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a b s t r a c t

Asset price bubbles and crashes can have severe consequences for the stability of

financial and economic systems. Policymakers require timely identification of such

bubbles in order to respond to their emergence. In this paper we propose new econo-

metric procedures that improve the speed of detection for an emerging asset price

bubble in real time. Our new monitoring procedures make use of alternative variance

standardisations that are better able to capture the behaviour of the underlying process

during a bubble phase. We derive asymptotic results to show that using these alternative

variance standardisations does not increase the probability of false detection under

the no-bubble (unit root) null hypothesis relative to existing procedures. However,

Monte Carlo simulations demonstrate that much earlier detection becomes possible with

our new procedures under the bubble (explosive autoregressive) alternative. Empirical

applications to OECD housing markets and bitcoin prices show the value in terms of

earlier detection of bubbles that our new procedures can achieve. In particular, we show

that the United States housing bubble that preceded the global financial crisis could have

been detected as early as 1999:Q1 by our new procedures.

© 2025 The Authors. Published by Elsevier B.V. on behalf of International Institute of

Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

It is well known that asset price bubbles and their

subsequent collapses can cause instability in economic

and financial systems. Consider, for example, the global

financial crisis of 2007–2008. The OECD real house price

index shows that house prices in the United States grew

64% between 1995:Q1 and 2006:Q4, before falling by 13%

from 2006:Q4 to 2008:Q3 (OECD, 2023). This collapse of

the housing market triggered widespread financial dis-

tress, resulting in economic recessions in many coun-

tries across the world. It is now widely acknowledged

that ignoring bubbles in housing markets can have se-

vere consequences (Crowe et al., 2013). To mitigate these

∗ Correspondence to: School of Economics, University of Sheffield, 9

Mappin Street, Sheffield, S1 4DT, United Kingdom.

E-mail address: e.whitehouse@sheffield.ac.uk (E.J. Whitehouse).

negative consequences, policymakers require economet-

ric tools which can detect the emergence of bubbles as

soon as they occur, allowing them to make timely pol-

icy interventions that promote financial stability. This

paper provides new monitoring procedures for the emer-

gence of asset price bubbles which allow for earlier de-

tection than existing methods, and thus provide an early

warning system to policymakers to make timely policy

interventions.

Early detection of a bubble also provides a warning

signal for forecasters, using either judgemental or model-

based methods, prompting them to reconsider the efficacy

of their forecasting techniques going forwards. For ex-

ample, suppose a forecaster is using ARIMA or ARFIMA

models as part of their forecasting methodology. Fore-

casts generated from such models using data in a bubble

regime (proxied by an explosive autoregressive process,

as in this paper) would be entirely inappropriate because

https://doi.org/10.1016/j.ijforecast.2024.12.005
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an explosive autoregressive process cannot be differenced

(either integer or fractionally) to stationarity.

Following Phillips et al. (2011), an asset bubble can

be identified by detecting the presence of explosive au-

toregressive behaviour in a price series and the absence

of explosive autoregressive behaviour in a corresponding

fundamental series. Econometric work in the area of ex-

plosive bubble detection has largely focused on historical

detection, whereby explosive autoregressive regimes are

identified within a sample of previously observed data.

The now seminal approaches of Phillips et al. (2011)

and Phillips et al. (2015) consider detecting regimes of

explosive behaviour through the implementation of sub-

sample right-tailed augmented Dickey–Fuller unit root

tests. Further developments have included bootstrap im-

plementations of these recursive unit root test proce-

dures (Harvey et al., 2016; Phillips & Shi, 2020), as well

as generalised least squares-based recursive unit root

testing (Whitehouse, 2019). These sub-sample unit root-

based approaches have been widely applied to detect

asset price bubbles in a variety of markets, such as hous-

ing (Anundsen, 2019; Otero et al., 2022; Pavlidis et al.,

2018), commodities (Etienne et al., 2014; Figuerola-

Ferretti & McCrorie, 2016; Pastor & Ewing, 2022), and

stock markets (Basse et al., 2021; Caspi & Graham, 2018;

Hu & Oxley, 2018).

Whilst detecting historical episodes of bubble

behaviour is important in its own right, policymakers

and forecasters are likely to be more concerned with

identifying bubble behaviour as it emerges. In a recent

contribution, Astill et al. (2018) (hereafter, AHLST) pro-

pose a real-time monitoring procedure for the detection

of explosive bubbles, in which they discriminate between

the null hypothesis of a unit root (normal market con-

ditions) and the alternative hypothesis of an explosive

autoregressive root (bubble) as each new data observation

becomes available. Defining the false positive rate (FPR) of

the test procedure as the probability of false detection of

an explosive bubble by a given point in the monitoring

period, their approach is such that the FPR of their pro-

cedure under the null hypothesis of no explosive bubble

can be quantified at any given monitoring horizon. This

is facilitated by constructing the rolling fixed-window

length statistics of Astill et al. (2017), which are based

on estimators from the sub-sample regression of first

differences of the data on a linear trend, and comparing

the maximum of these statistics obtained across a training

sample to the corresponding maximum of these statistics

obtained in a monitoring period. When the null is true,

simple uniform distribution arguments are used to estab-

lish the (asymptotic) FPR moving through the monitoring

period.

Whilst this approach to real-time monitoring for a

change from unit root to explosive behaviour is based

on statistics constructed from a rolling window of data

points (and comparing their maxima over training and

monitoring periods), alternative approaches in the liter-

ature are based on variants of the recursive (full sample)

CUSUM detectors of Chu et al. (1996). Homm and Breitung

(2012) and Astill et al. (2024) base the CUSUM detector on

first differences of the data. Horvath and Trapani (2024)

consider a random coefficient autoregressive framework
and suggest weighted CUSUM and Page-CUSUM detectors
based on residuals constructed from an autoregressive
estimator that uses only the training period data.

The Astill et al. (2017) test statistic itself is motivated
by a Taylor series expansion of the first differences of an
explosive autoregressive process, and employs a variance
standardisation in its denominator. The variance stan-
dardisation used is one based on the behaviour of the
process under the unit root null hypothesis, but is less ap-
propriate under the alternative hypothesis of an explosive
bubble. Under this explosive alternative, the denominator
of the statistic is inflated such that the true positive rate
(TPR) of the test procedure is reduced. (We define the TPR
as the probability of correctly identifying the presence of
an explosive bubble by a given point in the monitoring
period.)

In this paper we propose the use of new variance
standardisations which are more suitable under an ex-
plosive alternative hypothesis. We consider two alterna-
tive variance standardisations. The first is motivated by
the autoregressive structure of the first-differenced series
during an explosive bubble, whilst the second is moti-
vated by a first-order Taylor series expansion of the first-
differenced series during an explosive bubble. We develop
theoretical results which show that the theoretical FPR
of tests that use these new variance standardisations are
asymptotically identical to the original AHLST test. How-
ever, through Monte Carlo simulations, we demonstrate
that these modifications can lead to considerable im-
provements to the TPR under the explosive alternative.
As a consequence, using our new procedures can lead to
much earlier detection of an emerging bubble. We show
that this improved performance can persist even when
explosive bubbles occur within the training sample of
data used to generate critical values for monitoring; and
we demonstrate that our procedures are robust to time-
varying conditional volatility in the innovations of the
price series.

