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Capturing Dynamic Assembly of Nanoscale Proteins During
Network Formation

Matt D G Hughes, Kalila R Cook, Sophie Cussons, Ahmad Boroumand, Arwen I I Tyler,
David Head, David J Brockwell, and Lorna Dougan*

The structural evolution of hierarchical structures of nanoscale biomolecules
is crucial for the construction of functional networks in vivo and in vitro.
Despite the ubiquity of these networks, the physical mechanisms behind
their formation and self-assembly remains poorly understood. Here, this
study uses photochemically cross-linked folded protein hydrogels as a model
biopolymer network system, with a combined time-resolved rheology and
small-angle x-ray scattering (SAXS) approach to probe both the load-bearing
structures and network architectures respectively thereby providing
a cross-length scale understanding of the network formation. Combining
SAXS, rheology, and kinetic modeling, a dual formation mechanism
consisting of a primary formation phase is proposed, where monomeric
folded proteins create the preliminary protein network scaffold; and a
subsequent secondary formation phase, where both additional intra-network
cross-links form and larger oligomers diffuse to join the preliminary network,
leading to a denser more mechanically robust structure. Identifying this
as the origin of the structural and mechanical properties of protein networks
creates future opportunities to understand hierarchical biomechanics
in vivo and develop functional, designed-for-purpose, biomaterials.

1. Introduction

Biomolecule networks and assemblies are exploited in both mod-
ern biomedical applications, from engineered cell scaffolds[1] to
drug delivery systems,[2] and in processes fundamental to life,
from plant cell walls[3] to tendon fibers.[4] This wide applicability
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is largely due to the hierarchical structures
across length scales leading to a wide range
of complex mechanical behaviors, includ-
ing extraordinary strength and resilience
and adaptation to environment change,[5–7]

e.g. the high extensibility[8] and shear stiff-
ening at low strains[9] (<1%) of fibrin
blood clots; and the reversible softening of
actin cytoskeletons[10] providing a possible
mechanism for cells to respond to external
stresses. Their ubiquity is twofold: i) they al-
low small molecules, such as proteins, to be
used in the construction of large-scale bi-
ological structures, and ii) they are crucial
for the translation of single protein prop-
erties across length-scales and time-scales,
leading to a diverse range of behavior nec-
essary for different tissues/scaffolds. Pro-
teins are the building blocks of these assem-
blies, the workhorses of the cell, perform-
ing their function through structural and
mechanical changes. A beautiful example is
the extracellular matrix, a 3D, dynamic net-
work of proteins and polysaccharides that
adapts to environmental conditions, such

as compression and shear stress, and guide cellular organization
and behavior.[11] The correct self-assembly or formation of hier-
archical structures is crucial to achieve the necessary architec-
tures and mechanics, for example fibrin blood clots, which must
spontaneously form a large, fibrous, homogeneous network,[12]

or cell scaffolds which must form with the correct structure
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(e.g., the correct pore size distribution of the material)[13] and
mechanics (e.g., network stiffness/rigidity)[14,15] to promote cell
growth. However, despite the ubiquity of these biopolymer net-
works, the mechanisms of their in situ formation remain under-
investigated. The physical mechanisms and kinetics of these
assembly processes are crucial to understanding the emergent
properties of these in vivo networks and creating opportunities
for the design of complex viscoelastic materials.[16]

Time-resolved small-angle scattering (SAS) is a powerful tech-
nique for directly measuring the structure of a material as a func-
tion of time. Over the last several years, time-resolved SAS has
been used to monitor the formation of multiple photo-initiated
cross-linked materials including polyether urethane commonly
used in 3D print resins,[17] and starch nanoparticle hydrogels[18]

for applications in agriculture or bioremediation.[19–23] Addition-
ally, it has been successful in determining the formation behavior
of block co-polymer nanoparticles in complex conditions such as
under flow.[24] While time-resolved SAS is ideal for investigating
the formation kinetics of materials, it has also successfully been
used to understand the kinetic behavior of other processes such
as ongoing chemical reactions[25] or the absorption onto/into ma-
terials, including the silicification of DNA origami[26] or the ad-
sorption of water into porous silica.[27] Despite the success of ap-
plying time-resolved SAS for a range of soft matter and biological
materials, it has yet to be employed to study networks constructed
from folded proteins. A pioneering study by Li et al. engineered a
protein hydrogel that aimed to mimic the mechanical properties
of the giant muscle protein titin.[28] Further studies have approxi-
mated the mechanical properties of tissues, forming highly elas-
tic and stimuli-responsive materials, dynamically regulating their
mechanical properties and shape.[29–38] However, a fundamental
challenge is to relate the structural and mechanical properties of
an individual protein building block to the collective response of
a protein network.[39] Virtually nothing is known about the struc-
ture during protein network formation, severely limiting our un-
derstanding of the physics of these systems.

In 2017, we provided the first detailed structural characteri-
zation of folded globular protein hydrogels.[40] Through the ap-
plication of small-angle neutron and x-ray scattering (SANS and
SAXS, respectively) we have proposed that these networks are
constructed from fractal-like clusters of cross-linked folded pro-
teins, which are connected by an intercluster region, populated
by folded or unfolded protein.[41–44] Recent modeling approaches
to understand the structure of globular protein networks have in-
cluded coarse-grained dynamic simulations which investigated
the importance of cross-link location and density on network
formation[45,46] and on network structure as well as the effects
of building block flexibility.[47] Additionally, kinetic lattice-based
models have been used to investigate the importance of diffusion
limited (i.e., where the formation rate limiting factor is the diffu-
sion of the particles) and reaction limited (i.e., where the rate lim-
iting step is the cross-linking reaction rate) cluster aggregation in
the formation of colloidal network structures.[48–50] Other simula-
tions have taken a different approach focusing on force propaga-
tion through heterogeneous cross-linked networks of colloids[51]

or polymers.[52] Buehler et al[52] investigated the force propaga-
tion pathway through polymer networks via characterization of
the convolutedness of the network (i.e., how much of the network
must be explored to travel from one end to the other), finding

an inverse relationship between convolutedness and connectiv-
ity. Another study[51] used a similar method of “trimming” a per-
manently cross-linked colloidal network to the connection path
along a specific axis. This “trimmed” network was assumed to
directly experience force as the network was extended along this
axis and allowed for the determination of the force per colloidal
particle upon external stress to the network.

