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ABSTRACT: We report the capture of nanosized oil droplets using a
hydrophilic aldehyde-functional polymer brush. The brush was obtained via
aqueous ARGET ATRP of a cis-diol-functional methacrylic monomer from a
planar silicon wafer. This precursor was then selectively oxidized using an
aqueous solution of NaIO4 to introduce aldehyde groups. The oil droplets
were prepared by using excess sterically stabilized diblock copolymer
nanoparticles to prepare a relatively coarse squalane-in-water Pickering
emulsion (mean droplet diameter = 20 μm). This precursor was then further
processed via high-pressure microfluidization to produce ∼200 nm squalane
droplets. We demonstrate that adsorption of these nanosized oil droplets
involves acetal bond formation between the cis-diol groups located on the
steric stabilizer chains and the aldehyde groups on the brush. This interaction occurs under relatively mild conditions and can be
tuned by adjusting the solution pH. Hence this is a useful model system for understanding oil droplet interactions with soft surfaces.

■ INTRODUCTION

A brush comprises polymer chains that are tethered to a surface
by at least one chain end.1−3 Brushes can be prepared at planar
or colloidal substrates using either a “grafting to”4−7 or a
“grafting from” approach,8−14 with the latter approach usually
providing a higher surface density of brush chains.2,8,12,15 In
principle, brushes provide well-defined surface layers to examine
soft matter interactions at the nanoscale.16−24

There are many reports of inorganic nanoparticle-decorated
polymer brushes grown from planar substrates.25 Examples
include gold nanoparticles within hydrophobic polystyrene or
hydrophilic cationic methacrylic brushes,26,27 gold nanoparticles
within pH-responsive poly(2-vinylpyridine) brushes,28,29 silver
nanoparticles within zwitterionic brushes for antibacterial
surfaces,30 or within poly(2-(dimethylamino)ethyl methacry-
late) brushes as a surface-enhanced Raman scattering (SERS)
sensor,31 gold nanoparticles within poly(oligo(ethylene glycol)
methacrylate) brushes as a lead ion sensor,32 and quantum dot
nanoparticles with poly(acrylic acid) brushes.33

In some cases, nanoparticle adsorption may simply involve
nonspecific electrostatic attraction or van derWaals interactions.
However, there are various reports of chemically reactive
polymer brushes in the literature, including poly(2-hydroxyethyl
methacrylate),34,35 poly(glycidyl methacrylate),36 poly(2-
(dimethylamino)ethyl methacrylate),37 poly(2-(tert-
butylamino)ethyl methacrylate)38 and poly(cysteine methacry-
late).39

We have exploited dynamic covalent chemistry to demon-
strate the pH-modulated adsorption of a series of sterically

stabilized diblock copolymer nanoparticles onto model polymer
brushes.40−43 Originally, our approach utilized phenylboronic
acid binding,42 but more recently we have explored Schiff base
chemistry41,44 and acetal bond formation.40,43

Herein we report the capture of hydrophobic oil droplets of
∼200 nm diameter using a hydrophilic aldehyde-functional brush
grown from a planar substrate (see Scheme 1). The oil droplets
are stabilized using 24 nm diameter sterically stabilized diblock
copolymer nanoparticles, which are conveniently prepared by
polymerization-induced self-assembly (PISA).45−49 The steric
stabilizer chains contain pendent cis-diol groups, which react
with pendent aldehyde groups located on the brush chains to
form acetal bonds. Such covalent attachment can be modulated
simply by adjusting the solution pH. The resulting oil droplet-
decorated brush layer is characterized by confocal and
fluorescencemicroscopy studies and quartz crystal microbalance
(QCM) measurements.

