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motor strategies such as recruiting extra degrees-of-free-
dom to perform a task compared to healthy individuals 
(e.g. greater trunk involvement during reaching (Cirstea 
and Levin 2000). The flexor and extensor synergies of the 
upper-limb are frequently observed abnormal motor pat-
terns, the former involving increased shoulder abduction, 
elbow flexion and supination and wrist/finger flexion and 
the latter comprised of opposing joint motions (Brunnstrom 
1970; Dipietro et al. 2007). However, these acquired pat-
terns may or may not be adaptive towards overall motor 
function and consequently may represent a potential bar-
rier to functional recovery that need careful monitoring 
from the outset of recovery (Jones 2017). Moreover, when 
impairment is assessed using qualitative assessments (e.g. 
Fugl-Meyer assessment (FMA) (Gladstone et al. 2002)), 
established compensatory strategies may also mask the 
actual neurological deficits of patients, making it difficult 
for clinicians to identify specific impairments and prescribe 
targeted interventions. Thus, current measures don’t fully 

Introduction

A cerebrovascular event, commonly referred to as a stroke, 
causes long-term debilitating impairments to motor func-
tion (Crichton et al. 2016). Hemiparesis, muscle weakness, 
dyscoordination and fatigue are frequently observed among 
survivors who report difficulties carrying out activities-of-
daily-living (Patel et al. 2002), in particular, those involv-
ing the upper-limb (Faria-Fortini et al. 2011). As patients 
reach chronic recovery stages, they learn to cope with 
their acquired motor deficits by adopting compensatory 
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Abstract
Current clinical assessment tools don’t fully capture the genuine neural deficits experienced by chronic stroke survivors 
and, consequently, they don’t fully explain motor function throughout everyday life. Towards addressing this problem, 
here we aimed to characterise post-stroke alterations in upper-limb control from a novel perspective to the muscle syn-
ergy by applying, for the first time, a computational approach that quantifies diverse types of functional muscle interac-
tions (i.e. functionally-similar (redundant), -complementary (synergistic) and -independent (unique)). From single-trials 
of a simple forward pointing movement, we extracted networks of functionally diverse muscle interactions from chronic 
stroke survivors and unimpaired controls, identifying shared and group-specific modules across each interaction type (i.e. 
redundant, synergistic and unique). Reconciling previous studies, we found evidence for both the concurrent preservation 
of healthy functional modules post-stroke and muscle network structure alterations underpinned by systemic muscle inter-
action re-weighting and functional reorganisation across all interaction types. Cluster analysis of stroke survivors revealed 
two distinct patient subgroups from each interaction type that all distinguished less impaired individuals who were able 
to adopt novel motor patterns different to unimpaired controls from more severely impaired individuals who did not. Our 
work here provides a nuanced account of post-stroke functional impairment and, in doing so, paves new avenues towards 
progressing the clinical use case of muscle synergy analysis.
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characterise the complex interactions underpinning abnor-
mal motor strategies, as even stereotypical strategies such 
as the flexor/extensor synergy have demonstrated subtle and 
contrasting multi-joint interactions (McPherson and Dewald 
2019). Indeed, it has been recently highlighted that no single 
measure of motor impairment can effectively quantify activ-
ity and participation level outcomes among chronic stroke 
survivors (Bushnell et al. 2015). Thus, a current research 
gap resides in effective approaches to quantifying chronic 
stroke motor impairment that address these shortcomings in 
clinical evaluations.

Electromyography (EMG) technology has advanced sig-
nificantly in recent years (Farina and Enoka 2023; McMa-
nus et al. 2020), developing into a genuine neural interface 
with the ability to enable clinicians to conveniently peer into 
the inner-workings of the human nervous system. Indeed, a 
prominent line of research exploiting this capacity is muscle 
synergy analysis, a neuroscientific approach that quantifies 
patterns of coordinated muscle activity (‘muscle synergies’) 
(Bruton and O’Dwyer 2018; Cheung and Seki 2021). In 
doing so, the extracted modules are analysed as the outputs 
of corticospinal neural circuitry, reflecting their functional 
organisation as they orchestrate task-specific movements 
(d’Avella & Bizzi 2005). Hence, this holistic approach 
has been of particular interest in clinical and rehabilitation 
research, as it may address shortcomings in the clinical 
evaluation of chronic stroke (Funato et al. 2022; Hong et al. 
2021). Thus far, this approach has demonstrated great prom-
ise, characterising stereotypical motor patterns of stroke 
with direct links to patient impairments (Cirstea and Levin 
2000; Clark et al. 2010; Roh et al. 2013). Recent develop-
ments by our research group have addressed important limi-
tations in this approach that has hampered its progression 
as a clinical tool (O’Reilly et al. 2023; O’Reilly & Delis 
2024; Ó’Reilly and Delis 2022), including restrictive model 
assumptions, the generalisability of extracted components, 
and both their functional and physiological relevance and 
interpretability (Alessandro et al. 2013). Our framework 
leverages network – and information – theoretic tools along 
with machine-learning (referred to as the network-infor-
mation framework (NIF) to enable the novel capability of 
mapping networks of muscles to their functional conse-
quences and, in doing so, characterising the diverse ways 
they cooperate to achieve task-goals (i.e. functionally -simi-
lar (redundant), -complementary (synergistic), -independent 
(unique). This innovation adds crucial nuance to the syn-
ergy concept that describes muscles as ‘working together’ 
towards task performance, showing they work together in 
functionally diverse ways concomitantly. Hence, this novel 
approach holds great potential to effectively address this 
current research gap and contribute towards a recent trend 
in network-theoretic approaches to temporal or frequency 

domain analyses of EMG signals aimed at progressing our 
clinical understanding of human movement (Houston et al. 
2021; O’Reilly & Delis 2024; Roeder et al. 2024; Zhao et 
al. 2024).

In the current study, we aim to apply this established 
approach for the first time to chronic stroke survivors and, 
in doing so, characterise their motor impairments through a 
novel perspective to the muscle synergy. Towards this aim, 
taking single-trials of a forward pointing movement from 
20 impaired and 17 unimpaired adults, we mapped pairwise 
muscle covariations to the trajectory of specific kinematic 
markers placed on the affected upper-limb and character-
ised their functionally-similar (redundant), -complementary 
(synergistic), and -independent (unique) contributions. We 
identified important structural similarities and differences 
across each muscle interaction type that not only aligned 
with findings from current muscle synergy analysis but 
also added substantially to our understanding of functional 
impairment post-stroke, reconciling important discrepan-
cies in previous studies. Further, based on these structural 
alterations, we also stratified patient into two distinct sub-
groups in each interaction type that were all associated with 
functional and/or cognitive impairment and distinguished 
less impaired patients who adopted novel motor patterns 
from more severely impaired patients who did not. This 
study provides a nuanced account of functional impairment 
in chronic stroke, making a significant contribution towards 
the improvement of clinical assessment tools.