Theoretical approaches have been undertaken to link the com-
plex heterogeneous structure of networks to their mechanical
properties. These approaches have included, but are not lim-
ited to: semi-flexible polymeric theories to model the elastic-
ity and strain stiffening of biopolymer networks,[9,39,53] kinetic
models to capture catch-slip behavior,[54] Gaussian connectiv-
ity and coordination geometry models to understand critically
self-supporting networks[55–57] and colloidal modeling to capture
rigidity percolation.[58–62] Of specific relevance to this study are
the works of Del Gado et al[58,59] and Furst et al.[60] which showed
that structural heterogeneity (i.e., clusters and interconnection
between clusters) and structural correlations (i.e., specific attrac-
tive interaction promoting ordering) were crucial for network
rigidity percolation (i.e., the formation of a self-supporting net-
work). These were combined with Cauchy-Born -esque models[62]

to demonstrate that the connectivity of the clusters was crucial
for the mechanical stability of the network concurring with the
previously proposed rigidity network.[58]

In this work, we utilize time-resolved SAXS to monitor the
formation of a folded protein network constructed from bovine
serum albumin (BSA) protein. In conjunction with time-resolved
SAXS experiments, we make use of shear rheology to directly
probe the load-bearing structure of the folded protein hydrogel
networks. The SAXS data is combined with information gained
from kinetic lattice-based simulations and rheological character-
ization of the protein hydrogels to provide an integrated view of
the folded protein network formation and to propose a dual pro-
cess formation model.

2. Results

2.1. Selection of Model Method and System

To determine the evolution of protein network structure, we mea-
sure structure formation during photochemical cross-linking.
Time-resolved SAXS (Figure 1a) is an ideal technique to inves-
tigate the structural evolution of biopolymer networks, due to its
high flux and rapid acquisition times.

To study these formation mechanisms, we utilize the well-
characterized bovine serum albumin (BSA) protein (Figure 1b)
hydrogels,[2,36,37,44,63] as a model system. These hydrogels are
formed via photo-initiated chemical cross-linking of tyrosine
residues on the surface of the BSA protein via free-radicalization
of the tyrosine aromatic rings and subsequent tautomerization[64]

(Methods). Using this experimental setup, i.e., short exposure
time and wide q-range (0.005 ≤ q ≤ 0.6) with a bespoke LED
light ring for the SAXS instrument (Experimental Section), we
capture the evolution of the hydrogel structure over time (>2 h,
Figure 2a). BSA folded protein hydrogels are an ideal model
system due to BSAs 18 surface accessible tyrosines, which is
above the geometric limit of 4 necessary for the formation of
gel networks via photochemical cross-linking.[65] Additionally,
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Figure 1. BSA hydrogels offer a model system to study the structural evolution during the formation of protein networks with time resolved SAXS. a)
A schematic representation of the experiment set-up used for time resolved SAXS of photochemically cross-linked BSA hydrogel networks. Samples
of pre-gel BSA solutions (light red test tube) are illuminated by a bespoke blue LED rig (grey ring) to initiate gelation. Exemplar 2D and 1D scattering
patterns are shown. b) BSA crystal structure with tyrosine residues highlighted in black. Schematic showing the homogeneous pre-gel protein solution
(left) where each BSA protein is represented by a red sphere with black cross-link sites and the previously determined final network structure of BSA
hydrogels (right), where fractal-like clusters of cross-linked BSA (red circles with dashed black ring) are connected by an inter-cluster region of folded
protein.

Figure 2. Time resolved SAXS monitors the structural formation of folded protein networks. a) SAXS curves of BSA hydrogel networks (final concentra-
tions: 100 mg mL−1 BSA, 50 mm NaPS, 100 μM Ru(BiPy)3) as a function of gelation time. For clarity, data collected beyond 10 min and up to 2 h are not
shown. b,c) The model-independent fit parameters, Porod exponent (b) and radius of gyration, Rg (c), extracted from the SAXS curves in panel a) as a
function of gelation time (Methods) for BSA protein hydrogel.
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17 disulfide bonds throughout its structure act like internal
“nano-staples”, imbuing the protein with a high resistance to
force-induced unfolding, meaning that unfolding in situ within
the network is prevented and, as such, can be excluded from
consideration.[44]

2.2. Structural Characterisation of Network Formation

Figure 2a shows how the scattering curves of BSA in the pre-gel
solution at 100mg mL−1 evolve over the first 10 min of photo-
chemical gelation time (defined as the time the sample is illu-
minated by the blue light). From these curves it can be seen at
gelation time, t = 0 the SAXS curve shows the expected shape
for repulsive globular colloids at high concentrations (protein vol-
ume fraction = 7.4%), i.e., a depressed I(0) and a “peak” in the
curve in the mid-q range before a power law decrease at high-
q with an exponent of ≈−4. This scattering profile is consistent
with monomeric electrostatic BSA protein at 100mg mL−1 previ-
ously observed with SAXS.[66]

