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Mineral-associated organic carbon (MAOC) constitutes a major fraction of global soil 154 

carbon (C), and is assumed less sensitive to climate than particulate organic C (POC) due 155 

to protection by minerals. Despite its importance for long-term C storage, the response of 156 

MAOC to changing climates in drylands, which cover more than 40% of the global land 157 

area, remains unexplored. Here we assess topsoil organic C fractions across global 158 

drylands using a standardized field survey in 326 plots from 25 countries and six 159 

continents. We find that soil biogeochemistry explained the majority of variation in both 160 

MAOC and POC. Both C fractions decreased with increases in mean annual temperature 161 

and reductions in precipitation, with MAOC responding similarly to POC. Therefore, our 162 

results suggest that ongoing climate warming and aridification may result in unforeseen C 163 

losses across global drylands, and that the protective role of minerals may not dampen 164 

these effects. 165 

 166 

Soils in drylands—the largest set of biomes of the planet —store 646 Pg of organic C, more than 167 

all living vegetation on Earth 1,2. This vast soil organic C pool supports essential ecosystem 168 

services, including food provision and water and climate regulation for more than 2.5 billion 169 

people 3,4. Yet, temperature increases and precipitation reductions forecasted for many dryland 170 

regions are expected to disrupt the balance of soil organic C, accelerating microbial 171 

decomposition, reducing plant C inputs into the soil, and resulting in more CO2 emissions to the 172 

atmosphere 5,6. 173 

The sensitivity of organic C in soils (sensu ref. 7) to temperature and precipitation at 174 

timescales relevant to climate change mitigation is thought to be controlled largely by 175 

interactions with soil minerals, which restrict the accessibility of microbial decomposers by 176 
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encapsulating and adsorbing organic matter 8–10. Plant-derived materials at early stages of 177 

decomposition are the main constituents of the mineral-unprotected, particulate organic C (POC) 178 

fraction of soil organic matter 9. The POC fraction is thus directly affected by changes in plant C 179 

inputs into the soil and is more exposed to microbial decomposition than the organic component 180 

of the mineral-associated organic C (MAOC) fraction, which has, therefore, a lower turnover rate 181 

11,12. As a result, large scale meta-analyses and observational studies suggest that POC is more 182 

sensitive to changes in climate, and particularly to warming, than MAOC 7,13–16. Because of the 183 

typically large ratio of soil minerals to organic matter in drylands, MAOC is expected to 184 

dominate over POC, potentially driving a high persistence of soil organic C in these ecosystems 185 

7,10,17. However, no studies to date have examined the relationship of POC and MAOC with 186 

climate across the diverse environmental gradients that characterize global drylands. 187 

Investigating this relationship is particularly timely and relevant, as it would significantly reduce 188 

the uncertainty surrounding the land carbon-climate feedback. Additionally, it would provide 189 

valuable insights for adapting soil carbon-related ecosystem services to ongoing climate change. 190 

Here we evaluated how mean annual temperature and precipitation relates to POC and 191 

MAOC contents across global drylands after accounting for major biotic (net primary 192 

productivity, vegetation type, woody cover, plant and herbivore richness, and grazing pressure) 193 

and soil biogeochemistry (clay and silt contents, pH, chemical index of alteration, exchangeable 194 

Ca, non-crystalline Al and Fe, available N and P, and microbial biomass C) factors known to 195 

potentially affect soil organic C content by regulating C inputs and stabilization processes 5,18. To 196 

do so, we surveyed in situ 326 plots from 98 dryland ecosystems located in 25 countries from six 197 

continents (Extended Data Fig. 1). Our survey spans the broad gradients of temperature, 198 

precipitation, aridity, soil properties, vegetation types, and grazing pressures that can be found 199 
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across drylands worldwide (Extended Data Tables 1 and 2) 19,20. At each site, we collected 200 

topsoil samples (0-7.5 cm) from areas both covered (322) and not covered (326) by perennial 201 

vegetation from two to four plots located across a local gradient of extensive grazing pressure 202 

(648 samples in total, see Methods). We subjected all samples to a size fractionation procedure 203 

to separate and quantify C content in POC and MAOC pools 9,21. Using these data, we tested the 204 

hypothesis that MAOC, being protected by minerals, is less sensitive than POC to increases in 205 

temperature and decreases in precipitation 7,10,16,22. We also hypothesize that the presence of 206 

vegetation mitigates declines in soil C, particularly POC, by increasing soil C inputs.  207 