We first apply our new procedures to a house price-
to-rent ratio in 17 OECD countries and demonstrate the
substantial advantages that can be achieved in terms of
early bubble detection. In particular, we note that our
new procedures could have detected the US housing bub-
ble that preceded the global financial crisis as early as
1999:Q1, which would have allowed for a timely policy
response. We subsequently consider an empirical appli-
cation to bitcoin prices which confirms the ability of
our new procedures to monitor for an emerging bubble
in financial data that are likely to exhibit time-varying
conditional volatility.

In the next section we present an explosive bubble
model and outline the AHLST testing framework. Section 3
provides the new test statistics and establishes asymp-
totic theory results relating to their behaviour under the
no-bubble null hypothesis. Monte Carlo simulation results
are provided in Section 4. Section 5 examines the impact
on our test procedures of explosive bubbles occurring
outside of the monitoring period. In Section 6 we provide
empirical applications of our new tests to the housing
market and to bitcoin. Section 7 concludes. Proofs are
contained in an appendix.

1261



E.J. Whitehouse, D.I. Harvey and S.J. Leybourne International Journal of Forecasting 41 (2025) 1260–1277

2. Model and AHLST monitoring framework

We consider the following DGP for a time series yt ,
t = 1, . . . , T :

yt = µ + ut ,

ut =
{

ut−1 + εt t = 2, . . . , ⌊τT⌋
(1 + δ)ut−1 + εt t = ⌊τT⌋ + 1, . . . , T

(1)

with u1 = Op(1) and δ ≥ 0. Here and throughout ‘⌊.⌋’
denotes the integer part. We assume that the error term
εt is a strictly stationary process with zero mean. If δ = 0
then yt admits a unit root throughout the sample period. If
δ > 0, then yt exhibits explosive dynamics from ⌊τT⌋+ 1
providing a model of bubble behaviour.1 The hypotheses
of interest are therefore H0 : δ = 0 (unit root) and
H1 : δ > 0 (unit root then explosive).

The real-time bubble monitoring framework of AHLST
considers the sequential application of the Astill et al.
(2017) test for an end-of-sample explosive bubble, which
in turn is based upon the end-of-sample instability test-
ing approach of Andrews (2003) and Andrews and Kim
(2006). In particular, AHLST consider a training period
y1, . . ., yT∗ , T ∗ = ⌊λT⌋ ≤ ⌊τT⌋ for some λ ∈ (0, 1),
during which it is assumed that H0 holds. Monitoring
for a change from H0 to H1 starts at the present time
period, denoted T ². The monitoring procedure is based
on comparing the behaviour of a sub-sample statistic,
denoted Ae,k, across the training and monitoring periods.
Here,

Ae,k = Be,k
√

Ce,k

(2)

where

Be,k =
e
∑

t=e−k+1

(t−e+k)∆yt , Ce,k =
e
∑

t=e−k+1

{(t−e+k)∆yt}2

with k a finite constant denoting the length of the sub-
sample over which the statistic is computed, and e the
last time period used in the statistic’s calculation.

The term Be.k is motivated by a first-order Taylor series
expansion of the first differences of an explosive process.
Specifically, over the explosive regime t > ⌊τT⌋, ∆yt can
be written as

∆yt = δ(1 + δ)t−⌊τT⌋−1u⌊τT⌋ +
t−⌊τT⌋−1
∑

j=0

(1 + δ)j∆εt−j.

The stochastic behaviour of ∆yt is dominated by the
first of the right-hand-side terms. Approximating (1 +
δ)t−⌊τT⌋−1 using a first-order Taylor series expansion
around δ = 0 gives

(1 + δ)t−⌊τT⌋−1 ≈ 1 + (t − ⌊τT⌋ − 1)δ

and the following approximation is obtained:

∆yt = δ(1 − δ)u⌊τT⌋ + δ2u⌊τT⌋(t − ⌊τT⌋) + et (3)

1 Since our focus here is on rapid detection in the explosive regime,

we do not concern ourselves with behaviour after the bubble has

terminated (e.g. collapse and/or return to unit root behaviour). Instead

we simply consider a model where the explosive regime runs to the

end of the sample.

where et contains the higher-order terms in the Taylor

series expansion and other lower-order terms. The term

Be.k is then the sub-sample analogue of the numerator

component of the OLS coefficient estimator in a regression

of ∆yt on (t − ⌊τT⌋). Standardising Be.k by
√
Ce.k is a

White-type studentisation intended to provide a degree of

robustness to unconditional heteroskedasticity (although

this formally lies outside the assumptions of the DGP).

To employ Ae,k in a bubble monitoring context, sup-

pose that we intend to start monitoring at the current

time period, t = T ². We have an initial training sample of

data t = 1, . . . , T ∗, where T ∗ = T ² − k. A set of training-

sample statistics is first produced by computing the Ae,k

statistic over rolling sub-samples of length k within this

training sample. The maximum training-sample statistic,

A∗
max = maxe∈[k+1,T∗] Ae,k, forms the critical value for mon-

itoring. At time t = T ², we compute the first monitoring

statistic using data from t = T ² − k + 1, . . . , T ² =
T ∗ + 1, . . . , T ∗ + k, with subsequent monitoring statis-

tics computed as each new observation occurs. The null

hypothesis is rejected in favour of an explosive bubble at

the first point where the monitoring statistic exceeds the

training-sample critical value. We can write this decision

rule as

Reject H0 at time e if Ae,k > A∗
max

for an arbitrary point in the monitoring period, t = e. We

refer to this bubble detection procedure as AMAX (k).

AHLST show that, under H0, for an arbitrary point in

the monitoring period T ′,

lim
T→∞

P

(

max
e∈[T∗+k,T ′]

Ae,k > max
e∈[k+1,T∗]

Ae,k

)

= α (4)

where

α = lim
T→∞

(

T ′ − T ∗ − k + 1

T ′ − 2k + 1

)

= lim
T→∞

(

T ′ − T ∗

T ′

)

. (5)

The key to establishing the results (4) and (5) lies in

recognising that the Ae,k form a strictly stationary se-

quence across both the training and monitoring periods.

Large sample results connected to the uniform distribu-

tion property of the location of the maximum value of Ae,k

are then appealed to (no limit theory applies to Ae,k itself).

For given values of T ∗ and k, the approximate FPR of

AMAX (k) at monitoring point T ′ is

α ≈ T ′ − T ∗ − k + 1

T ′ − 2k + 1
. (6)

We can also rearrange (6) to identify the monitoring

time period T ′ at which the FPR of the procedure will

(approximately) reach the level α, allowing determination

of how far monitoring into the future can be done whilst

maintaining a chosen FPR:

T ′ ≈ T ∗ + k − 1 − α(2k − 1)

1 − α
.

We can contrast the AHLST approach, which uses the

fixed-sample Ae,k as a detector, to those of Chu et al.