The scattering curve profile changes with gelation time, most
notably in the low-q region, where we observed a dramatic in-
crease in the intensity at low q with time. This is indicative of a
growing structure forming in the system, as expected for chem-
ically cross-linked BSA protein. To begin to understand the evo-
lution of the network structure over time, we perform model-
independent Guinier-Porod fits to SAXS curves to extract the
Porod exponent (Figure 2b) and the radius of gyration (Figure 2c)
of the largest scattering object. The evolution of the Porod expo-
nent (Figure 2b), gives information on how the geometry of the
structure changes with gelation time. Initially, the exponent is
4, which is a characteristic of a globular object, as expected for a
folded globular protein. As the gelation time increases, the Porod
exponent drops rapidly, reaching a minimum at t ∼ 10 min. This
rapid decrease in the Porod exponent is accompanied by an in-
crease in the radius of the gyration of the largest scattering ob-
ject, as shown in Figure 2c. These results suggest that larger
structures are forming and that the Porod exponent is shifting
from measuring the globular nature of individual proteins to a
measure of the geometry of larger structures of chemically cross-
linked proteins. Porod exponents between 1 and 3 can be inter-
preted as a measure of the level of space-filling (which can be
thought of as how compact the structure is), with larger values
being indicative of greater space-filling (e.g., a densely packed
polymer has a Porod exponent of 3, while an extended Gaussian
chain has a Porod exponent of 1.67).[67] Here, the minimum value
of the Porod exponent is ≈2.3, suggesting that a relatively space-
filling (i.e., compact) network is formed. However, as the gelation
time increases, there is a minimum in the Porod exponent data,
which then slowly increases with gelation time (Figure 2b). This
suggests that the network structures are becoming increasingly
space-filling over time. Note the Porod exponent and Rg both ap-
pear to plateau at ≈t = 30 min, demonstrating that the largest
scattering structures are not significantly changing in geometry
or size after this time and that a steady state structure has been
reached. From this model-independent scattering analysis, par-
ticularly the turning point in the evolution of the Porod exponent,
it is clear there are two processes occurring in the formation of
the protein network: i) an initial process that forms a less com-

pact, sparse structure (i.e., lower Porod exponent) and; ii) a sec-
ond process which increases both the overall size and the space-
filling or “compactness” of network structures.

To further explore the data, we apply a fractal structure fac-
tor model (Equation 5, Experimental Section) that describes the
protein network as fractal-like clusters of folded protein linked
together by an inter-cluster region populated by folded and un-
folded proteins.[2,41–44,63] We extract the evolution of key struc-
tural parameters: the proportion of protein in fractal-like clusters,
pc; the fractal dimension, Df, which is higher for more compact
fractal-like clusters containing a greater “density” of cross-linked
protein; and the characteristic length, 𝜉, which is related to the
size of the clusters.

The extracted parameters, pc, 𝜉, and Df are shown in
Figures 3b,c,d, respectively. As expected, we observe an increase
in the proportion of protein in clusters, pc, over time as more pro-
teins join clusters within the network over time. After an initial
lag period of ≈5 min, there is a sharp increase in pc. This sharp
growth in the proportion of proteins in large, cross-linked pro-
tein clusters, lasts until t ∼ 8 min. After the rapid increase in pc
there is a slower growth rate which plateaus at a pc value of 0.670
± 0.004. In conjunction with the time evolution of pc, we observe
a similar two-phase increase in the correlation length (Figure 3c)
of fractal-like protein clusters, with an initial rapid increase in
cluster size followed by a slower growth to a final plateau value
of 116.5 ± 0.3 Å. The evolution of the cluster size with gelation
times shows that clusters increase in size with time. The simi-
larity between evolution profiles of pc and 𝜉 makes sense as the
more proteins that cross-link into the cluster the larger the cluster
will grow in size to accommodate the additional protein. Interest-
ingly, while pc and 𝜉 increase monotonically with gelation time,
we observed a non-monotonic evolution of Df with gelation time
(Figure 3d), i.e., the fractal dimension initially rapidly decreases
from a value of three down to a minimum of value of 2.28 ± 0.03
at a time, t = 13 min. At this minimum point, the trend reverses
and Df slowly increases up to a plateau value of 2.48 ± 0.01, fol-
lowing a profile comparable to the Porod exponents in Figure 2b,
as expected. Taken together, the scattering data suggest an initial
configuration of the network into smaller (characteristic size of
≈90 Å, shown by the ankle in Figure 3c at t ≈13 min) dendritic (Df
(Minimum) = 2.28 ± 0.03) percolating clusters (Figure 4a), i.e.,
forming a system spanning network (previous rheology data on
BSA hydrogels[44] demonstrate the network is mechanical self-
supporting after ≈5 min). These percolated clusters continue to
grow more slowly (up to an end-point value of 116.5 ± 0.3 Å) af-
ter the initial rapid growth and importantly begin to increase in
density (end point Df value = 2.48 ± 0.01). Interestingly, this in-
crease in cluster density continues up to gelation times of ≈105
min (Figure 3c), whereas the increase in cluster size plateaus at
gelation times of ≈30 min. This shows that at longer gelation
times, i.e., t >30 min, there is an increase in the density of fractal-
like clusters which is not accompanied by an increase in their
size. This suggests that there is a process occurring at gelation
times >30 min which is increasing the density of clusters with-
out altering the overall size of the clusters. Densification of the
clusters begins at gelation times of ≈15 min and occurs more
rapidly (Figure 3d) while clusters are growing in size (Figure 3c)
and continue more slowly after clusters no longer increase their
size. This suggests that the densification of clusters is a complex
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Figure 3. Time resolved SAXS reveals the evolution of key structural parameters during folded protein network formation. a) Schematic showing the
previously determined final network structure of BSA hydrogels (red circles), where fractal-like clusters of cross-linked BSA (identified by black rings)
are connected by an inter-cluster region of folded protein. b,c,d) The fractal cluster model dependant fit (Equation 5) parameters; proportion of folded
protein in fractal clusters, Pc,(b); the characteristic lengthscales of the fractal-like clusters, 𝜉 (c); and the fractal dimension of the fractal-like clusters,
Df,(d), extracted from the SAXS curves in Figure 2a as a function of gelation time for BSA networks. The solid lines show fits using Equation (1).

process comprised of two mechanisms: i) a process where new
building blocks cross-link into clusters increasing their density
and size; and ii) a process where clusters form additional cross-
links within themselves causing an increase in density with a
negligible change in size. To fully disentangle the complex forma-
tion of these protein hydrogel networks, the results in Figure 3
must be further interrogated.