Materials and methods

Dataset and experimental setup

We conducted a secondary analysis on an opensource dataset 
(‘MHH’ (Averta et al. 2021), consisting of 20 chronic stroke 
survivors (Age: 49.88 ± 16.92, Chronicity: 13.37 ± 14.12 
years (range: 2–56 years), 6 females, upper extremity FMA 
(FMA-UE) = 17.75 ± 2.05, Mini mental state examination 
(MMSE) = 27.9 ± 1.45) and 17 unimpaired controls (Age: 
~46.8 ± 15.3years) where participants were asked to per-
form in random order a list of daily-living activities. Of 
these activities, we randomly selected 1 of the 3 trials per-
formed of the forward pointing movement task (i.e. Task 
No. 9 of the SoftPro Protocol (Averta et al. 2021) for further 
analysis. This task required participants, who were sat at a 
table with their reaching arm laying pronated on the table, 
to point with their index finger and arm outstretched at a 
fixed-point straight ahead and then return to this starting 
position (Fig. 1.1(A) (Averta et al. 2019). The data captured 
from these trials included 12 single-channel EMGs (sam-
pling rate = 2000 Hz) (Deltoideus pars clavicularis (DC), 
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Biceps brachii (BB), Triceps brachii (TB), Flexor digitorum 
superficialis (FDS), Extensor digitorum (ED), Brachio-
radialis (BR), Flexor carpi ulnaris (FCU), Extensor carpi 
ulnaris (ECU), Pronator teres (PT), Flexor carpi radialis 
(FCR), Abductor pollicis brevis (APB), Abductor digiti 
minimi (ADM) (Fig. 1.2(A). Further, for brevity, 6 kinemat-
ics were curated from the 21 markers available (see original 
kinematic setup for MHH in (Averta et al. 2021) (sampling 
rate = 200 Hz) by combining the XYZ trajectories for each 
marker (i.e., multiplying X, Y and Z coordinates) and then 
determining the midpoint between redundant markers, 
thus providing 3D coordinates for the wrist (WR), fore-
arm (RU), elbow (ELB), upper-arm (H), shoulder (Sh) and 
chest (CS) (Fig. 1.2(B). The EMGs were rectified and then 
low-pass filtered with a 4th order, zero-phase, Butterworth 
filter at 20 Hz while the kinematics did not undergo further 
pre-processing.

Extracting networks of functionally diverse types of 
muscle interaction

We employed a computational approach we recently devel-
oped (i.e. the NIF) that decomposes the task-relevant infor-
mation (i.e. task-specific muscle covariations) present 
among muscle pairings (e.g. [ mx, my]) and characterises 
their functionally -similar (i.e. redundant), -complementary 
(i.e. synergistic) and -independent (i.e. unique) contributions 
to task performance (𝜏) (O’Reilly et al. 2023; Ó’Reilly and 
Delis 2022) (Fig. 2.1(A). More specifically, the NIF begins 
with the principled dissection of task-relevant information 
from muscle pairings and individual kinematic trajectories 
(i.e. muscle covariations that predict task performance) 

using a partial information decomposition (PID) approach 
(Ince 2017; R. A. A. Ince et al. 2017). PID quantifies four 
distinct informational components that represent the differ-
ent ways mx and my  provide information about 𝜏 including: 
redundancy (i.e. the task information shared equivalently in 
both mx and my  ( (R) pink intersection), synergy (i.e. the 
task information found exclusively through the combina-
tion of mx and my  (( S) orange shading) and two unique 
information quantities (i.e. the task information provided by 
mx that is not found in my  (( U1) magenta intersection) 
and vice versa (( U2) cyan intersection) (Fig. 2.1(B). These 
four quantities sum together to the joint mutual information 
between [ mx, my] and 𝜏 (i.e. the total task-relevant infor-
mation found in [ mx, my] ( I(mx, my; τ )) (Fig. 2.1(B).

Applying this approach to all unique muscle pairings 
generates networks of muscle interactions for each type 
of functional contribution (i.e. redundant, synergistic and 
unique), kinematic marker and participant. For each network 
generated, we then identified statistically significant muscle 
interactions at the network level by applying a modified per-
colation analysis (Gallos et al. 2012), setting functional con-
nections below this critical threshold to zero. Subsequently, 
we concatenated the sparsified networks across kinematics 
and participants, creating multiplex networks for each inter-
action type and experimental group. Overlapping muscle 
clusters (e.g. edge colours in Fig. 2.2(A) represent differ-
ent functional muscle groups and illustrate muscles affili-
ated with more than one group) were then identified for each 
layer in the multiplex networks using a link-based commu-
nity detection protocol that assigns each network connec-
tion to a cluster with the aim of maximising the number of 
possible links within each cluster (Fig. 2.2(B) (Ahn et al. 

Fig. 1 The initial and end position for the forward pointing task anal-
ysed in the current study (Averta et al. 2019, 2021). Starting with their 
arm laying pronated on a table, participants had to point forward with 
their index finger and arm outstretched at towards fixed-point straight 
ahead. The arm was then returned to the initial position at rest on the 
Table (2.A) The experimental setup for EMG sensors applied to 12 
muscles of the affected side of 20 post-stroke participants and to 17 
unimpaired controls. The muscles included were: Deltoideus pars 

clavicularis (DC), Biceps brachii (BB), Triceps brachii (TB), Flexor 
digitorum superficialis (FDS), Extensor digitorum (ED), Brachioradia-
lis (BR), Flexor carpi ulnaris (FCU), Extensor carpi ulnaris (ECU), 
Pronator teres (PT), Flexor carpi radialis (FCR), Abductor pollicis bre-
vis (APB), Abductor digiti minimi (ADM). (2.B) 6 kinematic marker 
coordinates in combined 3D space were analysed in this study and 
included: the wrist (WR), forearm (RU), elbow (ELB), upper-arm (H), 
shoulder (Sh) and chest (CS)
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networks from a single interaction type (i.e. redundant, 
synergistic or unique) for all kinematics and participants of 
an experimental group in their vectorised form. The appli-
cation of this framework here resulted in the extraction of 
co-occurring muscle network weightings and their cor-
responding kinematic- and participant-specific activation 
coefficients (Fig. 2.2(C). The following points summarise 
the steps involved in the NIF:

2010). A consensus partition was found across kinematics 
and participants by aggregating the clusterings from each 
layer into a single adjacency matrix and applying a con-
ventional network community detection approach based on 
the Louvain algorithm (Blondel et al. 2008; Rubinov and 
Sporns 2010). Finally, the number of clusters identified then 
served as the input parameter into dimensionality reduction, 
where we employed a projective non-negative matrix facto-
risation (PNMF) method (Fig. 2.2(C) (Yang and Oja 2010). 
The input matrix for this algorithm includes the sparsified 

Fig. 2 (1.A) Our established framework decomposes the shared infor-
mation between pairs of muscles ( mx, my) and a given task param-
eter (𝜏) using Partial information decomposition (PID). (1.B) This 
computation produces four distinct quantities: redundancy (i.e. task 
information common to both muscles (pink intersection)), synergy 
(i.e. task information exclusively revealed by observing both muscles 
together (orange shading)) and two unique information values for 
each muscle (i.e. task information that is present in mx that is not 
found in my  (magenta intersection) and vice versa (cyan intersec-
tion)). (2.A) Applying this computation to all unique muscle pairs pro-

duces networks of functionally diverse muscle interactions comprised 
of overlapping modular components (i.e. the yellow, green and grey 
connections representing interconnected modules). (2.B) To unravel 
this modular within the networks for each interaction type, we apply a 
hierarchical community detection protocol that identifies the optimal 
number of components to extract. (2.C) We apply projective non-neg-
ative matrix factorisation to the sparsified networks in vectorised form 
consisting of a specific type of interaction (i.e. redundant, synergistic 
or unique) and use the optimal number of components identified as an 
empirically derived input parameter
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participants from each individual unimpaired participant for 
a given kinematic parameter. Nonsignificant distances were 
then empirically sparsified from each layer of C using the 
modified percolation analysis (Gallos et al. 2012), and then 
the concatenated layers of C were input into an agglomera-
tive clustering algorithm with a complete linkage method to 
identify clusters of chronic stroke survivors. ~5 clusters of 
stroke survivors have been identified in previous established 
work (Scano et al. 2017). To more broadly define functional 
commonalities in the post-stroke population, we considered 
the first split in the dendrogram from the root node as an 
empirical bipartition the salience of which we determined 
in subsequent statistical analyses (see ‘Statistical analyses’ 
section of Materials and Methods section).