(1996), Homm and Breitung (2012), Astill et al. (2024),

and Horvath and Trapani (2024). Their null limit theory

applies directly to a full-sample CUSUM detector and
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associated boundary function, with the property that for
large T ∗, the probability the detector exceeds the bound-
ary function for some T ′ − T ∗

⩾ 1 is less than or equal
to a user-chosen FPR. The AHLST approach is therefore
more informative about the FPR of the procedure than
the CUSUM-based approaches in the sense that no bound
is involved in (4), and the (approximate) FPR can be
calculated from (6) at each monitoring point T ′, with
the procedure not potentially conservative, unlike the
CUSUM-based methods. The cost of this extra information
is that the FPR cannot be determined independently of the
value of the ratio T ∗/T ′. That is, we are not free to choose
α without consideration of T ∗/T ′. In this sense, the AHLST
approach may be better suited to relatively short-range
monitoring, since the FPR grows with T ′. Long-range mon-
itoring is more feasible with the CUSUM approaches in
terms of having the flexibility to bound FPR to typical val-
ues (say to 0.05 or 0.10) over a long monitoring horizon,
but because the CUSUM detectors are divergent, the TPR
can be low. Finally, we note that α is informative when
the monitoring point T ′ is the same order as the training-
sample size T ∗. If the number of monitoring periods T ′ −
T ∗ grows at a faster rate in T than the training period
length T ∗, then α = 1; if T ′ − T ∗ grows at a slower rate
than T ∗ then α = 0. CUSUM-based techniques are studied
by Horvath and Trapani (2024) for these different cases.

3. Modified statistics

The White-type studentisation in Ae,k of (2) based on
Ce.k =

∑e

t=e−k+1{(t−e+k)∆yt}2 is a feasible implementa-
tion of an ideal, but infeasible, standardisation that would
involve the unobserved errors εt , i.e. a feasible proxy for
∑e

t=e−k+1{(t−e+k)εt}2. This approach essentially imposes
the null hypothesis, since under H0, ∆yt = εt . However,
under the alternative H1, ∆yt = ∆ut = δut−1+εt ̸= εt for
t > ⌊τT⌋, suggesting that the null-based variance stan-
dardisation is inappropriate under the alternative. When
ut is explosive, the denominator of Ae,k becomes inflated,
relative to using the unobserved εt , with obvious negative
implications for the TPR of the procedure. In the context of
monitoring, this then negatively impacts upon the speed
at which a bubble will be detected. Moreover, the struc-
ture of Ae,k is such that

⏐

⏐Ae,k

⏐

⏐ ≤ k1/2 by virtue of the
Cauchy–Schwarz inequality:
(

e
∑

t=e−k+1

(t − e + k)∆yt .1

)2

≤
e
∑

t=e−k+1

{(t − e + k)∆yt}2
e
∑

t=e−k+1

12

= k

e
∑

t=e−k+1

{(t − e + k)∆yt}2

from which it is clear that
(
∑e

t=e−k+1(t − e + k)∆yt
)2

∑e

t=e−k+1{(t − e + k)∆yt}2
≤ k

i.e.
⏐

⏐Ae,k

⏐

⏐ ≤ k1/2. This implicit constraint could also have
a detrimental effect on the TPR. In view of these two

potential issues affecting the procedure’s TPR, we consider

replacing ∆yt in the variance standardisation by other

quantities which better approximate εt under the alterna-

tive and do not result in the k1/2 form of bound associated

with the original Ae,k statistic.

The first modification that we consider is motivated by

the autoregressive structure of ∆yt for t > ⌊τT⌋. That is,
∆yt = −δµ + δyt−1 + εt .

We then replace ∆yt in the denominator of Ae,k (for all

e) with the residuals ε̂t obtained from an OLS regression

of ∆yt on a constant and yt−1 over the sub-sample t =
e − k + 1, . . . , e. The modified statistic is then

AAR
e,k =

∑e

t=e−k+1(t − e + k)∆yt
√

∑e

t=e−k+1{(t − e + k)ε̂t}2
.

Our second alternative modification is motivated by

the Taylor series approximation of ∆yt over the explosive

period given in (3). Accordingly, we replace ∆yt in the

denominator of Ae,k with OLS residuals êt obtained from

a regression of ∆yt on a constant and time trend over the

sub-sample t = e − k + 1, . . . , e:

ATR
e,k =

∑e

t=e−k+1(t − e + k)∆yt
√

∑e

t=e−k+1{(t − e + k)êt}2
.

In what follows, we denote the bubble detection pro-

cedure that replaces Ae,k in AMAX (k) with AAR
e,k as AAR

MAX (k),

and the procedure that replaces Ae,k with ATR
e,k as ATR

MAX (k).

In the following theorem, we establish the theoretical

FPRs of the AAR
MAX (k) and ATR

MAX (k) monitoring procedures as

T → ∞.

Theorem 1. Under H0 and assuming that {εt} satisfies the

mixing conditions of Ferreira and Scotto (2002, p. 476), then

as T → ∞,

lim
T→∞

P

(

max
e∈[T∗+k,T ′]

AAR
e,k > max

e∈[k+1,T∗]
AAR
e,k

)

= α

lim
T→∞

P

(

max
e∈[T∗+k,T ′]

ATR
e,k > max

e∈[k+1,T∗]
ATR
e,k

)

= α

where α is as defined in (5).

Theorem 1 shows that the theoretical FPRs associ-

ated with the new procedures AAR
MAX (k) and ATR

MAX (k) are

asymptotically identical to the theoretical FPR of AMAX (k)

discussed in the previous section.

4. Finite sample simulations

To examine the finite sample performance of our two

new procedures, AAR
MAX (k) and ATR

MAX (k), relative to the orig-

inal AMAX (k) procedure, we conduct a Monte Carlo simu-

lation exercise. Data are generated by (1), setting µ = 0

(without loss of generality) and εt ∼ NIID(0, 1). To ensure

that we generate only positive explosive regimes, in line

with typical bubble behaviour, we set u1 = 100. We

consider sub-sample window sizes of k = {5, 10, 15}. The
beginning of the monitoring period is set to T ² = 200

such that the training sample end date is T ∗ = 200 −
1263
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k throughout. Simulations are conducted using 10,000

replications in GAUSS 20.

Fig. 1 displays the cumulative rejection frequencies of

the three procedures at T ′ (i.e. the proportion of replica-

tions where we detect H1 at any point in the monitoring

period up to and including T ′). First, considering the em-

pirical FPRs of the monitoring procedures obtained under

the no-bubble null hypothesis of δ = 0, it is clear from

Figs. 1(a)–1(c) that the empirical FPR of the new AAR
MAX (k)

and ATR
MAX (k) procedures track the theoretical FPR given

by (6) very closely, as expected from Theorem 1. We

can therefore confirm that these new procedures do not

suffer from increased false detection of a bubble under H0

relative to AMAX (k).