2.3. Dissection of Network Formation Mechanisms

To investigate the kinetics of the dual phase formation mecha-
nism, we compare the lag time and maximum formation rate (the
fastest rate at which the process occurs) of both the 𝛼-primary for-
mation and 𝛽-secondary formation. To do this we fit the extracted
structural parameters (Figure 3b–d), with a constructed empiri-
cal equation, in which each formation mechanism is modeled as
a sigmoid (Equation 1):

x (t) = (x (∞) − x (0)) ⋅

(
𝛼

1 + e−k𝛼(t−t𝛼0 )
+ 𝛽

1 + e−k𝛽
(

t−t𝛽0

)
)

+ x (0) (1)

where x is the one of the extracted parameters pc, 𝜉, or Df; x(0)
and x(∞) are the initial and end-point values of the extracted pa-
rameter; 𝛼 and 𝛽 are the proportion of the primary and secondary
formation processes, respectively, such that 𝛼 + 𝛽 = 1; k𝛼 and k𝛽

are related to the rate of sigmoidal growth for the two formation

processes (primary and secondary); and t0
𝛼 and t0

𝛽 are the mid-
points of the sigmoids modeling the alpha and beta formation
processes. Fitting Equation 1 we can use the determined param-
eters to calculate the lag time for the ith process (Equation 2), tgel

i:

ti
gel = ti

0 − 2
ki

(2)

Similarly, the max formation rate for the ith process, Kmax
i, is

Ki
max = i ⋅ ki

4
(3)

Derivations of Equations (2) and (3) can be found in the sup-
plementary information. Figure 4b,c show the extracted lag times
and maximum formation rates for the alpha and beta formation
processes, determined from each of the extracted scattering pa-
rameters, Pc, Df, and 𝜉.

We take the average of the SAXS lag times (Figure 4b) and
maximum formation rates (Figure 4c) determined from each
structural parameter (pc, Df, and 𝜉) extracted from SAXS data.
Figure 4b compares the average SAXS lag times of the pri-
mary formation, t𝛼gel(SAXS), and secondary formation, t𝛽gel(SAXS),

showing that t𝛽gel (SAXS) > t𝛼gel (SAXS) (i.e., primary formation
occurs before secondary formation) suggesting that secondary
formation is dependent on the 𝛼-primary formation. Coupled
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Figure 4. Folded protein networks are formed by a dual formation process consisting of a fast initial primary formation and a subsequent slower
formation. a) Schematic showing the transition from free protein in solution through putative self-supporting network phase to mature protein network,
highlighting the two formation processes. The first 𝛼-process called the Primary Formation (purple) which is the formation of the preliminary network
resulting from the diffusion of protein building blocks. The second 𝛽-process called the Secondary Formation (dark yellow) due to the slower diffusion of
high-order cross-linked protein oligomers formed during the primary formation, (depicted here as dimers and trimers for simplicity) joining the network
as well as the formation of “intra”-network cross-links both resulting in densification of the network. b) Extracted lag times from Figures 3b–d, labeled Pc,
𝜉, Df respectively, for both the primary (purple) and secondary (dark yellow) formation. The solid lines represent the average lag time for each formation
mechanism as extracted from SAXS data. c) Extracted normalized absolute kmax values from Figure 3b–d, labeled Pc, 𝜉, Df respectively, for both the
primary and secondary formation. The solid lines represent the average normalized kmax for each formation mechanism as extracted from SAXS data.

with the difference in SAXS lag times, Figure 4c shows that there
is a 19-fold reduction in the max formation rate of the secondary
formation compared to the primary formation (i.e., k𝛼max(SAXS)
≈19∙k𝛽max SAXS)). Based on the results of both the model inde-
pendent and model dependent analyses we propose a dual for-
mation mechanism (Figure 4a): (i) Primary formation character-
ized by rapid cross-linking of monomeric protein to form perco-
lating clusters leading to a dendritic spanning network; and (ii)
secondary formation characterized by an increase in the size and
density of the percolated cross-linked clusters of folded protein
within the network. The slower growth of secondary formation
as well as the increase in size and density of the clusters may
be due to the slower diffusion of cross-linked aggregates formed
during the primary phase (e.g., dimers, trimers etc.) that join the
network after gelation, but could also be due to additional intra-
cluster cross-links formed when thermal excitation of network
elastic modes bring different protein branches into contact, lead-
ing to densification as observed in fibrin networks[68–70] and sim-
ulations of colloidal networks.[45] These potential mechanisms
will be explored in the simulations below.

2.4. Computational Modelling of Protein Network Formation

To test the feasibility of the conjecture that the dual structural for-
mation mechanisms seen in the experimental SAXS data can be

purely driven by the diffusion of proteins and subsequently pro-
tein oligomers, we performed coarse-grained simulations of net-
work formation in which proteins are represented as colloid-like
units that translationally diffuse on a 3D periodic lattice. Cross-
linking is modeled by permanently joining immediately-adjacent
units with a reaction probability, R, per unit simulation time step
(defined as the time for a monomeric simulated protein to dif-
fuse its own diameter). The simulated diffusion probability (i.e.,
the diffusion constant) is inversely related to cluster size, i.e.,
monomers diffuse faster than dimers which diffuse faster than
trimers, and so on. Importantly, networks formed within this ki-
netic model have no elasticity, thus any agreement with scatter-
ing data can only be attributed to the assimilation of cross-linked
aggregates post-gelation, and not any mechanism involving net-
work deformation.