 208 

MAOC dominates soil organic C and is sensitive to climate 209 

Our results show that MAOC was the dominant soil organic C fraction in drylands globally (Fig. 210 

1a). In particular, median MAOC content was 5.2 g C kg-1 soil, equivalent to 66% of the total 211 

soil organic C content, whereas median POC content was 2.3 g C kg-1 soil. This quantification 212 

falls within the range of soil organic C content (MAOC and POC) commonly found in drylands, 213 

and is relevant to improve the performance of emerging models of soil organic C formation and 214 

persistence using POC and MAOC frameworks 2, 23–25. 215 

Contrary to our hypothesis, we found that MAOC and POC were equally sensitive to 216 

differences in climate across global drylands. In particular, both MAOC and POC were 217 

negatively associated with increasing temperature and decreasing precipitation to a similar 218 

extent, as indicated by the similar slopes of the associations (Fig. 1bc). These results were 219 

supported by the lack of a significant interaction between the effects of temperature and 220 

precipitation and the type of fraction (MAOC versus POC) tested by a linear mixed-effects 221 

model (Fig. 1d, see Methods). Based on the results from this model, we estimated that POC and 222 
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MAOC contents significantly declined with temperature at an average rate of 3.2% per ºC (95% 223 

confidence interval (CI): 1.8, 4.6) and increased with precipitation at an average rate of 6.6% per 224 

100 mm (95% CI: 0.6, 12.6). 225 

Warming accelerates the microbial decomposition of soil organic matter, and precipitation 226 

reduction constrains plant production and organic matter inputs into the soil 5,26. Our results are, 227 

therefore, consistent with previously reported reductions in soil organic C content with 228 

increasing temperature and reducing precipitation across terrestrial ecosystems 27–29. However, 229 

and contrary to expectations of smaller sensitivity of MAOC versus POC to changes in climate 230 

observed in more mesic systems 14,15, our findings based on a space-fir-time substitution 231 

highlight that the MAOC and POC fractions may decrease at similar rates in response to climate 232 

warming and precipitation reduction across global drylands. Therefore, they suggest that the 233 

current paradigm of mineral protection may not determine soil C persistence in dryland 234 

ecosystems 8,30–32. The apparent lack of protection by minerals, which contrasts with what was 235 

observed in mesic systems richer in organic matter, was consistent across the range of soil 236 

organic C content found in drylands (Extended Data Fig. 2). There is recent evidence that 237 

MAOC is controlled not only by C stabilization in soil organo-mineral complexes, but also by 238 

changes in C inputs driven by climate 15. In drylands, not only precipitation reduction but also 239 

warming may increase water deficit, which may decrease plant productivity 5, C inputs into the 240 

soil and C accumulation into the MAOC fraction. These is also evidence that dryland soils 241 

maintain a high oxidative potential during dry periods, mainly through the stabilization of 242 

enzymes, which result in a rapid organic matter decomposition in wet periods 28,29 and may 243 

further limit C inputs to the MAOC fraction. 244 

 245 
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Vegetation buffers soil C declines with warming 246 

Both POC and MAOC contents were higher in soil beneath perennial vegetation (Fig. 2). We 247 

further observed that as mean annual temperature increased, POC and MAOC contents 248 

decreased, but to a lesser extent, beneath vegetation. Conversely, as mean annual precipitation 249 

increased, both contents increased in a similar manner in open areas and in areas under the 250 

canopy of perennial vegetation (Fig. 2). These results are important because they suggest that the 251 

presence of vegetation buffers, but does not fully compensate for, the negative effects of higher 252 

temperature on soil C fractions. While the buffering effect of vegetation did not completely 253 

counteract the vulnerability of organic C pools to increasing temperatures, our findings indicate 254 

that management practices aimed at protecting vegetation in drylands may help to maintain soil 255 

organic C stocks in global drylands and reducing their losses in response to a changing climate. 256 

 257 

Coupling of POC and MAOC in drylands 258 

We found that POC and MAOC contents were strongly correlated across global drylands (r = 259 

0.83, n = 326, P < 0.001; Fig. 3a). These results strongly suggest that both fractions remain 260 

highly coupled in drylands despite their different levels of putative protection against 261 

decomposition by microorganisms. 262 

Variance partitioning of linear mixed-effects models and random forest analysis showed that 263 

the order of importance of the group of factors that explained most of the variation of POC and 264 