We now turn our attention to the empirical rejection

frequencies obtained under the alternative hypothesis of

an explosive bubble, with δ > 0. We set ⌊τT⌋ = 1.1T ²

such that the first observation of the explosive bubble

regime occurs at ⌊τT⌋ + 1 = 221. Given that the focus

of this paper is on rapid detection of an explosive bubble,

and that we confirmed above that the new procedures

have very similar false rejection probabilities under H0

to the original AMAX (k) procedure, in Figs. 1(d)–1(o) we

now display empirical rejection frequencies for T ′ = 218

onwards, to concentrate attention on the observations

immediately before and after ⌊τT⌋. We consider explosive

bubble magnitude settings of δ = {0.01, 0.02, 0.03, 0.04}.
In Figs. 1(d)–1(f), with δ = 0.01, the procedures

offer similar TPRs, especially when k = 5, with the new

AAR
MAX (k) and ATR

MAX (k) procedures performing marginally

better than the original AMAX (k) in the case of k = 10

and k = 15. As δ increases, the relative advantage of

our new procedures over AMAX (k) is found to be more

pronounced. These TPR differences can be substantial at

monitoring horizons in the immediate region of the ex-

plosive bubble start date. For example, in Fig. 1(h) with

k = 10 and δ = 0.02, at T ′ = 224 (three obser-

vations after the bubble start date), ATR
MAX (k) has a TPR

of 0.487 relative to only 0.244 for AMAX (k). In Fig. 1(k)

with δ = 0.03, the TPR of AMAX (k) increases only to

0.271, whereas the TPR of ATR
MAX (k) increases to 0.696,

resulting in a 0.425 TPR differential. Finally, considering

δ = 0.04 in Fig. 1(n), the TPR of ATR
MAX (k) is now 0.824

relative to 0.294 for AMAX (k), resulting in a very large

TPR difference of 0.530. The new AAR
MAX (k) procedure also

demonstrates substantial gains over the original AMAX (k)

procedure, with TPRs similar to ATR
MAX (k), although the

latter generally displays slightly higher TPR levels. For

example, for the settings discussed above, AAR
MAX (k) has TPR

gains over the original AMAX (k) procedure of 0.156, 0.278,

and 0.359 for δ = {0.02, 0.03, 0.04}, respectively. In a

small number of cases, particularly for k = 5, as monitor-

ing moves further away from the explosive bubble start

date, AAR
MAX (k) marginally outperforms ATR

MAX (k).

To further demonstrate the earlier detection capabili-

ties of the new procedures, Fig. 2 displays histograms of

the detection dates for AMAX (k), A
AR
MAX (k), and ATR

MAX (k).
2 We

2 The detection date is the date at which the explosive regime

is detected, for each Monte Carlo replication where detection occurs

within the monitoring period.

report results for k = 10. First, we note that for all pro-

cedures, increasing the explosive magnitude δ decreases

the delay in detection, as would be expected. Second, we

observe that for a given setting of δ, AAR
MAX (k) and ATR

MAX (k)

achieve a higher frequency of detection at dates shortly

after ⌊τT⌋ + 1, thus reducing the delay in detection and

confirming the results discussed previously.

The results in this section are in line with what would

be expected from Section 3, where we outlined the limita-

tions of the AMAX (k) statistic under H1 relative to our pro-

posed modifications. The large TPR differences between

the new AAR
MAX (k) and ATR

MAX (k) procedures and the original

AMAX (k) procedure, especially shortly after the explosive

regime begins, translate into more rapid detection of a

bubble. This is clearly of critical importance in the context

of real-time monitoring. Comparing our two new proce-

dures to each other, ATR
MAX (k) generally offers a marginally

higher TPR than AAR
MAX (k), with a small number of excep-

tions occurring when k = 5 and the monitoring horizon

is longer.

Finally, it is well known that financial time series data,

which may exhibit explosive bubble behaviour, are of-

ten subject to time-varying conditional volatility. AHLST

demonstrate that the AMAX (k) procedure is robust to con-

ditional heteroskedasticity in the price series innovations,

with the finite sample empirical FPR of AMAX (k) closely

matching the theoretical FPR under these circumstances.

To confirm that this appealing feature also applies to

our new procedures, we also consider εt in (1) to be a

conditionally heteroskedastic GARCH(1, 1) process instead

of εt ∼ NIID(0, 1) as before. Specifically, we consider

εt =
√
htηt , with ht = 0.1 + 0.1z2t−1 + 0.8ht−1 and ηt ∼

NIID(0, 1). We set h0 = εt = 0. Table 1 gives the empirical

FPR of the procedures, again using k = 10, under this

GARCH(1, 1) specification, along with the corresponding

results for NIID(0, 1) innovations. The two sets of results

are extremely similar, confirming the robustness of the

new procedures to this feature, and it is clear that the

empirical FPR values are close to the corresponding the-

oretical FPR for each value of T ′, as was observed for the

NIID(0, 1) innovations in Figs. 1(a)–1(c).

5. Training-sample bubbles

The theoretical FPR given by (6) relies on the assump-

tion that the unit root null hypothesis, H0, holds in the

training period, y1, . . . , yT∗ . As AHLST note, in practice it is

possible that this assumption will be violated. One option

available to practitioners is to pre-test the training period

data for the presence of an explosive regime through

the application of a bubble detection procedure such as

the Phillips et al. (2015) test. However, there is no guar-

antee that all explosive regimes in the training sample

would be detected, especially if these are of low magni-

tude or short duration. It is also the case that, in practice,

it may not be possible to find a sufficiently long period

of training-sample data that are free from explosive be-

haviour to allow for monitoring. AHLST provide Monte

Carlo simulation results to demonstrate that the empirical

FPR of the AMAX (k) procedure is reduced when an explo-

sive bubble occurs in the training sample, due to larger
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Fig. 1. Empirical rejection frequencies of AMAX (k), A
AR
MAX (k), and ATR

MAX (k).
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Fig. 2. Histograms of AMAX (k), A
AR
MAX (k), and ATR

MAX (k) detection dates.

values of A∗
max. However, under the alternative hypoth-

esis, whilst the empirical TPR of the AMAX (k) procedure

is reduced relative to the case where there is no bubble

within the training sample, these reductions are modest,
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Table 1

Empirical false positive rates of AMAX (k), A
AR
MAX (k), and ATR

MAX (k) under NIID and GARCH(1, 1)

errors, k = 10.