Figure 5a shows an exemplar evolution in the size of the
simulated percolated network at a reaction probability of 0.2%.
The time of network percolation is identified as when, a cross-
linked cluster (typically the largest) in the system first spans the
simulation box in all three dimensions, which is comparable
to the lag time measured in experiments. After this time, the
growth of the percolated network is quantified by the number
of monomer units contained within the spanning cluster. The
curve in Figure 5a shows a similar profile to that observed for
the time evolution of pc (Figure 3b), i.e., a lag phase followed
by an initial rapid increase in the number of proteins in the
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Figure 5. Coarse-grained simulations reveal that primary and secondary formation are driven by diffusion of monomers and oligomers, respectively. a)
An example raw simulation data curve of the number of “protein” monomers in the percolating cluster over time, averaged over 10 simulation runs, of an
8% volume fraction system with a monomer-monomer reaction probability R = 0.2%. b) Extracted max fundamental formation rate for the 𝛼-formation
(purple squares) and 𝛽-formation (dark yellow discs) phases extracted using Equations (1) and (3) as a function of simulated reaction rate R.

percolated network and finally a slower increase before reaching a
plateau. This slower late phase can be interpreted as evidence for
a two-phase formation process, suggesting that the underlying
driver of the primary and secondary formation observed in the
SAXS data results from the diffusion of monomers and the sub-
sequent diffusion of larger aggregates, respectively. Fitting the
simulated growth curves (Figure 5a; Figure S1a, Supporting In-
formation) with Equation (1), we can extract the maximum fun-
damental rate of both processes (Equation 3) over a range of re-
action rates R = 0.2% to R = 100%. Figure 5b shows how the
𝛼-primary and 𝛽-secondary formation rates vary as a function
of reaction rate. The validity of the fitting process (Figure S1b,
Supporting Information) confirms that the assimilation of freely
diffusing cross-linked oligomers post-gelation is a viable mech-
anism for the two-phase formation scenario inferred from the
scattering data. Additionally, while k𝛼max (sim) increases monoton-
ically with reaction rate, we observe a maximum in k𝛽max (sim) at
a reaction rate of approx. R = 20%. This reaction rate coincides
with the crossover between diffusion limited cluster aggregation
(DLCA) to reaction limited cluster aggregation (RLCA) observed
previously.[49] Previous rheological characterization of BSA hy-
drogel networks has suggested that at low lamp intensities (<10
mW cm−2) the system is in the reaction limited cluster aggrega-
tion regime[63] (2.8 mW cm−2 is the lamp intensity used in this
study). From Figure 5b, as the reaction rate decreases below 10%
the separation between the k𝛼max(sim) and k𝛽max (sim) increases,
where at 0.2% reaction rate the ratio k𝛼max (sim)/ k𝛽max (sim) is ≈5.
While this does not exactly match the ratio of the rates observed
in SAXS (k𝛼max (SAXS)/ k𝛽max (SAXS) ≈19), it is consistent with the
experiments being deep into the reaction-controlled regime.

Previous analysis of these simulations found an increase in
fractal dimension (ΔDf(sim) = 0.13) of the simulated network
(at a simulated reaction rate of 0.2%) from the percolation point
to the final network configuration, i.e., during the secondary
formation. However, the experimental increase in Df between
the minimum and final value ((ΔDf(exp) = 0.200 ± 0.03) is
larger than those observed in these simulations. Therefore, while
this modeling suggests that the main underlying mechanism
of 𝛽-secondary formation is the kinetic assimilation of diffus-

ing oligomers into the network post-gelation, the discrepancy in
the change of fractal dimension suggest mechanisms involving
network deformation, absent in this kinetic model (but present
in dynamic simulations[45]), are also contributing to secondary
formation.

2.5. The Presence of Dual Formation Modes in Network
Mechanics

Time-resolved rheology experiments were employed to investi-
gate the presence of the primary and secondary formation in the
mechanics of the folded protein hydrogel network. Using a previ-
ously developed LED rig[63] for the in situ photochemical gelation
of folded protein hydrogels on the rheometer, we monitored the
mechanical formation of BSA hydrogels. Figure 6a shows how
the storage modulus, G’, (a measure of the hydrogel network elas-
ticity) at a fixed frequency evolves as a function of gelation time
for the BSA hydrogel networks.

These curves show an initial lag phase followed by a sharp in-
crease in G’ rising to a peak, before relaxing down to a plateau
value. This relaxation behavior during the gelation process has
previously been observed in the gelation of BSA hydrogels. Pre-
vious studies[43,44] have directly studied this relaxation to a final
G’(t = ∞) value, using circular dichroism spectroscopy (CD). CD
monitored the folded structure of mechanical robust (i.e., with
disulfide staples preventing unfolding) and force labile (i.e., with-
out disulfide bonds) BSA over time post-gelation and found that
there is significant (∼ 30%) unfolding of the force labile BSA dur-
ing the relaxation phase.[44] This demonstrated that the relaxation
behavior in folded protein networks is due, in part, to the unfold-
ing of protein domains in the network. Interestingly, relaxation
behavior is still observed in native BSA hydrogels (which due to
disulfide bonds are unable to unfold) suggesting that unfolding
is only one component of the relaxation behavior, the other was
attributed to be due to reconfigurations of building blocks within
the network. In this work we focus on the initial increase in G’
to directly probe the formation of load-bearing structures in the
system. Closer inspection of the sharp increase in the gelation
curve suggests there are two regimes (and hence two formation
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Figure 6. Rheology reveals a dual mechanism formation process in the mechanical formation of a self-supporting folded protein network. a) Gelation
curves, showing storage modulus as a function of gelation time of BSA hydrogels. Illuminated at t = 0 h till t = 2 h. b) Magnification of BSA gelation
curves (solid symbols) in panel a between t = -1min to t = 30 min, with the evolution of the fractal dimension (open symbols) extracted from SAXS
overlayed (Figure 3c). Vertical solid black lines represent the key lag times, t𝛼

gel
and t𝛽

gel
extracted from the rheological data (Methods). The solid red

lines represent the fit to the evolution of the fractal dimension extracted from SAXS data (Equation (5), Methods). c) Extracted lag times from both
SAXS (Figure 4b) and rheology data for both the primary (purple) and secondary (dark yellow) formation. Inserts show schematics for the proposed
mechanisms. d) Extracted normalized absolute kmax values from both SAXS (Figure 4c) and rheology for both the primary and secondary formation.
Inserts show schematics for the proposed primary and secondary formation mechanisms, where the preliminary network forms from the diffusion of
monomer protein building blocks (Primary formation), followed by the slower diffusion of high-order cross-linked protein oligomers (depicted here as
dimers and trimers for simplicity) cross-linking into the preliminary network (Secondary formation).