MAOC across global drylands was essentially the same for both organic C fractions (Fig. 3b, 265 

Extended Data Fig. 3). Soil biogeochemistry, above climate and biotic factors, was the most 266 

important predictor of both POC and MAOC contents. Both C fractions were negatively 267 

associated with soil pH and positively associated to exchangeable Ca, available N and P, and 268 
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microbial biomass C contents; additionally, MAOC was associated positively with clay and silt 269 

and non-crystalline Al and Fe contents (Extended Data Fig. 4). Slightly-acidic-to-neutral soils 270 

generally feature higher nutrient availability and more fertility than alkaline soils 33, which may 271 

thus favor soil organic C accumulation in drylands through increased plant-derived C inputs and 272 

microbial activity. The prevalent role of soil fine texture and non-crystalline Al and Fe in MAOC 273 

formation has been widely documented in the literature 31. Sorption of organic matter to mineral 274 

surfaces is known to be promoted by the relatively high specific surface area and charge of clay 275 

and silt, while non-crystalline Fe and Al phases are also known to form strong associations with 276 

organic matter 31. 277 

The coupling of POC and MAOC observed here for drylands may be, however, disrupted in 278 

more productive terrestrial ecosystems, where higher plant inputs may result in larger POC 279 

contents 13–15. In contrast to experimental manipulation studies 14, our work addresses the 280 

vulnerability of soil C fractions using a space-for-time substitution. Further research into the 281 

pace of the climate-induced changes and the causality of the associations found in our study is 282 

thus warranted. 283 

 284 

Concluding remarks 285 

By using a global standardized field study and by focusing exclusively on dryland ecosystems, 286 

our work expands previous efforts to understand abiotic and biotic drivers of POC and MAOC 287 

along large geographical gradients, which have either been based on literature syntheses, which 288 

use datasets that are inherently heterogenous, or have focused on ecosystems other than drylands 289 

16. Our study generated highly standardized field data on the POC and MAOC fractions of 290 
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dryland soils worldwide, along with their major predictors. These data significantly expand 291 

existing global databases and can be used to refine current soil organic C models. 292 

Our findings suggest that ongoing changes in climate, particularly warming, may adversely 293 

affect both unprotected and mineral-protected soil C content in drylands to a similar extent. The 294 

results obtained also indicate that maintaining vegetation cover can mitigate, but not fully 295 

counteract, the negative impacts of rising temperatures on soil organic C fractions. Our study 296 

enhances our understanding of how POC and MAOC contents in soil respond to key abiotic and 297 

biotic drivers, revealing that mineral protection has limited potential to sustain organic C storage 298 

in dryland soils in the face of ongoing global warming. The novel insights about dryland soil C 299 

pools and their sensitivity provided here could facilitate much-needed advances in our model 300 

representation of dryland ecosystems and their response to climate change. 301 

 302 
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Figure captions 352 

 353 

Fig. 1 | Distribution of soil organic carbon (C) contents in particulate organic C (POC) and 354 

mineral-associated organic C (MAOC) fractions and their relationships with climate in 355 

global drylands. a, Boxplot of POC and MAOC contents. Box, 1st, and 3rd quartiles; central 356 

horizontal line, median; upper vertical line end, largest value smaller than 1.5 times the 357 

interquartile range; lower vertical line, smallest value larger than 1.5 times the interquartile range 358 

(n = 326 plots). b-c, Relationships between POC and MAOC contents and mean annual 359 

temperature (MAT, b) and precipitation (MAP, c). Lines and shading represent linear regressions 360 

and 95% confidence intervals. d, Summary of a linear mixed-effects model, controlling for biotic 361 

factors and soil biogeochemistry (see Methods). The panel shows coefficients (circles) and 95% 362 
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confidence intervals (CI, bars) for main and interaction effects of C fraction type (binary 363 

variable, either POC or MAOC) and climate (MAT and MAP) on POC and MAOC contents. 364 

The variance explained (R2) by the fixed and random effects relative to the total variance was 365 

77% and 12%, respectively (n = 634 POC and MAOC observations). Carbon fraction contents 366 

were natural-logarithm transformed, and all the predictors were standardized. The positive 367 

coefficient of C fraction type (MAOC vs. POC) indicate that MAOC contents are significantly 368 

greater than POC contents (P < 0.001). For the observed negative association of MAT and 369 

positive association of MAP with C content (P < 0.001 and P = 0.039 respectively), negative 370 

coefficients for the interaction of C fraction type with MAT and MAP indicate that increasing 371 