NIID errors GARCH(1, 1) errors

T ′ α AMAX (k) AAR
MAX (k) ATR

MAX (k) AMAX (k) AAR
MAX (k) ATR

MAX (k)

200.000 0.006 0.015 0.013 0.010 0.014 0.013 0.010

201.000 0.011 0.021 0.019 0.017 0.020 0.018 0.017

202.000 0.016 0.025 0.023 0.022 0.025 0.023 0.022

203.000 0.022 0.030 0.029 0.028 0.031 0.029 0.027

204.000 0.027 0.035 0.034 0.034 0.036 0.034 0.034

205.000 0.032 0.041 0.039 0.039 0.041 0.039 0.038

206.000 0.037 0.045 0.043 0.043 0.045 0.043 0.042

207.000 0.043 0.051 0.048 0.048 0.051 0.048 0.047

208.000 0.048 0.054 0.052 0.052 0.054 0.052 0.052

209.000 0.053 0.058 0.057 0.057 0.059 0.058 0.057

210.000 0.058 0.064 0.062 0.062 0.066 0.063 0.062

211.000 0.063 0.070 0.068 0.068 0.071 0.069 0.068

212.000 0.067 0.075 0.073 0.073 0.076 0.073 0.074

213.000 0.072 0.079 0.078 0.077 0.081 0.078 0.078

214.000 0.077 0.084 0.083 0.083 0.086 0.082 0.083

215.000 0.082 0.089 0.088 0.087 0.090 0.088 0.088

216.000 0.086 0.092 0.093 0.092 0.094 0.093 0.092

217.000 0.091 0.097 0.097 0.097 0.099 0.096 0.097

218.000 0.095 0.101 0.101 0.101 0.103 0.101 0.100

219.000 0.100 0.105 0.106 0.106 0.107 0.105 0.105

220.000 0.104 0.110 0.110 0.110 0.112 0.109 0.109

221.000 0.109 0.115 0.114 0.115 0.117 0.113 0.112

222.000 0.113 0.119 0.120 0.120 0.121 0.119 0.119

223.000 0.118 0.125 0.125 0.125 0.127 0.124 0.124

224.000 0.122 0.130 0.130 0.130 0.132 0.129 0.129

225.000 0.126 0.133 0.134 0.134 0.134 0.132 0.133

226.000 0.130 0.138 0.138 0.138 0.139 0.137 0.137

227.000 0.135 0.141 0.142 0.142 0.143 0.141 0.141

228.000 0.139 0.147 0.148 0.146 0.149 0.146 0.146

229.000 0.143 0.151 0.151 0.150 0.152 0.149 0.150

230.000 0.147 0.154 0.155 0.154 0.155 0.153 0.154

demonstrating the ability of the procedure to monitor for
an explosive bubble even when the training-sample H0

assumption is violated.
To investigate the impact of a training-sample bubble

on our modified procedures, AAR
MAX (k) and ATR

MAX (k), we ex-
tend the DGP in (1) and consider the following DGP for a
time series yt , t = 1, . . . , T :

yt = µ + ut + xt (7)

ut =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ut−1 + εt t = 2, . . . , ⌊τ ∗
1 T⌋

(1 + δ∗
1 )ut−1 + εt t = ⌊τ ∗

1 T⌋ + 1, . . . , ⌊τ ∗
2 T⌋

εt t = ⌊τ ∗
2 T⌋ + 1

ut−1 + εt t = ⌊τ ∗
2 T⌋ + 2, . . . , ⌊τT⌋

(1 + δ)ut−1 + εt t = ⌊τT⌋ + 1, . . . , T

(8)

xt = (u⌊τ∗
2
T⌋ − u1)I(t > ⌊τ ∗

2 T⌋ + 1) (9)

with u1 = Op(1) and δ ≥ 0. As before, we assume that
the error term εt is a strictly stationary process with zero
mean. We consider ⌊τ ∗

1 T⌋ < ⌊τ ∗
2 T⌋ < T ∗ < ⌊τT⌋,

δ∗
1 > 0, and δ ≥ 0, such that the DGP admits an explosive
regime that reverts back to a unit root process within the
training sample.3 The inclusion of xt in (7) and the indica-
tor function in (9) prevent the magnitude of the training
sample explosive regime from entering the dynamics of
the monitoring period explosive regime (cf. Harvey et al.,

3 In unreported simulations, we also considered a DGP that permits

an explosive regime followed by a stationary crash regime (cf. Harvey

et al., 2017) within the training sample. The results were qualitatively

similar to the no-crash case presented here.

2020). Without this correction, setting δ∗
1 = δ (for exam-

ple) would lead to a more pronounced explosive regime

for the monitoring period bubble than the training period

bubble.

We conduct a Monte Carlo simulation exercise with

data generated by (7)–(9), setting µ = 0, εt ∼ NIID(0, 1)

and u1 = 100 as before. Fig. 3 displays empirical rejec-

tion frequencies of AMAX (k), A
AR
MAX (k), and ATR

MAX (k) when a

training-sample explosive bubble exists. Here, we present

results only for k = 10, as the results are qualitatively

similar for other settings of k. We set T ² = 200 as before,

and consider ⌊τ ∗
1 T⌋ = 0.5T ² = 100 and ⌊τ ∗

2 T⌋ = 105,

such that the training-sample explosive regime lasts five

observations.

Figs. 3(a)–3(d) consider the null hypothesis, δ = 0,

where no bubble is present in the monitoring period,

allowing us to examine the impact of a training-sample

bubble on the empirical FPRs of the three procedures.

We set the magnitude of the training-sample explosive

regime to δ∗
1 = {0.01, 0.02, 0.03, 0.04} in Figs. 3(a)–

3(d) respectively. Examining these figures, it is clear that

the presence of an explosive regime within the training

sample reduces the empirical FPR of all procedures as

expected, such that all procedures have empirical FPRs

below the theoretical FPR. This reduction is more pro-

nounced the higher the value of δ∗
1 , as would be expected.

An ordering of the test procedures emerges, with ATR
MAX (k)

generally demonstrating the lowest empirical FPR and
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Fig. 3. Empirical rejection frequencies of AMAX (k), A
AR
MAX (k), and ATR

MAX (k) with a training-sample bubble.
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therefore offering the most conservative procedure, fol-

lowed by AAR
MAX (k) and AMAX (k). Indeed, in the case of δ∗

1 =
0.04, ATR

MAX (k) has an empirical FPR close to zero.

Turning our attention now to empirical rejection fre-

quencies obtained under the alternative hypothesis, δ >

0, Figs. 3(e)–3(h) examine the empirical TPRs of the three

procedures. As before, we set ⌊τT⌋ = 1.1T ² such that

the start date of the explosive regime in the monitoring

period is ⌊τT⌋ + 1 = 221. We set δ = 0.03, such that

these new results can be compared directly to the case

without a training-sample bubble given in Fig. 1(k). First,

we observe that the empirical TPR of all procedures is

reduced by the presence of an explosive bubble in the

monitoring period, in line with the reduced empirical

FPRs. For example, at T ′ = 226, AMAX (k) has an empirical

TPR of 0.716 in the case of δ∗
1 = 0, 0.616 with δ∗

1 =
0.01, 0.492 with δ∗

1 = 0.02, 0.449 with δ∗
1 = 0.03, and

0.453 with δ∗
1 = 0.04. AAR

MAX (k) has empirical TPRs of

0.904, 0.850, 0.747, 0.653, and 0.588, respectively, for the

same settings, whilst ATR
MAX (k) has empirical TPRs of 0.937,

0.898, 0.781, 0.624, and 0.491. Nevertheless, it is pleasing

to see that all procedures maintain reasonable levels of

power to detect a monitoring period bubble, even with

equivalent or greater magnitude bubbles occurring within

the training period. We note that the new AAR
MAX (k) and

ATR
MAX (k) procedures continue to outperform the original

AMAX (k) procedure close to the explosive bubble start

date, demonstrating their superior performance for early

detection of a bubble. We do note, however, that for the

high magnitude training-sample bubble δ∗
1 = 0.04, the

empirical TPR of AMAX (k) overtakes that of A
TR
MAX (k) further

away from the bubble start date. In this case, AAR
MAX (k) still

retains a small advantage over AMAX (k).