To characterise the alterations of functional muscle 
interactions following a stroke at a more local level (i.e. 
among specific submodules), we applied the network-based 
statistic (NBS) with threshold-free cluster enhancement 
(TFCE) to compare the muscle networks of specific interac-
tion types (i.e. redundant, synergistic and unique) between 
experimental groups across kinematics (Smith and Nichols 
2009; Zalesky et al. 2010). NBS follows the same principles 
underlying statistical parametric mapping for time-series 
data (Friston et al. 1994), whereby mass-univariate statis-
tics are computed, in this case t-test statistics between corre-
sponding network edges of both experimental groups across 
kinematics, while principally controlling for family-wise 
error. Thus, we can characterise network edge-level differ-
ences that are consistently present between impaired and 
unimpaired groups. Moreover, the incorporation of TFCE 
enables the enhancement of co-occurring topological differ-
ences among neighbouring network edges such that salient 
clusters of discriminative muscular dependencies can be 
identified (Baggio et al. 2018). This protocol was employed 
using opensource Matlab code:  h t t  p s : /  / g i  t h u  b . c o m / S N e u r o b 
l e / N B S _ b e n c h m a r k i n g     .  

Statistical analyses

Data pre-processing and framework application was con-
ducted in Matlab 2023a software. To characterise the sub-
modular structure of each extracted muscle network, we 
applied the Louvain algorithm to partition each muscle in 
the network into separate submodules (Blondel et al. 2008; 
Rubinov and Sporns 2010). These submodules are illus-
trated in the outputs as distinct colours on the corresponding 
nodes of a network overlayed on a human body model.

To determine if the stroke survivor subgroupings identi-
fied using RSA were associated with established measures 
of cognitive and motor impairment (i.e. MMSE and FMA-
UE respectively), we used independent samples t-tests in 
SPSS Statistics 28. Significance was set a priori to p < 0.05.

1. Apply PID to all unique muscle pairings and individual 
kinematic trajectories, generating networks of muscle 
interactions with diverse functional consequences (i.e. 
functionally-similar (redundant), -complementary (syn-
ergistic) and -independent (unique) (Fig. 2.1(A-B)).

2. Empirically sparsify each network, leaving functional 
connections that are considered significant with respect 
to the network’s percolation threshold.

3. Apply network community detection methods to the 
sparsified networks to determine the optimal number of 
components to extract using dimensionality reduction 
(Fig. 2.2(A)).

4. Extract muscle network components and their corre-
sponding activation coefficients across participants and 
kinematic markers using PNMF (Fig. 2.2(B)).

Matlab code for the presented methodology is available 
here: https:/ /github .com/De lisLa b/Muscle_PID.

Characterising post-stroke alterations in muscle 
network structure

To quantify the structural similarity of extracted muscle net-
works between experimental groups, we conducted a repre-
sentational similarity analysis (RSA) whereby we quantified 
the 1-r distance between each impaired and unimpaired com-
ponent of the same interaction type using Pearson’s correla-
tion (Kriegeskorte et al. 2008). This procedure constructs 
a representational dissimilarity matrix (RDM) where lower 
values suggest a closer structural correspondence between 
a given pair of experimental groups’ extracted muscle net-
works. In doing so, this RDM will provide insight into the 
muscle networks that are shared or not between the experi-
mental groups.

To determine subgroups of chronic stroke survivors 
based on the alterations in their muscle network structure, 
we employed RSA as described above except instead here, 
applied to the unsparsified versions of the corresponding 
kinematic-specific networks of all unimpaired and impaired 
participant pairings (i.e. individual unimpaired participant 
vs. individual impaired participant for the same kinematic), 
resulting in a set of RDMs ( C) of dimension [No. of unim-
paired participants ( punim) x No. of impaired participants 
( pim) x No. of kinematics ( k)]. This matrix thus contains 
the distances between each pair of impaired and unimpaired 
participant in terms of the structure of their network interac-
tions with respect to each kinematic marker. Subsequently, 
we computed the outer product of each RDM, creating a 
one-mode projection ( C) with k layers where each layer 
has dimension [ pim x pim] (Kerkman et al. 2020; Mur-
phy et al. 2018). Each layer of C thus contained the dot 
product similarity of the distances of each pair of impaired 
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pairing between groups demonstrated the greatest similarity 
(1-r = 0.01) and involved prominent interactions between 
the FDS and both PT and EDU. The accompanying acti-
vation coefficients were also closely matched, although the 
activation for the post-stroke were less distinguished for the 
elbow and chest kinematics, presenting with a more uniform 
activation across kinematics (Fig. 3.1–2(B). The unimpaired 
R2 (comprised of strong connectivity between FCU-APB, 
FCR-PT and ADM-APB) was structurally consistent with 
the stroke groups’ R4 (1-r = 0.185 (Fig. 3.3(A)). A less dis-
tinguished scaling for specific kinematics was again found 
for the impaired R4 component (Fig. 3.1–2(B). Moreover, 
unimpaired R5 (redundant functional couplings between 
ECU and both APB and PT) was mostly preserved in R5 
post-stroke (1-r = 0.07 (Fig. 2.3(A). Their kinematic acti-
vation differed with post-stroke participants involving the 
shoulder proportionally more compared to the upper-arm of 
the unimpaired controls (Fig. 3.1–2(B). Finally, impaired 
R3 mapped onto unimpaired R4 (1-r = 0.14 (Fig. 3.3(A)) 

Results

Functionally similar muscle networks

For both the healthy controls and post-stroke groups, we 
identified 5 clusters of functionally-similar muscle inter-
actions across participants (R1-R5 (Fig. 3.2(A) = Unim-
paired, Fig. 3.2(A) = Impaired). The strength of the most 
significant network edges (indicated by edge-width) and 
submodular structure (indicated here by node colour 
(Blondel et al. 2008; Rubinov and Sporns 2010) of each 
muscle network are presented above on human body mod-
els. Below, the corresponding kinematic-specific activa-
tion coefficients averaged across participants are depicted 
where node size indicates the magnitude of activation 
(Fig. 3.1–2(B). The RDM for all muscle network pairings 
between groups revealed structural similarities between the 
unimpaired R1-R3 and R5 with impaired R1, R4, R3 and 
R5 respectively (black framed squares (Fig. 3.3(A)). The R1 

Fig. 3 The functionally-similar muscle networks extracted from unim-
paired controls (1.A) and stroke survivors (2.A) accompanied by 
human body models illustrating their most prominent functional con-
nectivities and their relative magnitudes (edge-width) and submodu-
lar structure (node colour). The corresponding kinematic-specific 
activation coefficients averaged across participants are illustrated as 
the relative size of nodes on human body models below their unim-
paired (1.B) and impaired (2.B) networks. (3.A) A representational-
dissimilarity matrix (RDM) illustrating the distance (i.e. 1-r) between 
pairs of impaired (rows) and unimpaired (columns) muscle networks. 
The most closely matched networks are indicated by the black framed 
squares. (3.B) The aggregated RDM derived from computing the 
distance (i.e. 1-r) between each pair of impaired and unimpaired par-
ticipants’ kinematic-specific muscle network and then performing a 

one-mode projection for each RDM to define post-stroke participant 
distance matrices. The illustrated RDM is the summation of these dis-
tance matrices across kinematics, illustrating the overall distance of 
each stroke survivor (p1-p20) from the unimpaired controls. Above 
this aggregated RDM, the output from an agglomerative clustering 
across the set of kinematic-specific distance matrices illustrates the 
clustering of the corresponding participants into red and green clusters. 
(4.A) Between-group comparison of the multiplex networks of func-
tionally similar muscle interactions for each participant and kinematic 
using NBS revealed no significantly greater interaction magnitudes 
for the unimpaired cohort but, as shown in (4.B), significantly greater 
interaction magnitudes were found among the post-stroke sample. 
Edge-widths indicate the cluster-level differences between groups for 
the presented interactions
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same pattern of specific muscles (BR and ED) merging into 
larger submodules persisted. Moreover, this same pattern of 
merging was displayed in the impaired R3 unimpaired R3 
and R4 pairings. The light green submodule of unimpaired 
R3 was reflected in the light green submodule of impaired 
R3 which also reflected the grey submodule of unimpaired 
R4 (orange submodule (R3 Fig. 3.2(A)), suggesting a merg-
ing of unimpaired motor patterns. In contrast, for the R5 
network pairing between groups, the unimpaired group 
displayed larger submodules than the post-stroke sample 
(i.e. light green nodes of unimpaired R5 include 7 muscles 
while the largest submodule in the impaired R5 (dark green 
nodes) included just 5 muscles). This largest submodule of 
the unimpaired group (light green nodes) comprised of mus-
cles across the upper- and lower-arm while the post-strokes’ 
largest submodule (dark green) was exclusive to muscle 
from the elbow up. Together, these observations suggest 
both merging and fractionation of functionally similar mod-
ules was present among the local network interactions of 
post-stroke participants.