MAT has a stronger negative effect on MAOC than on POC contents (P = 0.053), while 372 

decreasing MAP has a stronger negative effect on POC than on MAOC (P = 0.181). 373 

Fig. 2 | Relationships between climate and particulate organic C (POC) and mineral-374 

associated organic C (MAOC) contents in soils under the canopy of the dominant perennial 375 

vegetation (V) and in open areas (O) across global drylands. a-d, Relationships between POC 376 

and mean annual temperature (MAT, a) and precipitation (MAP, c), and between MAOC and 377 

MAT (b) and MAP (d) in both O and V microsites. Lines and shading represent linear 378 

regressions and 95% confidence intervals (n = 326 and 322 for O and V, respectively). e, 379 

Coefficients (dots) and 95% confidence intervals (bars) of linear mixed-effects model illustrating 380 

the fixed main and interaction effects of MAT, MAP, and the presence of vegetation cover (V vs. 381 

O) on POC and MAOC contents (n = 648 V and O areas). The variance explained (R2) by the 382 

fixed and random effects relative to the total variance was 30% and 55%, respectively, for POC, 383 

and 32% and 61%, respectively, for MAOC. 384 

Fig. 3 | Coupling and drivers of particulate organic C (POC) and mineral-associated 385 

organic C (MAOC) in global drylands. a, Relationship between POC and MAOC contents. 386 

Dots represent individual dryland plots, with the colors of the dots illustrating their aridity (1 – 387 

annual precipitation/potential evapotranspiration) values. The line and shading represent the 388 

fitted linear regression and 95% confidence interval, respectively. b, Variance explained (R2) by 389 

linear mixed-effects models for POC and MAOC contents partitioned into the fraction 390 

attributable to unique and shared among groups of drivers (climate: mean annual temperature 391 

and mean annual precipitation; biotic factors: net primary productivity, type of vegetation, 392 

woody cover, plant richness, grazing pressure, and herbivore richness; and soil biogeochemistry: 393 
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clay and silt, pH, chemical index of alteration, exchangeable Ca, non-crystalline Al and Fe, 394 

available N and P, and microbial biomass carbon). The variance explained (R2) by the fixed and 395 

random effects relative to the total variance was 69% and 20% for POC (n = 317) and 84% and 396 

11% for MAOC (n = 317), respectively. 397 
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Methods 478 

Global field survey and soil sampling. Fieldwork was conducted from January 2016 to 479 

September 2019. A total of 326 plots distributed across 98 study sites in 25 countries from all 480 

continents except Antarctica (Algeria, Argentina, Australia, Botswana, Brazil, Canada, Chile, 481 

China, Ecuador, Hungary, Iran, Israel, Kazakhstan, Kenya, Mexico, Mongolia, Namibia, Niger, 482 

Palestine, Peru, Portugal, South Africa, Spain, Tunisia, and USA) and encompassing the wide 483 

range of vegetation, soil, climate, and grazing pressure levels found in drylands worldwide were 484 

surveyed using a common and standardized protocol 19,20. 485 

At each site, we gathered field data within multiple 45 m x 45 m plots situated along a 486 

gradient of grazing pressure, encompassing high (n = 98), medium (n = 97), and low (n = 88) 487 

pressure levels, as well as ungrazed areas (n = 43). To establish the grazing gradients, in 90 out 488 

of the 98 sites surveyed, we strategically positioned these plots at varying distances from 489 

artificial watering points, which are usually created in drylands to supply introduced livestock 490 

with permanent water sources 34. The closer the plot to the permanent water source, the more 491 

intense the grazing 34,35. In the remaining eight sites, local variations in grazing pressure 492 

gradients were ascertained by observing different paddocks featuring varying grazing intensities. 493 

See ref. 20 for additional details on the characterization and validation of the local grazing 494 

pressure gradients established. 495 

A portable Global Positioning System was used to record the coordinates and elevation of 496 

each plot, which were standardized to the WGS84 ellipsoid for visualization and analyses. 497 

During the dry season at each site, four soil cores (145 cm3) from 0 to 7.5-cm depth (topsoil) 498 

were collected from five 50 × 50-cm quadrats randomly placed in areas under the canopy of the 499 

dominant perennial vegetation and five placed in open areas not covered by perennial vegetation. 500 