6. Empirical applications

To demonstrate how the superior performance demon-

strated by our procedures in Section 4 can translate into

earlier detection of an explosive bubble in practice, we

now consider two empirical applications. In the first, we

apply our procedures to the housing market in 17 OECD

countries. In the second, we apply our procedures to

bitcoin prices.

6.1. Housing market bubbles

It is now acknowledged that the rise and subsequent

collapse of a bubble in the United States housing market

was the catalyst for the global financial crisis of 2007–

2008. The economic distress following the collapse of this

so-called subprime bubble – named for the increase in

mortgage lending to subprime borrowers which helped

fuel rising house prices – indicates the widespread con-

sequences that bubbles in housing markets can cause. As

such, economists now pay significant attention to housing

market dynamics.

Whilst economists are now agreed that the US housing

market was subject to a bubble, there was a lack of con-

sensus at the time. In an article published in 2002, Baker

(2002) noted that over the previous seven years (1995–

2002) US house prices had increased by 30% above the

inflation rate and that this rise in prices was not sup-
ported by corresponding rises in fundamentals (such as
rent) and was therefore due to a bubble. In contrast,
then Federal Reserve Chairman Alan Greenspan remarked
that as housing has high transaction costs and limited
arbitrage opportunities, it was not reasonable to compare
the housing market to the bubble and crash behaviour
that was seen in stock markets (Monetary Policy and
the Economic Outlook, 2002). The real-time monitoring
procedures considered in this paper can provide empir-
ical evidence of the emergence of asset price bubbles in
situations such as this, where their presence is contested.

In previous work, Harvey et al. (2020) use a BIC-based
bubble date-stamping procedure to examine the timing
of bubble and crash regimes in the housing markets of
20 OECD countries from 1975–2018. Whilst patterns of
behaviour differ somewhat across countries, the paper
identifies three broad periods of explosivity that are com-
mon to many of these countries: the 1980s, the mid-
2000s, and end-of-sample explosivity that was on-going
as of 2018. It is therefore clear that the United States was
not unique in demonstrating explosive behaviour in the
housing market prior to the global financial crisis.

To confirm that explosive behaviour detected in a price
series is the result of an asset bubble, we need to exclude
the possibility that prices are being driven by explosive
behaviour in the asset’s fundamental value. If both the
price series and the corresponding fundamental value of
an asset are exhibiting the same growth behaviour, then
prices can be considered justified by the fundamental
value, and this would therefore not be a sign of a bub-
ble. In the context of house prices, rent is commonly
used as a proxy for the fundamental value of housing,
given that rent is the return a homeowner can realise
whilst holding the asset. In a pseudo-real-time monitoring
exercise, Whitehouse et al. (2023) monitor for a bubble
and crash in US house prices by applying the AMAX (k)
procedure, and a subsequent crash detection procedure,
to a house price-to-rent ratio. In doing so, they detect the
emergence of a bubble in US house prices in 2000:Q1.

To examine the performance of our new test proce-
dures, in this paper we apply AAR

MAX (k) and ATR
MAX (k), in

addition to the original AMAX (k) procedure, to the loga-
rithms of house price-to-rent ratios of 17 OECD countries4

using data from the OECD (OECD, 2023). For all countries,
monitoring begins in 1997:Q1. Our training sample begins
in 1972:Q3 (T ′ = 99) for all countries except Belgium,
where data are available only from 1976:Q2 (T ′ = 84).5

We note that there is a wealth of empirical evidence (see,
inter alia, (Holly et al., 2010; Malpezzi, 1999; Meen, 2002))
that real house prices in the US and UK exhibit unit root
behaviour during the time period of our chosen training
sample, lending validity to our unit root null hypothesis.
We set k = 10 for all countries. Monitoring by each test
procedure continues either until a bubble is detected or
until 2010:Q1 if no bubble is detected by that procedure.

4 Australia, Belgium, Canada, Denmark, Finland, France, Germany,

Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Spain,

Sweden, the United Kingdom, and the United States.
5 We focus on these 17 OECD countries only, as limited data

availability for all other countries would leave us with T ′ < 50.
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Table 2

House price-to-rent ratio: AMAX (k), A
AR
MAX (k), and ATR

MAX (k) bubble detec-

tion dates.

Country AMAX (k) AAR
MAX (k) ATR

MAX (k)

Australia 1999:Q4 2000:Q1 2000:Q1

Belgium 2004:Q2 1999:Q3 1999:Q3

Canada 2000:Q4 2000:Q4 2001:Q1

Denmark 1997:Q1 1997:Q1 1997:Q1

Finland 1998:Q1 – –

France 2006:Q2 2004:Q1 2005:Q2

Germany – – –

Ireland 1999:Q4 1998:Q4 1998:Q4

Italy – 2001:Q2 2000:Q2

Japan – – –

Netherlands 1997:Q3 1997:Q1 1997:Q1

New Zealand 1997:Q1 1997:Q1 2003:Q1

Norway – 1997:Q3 1997:Q3

Spain – 2004:Q1 2004:Q1

Sweden 1999:Q4 1999:Q3 1999:Q4

United Kingdom 2003:Q4 2000:Q1 2000:Q1

United States 2000:Q1 1999:Q1 1999:Q3

Bold indicates the procedure(s) with the earliest detection date.

Table 2 displays the bubble detection date of AMAX (k),

AAR
MAX (k) and ATR

MAX (k) for each country. We note that there

are only two occasions where the original AMAX (k) pro-

cedure detects earlier than either of the two new pro-

cedures: Australia, where AMAX (k) detects a bubble in

1999:Q4 and both AAR
MAX (k) and ATR

MAX (k) detect a bubble

one observation later at 2000:Q1; and Finland, where

AMAX (k) detects a bubble in 1998:Q1 and neither AAR
MAX (k)

nor ATR
MAX (k) detects a bubble within the monitoring hori-

zon.

In contrast, the new AAR
MAX (k) procedure detects a bub-

ble earlier than the original AMAX (k) for nine countries

(and detects a bubble at the same time as AMAX (k) for

an additional three countries), demonstrating this new

procedure’s ability to provide quicker detection of an

emerging asset price bubble. The difference in detection

dates by these two procedures can often be very large.

In the United Kingdom, for example, whilst AMAX (k) de-

tects a bubble in 2003:Q4, AAR
MAX (k) detects a bubble 15

quarters earlier in 2000:Q1. In Belgium, whilst AMAX (k)

does not detect a bubble until 2004:Q2, AAR
MAX (k) detects

19 quarters earlier in 1999:Q3. Given that the goal of

real-time monitoring of bubbles is to provide timely in-

formation to policymakers, it is evident that this new

procedure can help policymakers respond more rapidly

to bubbles as they emerge. Finally, we note that ATR
MAX (k)

detects a bubble at the same time as AAR
MAX (k) on seven

occasions and quicker than AAR
MAX (k) on one occasion—

namely, Italy, where ATR
MAX (k) detects in 2000:Q2, AAR

MAX (k)

in 2001:Q2, and AMAX (k) does not detect a bubble within

the monitoring horizon.