Finally, to characterise these submodular structural dif-
ferences in functional connectivity between groups, we 
applied the NBS to the multiplex network with network 
layers corresponding to participant- and kinematic-specific 
interactions. We found no redundant muscle interactions 
were consistently greater across kinematics for the unim-
paired controls compared to post-stroke (Fig. 3.4(A)), while 
several redundant muscle interactions from the post-stroke 
sample were significantly greater (the magnitude of this 
difference represented by the edge-width) than their unim-
paired counterparts (Fig. 3.4(B)). These significantly greater 
magnitude interactions included hand, elbow and shoulder 
level muscles namely: APB-ECU, BR-FCR, BB-FCU, DC-
FCU and DC-ECU.

Functionally-complementary muscle networks

Four synergistic muscle networks were identified and 
extracted from the unimpaired controls (Fig. 4.1(A)) while 
5 synergistic muscle networks were found among the post-
stroke sample (Fig. 4.2(A)). Unimpaired S1-S3 appeared to 
be conserved in the post-strokes’ S1, S4 and S5 respectively 
with a high degree of similarity observed (i.e. 1-r < 0.2 
(Fig. 4.3(A))). S1 for both groups, mirroring R1 previously 
(see Fig. 3.1–2(A)), was comprised of prominent couplings 
between FDS and both PT and EDU (Fig. 4.1–2(A)). S2 
had more widespread couplings, between ADM-APB, 
FCU-APB, PT-FCR and to a lesser extent BR-APB and 
DC-FDS. For S3, the most prominent couplings were found 
among FCR and ADM and to a lesser extent FCR and APB. 
The kinematic activation of these three structurally con-
served muscle networks was similar for S1, with equivalent 

but also to a much lesser extent with the unimpaired R3 
(1-r = 0.81 (Fig. 3.3(A)). Indeed, both unimpaired R4 and 
impaired R3 comprised of significant redundancy between 
the ED and the FCU and to a lesser extent the BR. Mean-
while, the correspondence between R3 of both groups was 
found specifically among the FCR-ADM and FCR-APB 
couplings which were present to a relatively lower extent 
among the post-stroke samples’ R3. Impaired R2 did not 
correspond with any specific muscle network from the con-
trols and comprised of prominent couplings between FDS 
and both ADM and APB, a set of functionally similar inter-
actions that did not feature in any of the control groups’ 
networks.

Directly comparing the structure of participant- and 
kinematic-specific functionally similar muscles networks 
(i.e. prior to dimensionality reduction) between groups 
using RSA and then clustering the output across post-stroke 
participants into a global level bi-partition revealed a 13 
member cluster (red cluster) and the remainder compris-
ing the green cluster (Fig. 3.3(B)). We found that the red 
cluster had significantly lower MMSE scores (27.39 ± 1.45 
vs. 28.86 ± 1.07 (t= -2.59, p < 0.05)) and non-significantly 
lower FMA-UE scores (17.62 ± 2.1 vs. 18 ± 2.1 (t= -0.39, 
(p > 0.05)) compared to the green cluster members. These 
functional differences were underscored by a greater aggre-
gate distance of the less impaired green cluster patients 
from unimpaired controls across kinematics (illustrated 
by the aggregate RDM (Fig. 3.3(B)). This finding sug-
gests the less cognitively impaired subgroup (green cluster) 
were more able to adopt novel motor patterns of functional 
similar muscle interactions (captured here as a greater rep-
resentational distance) to effectively perform the pointing 
movement, thus distinguishing them from the red cluster 
participants.

Although the global structure of the functionally simi-
lar muscle networks was mostly consistent across groups, 
their submodular structure, quantified via their assortative 
mixing (i.e., the tendency of muscles to group with others 
with similar functional connectivity) (Blondel et al. 2008; 
Rubinov and Sporns 2010), provided further insight into dif-
ferences in their functional interrelationships. Briefly, three 
submodules of similarly coupled muscles were identified for 
impaired R1 (red, purple and grey nodes (Fig. 3.1(A)) and 
unimpaired R1 (green, blue and purple nodes (Fig. 3.2(A), 
however the muscle they included did not necessarily match 
across groups. FCU and ADM were affiliated with APB and 
ED among unimpaired controls but for post-stroke partici-
pants instead merged into the larger red submodule (includ-
ing DC, TB, BR and BB), leaving APB and ED as a smaller 
functional submodule among impaired participants (purple 
nodes). Within the unimpaired R2 and impaired R4 network 
pairing, three submodules were also found in each but the 
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FCU, BR and to a lesser extent ECU. Again, unimpaired S1 
contains the only functional connections that could reflect 
this post-stroke coordination pattern with subtle couplings 
among these muscles. S4 of the unimpaired controls repre-
sented a muscle network specific to this group and was com-
posed of prominent functional connectivity between ECU 
and both APB and PT. These functional connections were 
present at a very low relative magnitude in the impaired S2 
and S4 (as evidenced also in their representational similarity 
(Fig. 4.3(A)).

Probing the structural alteration of synergistic muscle 
networks in chronic stroke survivors at a global level, the 
agglomerative clustering of RSA matrices from matching 
individual unimpaired and impaired participants across 
kinematics revealed two patient subgroups (red and green 
clusters (Fig. 4.3(B)) distinct from those identified among 
redundant muscle networks (Fig. 3.3(B)). Here, the green 
cluster consisted of 12/20 less impaired stroke survivors 
with significantly greater FMA-UE scores (18.5 ± 1.7 

scaling’s for all kinematics found in both groups. For unim-
paired S2 and impaired S4, the pattern of kinematic activa-
tion was also similar however there were fewer differences 
between the more highly and lowly scaled kinematics 
among post-stroke participants, suggesting greater inter-
participant variability in the mapping of muscle interactions 
to task performance among stroke survivors. Further, the 
kinematic scaling of muscle interactions in unimpaired S3 
(and impaired S5) was also similar, with the forearm scal-
ing most prominently in both groups. Turning to the muscle 
networks unique to the post-stroke group (i.e. S2 and S3 
(Fig. 4.2(A))), S2 was comprised of prominent couplings 
between FDS and both ADM and APB. These muscle cou-
plings only featured in a minor way among the unimpaired 
group in S1 (Fig. 4.1(A)). Impaired S2 scaled prominently 
for all kinematic markers except the elbow and chest, 
matching the kinematic activation of impaired and unim-
paired S1 (Fig. 4.1–2(B)). Impaired S3 comprised of strong 
functionally complementary interactions between ED and 