modes) in the rising phase, similar to the SAXS data and ki-
netic simulations: a faster formation centered at t ∼ 8 min and
a slower growth at t = 16 min. To extract values for both the for-
mation modes simultaneously we modify a previously used fit-
ting function1 (Equation 7) which models the evolution of G’ as
the product of two functions: i) a single mode formation factor
(Equation 8) which describes the sharp growth in G’ during pho-
tochemical cross-linking; and ii) the relaxation factor (Equation 9)
which models the decrease in G’ to a plateau value at later times.
Here we replace the previously used single mode formation fac-
tor with the same two mode, double sigmoidal expression used
for the scattering data (Equation 1). From the fitting of this modi-
fied Equation (7) we can then extract the lag times of both forma-
tion modes (Equation 2). These lag times for the primary 𝛼 forma-
tion, t𝛼gel(Rheo), and the secondary 𝛽 formation, t𝛽gel(Rheo), are
annotated on the rheology gelation curve overlaid with the fractal
dimension Df (as determined from scattering) in Figure 6b. Ad-
ditionally, the values with errors are shown in Figure 6c alongside
the lag time values extracted from SAXS data. Note that the val-
ues of the 𝛼-primary formation are consistent with the lag time

value extracted using the conventional intersecting lines meth-
ods (Figure S2, Supporting Information), demonstrating our be-
spoke fitting method obtains accurate results (Equations 1 and 7).
From Figure 6b we can see that extracted rheological lag times,
t𝛼gel(Rheo) and t𝛽gel(Rheo), coincide with the key features of the evo-
lution of Df with time, specifically: t𝛼gel (Rheo) coincides with the

initial rapid decrease in Df, while t𝛽gel(Rheo) coincides well with
the minimum in Df prior to the slow increase in Df at later times.
This suggests that there is a link between the structural forma-
tion and the mechanical response of the network over time, as
one would expect. The presence of two formation modes in the
rheology data and the strong agreement between the lag times
extracted from SAXS and rheology (Figure 6c) suggests that the
dual formation model we proposed is not only crucial for the for-
mation of the hydrogel architecture but also for the formation of
the rigidity network of the protein network. Figure 6d compares
the max fundamental formation rates extracted from both SAXS
and rheology. In both cases the 𝛼-primary formation relative rate
is greater than that for the 𝛽-secondary formation, i.e., k𝛽max(Rheo)
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<k𝛼max (Rheo) and similarly for the scattering rates. However, the
absolute values significantly differ. The rheology 𝛼-primary for-
mation rate is approximately half the scattering value, suggesting
that a significant fraction of proteins connected to the incipient
percolating cluster do not contribute to full system mechanical
response. This concurs with known results from rigidity percola-
tion, where it has been established that forces propagate through
a stress-bearing backbone that exists within (but is smaller than)
the percolating cluster.[71,72] For example, forces will not propa-
gate through regions of the network only connected to the back-
bone at a single attachment point, so such “dangling” regions
will not contribute to the rheology but will still contribute to the
scattering signature. Conversely, the rheology 𝛽-secondary rate is
much greater than that for scattering, suggesting that small struc-
tural changes arising after gelation can substantially stiffen the
network. Putative mechanisms include thermally-activated elas-
tic deformations bringing different network regions into prox-
imity (e.g., rotation of the aforementioned ‘dangling’ regions),
permitting new cross-links to form on the stress-bearing back-
bone and additional constraints to the network mechanical re-
sponse. Similarly, freely-diffusing protein aggregates may attach
to the network and create a new bridge between nearly-touching
network branches, similarly introducing constraints and lower-
ing network flexibility. Our kinetic modeling above suggests both
classes of mechanism are required to fully describe secondary for-
mation processes, but additional, dynamic modeling is required
to quantitatively capture both the structural formation, as well as
force propagation and bulk mechanics.

3. Discussion

The formation of biomaterials is a crucial process to designing
and constructing materials fit for purpose. Here, by combining
time-resolved SAXS and computational modeling with compli-
mentary rheological experiments we disentangle the complex for-
mation behavior of a model protein network. We identify two
distinct formation phases that build the protein network archi-
tecture and rigidity: i) an initial primary formation which is char-
acterized by the diffusion and cross-linking of protein monomer
into a dendritic, system spanning, self-supporting network con-
sisting of percolated cross-linked clusters; and ii) a subsequent
secondary formation characterized by additional cross-linking
due to internal network deformation modes bringing regions
into contact for additional cross-linking, or the incorporation of
freely-diffusing aggregates into the system-spanning cluster, re-
sulting in growth and densification of the clusters already em-
bedded in the network. It should be noted that the present dual
formation mechanism was observed at a single concentration of
BSA (100 mg ml−1) and ionic strength (≈0.2m). At this concen-
tration it is expected that BSA in solution has a screened Coulom-
bic structure, which would limit self-association into oligomers
pre-gelation.[66] At higher ionic strengths BSA has been observed
to oligomerise in solution.[66] This suggests that at high ionic
strengths an increased prevalence of oligomers may be present
and a more dominant role for the secondary formation mech-
anism. This may provide an interesting route to explore the
structural evolution of protein networks which are manipulated
through control of electrolytes. A similar formation has been ob-
served in a dilute solution of large colloidal particles (≈3μm), in

which fractal cluster initially form and undergo a densification at
later times.[73] This suggests that the dual modal model of folded
protein network formation proposed in this work is applicable
both to other colloidal systems and across a range of building
block size, i.e., from nms to μms.

By performing both time-resolved SAXS and shear rheology
we were able to separately and directly probe the evolution of
the network architecture and the load-bearing network of the
folded protein hydrogels, respectively. The formation rates ex-
tracted from SAXS and rheology (Figure 6c,d), were found to
agree, suggesting there is a close link between the network archi-
tecture and rigidity. Additionally, a maximum was observed in
the secondary formation rate extracted from simulations of the
kinetic lattice-based model, likely due to a switch from DLCA to
RLCA.

