) + �([vi , hk], h j )

(10) d�(hi , h j , vk) = �([hi , vk], h j ) − �([h j , vk], hi )

(11) d�(hi , v j , vk) = vk�(hi , v j ) − �([v j , vk], hi )

(A.8)

As a next step to further simplify the above equations, we use (3.66), (3.75), (A.5),

and [hi , h j ] = [vi , v j ] from the flatness conditions in Lemma 3.2, obtaining (the
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equations with primes are the ones that were rewritten)

(1′) dω3(hi , h j , hk) = hiω3(vk, v j ) − h jω3(vk, vi )

(2′) dω3(vi , h j , hk) = viω3(vk, v j ) − ω3([v j , vk], vi )

(3) dω3(vi , v j , hk) = ω3([vi , hk], v j ) − ω3([v j , hk], vi )

(4) dω3(vi , h j , vk) = −h jω3(vi , vk) − ω3([h j , vk], vi )

(5) dω3(vi , v j , vk) = viω3(v j , vk) − v jω3(vi , vk)

+ ω3([vi , vk], v j ) − ω3([v j , vk], vi )

(6′) d�(vi , h j , hk) = −2i(h jω3(vi , vk) − hkω3(vi , v j ))

(7′) d�(vi , v j , hk) = 2i(viω3(v j , vk) − v jω3(vi , vk))

(8′) d�(hi , h j , hk) = −2i(ω3(v j , [vi , vk]) − ω3(vi , [v j , vk]))

(9′) d�(vi , h j , hk) = −2i(hkω3(v j , vi ) + ω3(v j , [vi , hk])

(10′) d�(hi , h j , vk) = −2i(ω3(v j , [hi , vk]) − ω3(vi , [h j , vk]))

(11′) d�(hi , v j , vk) = 2i(vkω3(vi , v j ) + ω3(vi , [v j , vk]))

(A.9)

From the above, together with the flatness condition [vi , h j ] = [v j , hi ] from Lemma

3.2 we see that setting the equations to 0 for all i, j, k = 1, ..., dimC(M) gives

the following implications among them (a bar over a number means the conjugate

equation)

(1′) ⇐⇒ (6′), (7′) and (8′) �⇒ (5), (4) ⇐⇒ (9′), (2′) + (8′) �⇒ (11′)

(3) and ([vi , h j ] = [v j , hi ]) �⇒ (10′), (2′) and (7′) �⇒ (8′),

(4) and ([vi , h j ] = [v j , hi ]) �⇒ (1′) (A.10)

Hence, we can reduce dω3 = 0 and d� = 0 to just checking that (2′), (3), (4) and

(7′) are equal to 0. Namely, we must check that

viω3(v j , vk) = v jω3(vi , vk)

h jω3(vi , vk) = ω3(vi , [h j , vk])

ω3([vi , hk], v j ) = ω3([v j , hk], vi )

viω3(v j , vk) = ω3(vi , [v j , vk]) .

(A.11)

The result of the lemma then follows.

B Relation to the instanton generating function

In the work of [3], a certain integral formula is given for the Plebański potential J̃ 15

associated to a variation of BPS structures (M, Ŵ, Z ,�) [3, Equation (1.5)]. This

15 In their notation it is denoted W .
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formula is in turn related to the so-called instanton generating function G studied by

the same authors in [2, Equation (3.22)], in the context of instanton corrections in

Calabi–Yau compactifications of type IIA/B string theory. We further remark that,

even though the BPS indices �(γ ) jump across the walls of marginal stability, the

functions J̃ and G are smooth across the walls [2, Appendix C].

In this appendix we show that the function J from (4.28), specifying the special

Joyce structure associated to an uncoupled variation of BPS structures, admits an

integral formula similar to the one in [3, Equation (1.5)].16 In this case a second

summand like in [3, Equation (1.5)] is not present due to the BPS structure being

uncoupled.

Proposition B.1 Consider an uncoupled variation of BPS structures (M, Ŵ, Z ,�) and

the corresponding function J from (4.28). Then J admits the representation

J =
1

4π i

∑

γ

�(γ )

∫

lγ

dζ

ζ
Li2(Xγ (ζ )) (B.1)

where

Xγ (ζ ) = exp

(
π

Zγ

ζ
+ iϕγ + πζ Zγ

)
, lγ = {ζ ∈ C | Zγ /ζ ∈ R<0} , (B.2)

and Li2(z) denotes the dilogarithm function.

Proof For γ with �(γ ) �= 0, we first parametrize lγ by ζ = −s · Zγ /|Zγ | for s > 0.

Recall that by the support property in Definition 4.4 we must have Zγ �= 0 whenever

�(γ ) �= 0, so this parametrization makes sense. Now note that

|Xγ (−s · Zγ /|Zγ |)| = | exp(−s−1π |Zγ | + iϕγ − sπ |Zγ |)| < 1 , (B.3)

so we can use the series expansion of Li2(z)

Li2(z) =
∑

n>0

zn

n2
, |z| < 1 , (B.4)

to write

∫

lγ

dζ

ζ
Li2(Xγ (ζ )) =

∑

n>0

einϕγ

n2

∫ ∞

0

ds

s
exp(−s−1nπ |Zγ | − snπ |Zγ |) , (B.5)

where we have used the Fubini–Tonelli theorem to exchange the sum with the integral.

Now note that by using the integral representation of the Bessel function Kν(x) given

by

Kν(x) =

∫ ∞

0

dt exp(−x cosh(t)) · cosh(νt), x > 0 , (B.6)

16 The author would like to thank S. Alexandrov and B. Pioline for bringing this fact to his attention.
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one finds by the substitution s = et that

∫ ∞

0

ds

s
exp(−s−1nπ |Zγ | − snπ |Zγ |) =

∫ ∞

−∞

dt exp(−2nπ |Zγ | cosh(t))

= 2

∫ ∞

0

dt exp(−2nπ |Zγ | cosh(t))

= 2K0(2πn|Zγ |) . (B.7)

Hence, it follows that

J =
1

2π i

∑

γ

�(γ )
∑

n>0

einϕγ

n2
K0(2πn|Zγ |) =

1

4π i

∑

γ

�(γ )

∫

lγ

dζ

ζ
Li2(Xγ (ζ )) .

(B.8)

⊓⊔

The above proposition suggests that a function similar to [3, Equation (1.5)], or

some other related function built out of it, might give a solution to (3.42) and (3.43),

and hence define a special Joyce structure in the case of coupled variations of BPS

structures. In this case Xγ from (B.2) should be replaced with a solution to the TBA

integral equations of [14, Equation (5.13)], and the integral kernel from the second

term in [3, Equation (1.5)] should be replaced with the kernel relevant to [14]. Whether

or not this is possible will be left for future work.
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