■ MATERIALS AND METHODS

Full synthesis and characterization details are provided in the
experimental section within the Supporting Information.
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■ RESULTS AND DISCUSSION

The sterically stabilized PGMA−PTFEMA nanoparticles used
in this work were prepared by reversible addition−fragmenta-
tion chain transfer (RAFT) aqueous emulsion polymerization of
2,2,2-trifluoroethyl methacrylate (TFEMA) using a PGMA52

precursor (Figures 1A and S1).47

A representative transmission electron microscopy (TEM)
image of such nanoparticles is shown in Figure 1B, while an
intensity-average particle size distribution obtained by dynamic
light scattering (DLS) is provided in Figure 1C. The latter
technique indicates a z-average diameter of 24 nm and a DLS
polydispersity of 0.12. Clearly, these nanoparticles possess a
well-defined spherical morphology and a relatively narrow
unimodal particle size distribution.
The steric stabilizer block used for the synthesis of these

nanoparticles is poly(glycerol monomethacrylate) (PGMA),
which has one pendent cis-diol group per repeat unit. Assuming
an aggregation number of 320 (estimated from TEM analysis
assuming a PTFEMA density of 1.47 g cm−3)49 and a mean
degree of polymerization of 52 for the PGMA chains, we
calculate that each nanoparticle contains approximately 16,600
cis-diol groups. Such nanoparticles have been previously used to
prepare various types of oil-in-water Pickering nanoemul-
sions.47,50−54

In a recent study, closely related nanoparticles were selectively
oxidized to convert the pendent cis-diol groups into aldehyde
groups. The resulting nanoparticles were used to prepare the
corresponding Pickering nanoemulsions, which exhibited strong
mucoadhesion when exposed to sheep nasal mucosa.46 In this
case, nanoparticle adsorption was mediated by imine bond
formation (Schiff base chemistry) between the surface aldehyde
groups and the primary amine groups associated with proteins
within the biological tissue.
Previously, we reported the synthesis of aldehyde-functional

polymer brushes.41,44 This involved surface polymerization of a
cis-diol-functional methacrylic monomer (denoted GEO5MA)
from a planar silicon wafer, followed by selective oxidation of the
resulting PGEO5MA brush to produce the desired aldehyde-
functionalized PAGEO5MA brush. The chemical oxidation
conditions were optimized to minimize surface degrafting and
the resulting dense brushes proved to be reactive toward amodel
globular protein (BSA). In contrast, the precursor cis-diol-
functional brush exhibited antibiofouling properties.44 More

recently, we examined the pH-modulated adsorption of either
spherical nanoparticles of varying size40 or enzyme-loaded
diblock copolymer vesicles43 onto such aldehyde-functional
brushes. In this case, the nanoparticle−brush interaction is
mediated by acetal bond formation between the cis-diol
functional nanoparticles and the aldehyde-functional brush
chains. Moreover, such covalent bond formation could be
modulated by varying the solution pH: strong nanoparticle

Scheme 1. Covalent Attachment of Hydrophobic
Nanoparticle-Stabilized Oil Droplets to a Hydrophilic
Aldehyde-Functional Brusha

aAn oil-in-water Pickering nanoemulsion was prepared via high-
pressure microfluidization using squalane and PGMA50-PTFEMA52

nanoparticles. The aldehyde-functional brush was obtained by
growing a cis-diol-functional brush from a planar silicon wafer
followed by NaIO4 oxidation in aqueous solution.

Figure 1. (A) Synthetic route for the preparation of cis-diol-functional
PGMA52-PTFEMA50 nanoparticles via RAFT aqueous emulsion
polymerization of TFEMA at 70 °C. (B) Representative TEM image
(uranyl formate stain) and (C) DLS size distribution obtained for
PGMA52-PTFEMA50 nanoparticles.
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adsorption occurred at pH 4, whereas little or no adsorption was
observed at pH 10.40,55,56

In the present study, we examine whether the same aldehyde-
functional brush system can be used to capture nanosized oil
droplets. We identified squalane as a suitable oil because its very

Figure 2. (A) Schematic representation for the formation of O/W Pickering nanoemulsions using PGMA52−PTFEMA50 nanoparticles as a Pickering
emulsifier. First, high-shear homogenization of 2.5−10% w/w aqueous dispersions of such nanoparticles with 20% v/v squalane resulted in the
formation of a Pickering macroemulsion with a mean droplet diameter of 20 μm. Then this precursor macroemulsion was passed ten times through a
high-pressure microfluidizer at 20,000 psi to produce the desired O/W Pickering nanoemulsion with a mean droplet diameter of approximately 200
nm. (B) DLS size distribution, (C) cumulative size distribution via analytical centrifugation (LUMiSizer instrument), and (D) representative TEM
image for the O/W Pickering nanoemulsion obtained using this protocol.