19 

The soil cores were homogenized and composited to form a sample representative of the soil 501 

under the dominant vegetation and a sample representative of the soil in open areas within each 502 

plot. The soil samples were passed through a 2-mm sieve. A portion of each soil sample was air-503 

dried and used for organic matter fractionation and texture and pH analysis, and another portion 504 

was stored at -20 °C and used for microbial biomass C analysis. A portion of the air-dried soil 505 

samples was ground with a ball mill for additional chemical analysis. 506 

Soil organic carbon fractionation and quantification. All the soil samples, a total of 648 (326 507 

from open areas and 322 from under the canopy of the dominant vegetation), were subjected to a 508 

size fractionation method 21,36 to separate the POC (not protected by minerals from microbial 509 

decomposition) and MAOC (protected by minerals) fractions. Aggregates were dispersed by 510 

adding 30 mL of sodium hexametaphosphate (5 g L-1) to 10 g of soil and shaking with an 511 

overhead shaker for 18 h. After dispersion, the mixture was thoroughly rinsed through a 53-µm 512 

sieve, to separate the POC (> 53 µm) and MAOC (< 53 µm) fractions using an automated wet 513 

sieving system. The isolated fractions were oven-dried at 60 ºC, weighed, and ground with a ball 514 

mill. The whole soil samples and the POC and MAOC fractions were analyzed for organic C 515 

contents by dry combustion and gas chromatography using a ThermoFlash 2000 NC Soil 516 

Analyzer (Thermo Fisher Scientific, MA) after removing carbonates by acid fumigation 37. 517 

Climate data. Mean annual temperature and mean annual precipitation data were obtained from 518 

WorldClim 2.0 38
 a high resolution (30 arc seconds or ~ 1 km at the equator) database based on a 519 

large number of climate observations and topographical data for the 1970-2000 period. Aridity 520 

index (ratio of average annual precipitation to potential evapotranspiration) data were obtained 521 

from the Global Aridity Index and Potential Evapotranspiration Climate Database v3 39. Aridity 522 

was calculated as 1 – aridity index. 523 
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Vegetation and herbivore richness survey. Each plot was classified as grassland, shrubland, or 524 

forest by identifying the dominant type of vegetation. Net primary productivity (NPP) was 525 

estimated using the mean annual Normalized Difference Vegetation Index (NDVI) averaged 526 

monthly values between 1999 and 2019 at a resolution of 30 m from Landsat 7 Enhanced 527 

Thematic Mapper Plus (ETM+) 40. The cover of perennial vascular plants (plant cover) was 528 

measured along four parallel 45-m transects separated by 10 m and oriented downslope during 529 

the peak of the growing season using the line-intercept method 19,41,42. Woody cover was 530 

measured in 25 contiguous quadrats (1.5 m × 1.5 m) placed in each transect (100 quadrats per 531 

plot). Plant richness was the total number of unique perennial species found along the quadrats 532 

and transects surveyed. The richness of herbivores was quantified at each plot using dung data 533 

collected systematically in situ along the four 45-m transects established as described in ref. 20. 534 

Soil analyses. All the bulk soil samples were analyzed as follows. Clay and silt contents were 535 

determined by sieving and sedimentation 43. Soil pH was measured in a water suspension at a 536 

soil-to-water ratio of 1:2.5 44. The chemical index of alteration, which is an indicator of the 537 

degree of weathering, was calculated as the molecular proportion of Al2O3 versus Al2O3 + CaO + 538 

Na2O + K2O 45, using total Al, Ca, Na, and K contents and after correcting Ca for soils with 539 

carbonates 18; total Al, Ca, Na and K contents were determined by inductively coupled plasma 540 

atomic emission spectroscopy (ICP-AES) after digestion in nitric and perchloric acids 44,46. 541 

Exchangeable Ca content was determined by ICP-AES after extraction with ammonium acetate 542 

at pH 7.0 44,47. Non-crystalline Fe and Al contents were determined by ICP-AES after extraction 543 

with acid ammonium oxalate 48. Available N (ammonium and nitrate) content was determined by 544 

extraction with 0.5 M K2SO4 and the indophenol blue method using a microplate reader 49. 545 
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Available P content was determined by the Olsen method 50. Microbial biomass C was 546 

determined by substrate-induced respiration 51 using an automated microrespirometer 52. 547 

Statistical analyses. We compared the content of MAOC with that of POC in global dryland 548 

soils controlling for confounding factors, and tested the hypothesis that the effects of climate 549 