Fig. 4 The functionally-complementary muscle networks extracted 
from unimpaired controls (1.A) and stroke survivors (2.A) accom-
panied by human body models illustrating their most prominent 
functional connectivities and their relative magnitudes (edge-width) 
and submodular structure (node colour). The corresponding kine-
matic-specific activation coefficients averaged across participants 
are illustrated as the relative size of nodes on human body models 
below their unimpaired (1.B) and impaired (2.B) networks. (3.A) A 
representational-dissimilarity matrix (RDM) illustrating the distance 
(i.e. 1-r) between pairs of impaired (rows) and unimpaired (columns) 
muscle networks. The most closely matched networks are indicated by 
the black framed squares. (3.B) The aggregated RDM derived from 
computing the distance (i.e. 1-r) between each pair of impaired and 
unimpaired participants’ kinematic-specific muscle network and then 

performing a one-mode projection for each RDM to define post-stroke 
participant distance matrices. The illustrated RDM is the summation 
of these distance matrices across kinematics, illustrating the overall 
distance of each stroke survivor (p1-p20) from the unimpaired con-
trols. Above this aggregated RDM, the output from an agglomera-
tive clustering across the set of kinematic-specific distance matrices 
illustrates the clustering of the corresponding participants into red 
and green clusters. (4.A) Between-group comparison of the multiplex 
networks of functionally complementary muscle interactions for each 
participant and kinematic using NBS revealed no significantly greater 
interaction magnitudes for the unimpaired cohort but, as shown in 
(4.B), significantly greater interaction magnitudes were found among 
the post-stroke sample. Edge-widths indicate the cluster-level group 
differences for the presented interactions
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each muscle when paired with every other muscle as they 
do not represent functional muscle couplings. To the left of 
each bar graph, the average unique information values are 
presented as proportionately scaled nodes on a human body 
model while their corresponding kinematic-specific acti-
vations are presented below. The structure of unimpaired 
U1- U4 most closely corresponded to U1, U4, U5 and U3 
respectively (black framed squares (Fig. 4.3(A))). More spe-
cifically, in both groups U1 was comprised of high unique 
information on average for FDS followed by lower mag-
nitude independence among ECU, PT and FCR. The scal-
ing of U1 was relatively uniform across kinematics in both 
groups. U2 of the post-stroke sample had an obvious cor-
respondence with the impaired U1 and unimpaired U1 with 
prominent functional independence for FDS. Nonetheless, 
a key difference for this module was the greater functional 
independence among muscles of the hand (i.e. ADM, APB) 
and lower functional independence among other forearm 
muscles (i.e. PT, ECU), resulting in relatively low struc-
tural similarity (Fig. 4.3(A)). There were also no clear dif-
ferences in the kinematic scaling of impaired U2 compared 
to impaired U1. For the unimpaired U2 and impaired U4 
combination, APB had the highest functional independence 
typically from all other muscles. In contrast to unimpaired 
U2 however, impaired U4 had a noticeably greater involve-
ment of ECU and slightly greater relative independence 
among several other muscles. Moreover, the kinematic scal-
ing for this pair of networks differed to some extent, with 
the post-stroke sample demonstrating greater involvement 
of the elbow while the forearm was most prominently scaled 
for the controls. The more uniform scaling of kinematics 
among the post-stroke sample was again observed here as a 
key difference with the more distinguished kinematic acti-
vation of unimpaired U2. Turning to unimpaired U3 which 
corresponded most closely with impaired U5, FCR was typ-
ically most prominent in its functional independence from 
all other muscles, followed by ADM and APB. Impaired 
U5 had noticeably greater functional independence for ED, 
BR, ECU, BB and DC while its kinematic scaling also dif-
fered with greater involvement of the chest and shoulder 
kinematic. Finally for unimpaired U4 and the correspond-
ing impaired U3, both were comprised of high functional 
independence for ED. The unimpaired sample demonstrated 
greater relative functional independence for DC in this 
module pairing but less so for BR. The kinematic scaling of 
this module pairing was mostly consistent, however again, 
the unimpaired activations were more proportionately dis-
tinguishable compared to the post-stroke sample.

Clustering the RDMs derived from matching impaired 
and unimpaired participants’ functionally independent net-
work structures across each kinematic identified two sub-
groups of post-stroke participants (red (12 participants) and 

vs. 16.6 ± 2.1, (t= -2.2 (p < 0.05))) and MMSE scores 
(28.75 ± 0.97 vs. 26.62 ± 1.19, (t= -4.2 (p < 0.001))) com-
pared to the red cluster members. These differences in cog-
nitive and functional performance between subgroups were 
underpinned (as found amongst the redundant network clus-
tering’s (Fig. 3.3(B))) by a greater total distance of the less 
impaired green cluster from the control group in terms of 
their muscle network structure (Fig. 4.3(B)). This insight 
again demonstrates that the neurological deficits follow-
ing stroke are more effectively compensated for among less 
impaired individuals by adopting novel motor patterns, an 
insight that is prominently reflected amongst the synergistic 
muscle interactions quantified here.

Despite the structural similarity of S1 of both groups 
(Fig. 4.1–2(A)), their submodular organisation was notice-
ably different. More specifically, the post-stroke cohort 
displayed two submodules in S1 (orange and red nodes), 
whereas the unimpaired controls had three (orange, red and 
blue nodes). The main difference between groups for this 
network component was that the orange submodule includ-
ing the upper arm muscles in both groups was more wide-
spread in the post-stroke sample, additionally including 
ADM, FCU, BR and ED. In contrast, for the unimpaired S2 
– impaired S4 pairing (Fig. 4.1–2(A)), the latter displayed 
4 submodules compared to just 3 in the unimpaired cohorts 
S2. Moreover, the unimpaired S3 – impaired S5 combina-
tion further illustrated this difference in submodular struc-
ture, with 2 vs. 4 submodules identified respectively. More 
prominent couplings between the APB and PT and between 
DC and BB among the post-stroke sample appear to underly 
this difference in functional organisation. To comprehen-
sively characterise these alterations in local network sub-
clustering in chronic stroke, the application of NBS revealed 
significantly greater interaction magnitudes among the post-
stroke sample compared to the controls across kinematics 
(orange network edges (Fig. 4.4(B))). No synergistic muscle 
interactions were typically greater in magnitude among the 
unimpaired controls on the other hand (Fig. 4.4(A)). Inter-
actions between upper- and lower-arm musculature (e.g. 
DC-FDS, DC-APB and TB-PT) but also between both 
upper- and forearm muscles with hand musculature (e.g. 
ECU-APB, DC-APB) were common among these signifi-
cantly greater functional connectivities. The most promi-
nent differences (as indicated by edge-width) were observed 
for ECU-APB and BR-FCR.

Functionally-independent muscle networks

Five functionally-independent modules were identified 
and extracted from both unimpaired and impaired groups 
(U1-U5 (Fig. 4.1–2(A))). These modules are presented as 
bar graphs illustrating the average unique information for 
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control here was also associated with the less impaired sub-
group (greater total distance values in the aggregated RDM 
of the green cluster (Fig. 5.3(B))).