Figure 3. (A) (i) Preparation of a cis-diol functional PGEO5MAprecursor brush via ARGETATRP from a initiator-functionalized planar silicon wafer,
(ii) selective oxidation to produce the corresponding aldehyde-functional PAGEO5MA brush, and (iii) its subsequent exposure to a squalane-in-water
Pickering nanoemulsion prepared using PGMA52-PTFEMA50 nanoparticles (with Nile Red dye dissolved in the oil phase prior to nanoemulsion
formation). (B) AFM image of a patterned PGEO5MA brush with (C) corresponding brush height profile, as indicated through the line profile [see
white box shown in (B)]. (D) Confocal fluorescence micrograph recorded for a surface-patterned PAGEO5MA brush after exposure to the dilute
nanoemulsion [N.B. This image was recorded for the water-swollen brush to minimize droplet evaporation].
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low aqueous solubility minimizes the problem of Ostwald
ripening over time, which is well-documented for such Pickering
nanoemulsions.47 First, a relatively coarse Pickering emulsion
was prepared via high-shear homogenization using a large excess
of PGMA52-PTFEMA50 nanoparticles (Figure 2A). Optical
microscopy and laser diffraction studies indicated droplet
diameters ranging from 10 to 50 μm. This precursor was then
further processed via high-pressure microfluidization (see the
Supporting Information for further details) to produce the final
Pickering nanoemulsion, as described previously.47,50−54 Sub-
sequent DLS characterization indicated a mean z-average
droplet diameter of approximately 200 nm (Figure 2B), which
is consistent with analytical centrifugation studies using a
LUMiSizer instrument (see Figure 2C). A representative TEM
image obtained for this freshly prepared nanoemulsion is shown
in Figure 2D. Both the squalane droplet phase and the
continuous phase evaporate under ultrahigh vacuum conditions,
leaving only the nanoparticles that were adsorbed at the surface
of the oil droplets. These nanoparticles form spherical
superstructures that are comparable in size to the mean DLS
diameter of the original oil droplets. Moreover, close inspection
revealed the presence of the individual nanoparticles, which is

consistent with TEM observations made in our prior study.47

Thus the nanoparticles survive the high-pressure microfluidiza-
tion processing conditions and the Pickering nature of the
original nanoemulsion is confirmed.
The preparation of the hydrophilic aldehyde-functionalized

PAGEO5MA brush is summarized in Figure 3A. Briefly, cis-diol-
functionalized PGEO5MA precursor brushes were prepared by
performing ARGET ATRP from surface-patterned initiator-
functionalized silicon wafers. Patterned surfaces were prepared
via UV deprotection of nitrophenyl-protected APTES
(NPPOC-ATPES) via irradiation using an appropriate mask
(Scheme S1 and Figure S2).57 The mean dimensions of each
square were 10 × 10 μm2. The resulting square-patterned
PGEO5MAbrush was characterized by atomic forcemicroscopy
(AFM), see Figure 3B. The corresponding height profile is
shown in Figure 3C and indicates a somewhat thinner patterned
brush (dry brush thickness∼15 nm) compared to the equivalent
nonpatterned brush.44 This discrepancy is attributed to the
lower density of surface initiator sites for the patterned brush.
The pendent cis-diol groups were then selectively oxidized under
mild conditions using NaIO4, as reported previously.44 Prior
XPS studies indicated that this protocol produces a
PAGEO5MA brush with essentially 100% aldehyde function-
ality.44 For this chemical derivatization, the reaction time was
limited to 30 min to minimize brush degradation.44

