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Abstract  
This work presents a simple approach based on a three-spring model and the modal strain energy method 

for predicting the dissipative influence of thin viscoelastic layers on the vibration properties of structures. 

The approach estimates the ratio of strain energy in the viscoelastic component to the overall structure 

without explicitly modelling the layer. This involves identifying the sensitivity of the structure to stiffness 

changes of the layer and fitting an equivalent metamodel constructed from series and parallel springs. By 

making use of the elastic-viscoelastic correspondence principle, the damping of the system for any set of 

viscoelastic properties can then be obtained easily.  

1 Introduction  

Thin viscoelastic layers are often present in mechanical components in the form of adhesive joints or are 

deliberately inserted as damping layers into structures. Their dissipative properties can provide an efficient 

way to attenuate the dynamic response thereby mitigating destructive resonant vibrations and reducing noise 

levels. Accurate estimation of the damping levels that such layers contribute is therefore important for 

structural design and optimisation.  

Numerous studies have been carried out to develop predictive methods for assessing the damping influence 

of viscoelastic layers in structures. The Ross-Kerwin-Ungar (RKU) model is one of the pioneering works 

which provides an approach to predict the damping levels of a beam enhanced with constrained-layer-

damping (CLD) [1,2].While RKU and related models provide high accuracy efficiently, they are limited to 

simple geometries. Analysis of more complex structures is usually carried out via the Finite Element Method 

(FEM) with the discretised numerical models being generated directly from computer aided design 

drawings. One approach has been to develop special multi-layer shell elements that enable large shear 

deformations in the viscoelastic layer [3]. While these elements have been useful for analysing thin shell-

type structures with parallel damping layers, they are not suitable for more complex configurations and are 

not widely available in commercial software. Whilst three dimensional elements can be used [4], adding 

such layers explicitly within a numerical model can be expensive and time consuming, particularly for 

complicated structures having many components connected by viscoelastic layers. This can lead analysts 

either to neglect the layer and underestimate the damping present, or to develop highly detailed models that 

are unsuitable for design and optimisation studies.  

As an alternative to geometrically representative models, the three-spring estimation [5] was originally 

introduced as a computationally efficient approach to predict the damping levels of beams treated with CLD. 

In this approach, the overall stiffness of beam with CLD was represented by a parallel and series three-

spring assembly where the stiffnesses of the beam, constraining layer and viscoelastic layer were each 

represented by a spring. The elastic-viscoelastic correspondence principle was then invoked to obtain 

estimates of the damping. It should be noted that a modified version of this approach also exists which 

includes the damping behaviours of layers other than the viscoelastic layer [6]. The advantage of the three-

spring approach was that it could represent more complicated cross-sections such as cylinders and tubes [5]. 
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However, in this approach, the stiffness of each spring had to be expressed explicitly and this would vary 

depending on the deformation pattern considered. As a result, this approach, in its current form, could not 

be applied easily to more complicated engineering structures. 

This study introduces a new approach based on the three-spring model to predict the modal damping ratios 

of structures with thin viscoelastic layers. Rather than attempting to define an explicit expression of the 

spring stiffness, this approach depends on the sensitivity of the natural frequencies to the stiffness of the 

viscoelastic layers. The validity of the approach is first demonstrated on a well-understood structure: a beam 

with CLD. Results from the new approach are shown to match those generated using the established RKU 

model. It is then applied to a more complicated component that contains many adhesive joints. This is a 

rotor from an advanced electrical machine which comprises a cylindrical composite frame into which are 

bonded a series of laminated pole-pieces that align with the axis of rotation. Modal damping ratios predicted 

using this approach are compared with those obtained experimentally over a range of temperatures.  

2 Three-spring modelling approach  

2.1 Theoretical model  

A vibration mode of a structure can be modelled as a simple undamped SDOF system which only involves 

an effective mass, m and an effective spring, k. To incorporate the effect of thin viscoelastic layers (assumed 

to be inserted into the structure), the effective spring can be decomposed to three springs where two springs 

with stiffnesses of kv and ks are in series forming a link that is parallel to a third spring whose stiffness is kp 

as shown in Figure 1.  
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Figure 1: Three-spring model of a structural mode.  

Using the three-spring model, the effective spring stiffness is determined as:  

 ( )/
p v s v s

k k k k k k= + +  (1) 

Employing the elastic-viscoelastic correspondence principle, the three-spring model is a very simple way to 

approximate the effects of the presence of a viscoelastic damping element in a structure. In the original 

approach [5], where various beams with viscoelastic layers are interested, it is considered that kp is the 

primary beam stiffness, ks is the stiffness of the elastic constraining layer and kv represents the complex 

stiffness of the viscoelastic layer. It should be noted here that the original approach was based on the explicit 

expression of these stiffness terms by utilising the bending behaviour of beams. The approach introduced in 

this study considers applying the three-spring model for the arbitrary structures with thin viscoelastic layers 



where the stiffness terms of the three-spring model cannot be explicitly expressed. Therefore, kp and ks 

cannot be interpreted to the same physical equivalents as in the original approach.  

Supposing that the damping of the structure only arises from the viscoelastic layers used, the damping ratio 

of a structural mode, ζ, is obtained utilising the modal strain energy method [2] as:  

 ( )/ 2 /
v v

U U =  (2) 

where ηv is the loss factor of the viscoelastic material, Uv is the modal strain energy of the viscoelastic layers 

and U is the modal strain energy of the structure with the viscoelastic layers. Note that Equation (2) is only 

exact if the mode shapes are complex to allow for the presence of damping. However, the common 

approximation in the Modal Strain Energy method is to assume the modes are real. While this introduces 

potential errors [7] various methods have been developed to address this. 