Finally, we identified several muscle pairs that had 
significantly different magnitudes of unique information 
between groups, differences which were present for both 
groups (unimpaired group (Fig. 5.4(A)) and impaired group 
(Fig. 5.4(B))). Magenta network edges indicate greater 
functional independence of a muscle located more proxi-
mally than the paired muscle and vice versa for cyan edges. 
The significantly different interactions in favour of the 
unimpaired group (Fig. 5.4(A)) were more subtle than those 
favouring the post-stroke sample (Fig. 5.4(B)), the greatest 

green (8 participants) clusters (Fig. 5.3(B))) that were dis-
tinct from those identified from redundant and synergistic 
clusterings (see Figs. 3-4.3(B)). The subgroupings identi-
fied here significantly differentiated participants based on 
MMSE scores (red subgroup: 27.33 ± 1.5, green subgroup: 
28.75 ± 1.04; t= -2.5 (p < 0.05)) but not for FMA-UE scores 
(red subgroup: 17.4 ± 2.1, green subgroup: 18.25 ± 1.98; t= 
-8.98 (p > 0.05)), suggesting cognitive impairment had an 
influential role in the structural alterations of functionally 
independent muscle interactions post-stroke. As with the 
coarse-grained control mechanisms reflected in the syner-
gistic and redundant muscle networks (see Figs. 3-4.3(B)), 
the recruitment of novel patterns of individual muscle 

Fig. 5 The functionally-independent muscle modules extracted from 
unimpaired controls (1.A) and stroke survivors (2.A) illustrated as bar 
graphs with the height of bars indicating the average unique informa-
tion of each muscle from all other muscles. Each bar graph is accompa-
nied by human body models further illustrating the magnitude of these 
average unique information values (proportional node size). The cor-
responding kinematic-specific activation coefficients averaged across 
participants are illustrated as the relative size of nodes on human body 
models below their unimpaired (1.B) and impaired (2.B) modules. 
(3.A) A representational-dissimilarity matrix (RDM) illustrating the 
distance (i.e. 1-r) between pairs of impaired (rows) and unimpaired 
(columns) muscle components. The most closely matched components 
are indicated by the black framed squares. (3.B) The aggregated RDM 
derived from computing the distance (i.e. 1-r) between each pair of 
impaired and unimpaired participants’ kinematic-specific muscle com-

ponent and then performing a one-mode projection for each RDM to 
define post-stroke participant distance matrices. The illustrated RDM 
is the summation of these distance matrices across kinematics, illus-
trating the overall distance of each stroke survivor (p1-p20) from the 
unimpaired controls. Above this aggregated RDM, the output from an 
agglomerative clustering across the set of kinematic-specific distance 
matrices illustrates the clustering of the corresponding participants 
into red and green clusters. (4.A) Between-group comparison of the 
multiplex network of functionally independent muscle interactions 
across kinematics using NBS revealed significantly greater interaction 
magnitudes for the unimpaired and impaired (4.B). Magenta network 
edges indicate unique information from a more proximal muscle rel-
ative to a more distal muscle and vice versa for cyan edges. Edge-
widths indicate the cluster-level group differences for the presented 
interactions
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(i.e. redundant) and -independent (i.e. unique) muscular 
dependencies are, conceivably, quantifiable using current 
muscle synergy analysis as shared and muscle-specific pat-
terns of activation respectively, however, synergistic inter-
actions are unique to our framework employed here. Thus, 
the application of our framework went beyond established 
findings, providing a novel insight in the greater number of 
synergistic modules employed in post-stroke movements. 
Continuing, within each interaction type (i.e. redundant, 
synergistic, unique), we found most networks’ corresponded 
well across groups with the exception of 1–2 components 
from either group. Nevertheless, several of these functional 
modules shared across groups demonstrated key differences 
in their submodular organisation indicative of re-weighting 
dependencies, merging and fractionation (Cheung et al. 
2012). Moreover, several of the group-specific modules 
corresponded qualitatively also, to different extents, with 
merged or fractionated versions of modules from the other 
groups. These concurrent phenomena can be summarised as 
three different kinds of impairment response: (a) the pres-
ervation of healthy functional modules, (b) the systematic 
reweighting, merging and fractionation of muscle interac-
tions resulting in structural changes to modularity at various 
scales, and (c) the adoption of new and/or loss of existing 
functional modules (Cheung et al. 2009, 2012; Cirstea and 
Levin 2000; Clark et al. 2010; Houston et al. 2021; Roh et 
al. 2013). The co-occurrence of these different impairment 
responses at the group level among chronic stroke survivors 
reconciles results from previous studies that observed these 
patterns separately (Cheung et al. 2009; McMorland et al. 
2015; Roh et al. 2013), showing that they are all present at 
the group level and indeed persist across different types of 
muscle interaction.

A whole-limb perspective to post-stroke motor 
impairment

The analysis of a simple forward pointing movement by the 
affected upper-limb here brought about interesting insights, 
in particular the NBS results highlighting differences in 
submodular composition (i.e. clusters of altered muscle 
interaction weightings) (see Figs. 3–5.4(A-B). More spe-
cifically, for this shoulder-led movement, consistent group 
differences across kinematics were found across all inter-
action types predominantly for interactions among finger 
flexor/extensors and with the hand muscles (e.g. BR-FCR, 
ECU-APB). Although some significant differences were 
found involving the shoulder muscle (DC), these differ-
ences were much weaker than those among distal muscles. 
This finding contrasts with established work suggest-
ing shoulder-related muscle synergies are a focal point of 
abnormal function among chronic stroke survivors during 

difference (as indicated by network edge-width) being the 
task information uniquely provided by APB relative to ECU 
(Fig. 5.4(B)). This was followed by considerable differences 
in favour of the post-stroke sample for FCR relative to BR 
and TB relative to PT. Meanwhile, the most consistently dif-
ferent functionally independent interaction across kinemat-
ics in favour of the unimpaired cohort was FDS relative to 
FCU. Overall, these findings suggest alterations in the inde-
pendent control of muscles in chronic stroke survivors are 
complex, with functional independence being either exac-
erbated or reduced depending on the muscle combination.

Discussion

The aim of this study was to address shortcomings in cur-
rent clinical assessment tools for chronic stroke survi-
vors by characterising the alteration of functional muscle 
interactions post-stroke through a novel perspective to the 
muscle synergy. Towards this aim, we applied our newly 
established computational framework for the first time to 
20 chronically impaired stroke survivors and 17 unimpaired 
participants, where participants each performed single-trials 
of a forward pointing movement. This application unveiled 
networks of functionally diverse types of muscle interaction 
that were both shared across and specific to each experi-
mental group, along with salient groups differences in the 
submodular structure of networks from each interaction 
type (i.e. redundant, synergistic and unique). Furthermore, 
based on these structural differences, we identified novel 
patient subgroupings that were associated with established 
measures of functional and/or cognitive impairment. These 
subgroupings distinguished less impaired stroke survivors 
that adopted novel motor patterns distinct from unimpaired 
controls from more severely impaired patients that did not 
recruit novel motor patterns. Our findings shed new light on 
motor impairment post-stroke by characterising the impair-
ment of diverse types of muscle interaction (i.e. function-
ally-similar, -complementary and -independent).

New and congruent insights into the characteristic 
alterations of motor function in chronic stroke 
survivors

In several ways our findings aligned with previous muscle 
synergy research on the post-stroke population. Among 
these congruent findings, we found that the number and 
structure of extracted muscle networks was mostly pre-
served between healthy controls and chronic stroke sur-
vivors (Cheung et al. 2009; Roh et al. 2013), with the 
exception of synergistic muscle networks (impaired 
group = 5 vs. unimpaired group = 4). Functionally-similar 
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post-stroke impairment. Moreover, and perhaps counterin-
tuitively when considering previous studies (Funato et al. 
2022; Hong et al. 2021; Liu et al. 2024; Scotto di Luzio et al. 
2022; Zhao et al. 2023, 2024), the less impaired subgroup 
was consistently more different from the unimpaired partici-
pants compared to the more severely impaired cohort across 
all three interaction types. This observation points towards 
the superior recovery of some stroke survivors who, instead 
of recovering healthy motor patterns as commonly thought 
(Cirstea and Levin 2000), adopted novel motor patterns as 
shown in other research (García-Cossio et al. 2014).