(mean annual temperature and precipitation) on POC and MAOC contents depends on (interacts 550 

with) the C fraction type. For these analyses, we aggregated soil data for open and vegetation 551 

covered areas by plot using plant cover area as a weighting factor, and fitted a linear mixed-552 

effects model on the response of C content with C fraction type as a binary categorical predictor 553 

(either MAOC or POC). In the fixed-effects term of the model, we also included mean annual 554 

temperature, mean annual precipitation, and the interactions of mean annual temperature and 555 

mean annual precipitation with C fraction type, as well as key biotic (net primary productivity, 556 

type of vegetation, woody cover, plant richness, grazing pressure, and herbivore richness) and 557 

soil biogeochemical (clay and silt, pH, chemical index of alteration, exchangeable Ca, non-558 

crystalline Al and Fe, available N and P, and microbial biomass C) covariates to control for 559 

confounding factors. In the random term of the model, we incorporated an intercept structure 560 

with plot nested within site as a categorical variable to account for the lack of independence in 561 

the residuals due to the paired POC and MAOC separation and the plot sampling design. We 562 

checked whether the fit of this linear mixed-effects model improved by including quadratic terms 563 

of mean annual temperature, mean annual precipitation, and both mean annual temperature and 564 

precipitation, using the Akaike information criterion (AIC) and likelihood ratio tests. None of the 565 

quadratic models tested was a significantly better fit to the data (χ² (1) < 1.0, P > 0.3) than the 566 

linear model (lowest AIC). 567 
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To examine separately the variance of POC and MAOC contents explained by the groups of 568 

predictors (climate: mean annual temperature and mean annual precipitation; biotic factors: net 569 

primary productivity, type of vegetation, woody cover, plant richness, grazing pressure, and 570 

herbivore richness; soil biogeochemistry: clay and silt, pH, chemical index of alteration, 571 

exchangeable Ca, non-crystalline Al and Fe, available N and P, and microbial biomass C), we 572 

built two linear mixed-effects models (one for POC and another one for MAOC) with site as a 573 

random categorical variable. These two separate models were used to assess the importance of 574 

the different groups of predictors in explaining either POC or MAOC, and not to test statistically 575 

for differences in the size of the effects of the predictors between POC and MAOC. To support 576 

the linear mixed-effects models, we tested the importance of the same groups of predictors of 577 

POC and MAOC using random forest regression modeling 53. In particular, we built two random 578 

forest models, one for POC and one for MAOC, combining 500 trees, and quantified the 579 

importance of each predictor by computing the increase in mean squared error across trees when 580 

the predictor was permuted. 581 

We tested whether the presence of vegetation cover interacted with the effects of temperature 582 

and precipitation also by linear mixed-effects modeling. For this purpose, we built two linear 583 

mixed-effects models, one for POC content and another one for MAOC content in areas under 584 

the canopy of the dominant perennial vegetation and open areas, with vegetation cover as a 585 

binary predictor and plot nested within site in the random term. 586 

For all the linear mixed-effects models, POC, MAOC, exchangeable Ca, non-crystalline Al 587 

and Fe, available N and P, and microbial biomass C were natural-logarithm transformed to 588 

reduce the skewness of the data. To compare effect sizes, all the numeric predictors were 589 

standardized by subtracting the mean and dividing by two standard deviations, and the binary 590 
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variables (C fraction type and vegetated vs. open areas) were rescaled to -0.5 and 0.5 54. The 591 

coefficients of the models were estimated by the restricted maximum likelihood approach, 95% 592 

confidence intervals were calculated, and P-values were computed based on Satterthwaite 593 

approximation 55. The validity of the assumptions of normality, homoscedasticity and linearity 594 

were examined using residual plots. The generalized variance inflation factors (GVIFs) were 595 

computed to check for multicollinearity among predictors (GVIF values were less than 3 in all 596 

cases, suggesting that multicollinearity was low 56). All statistical analyses were performed using 597 

R 57 and the R packages arm 58, ggplot2 59, lme4 60, lmerTest 55, partR2 61, patchwork 62, 598 

rnaturalearth 63, randomForest 64, sf 65, terra 66, and viridis 67. 599 

 600 

Data availability 601 

The data associated with this study are publicly available in 602 

https://figshare.com/s/8aeac2300650181f2c86 (https://doi.org/10.6084/m9.figshare.24678891) 68. 603 
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