Previous experimental and modeling studies[49,63] have shown
that cross-linking reaction rate modulates the mechanics and
structure of folded protein networks, with networks formed
at high intensities exhibiting more dendritic structures with
higher mechanical rigidity.[63] Additionally previous computa-
tional modeling reveals that reaction rate alters their simulated
formation kinetics (e.g., higher reaction rates, shorter percola-
tion times).[49] Both experimental and modeling studies showed
reaction rate-dependent changes that are consistent with a tran-
sition between diffusion- and reaction-limited assembly, and cor-
responding changes to the viscoelastic response of the protein
networks. The results presented here combined with previous lit-
erature suggest reaction rate offers a facile method for varying gel
properties at a fixed volume fraction and a route to further under-
stand the in situ formation mechanisms of protein networks.

Previous work by Furst et al.[60] and del Gado et al.[58] have used
Cauchy-Born models to explain the mechanics of their colloidal
systems at the level of clusters, deriving

G′ = 2Znck
⟨

r2
⟩

(4)

in which Z is the average coordination of a cluster, nc is the cluster
number density, k is the spring constant for the linkages between
clusters, and r is the characteristic cluster size. From our SAXS
data and our previously published method[44] we can determine r
and nc, and the variation of G’ is immediately available from our
rheology data. Therefore, using these calculated values and Equa-
tion (4) we can determine how the product of cluster connectivity
and inter-cluster stiffness is predicted to vary over time.

Figure 7 shows the results of this cluster-level Cauchy-Born
model. The values for the product k∙Z are small over all gela-
tion times, with an end point value of (1.8 ± 0.03)x10−4 N m−1.
If we assume the Z is a positive number between 4 (minimum
coordination for self-supporting networks) and 12 (maximum co-
ordination of spheres), then k is on the order of 10−5 N m−1.
These values are significantly below the estimated values for pro-
tein stiffness from quasi-elastic neutron scattering, order of 10−1

N m−1.[74] This suggests that current models of clustered col-
loidal networks are not able to fully capture the translation of
protein stiffness across length scales in hierarchical protein net-
works. This is supported by the difference we observe in the
formation rates extracted via SAXS and rheology, which sug-
gest that the mechanical contribution of the protein monomers
(during primary formation) and oligomers (during secondary
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Figure 7. Cauchy-Born models currently cannot fully model folded pro-
tein networks. The product of the cluster coordination, Z, and the spring
constant of the cluster-cluster connection, 𝜅, as a function of the gelation

time. Here, 𝜅.Z is calculated as G′

2nc⟨r2⟩ .

formation) is dependent upon when, where, and how they join
and link into the network. Despite the discrepancy between our
estimate k value and the estimate stiffness of folded proteins,
the profile of the product kZ matches extremely well with the
profile of our rheological gelation curves. In particular, we ob-
serve a sharp increase in kZ after a lag phase be peaking and
decreasing to a plateau value (Figure 7). The observed decrease
in kZ after t ≈ 30 min aligns well with the relaxation behavior
observed in the rheological gelation curves, suggesting the ori-
gin of the relaxation is found in the product kZ. Since our hy-
drogel system is constructed via covalent photochemical cross-
linking, the coordination number Z is unlikely to change, mean-
ing the relaxation behavior is likely due to changes to the inter-
connecting stiffness value k. Since in our system k is related to
the stiffness of folded protein linking clusters together, we spec-
ulate this means that the relaxation behavior observed rheolog-
ically (Figure 6a) is not due to network-level reconfiguration of
the network but rather due to changes on the protein level, e.g.,
protein domain weakening. Our work here highlights the need
for more development of theoretical and computational models
able to determine the location and importance of building blocks
that are key to the rigidity network and how force is propagated
through them. New computational and theoretical models such
as Buehler et al recent work[52] will help us to understand the
cross-length scale translation of mechanical properties in protein
networks.

The dual formation model proposed in this work has impli-
cations on understanding how in vivo protein networks form,
for example fibrin blood clots. This work suggests that fibrin
blood clots form first by the primary formation percolation of an
initial network of proto-fibers before secondary formation takes
place leading to bundling and the production of mature fibers.
Such a model of fibrin formation has been previously suggested
from simulations of patchy rod-like particle aggregation by Rocco
et al.[70] This is also consistent with our previous study10 which
demonstrated that the assembly of fibrin proto-fibers into a self-

supporting network is the initial step in clot formation as op-
posed to bundling.

The BSA protein building block used in this study contains
17 structural disulfide bonds which infer mechanical robust-
ness and limit protein unfolding. The mechanically robust BSA
protein was photochemically cross-linked to create a percolating
colloidal-like network of folded proteins. In the present study we
find evidence for a dual formation mechanism for protein net-
work formation. It is interesting to consider the possible uni-
versality of this model for other protein systems. Our previ-
ous studies of force labile proteins have demonstrated that pro-
tein unfolding is a critical determinant of network structure and
mechanics.[44] Therefore, we expect that future in situ studies
of protein network formation will reveal rich differences in the
formation mechanisms which are governed by the force labil-
ity of the protein building block and protein unfolding during
network formation. Furthermore, previous studies have shown
a complex interplay between the thermodynamic stability of the
protein and how it directly governs protein network properties
while the protein unfolding kinetics limits the tunability acces-
sible via the thermodynamic stability.[42] The methods and anal-
ysis presented in this study are therefore an important first step
toward uncovering the dynamic assembly of more complex pro-
tein networks, including those which are responsive to chemical
and mechanical perturbations.

4. Experimental Section
Materials: Bovine serum albumin (heat shock fraction, protease

free, fatty acid-free, and essentially immunoglobulin free), tris(2,2′-
bipyridyl)dichlororuthenium(II) hexahydrate (Ru(BiPy)3), sodium persul-
fate (NaPS), sodium phosphate dibasic, and sodium phosphate monoba-
sic were obtained from Sigma-Aldrich, and used without further treatment.

Sample Preparation: As previously published,[2,44,63] hydrogel sam-
ples are prepared by mixing in a 1:1 ratio a 200 mg mL−1 stock of either
BSA protein and 2 × cross-link reagent stock for final protein and reagent
concentrations of 100 mg mL−1 BSA, 50 mm NaPS, and 100 μm Ru(BiPy)3.