It also highlights that a common clinical practice in using 
‘similarity to healthy controls’ metrics to assess motor func-
tion in less impaired clinical populations may be mislead-
ing, at least through the lens of our framework. The patient 
clustering’s we observed instead suggest that exploiting the 
available degrees-of-freedom of less impaired patients by 
promoting the exploration of the task space and therefore 
the recruitment of adaptive compensatory strategies and 
novel motor patterns (Jones 2017), although still atypical, 
may be beneficial towards their overall motor function. This 
distinct interpretation provided by our framework aligns 
with previous work demonstrating a two-way stratifica-
tion of stroke survivors into those whose recovery was and 
was not proportional to their initial impairment (Bonkhoff 
et al. 2022; Prabhakaran et al. 2008), representing distinct 
recovery patterns linked to sensorimotor cortex integrity 
(Byblow et al. 2015; García-Cossio et al. 2014; Young et 
al. 2022). Our findings here concur with this observation, 
demonstrating that less cognitively impaired patients were 
able to adopt novel motor patterns likely through the adapta-
tion of alternative descending neural pathways (Jones 2017; 
McMorland et al. 2015), while more severely impaired 
cohorts were not, together suggesting direct links with 
neural impairment post-stroke. Future work should further 
investigate these patient subclusters and the distinct types of 
muscle interaction that underpin them both physiologically 
in terms of their underlying neural substrates and function-
ally in terms of key indicators of their behavioural manifes-
tation (Alessandro et al. 2013; Cheung and Seki 2021; Delis 
et al. 2010).

Limitations

The presented findings are limited to the motor task anal-
ysed in this study which did not explore the full range of 
arm movements. The clustering approach employed here 
defined a global partition of stroke survivors into two sub-
groups each of which, as found in previous work (Scano et 
al. 2017), were composed of more refined patient subclusters 
that may represent important functional and physiological 

an isometric, shoulder-led task (Roh et al. 2013). Instead, 
our finding aligns with more recent work with an isomet-
ric upper-limb task showing that abnormal couplings were 
strongest among paretic wrist/finger muscles during proxi-
mal muscle contractions and weakest when the coupling 
was elicited by distal musculature (McPherson and Dewald 
2022). Indeed, it was specifically noted in (McPherson and 
Dewald 2022) that this pattern was most prominent for 
extrinsic wrist extensors and intrinsic hand muscles, as spe-
cifically found here with the interaction between ECU (an 
extrinsic wrist extensor) and APB (an intrinsic hand muscle) 
being consistently most different between groups for redun-
dant, synergistic and unique modules. This discrepancy with 
previous work may be explained by novel features of our 
framework employed here, such as the move-away from 
optimising variance accounted for (VAF) metrics which 
may emphasize higher amplitude muscles (e.g. the deltoids) 
at the expense of more subtle but functionally relevant 
muscle couplings (e.g. hand and wrist extensor muscles) 
(Alessandro et al. 2013). Although abnormal function at the 
shoulder level is undoubtably present among chronic stroke 
survivors (Brunnstrom 1970; Houston et al. 2021; Roh et 
al. 2013), our findings shed new light on the complex inter-
actions underlying impaired arm movements, showing that 
they manifest in different ways across the whole limb. Fur-
ther, we have also shed light on how they may manifest, for 
example in the stronger weighting of specific muscle cou-
plings (i.e. Figs. 3–4.4) and in the complex interchange of 
selective muscle control (see Fig. 5.4), both proximally and 
distally.

Stroke survivors broadly cluster into clinically 
relevant patient subgroups

Finally, through RSA we identified a global bipartition 
of chronic stroke survivors among each interaction type 
(i.e. redundant, synergistic and unique) that each included 
patients that shared relatively similar structural differences 
with unimpaired controls. The redundant and unique deriva-
tions of these subgroupings discriminated participants based 
on cognitive impairment only while synergistic networks 
were sensitive to both cognitive and functional impair-
ments. Although redundant, synergistic and unique patient 
partitions were all composed of a majority group, they did 
not cluster participants in the same way, with different par-
ticipants affiliated with different groups in each interaction 
type (see Figs. 3–5.3(B). Moreover, the majority cluster 
from the synergistic partition represented the less impaired 
subgroup while the majority clusters for redundant and 
unique partitions represented the more severely impaired. 
This suggests that the different interaction types quanti-
fied here capture different contributory factors underlying 
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source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit  h t t  p : / /  c r e  a t i  v e c o m m o n s . o 
r g / l i c e n s e s / b y / 4 . 0 /     .  
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differences in the stroke population (see Figs. 3–5.3(B). 
These subclusters have not been explored using the NIF and 
remain a topic of future research. Finally, the neurophysi-
ological underpinnings for the different types of functional 
muscle interaction are currently unknown. In future work 
we aim to incorporate brain and spinal level neural signals 
into the NIF to provide a holistic perspective to the neu-
rocomputational principles of human motor behaviour and 
characterise the neural bases of motor impairment.

Conclusion

From single trials of a simple forward pointing movement, 
the current study presents novel insights into the motor 
impairment of chronic stroke survivors by implementing a 
recently proposed computational framework to extract net-
works of muscle interactions with diverse functional con-
sequences. Specifically, we have shown that chronic stroke 
survivors can be broadly categorised into two clinically 
meaningful subgroups depending on the extent of preserva-
tion of healthy motor patterns. Through group-level statisti-
cal tests, we have also shown that subtle, abnormal muscle 
interactions among distal musculature due to proximal mus-
cle contractions are persistent across the post-stroke cohort 
and involve different types of muscle interaction, promoting 
a whole-limb perspective to post-stroke impairment. Finally, 
our findings both aligned with and built significantly on pre-
vious research by adding substantial nuance to the analysis 
of muscle synergies in this clinical population (Cheung et 
al. 2009; Cirstea and Levin 2000; Clark et al. 2010; Hous-
ton et al. 2021; Roh et al. 2013), characterising how func-
tionally-similar, -complementary and -independent muscle 
interactions are typically altered post-stroke. In summary, 
our work here paves new avenues towards progressing our 
understanding of post-stroke motor impairments and the 
clinical use cases for muscle synergy analysis.

Data availability This study conducted a secondary analysis of open-
source data (‘MHH’) found here (Averta et al. 2021). To support the 
further progression of the research presented here, we have uploaded 
the patient demographic data, extracted muscle networks and sub-
groupings at the following repository:  h t t  p s : /  / fi   g s h  a r e . c o m / a r t i c l e s / d 
a t a s e t / 2 6 3 0 3 4 0 4     . Matlab code for the framework can be found here: 
https:/ /github .com/De lisLa b/Muscle_PID.

Declarations

Conflict of interest The authors declare no conflicts of interest were 
present.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 

1 3

Page 13 of 14    31 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://figshare.com/articles/dataset/26303404
https://figshare.com/articles/dataset/26303404
https://github.com/DelisLab/Muscle_PID


Experimental Brain Research          (2025) 243:31 

McMorland AJ, Runnalls KD, Byblow WD (2015) A neuroanatomi-
cal framework for upper limb synergies after stroke. Front Hum 
Neurosci 9:82

McPherson LM, Dewald JP (2019) Differences between flexion and 
extension synergy-driven coupling at the elbow, wrist, and fin-
gers of individuals with chronic hemiparetic stroke. Clin Neuro-
physiol 130(4):454–468

McPherson LM, Dewald JP (2022) Abnormal synergies and associ-
ated reactions post-hemiparetic stroke reflect muscle activation 
patterns of brainstem motor pathways. Front Neurol 13:934670

Murphy AC, Muldoon SF, Baker D, Lastowka A, Bennett B, Yang M, 
Bassett DS (2018) Structure, function, and control of the human 
musculoskeletal network. PLoS Biol, 16(1), e2002811

O’Reilly D, Delis I (2024) Dissecting muscle synergies in the task 
space. Elife 12:RP87651

O’Reilly D, Shaw W, Hilt P, de Castro Aguiar R, Astill SL, Delis I 
(2023) Quantifying the diverse contributions of hierarchical mus-
cle interactions to motor function. bioRxiv 2023–2011