Of course, earlier signalling of a house price bubble is

not an advantage unless a bubble has actually emerged.

We therefore want to confirm that the bubble detection

offered by our new procedures correspond to explosive

upwards movements in the price-to-rent series and are

not spurious detections. Fig. 4 displays the house price-to-

rent ratios of the 17 OECD countries discussed, along with

the bubble detection dates offered by AMAX (k), A
AR
MAX (k),

and ATR
MAX (k), and the theoretical FPR given by (6). It is clear

from visual inspection of the full sample of data (which,

of course, would not have been possible in real time) that

the earlier detection offered by the new methods is justi-

fied. Consider the United States, for example, in Fig. 4(q).

Observing the full sample of data, it is apparent that the

price-to-rent ratio undergoes a period of rapid growth

from the late 1990s to the mid-2000s, which is detected

four quarters earlier by AAR
MAX (k) (1999:Q1) than AMAX (k)

(2000:Q1), and two quarters earlier by ATR
MAX (k) (1999:Q3).

Whilst the result of AMAX (k) here replicates that found

by Whitehouse et al. (2023), the two new procedures are

able to detect the bubble in the United States housing

market even earlier than our previous paper.

To formally test for the presence of explosive bubbles

in the monitoring period, we conduct the sub-sample,

right-tailed unit root test procedure of Phillips et al.

(2015), known as the GSADF test. This test is applied to

data from 1997:Q1–2010:Q1, yielding a sample of size

T = 53. The GSADF test results are provided in Table 3.

Evidence of explosive behaviour is found in the monitor-

ing period for 14 out of the 17 countries studied at a 0.05

significance level. This includes in two countries (Italy and

Spain in Figs. 4(i) and 4(n), respectively) where the new

monitoring procedures detect a bubble and the original

AMAX (k) procedure does not.

Examining Fig. 4 also allows us to consider the dynam-

ics of the training sample in each country. In particular,

we observe that in many countries, the training sample

itself contains possibly explosive regimes. To formally test

for the presence of bubbles within the training sample, we

can also apply the GSADF test procedure to this training

sample data from t = 1, . . . , T ∗. The GSADF test results

for the training sample are also provided in Table 3.

We find evidence of explosive behaviour in the training

sample of eight out of 17 countries at a 0.05 signifi-

cance level. Of these eight countries, AAR
MAX (k) provides an

earlier detection date than AMAX (k) on seven occasions

(the exception being Finland, where only AMAX (k) detects

a bubble during monitoring), and ATR
MAX (k) provides an

earlier detection date than AMAX (k) on six occasions (the

additional exception being Sweden, where it detects at

the same time as AMAX (k)). From Section 5, we know that

the presence of training-sample bubbles results in both

reduced empirical FPRs and reduced empirical TPRs for

all procedures. It is therefore reassuring firstly that the

monitoring test procedures are still able to detect bubbles

at all in these circumstances in the vast majority of cases,

and secondly that the new tests continue to outperform

the original AMAX (k) in terms of early detection.

Finally, we note that an additional advantage of the

early detection offered by these new procedures, is that

detection occurs at a point where the theoretical FPR is

lower. Consider the United States, for example. AMAX (k)

detects a bubble at 2000:Q1 with a theoretical FPR of

0.141, whereas AAR
MAX (k) detects a bubble at 1999:Q1 with

a theoretical FPR of 0.102. For a practitioner concerned

about detecting at a given level of significance, differences

such as these may be meaningful.
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Fig. 4. House price-to-rent ratio: AMAX (k), A
AR
MAX (k) and ATR

MAX (k) bubble monitoring.
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Fig. 4. (continued).

6.2. Bitcoin explosivity

In March 2020, global instability due to the Covid-19

pandemic resulted in substantial declines to stock and

bond markets worldwide. Despite suggestions that bitcoin

could act as a safe-haven against these traditional asset

classes, due to being independent from monetary policy

and, historically, having weak correlation with traditional
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Fig. 4. (continued).

asset price movements, bitcoin also suffered in this time

period (Conlon & McGee, 2020), with prices crashing by

approximately 35% between March 6th and March 29th.

However, this collapse in bitcoin was short-lived, with

prices recovering to their pre-Covid level by May 2020

and continuing to rise throughout the year, with 2020

1273



E.J. Whitehouse, D.I. Harvey and S.J. Leybourne International Journal of Forecasting 41 (2025) 1260–1277

Table 3

House price-to-rent ratio: GSADF tests.

Country Training sample Monitoring sample

Australia 1.014 2.704**

Belgium 3.342*** 3.853***

Canada 1.951 4.477***

Denmark 1.334 5.018***

Finland 5.833*** 9.862***

France 1.630 4.254***

Germany 0.981 0.858

Ireland 2.501** 1.589

Italy 1.128 2.434**

Japan 2.300* 4.472***

Netherlands 3.959*** 3.140**

New Zealand 0.006 6.352***

Norway 2.926** 1.306

Spain 1.957 3.141**

Sweden 2.590** 2.938**

United Kingdom 2.653** 2.225**

United States 3.278*** 3.721***

*, **, and *** denote rejection at the 0.10, 0.05, and 0.01 levels,

respectively.

Table 4

Bitcoin: AMAX (k), A
AR
MAX (k) and ATR

MAX (k) bubble detection dates.

AMAX (k) AAR
MAX (k) ATR

MAX (k)

11th Oct 2020 10th Oct 2020 9th Oct 2020

Bold indicates the procedure(s) with the earliest detection date.

returns substantially larger than both the S&P 500 and

the well-known safe-haven asset of gold. In this applica-

tion, we investigate the possibility that bitcoin exhibited

explosive behaviour in prices in 2020.

It is well known that financial data, and especially

cryptocurrencies such as bitcoin, can exhibit time-varying

conditional volatility. As demonstrated in Section 4, the

procedures considered in this paper are robust to condi-

tionally heteroskedastic innovation processes. To confirm

that our procedures are able to monitor an emerging

bubble in this type of financial data, we now apply the

AMAX (k), A
AR
MAX (k), and ATR

MAX (k) procedures to bitcoin prices.

As discussed above, an asset price bubble can be de-

fined as the presence of explosive behaviour in a price

series and the absence of explosive behaviour in the as-

set’s fundamental value. For example, we may use rent

as a proxy for the fundamental value of housing (as in

Section 6.1), or we may use dividends as a proxy for the

fundamental value of the stock market. However, in the

context of cryptocurrencies, there is much less consensus

within the academic literature about how to quantify the

fundamental value, or indeed whether a cryptocurrency

has a fundamental value at all (see e.g. Gronwald (2021)).

Given the above, in what follows we test bitcoin prices

directly for explosive behaviour, noting that there is dis-

agreement in the academic literature about whether or

not such explosiveness should be deemed an asset price

bubble.

We test the logarithms of daily BTC–USD prices, with

data obtained from Yahoo Finance. Monitoring begins on

Monday August 3rd, 2020. Our training sample begins

on January 1st, 2020 (T ′ = 216) and we set k = 10

as before. Table 4 displays the bubble detection date of

Table 5

Bitcoin: GSADF tests.