Given the hydrophilic character of the brush chains and the
hydrophobic nature of the oil droplets, we felt that successful
droplet adsorption was not necessarily guaranteed and arguably
counterintuitive. Nevertheless, oil droplet capture by PAGEO5-
MA brush chains was achieved at pH 4. This is illustrated in
Figure 3D, which shows a confocal microscopy image recorded
for a square-patterned PAGEO5MA brush grown from a wafer
after its immersion into a dilute (1.0% w/w) Pickering
nanoemulsion for 16 h at 20 °C. Nile Red dye was dissolved
in squalane prior to nanoemulsion preparation to aid visual-
ization of the oil droplets. Clearly, there is some degree of
nonspecific adsorption of oil droplets to the underlying silicon
wafer, which results in a weakly fluorescent background signal.
However, a much stronger signal is observed for the patterned
brush regions (see Figure 3D). Hence this experiment confirms
that chemical adsorption of hydrophobic oil droplets onto a
hydrophilic polymer brush can be achieved under mild reaction
conditions. Moreover, there is no evidence for adsorption-
induced droplet coalescence. In contrast, Rannard and co-
workers reported that significant coalescence occurred during
the adsorption of relatively large (∼10−20 μm diameter)
mucoadhesive oil droplets onto a Carbopol-based synthetic
mucous surface.58 This difference is attributed to the much finer
oil droplets used in the present study. It is perhaps worth
emphasizing that the “Pickering” nature of the oil droplets is an
essential aspect of our strategy for ensuring the chemical
adsorption of nanosized oil droplets: each nanoparticle contains
many cis-diol surface groups, which facilitates strong interaction
between the oil droplets and the aldehyde-functional brush
chains.
Recently, we used a QCM instrument to demonstrate that the

adsorption of cis-diol-functionalized diblock copolymer nano-
particles onto aldehyde-functionalized brushes involves acetal
bond formation.40 This well-known chemistry is known to be
favored at low pH, which is consistent with the strong
nanoparticle adsorption observed under such conditions.40 In
striking contrast, only minimal adsorption occurred at either pH
7 or pH 10. Moreover, higher adsorbed amounts were observed

Figure 4. Change in frequency of the third overtone, Δf 3, over time at
25 °C for QCM analysis of silica sensors coated with (a) a 41 nm
aldehyde-functional PAGEO5MA brush and the corresponding cis-
diol-functional PGEO5MA precursor brush on exposure to a 1% w/w
squalane-in-water Pickering nanoemulsion at pH 4 or (b) a 41 nm
aldehyde-functional PAGEO5MA brush on exposure to a 1% w/w
squalane-in-water Pickering nanoemulsion at pH 4, 7, or 10. In each
case, the vertical dashed line indicates the time at which flow was
switched to a purely aqueous solution (i.e., attempted wash-off of any
weakly adhering adsorbed material).
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at higher temperature, which ruled out a purely physical
interaction.40

Accordingly, adsorption of the oil droplets onto the brush
layers was studied using the same QCM instrument. First, a
direct comparison was made between the oil droplet capture
performance of an aldehyde-functionalized PAGEO5MA brush
and the corresponding cis-diol-functionalized PGEO5MA brush
at pH 4 (see Figure 4a). As expected, almost no oil droplet
adsorption was obtained in the latter case, whereas strong
adsorption was observed in the former case. In a second series of
experiments, the solution pH was adjusted when exposing the
same aldehyde-functionalized PAGEO5MA brush to the dilute
Pickering nanoemulsion. Strong oil droplet adsorption was
observed at pH 4, whereas minimal adsorption occurred at
either pH 7 or pH 10 (see Figure 4b). This is consistent with our
recent study of the adsorption of cis-diol-functionalized diblock
copolymer nanoparticles of varying size onto an aldehyde-
functionalized brush layer.40 Moreover, such observations
provide indirect evidence for chemical adsorption via acetal
bond formation between the cis-diol groups present at the
surface of the oil droplets and the aldehyde groups on the brush
chains. TheQCMdata summarized in Figure 4 also confirm that
there is essentially no physical interaction (e.g., attractive van der
Waals forces) between the oil droplets and the brush chains.

■ CONCLUSIONS

A suitably reactive hydrophilic polymer brush can be used to
capture nanoparticle-stabilized oil droplets. This counter-
intuitive result is achieved via acetal bond formation between
the aldehyde groups located on the brush chains and the cis-diol
groups expressed at the surface of the nanoparticles surrounding
the oil droplets. Such chemical adsorption occurs in aqueous
media under relatively mild conditions and the droplet-brush
interaction can be modulated by varying the solution pH. This
well-defined model system offers an interesting opportunity to
understand the interaction between nanosized oil droplets and
well-defined soft surfaces.
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