O’Reilly D, Shaw W, Hilt P, de Catro Aguiar R, Atill SL, Delis I (2024) 
Quantifying the diverse contributions of hierarchical muscle 
interactions to motor function. iScience 28.  h t t    p  s :  /  / d   o  i  . o  r g / 1 0 . 1 
0 1 6 / j . i s c i . 2 0 2 4 . 1 1 1 6 1 3       

Ó’Reilly D, Delis I (2022) A network information theoretic framework 
to characterise muscle synergies in space and time. J Neural Eng 
19(1):016031

Patel MD, Coshall C, Rudd AG, Wolfe CD (2002) Cognitive impair-
ment after stroke: clinical determinants and its associations with 
long-term stroke outcomes. J Am Geriatr Soc 50(4):700–706

Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, 
Krakauer JW (2008) Inter-individual variability in the capacity 
for motor recovery after ischemic stroke. Neurorehabilit Neural 
Repair 22(1):64–71

Roeder L, Breakspear M, Kerr GK, Boonstra TW (2024) Dynamics of 
brain-muscle networks reveal effects of age and somatosensory 
function on gait. Iscience, 27(3)

Roh J, Rymer WZ, Perreault EJ, Yoo SB, Beer RF (2013) Alterations 
in upper limb muscle synergy structure in chronic stroke survi-
vors. J Neurophysiol 109(3):768–781

Rubinov M, Sporns O (2010) Complex network measures of brain con-
nectivity: uses and interpretations. NeuroImage 52(3):1059–1069

Scano A, Chiavenna A, Malosio M, Molinari Tosatti L, Molteni F 
(2017) Muscle synergies-based characterization and clustering of 
poststroke patients in reaching movements. Frontiers in bioengi-
neering and biotechnology, 5, p.62

Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: 
addressing problems of smoothing, threshold dependence and 
localisation in cluster inference. NeuroImage 44(1):83–98

Yang Z, Oja E (2010) Linear and nonlinear projective nonnegative 
matrix factorization. IEEE Trans Neural Networks 21(5):734–749

Young DR, Banks CL, McGuirk TE, Patten C (2022) Evidence for 
shared neural information between muscle synergies and cortico-
spinal efficacy. Sci Rep 12(1):8953

Zalesky A, Fornito A, Bullmore ET (2010) Network-based statis-
tic: identifying differences in brain networks. NeuroImage 
53(4):1197–1207

Zhao K, He C, Xiang W, Zhou Y, Zhang Z, Li J, Scano A (2023) Evi-
dence of synergy coordination patterns of upper-limb motor con-
trol in stroke patients with mild and moderate impairment. Front 
Physiol 14:1214995

Zhao K, Feng Y, Li L, Zhou Y, Zhang Z, Li J (2024) Muscle synergies 
and muscle networks in multiple frequency components in post-
stroke patients. Biomed Signal Process Control 95:106417

Publisher’s note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Crichton SL, Bray BD, McKevitt C, Rudd AG, Wolfe CD (2016) 
Patient outcomes up to 15 years after stroke: survival, disability, 
quality of life, cognition and mental health. J Neurol Neurosurg 
Psychiatry 87(10):1091–1098

d’Avella A, Bizzi E (2005) Shared and specific muscle synergies in 
natural motor behaviors. Proc Natl Acad Sci 102(8):3076–3081

Delis I, Chiovetto E, Berret B (2010) On the origins of modularity in 
motor control. J Neurosci 30(22):7451–7452

di Scotto F, Cordella F, Bravi M, Santacaterina F, Bressi F, Sterzi S, 
Zollo L (2022) Modification of hand muscular synergies in stroke 
patients after robot-aided rehabilitation. Appl Sci 12(6):3146

Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Stein J, Bever C, Hogan 
N (2007) Changing motor synergies in chronic stroke. J Neuro-
physiol 98(2):757–768

Faria-Fortini I, Michaelsen SM, Cassiano JG, Teixeira-Salmela LF 
(2011) Upper extremity function in stroke subjects: relationships 
between the international classification of functioning, disability, 
and health domains. J Hand Ther 24(3):257–265

Farina D, Enoka RM (2023) Evolution of surface electromyography: 
from muscle electrophysiology towards neural recording and 
interfacing. J Electromyogr Kinesiol 71:102796

Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak 
RS (1994) Statistical parametric maps in functional imaging: a 
general linear approach. Hum Brain Mapp 2(4):189–210

Funato T, Hattori N, Yozu A, An Q, Oya T, Shirafuji S, Seki K (2022) 
Muscle synergy analysis yields an efficient and physiologically 
relevant method of assessing stroke. Brain Commun 4(4):fcac200

Gallos LK, Makse HA, Sigman M (2012) A small world of weak ties 
provides optimal global integration of self-similar modules in 
functional brain networks. Proceedings of the National Academy 
of Sciences, 109(8), 2825–2830

García-Cossio E, Broetz D, Birbaumer N, Ramos-Murguialday A 
(2014) Cortex integrity relevance in muscle synergies in severe 
chronic stroke. Front Hum Neurosci 8:p744

Gladstone DJ, Danells CJ, Black SE (2002) The Fugl-Meyer assess-
ment of motor recovery after stroke: a critical review of its mea-
surement properties. Neurorehabilit Neural Repair 16(3):232–240

Hong YNG, Ballekere AN, Fregly BJ, Roh J (2021) Are muscle syner-
gies useful for stroke rehabilitation? Curr Opin Biomedical Eng 
19:100315

Houston M, Li X, Zhou P, Li S, Roh J, Zhang Y (2021) Alterations in 
muscle networks in the upper extremity of chronic stroke survi-
vors. IEEE Trans Neural Syst Rehabil Eng 29:1026–1034

Ince RA (2017) Measuring multivariate redundant information with 
pointwise common change in surprisal. Entropy 19(7):318

Ince RA, Giordano BL, Kayser C, Rousselet GA, Gross J, Schyns PG 
(2017) A statistical framework for neuroimaging data analysis 
based on mutual information estimated via a gaussian copula. 
Hum Brain Mapp 38(3):1541–1573

Jones TA (2017) Motor compensation and its effects on neural reorga-
nization after stroke. Nat Rev Neurosci 18(5):267–280

Kerkman J, Bekius A, Boonstra T, Daffertshofer A, Dominici N (2020) 
Muscle synergies and coherence networks reflect different modes 
of coordination during walking. Front Physiol 11:751

Kriegeskorte N, Mur M, Bandettini PA (2008) Representational simi-
larity analysis-connecting the branches of systems neuroscience. 
Front Syst Neurosci 2:249

Liu Y, Li Y, Zhang Z, Huo B, Dong A (2024) Quantitative evaluation of 
motion compensation in post-stroke rehabilitation training based 
on muscle synergy. Front Bioeng Biotechnol 12:1375277

McManus L, De Vito G, Lowery MM (2020) Analysis and biophysics 
of surface EMG for physiotherapists and kinesiologists: toward 
a common language with rehabilitation engineers. Front Neurol 
11:576729

1 3

   31  Page 14 of 14

https://doi.org/10.1016/j.isci.2024.111613
https://doi.org/10.1016/j.isci.2024.111613

	Alterations of upper-extremity functional muscle networks in chronic stroke survivors
	Abstract
	Introduction
	Materials and methods
	Dataset and experimental setup
	Extracting networks of functionally diverse types of muscle interaction
	Characterising post-stroke alterations in muscle network structure
	Statistical analyses

	Results
	Functionally similar muscle networks
	Functionally-complementary muscle networks
	Functionally-independent muscle networks

	Discussion
	New and congruent insights into the characteristic alterations of motor function in chronic stroke survivors
	A whole-limb perspective to post-stroke motor impairment
	Stroke survivors broadly cluster into clinically relevant patient subgroups

	Limitations
	Conclusion
	References