Training sample Monitoring sample

3.259*** 3.403***

*** denotes rejection at the 0.01 level

AMAX (k), AAR
MAX (k), and ATR

MAX (k). All three procedures are

able to detect a bubble in bitcoin prices, with ATR
MAX (k)

detecting first on October 9th, 2020, followed by AAR
MAX (k)

one day later, and AMAX (k) two days later. As in the case

of house prices in Section 6.1, we want to confirm that

this detection corresponds to the emergence of explo-

sive behaviour and is not spurious. Fig. 5 displays the

logarithm of BTC:USD prices in addition to the detection

dates offered by each procedure. From visual inspection

of the full sample of data (which would not be possible

in a real-time monitoring scenario) it is clear that the

detection dates correspond to the start of a period of rapid

growth that continues into 2021. As above, we formally

test for the presence of explosivity in the monitoring pe-

riod (August 3rd, 2020 to June 30th, 2021; T = 332) using

the GSADF test. The GSADF test results in Table 5 show

that evidence of explosive behaviour is found at a 0.01

significance level. As in the case of several house price

series that we examined, there is also evidence of ex-

plosive behaviour in the training sample, which does not

prevent the detection of emerging explosive behaviour in

monitoring.

Finally, we note that the two empirical applications

offered in Section 6, to quarterly house prices and daily

bitcoin prices, demonstrate that the proposed monitor-

ing procedures perform well in the context of both low-

frequency macroeconomic data and higher-frequency fi-

nancial data.

7. Conclusion

Prompt detection of an emerging asset price bubble

is crucial, as it allows policymakers to react to the event

in a timely manner. In this paper we provided two new

real-time monitoring test statistics for the emergence of

an asset price bubble. These statistics are based on mod-

ifications of the recently developed AHLST procedure, us-

ing variance standardisations that are more appropriate

under the alternative hypothesis of an explosive bubble.

We showed that our new monitoring procedures

maintain the same asymptotic properties as the origi-

nal procedure under the null hypothesis of no explosive

bubble. Using finite sample simulations, our new pro-

cedures were shown to deliver substantial advantages

over the original procedure in terms of the true pos-

itive rate for detecting an explosive regime, which in

turn leads to earlier detection of an emergent bubble.

These advantages were shown to hold even when an

explosive regime is present within the training sample

of data, a situation which may well occur in practice.

An empirical application to the house price-to-rent ra-

tio in 17 OECD countries demonstrated the ability of

our new test procedures to provide earlier detection of

an emerging asset price bubble. In particular, we noted
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Fig. 5. Bitcoin prices: AMAX (k), A
AR
MAX (k), and ATR

MAX (k) bubble monitoring.

that the United States subprime bubble could have been

identified as early as 1999:Q1 with our new procedures,

whilst a bubble could have been detected in the United

Kingdom’s housing market in 2000:Q1. Combined with an

application to bitcoin prices, we were able to demonstrate

that our new procedures can detect emerging bubbles in

both macroeconomic and financial data.

We also note that a practitioner who monitors for the

emergence of an asset price bubble may also be interested

in monitoring for the collapse of that bubble. Whitehouse

et al. (2023) propose a monitoring procedure that can

detect collapsing bubbles in real time, which is reliant on

first detecting the emergence of a bubble using AMAX (k).

Therefore, improving the speed of detection of a bubble

using either AAR
MAX (k) or ATR

MAX (k) will improve the effi-

ciency of the Whitehouse et al. (2023) crash monitoring

procedure.
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Appendix A. Proof of Theorem 1

We first establish the result for AAR
e,k. The numerator of

this statistic is a measureable function of a finite number
of observations on ∆yt , and under H0, ∆yt = εt . In the
denominator, the residuals ε̂t , obtained from a regression
over the sub-sample t = e − k + 1, . . . , e, can be written
as

ε̂t = (∆yt − ∆y) − b̂(yt−1 − ȳ−1)

where

∆y = k−1

e
∑

t=e−k+1

∆yt , ȳ−1 = k−1

e
∑

t=e−k+1

yt−1,

b̂ =
∑e

t=e−k+1(∆yt − ∆y)(yt−1 − ȳ−1)
∑e

t=e−k+1(yt−1 − ȳ−1)2
.

Now,

yt−1 − ȳ−1 = yt−1 − k−1

e
∑

s=e−k+1

ys−1

= (yt−1 − ye−k−1) − k−1

e
∑

s=e−k+1

(ys−1 − ye−k−1)

= (ut−1 − ue−k−1) − k−1

e
∑

s=e−k+1

(us−1 − ue−k−1)
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=
t−1
∑

j=e−k

εj − k−1

e
∑

s=e−k+1

s−1
∑

j=e−k

εj.

Hence, ε̂t , t = e − k + 1, . . . , e, and consequently the

denominator of AAR
e,k, is also a measureable function of the

same εt as in the numerator of AAR
e,k. It then follows that

{AAR
e,k} is a strictly stationary sequence and, from Lemma

2.1 of White and Domowitz (1984), it is mixing of the

same size as {εt}. Theorem 1 assumes that the mixing

conditions of {εt}, and hence {AAR
e,k}, satisfy the mixing

conditions of Ferreira and Scotto (2002) (see Definition on

p. 476). Hence, the conditions underpinning the result in

Theorem 2.1 of Ferreira and Scotto (2002) are satisfied for

the sequence {AAR
e,k}.

Theorem 2.1 of Ferreira and Scotto (2002) for the case

r = s = 1 (in their notation) then implies that, for two

disjoint subintervals IT ,a and IT ,b of [1, T ], with respective

lengths aT and bT such that aT/T → a and bT/T → b,

lim
T→∞

P

(

max
e∈IT ,a

AAR
e,k ≤ max

e∈IT ,b

AAR
e,k

)

= b

a + b

or

lim
T→∞

P

(

max
e∈IT ,a

AAR
e,k > max

e∈IT ,b

AAR
e,k

)

= a

a + b
.

Setting IT ,a = [T ∗ + k, T ′] and IT ,b = [k+1, T ∗], we obtain

lim
T→∞

P

(

max
e∈[T∗+k,T ′]

AAR
e,k > max

e∈[k+1,T∗]
AAR
e,k

)

= lim
T→∞

(

T ′ − T ∗ − k + 1

T ′ − 2k + 1

)

= lim
T→∞

(

T ′ − T ∗

T ′

)

= α.

The result for ATR
e,k follows in the same way, but more

directly, since the êt , t = e − k + 1, . . . , e, used in the

denominator of ATR
e,k, are obtained from a regression of ∆yt

on a constant and trend (and not yt−1). Hence, it is more

readily apparent that êt is a measureable function of the

same εt as in the numerator of ATR
e,k.

Appendix B. Supplementary data

Supplementary material related to this article can be

found online at https://doi.org/10.1016/j.ijforecast.2024.

12.005.

Data and code availability

The data and Gauss code for this paper can be down-

loaded at https://sites.google.com/site/ejwhitehouse1.
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