Small Angle X-Ray Scattering (SAXS): SAXS measurements were con-
ducted on a Xeuss 3.0 offline SAXS instrument (Xenocs Inc., France) using
a gallium rich alloy liquid metal jet x-ray source, (Ga K𝛼 = 9.2keV (1.3 Å))
(Excillum, Sweden). Samples were loaded into 1.48mm path length cap-
illary tubes (Capillary Tube Supplies Ltd.), sealed with manuscript seal-
ing wax. Sealed capillary tubes were loaded into a Xenocs Peltier capillary
holder and held at a constant temperature of 20 °C. The detector was run
at two distances from the sample at 4.5m and 0.5m giving the investigated
q-range of 0.005 to 0.5 Å−1. Samples were photo-initiated and gelated in
situ in the x-ray sample chamber using a bespoke blue LED lighting rig
(Figure S2, Supporting Information, Acknowledgements). 2-D SAXS pat-
terns were recorded on an Eiger2 R 1M detector (Dectris, Switzerland),.
Silver behenate (a = 58.38 Å) was used to calibrate the SAXS data and
glassy carbon calibration was performed to convert data to absolute in-
tensities. SAXS curves were acquired over multiple frames. Frame times
began at 1 min (52s acquisition time + 8s processing time) for the first
15 min of gelation, then increased to 2 min (108s acquisition time + 12s
processing time) until the gelation time t = 31 min. After 31 min of the
sample being illuminatied by the blue light the frame time was set at 15
min (850s acquisition time + 50s processing time). Note, control experi-
ments were done to ensure that there was no radiation damage to the pro-
tein, nor did x-rays alone activate the photochemical cross-linking (Figure
S4, Supporting Information). SAXS data were processed using the DAWN
software.[75]

SAXS Analysis: SAXS curves obtained were fitted using SASview
(http://www.sasview.org). Model-independent fits were performed and
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consisted of a Guinier-Porod fit[11] over the entire data range, to extracted
the Porod exponent and the radius of gyration at specific time point for
the evolving system. Model dependant fits were performed in accordance
with Equation (5).

I(q) = Scale ⋅ P (q) [(1 − pc) + pcS (q)] + Background (5)

here, Scale is a scaling factor, pc is the proportion of folded protein in clus-
ters, P(q) is a Guinier-Porod form factor[76,77] to model the general size
and shape of the folded protein, and S(q) is a fractal structure factor,[78]

defined as:

S(q) =
Df Γ

(
Df − 1

)
[
1 + 1

(q𝜉)2

] Df −1

2

⋅
sin

[(
Df − 1

)
(q𝜉)

]
(qR0)Df

(6)

where Df, 𝜉, and R0 are defined as the mass fractal dimension, correla-
tion length, and minimum cutoff length scale defined by the form factor,
respectively.

Rheometry: Mechanical characterization experiments of BSA hydro-
gel samples were performed on an Anton Paar MCR 302 stress-controlled
rheometer (Anton Paar GmbH, Austria) in parallel plate configuration
(with a plate diameter of 8 mm). Samples of pre-gel solutions were added
to the parallel plate with a gap height of 1.48 mm. Photochemical cross-
linking was initiated and controlled via illumination by blue LED at a cur-
rent of 0.03 Amps. To prevent evaporation, during this process low vis-
cosity silicone oil (≈5 ct) was placed around the geometry. The silicone
oil should present no schematic error on rheometric data as this is below
the rheometer’s torque range. Time sweep gelation measurements were
conducted at a frequency and shear strain of 1 Hz and 0.5%, respectively.

Rheometry Analysis: The rheological gelation curves were fitted in ac-
cordance with Equation (7),

G′(t) = G′(∞) ⋅ F(t) ⋅ R(t) (7)

where G’(∞) is the plateau value of G’ at t = ∞, F(t) is the formation
factor which models the initial hydrogel formation through photochemi-
cal cross-linking, and R(t) is the relaxation factor which models the post-
photochemical cross-linking relaxation observed in folded protein hydro-
gels at later times. The formation factor, F(t), is the sum of two sigmoid
functions, defined as

F(t) =
⎛⎜⎜⎝ 𝛼

1 + e
−c𝛼

(
t−t𝛼0

) + 𝛽

1 + e
−c𝛽

(
t−t𝛽0

) ⎞⎟⎟⎠ (8)

where 𝛼 + 𝛽 = 1; c𝛼and c𝛽 are related to the width of the sigmoid functions,
i.e., how steeply the sigmoid grows with time for the 𝛼 and 𝛽 formation
process, respectively; and finally t0

𝛼 and t0
𝛽 are the sigmoid centers of the

𝛼 and 𝛽 formation process, respectively.
The relaxation factor, R(t), is defined as:

R(t) =
(

1 + B1e
− t

𝜏1

)
(9)

here, 𝜏1 is the characteristic relaxation timescale due to network relaxation.
Lattice-Based Kinetic Simulations: The coarse-grained kinetic lattice-

based model simulated the diffusion and aggregation of clusters of cubic
units, where each such cubic unit represented one BSA protein monomer.
During initialization these units were added sequentially to a periodic
simulation cell at random locations, with the constraint that no two
monomers were allowed to overlap. Monomer addition continued until
the target volume fraction was reached, generating a uniform distribution
of “clusters,” each initially consisting of one monomer. During a simu-
lation run, all clusters were randomly displaced to adjacent lattice sites
mimicking diffusion, and reacted (cross-linked, i.e., merging two smaller

clusters into a larger cluster) when the surfaces of two different clusters be-
came adjacent, with a probability R per unit time. In this manner, increas-
ingly extended clusters were formed, through gelation, to a final network in
which every monomeric unit belonged to a single cluster. The lattice spac-
ing corresponds to the protein diameter, and one unit of simulation time
corresponds to the time it takes one protein to diffuse one lattice space.
For this work, simulations were run at monomeric volume fractions of 8%
and at varying reaction probabilities from 0.2% to 100%, with 10 repeats
for each reaction rate. Further details can be found in previous work by
Cook et al.[49]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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