Employing the three-spring model, the modal strain energies are determined as:  

 
20.5

v v v
U k x=  (3) 

 ( )( )2 20.5 0.5 /
p v s v s

U kx k k k k k x= = + +  (4) 

where xv represents the deformation of the spring, kv, in the three-spring model, and x represents the 

deformation of the effective spring, k. As the spring force in the series branch of the three-spring model is 

the same in both springs (kv and ks), xv is written in terms of x as:  

 ( )/
v s v s

x xk k k= +  (5) 

Using the relations given in Equations (3)-(5), the modal strain energy ratio, Uv/U is obtained as:  

 ( )( )/ 1/ / 1 / / 2 / 1
v p s v s p v p s

U kk k kU k k k k= + + + +  (6) 

Equation (2) and (6) indicate that the equivalent three-spring model parameters kp/ks and kv/ks should be 

known to obtain the damping ratio of a structural mode depending on the damping ratio of the viscoelastic 

material damping ratio.  

2.2 Evaluation of the modal strain energy ratio  

The parameters, kp/ks and kv/ks can be determined by simply investigating the sensitivity of k to kv. The 

typical characteristic of k shows a “s” shaped curve as a function of kv/ks as illustrated in Figure 2a. It can 

be seen that k changes from kp when kv → 0 to (kp/ks+1)ks when kv → ∞ and becomes equal to (kp/ks+0.5)ks 

when kv = ks. These are important observations that can be used to generate a three-spring model fit when 

the sensitivity of k to kv is obtained.  

Once the three-spring model fit is achieved, Uv/U can either be calculated using Equation (6) or by obtaining 

the logarithmic gradient of k with respect to kv as:  

 ( )( ) ( )( )/ log / log
v e e v

U U d k d k=  (7) 

Figure 2b demonstrates the typical characteristic of Uv/U as a function of kv/ks supposing that kp/ks = 3. As 

can be seen, Equation (7) produces the same curve as the curve calculated using Equation (6), and they both 

show an inverted “u” shape.  

The parameters, kp/ks and kv/ks are specific to the structural mode considered. Therefore, if the effective mass 

of the vibration mode remains constant, the sensitivity of k to kv is the sensitivity of the square of the mode 

frequency to kv. This can allow the determination of kp/ks and kv/ks (thus the three-spring modal fit) by 

conducting modal analysis of the system using FEM or even through experimental modal testing if the 

elasticity level can be varied. This indicates that the three-spring model approach presented here can be 

implemented for any structure having thin viscoelastic layers to predict the modal strain energy ratio, and 

thus the modal damping ratio.  
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Figure 2: Typical characteristics in three-spring model as a function of viscoelastic component stiffness: 

(a) effective stiffness and (b) strain energy ratio.  

3 Three-spring model for a beam with constrained-layer-damping  

To show the accuracy of the three-spring model approach for estimating Uv/U, a study was conducted for 

the first two modes of a rectangular beam with CLD and free boundaries. This simple beam example was 

selected as the first case study because its Uv/U could be accurately obtained for each mode by using RKU 

model [1,2] and thus used for comparison. The geometric and material properties of the structure considered 

in this study is provided in Table 1.  

Table 1: Material and geometric properties of the beam-with-CLD application.  

Part Property Unit Value 

Beam and constraining 

layer 

Young’s modulus GPa 70 

Density kg/m3 2700 

Length mm 400 

Width mm 25 

Beam thickness mm 4 

CL thickness mm 0.25 

Viscoelastic layer Young’s modulus Pa various 

Poisson’s ratio - 0.4 

Loss factor - 0.1 

Density kg/m3 1000 

Thickness mm 0.05 

The FEM model of the beam with the CLD was constructed via the commercial software Ansys [8] to obtain 

the three-spring model fit for each mode. The beam was modelled using standard 20-node solid elements  

whilst the constraining layer was modelled using standard 8-node shell element offset from the surface of 

the beam. The size of each element edge was set to 1 mm. The penalty method was used to represent the 

varying elasticity level of the thin viscoelastic layer inserted between the beam and the constraining layer 

by changing the contact stiffness. The first two free modes of the beam rigidly connected to the constraining 

layer (without the viscoelastic layer) obtained by the RKU and FEM models are shown in Table 2.  



Table 2: First two free bending modes of the beam with a rigidly bonded constraining layer.  

Mode 

number

Mode 

shape

Mode frequency - 

RKU [Hz]

1 139.3

2 384

Mode frequency - 

FEM [Hz]

137.7

379
 

To obtain the sensitivity of k to kv for each mode, the RKU model was run for various levels of viscoelastic 

material elasticity whilst the FEM model was simulated for various contact stiffness. The reduction in the 

mode frequencies with respect to those presented in Table 2 is shown in Figure 3. In the graphs, the RKU 

results are given as a function of kv = Evfgeo where Ev is the varying elastic modulus of the viscoelastic layer 

and fgeo is the constant geometric coefficient which represents the geometric property of the viscoelastic 

layer. The FEM results are presented as a function of kv = fckc where fc is the varying scaling factor that 

determines the level of Penalty method stiffness and kc is the constant default contact stiffness of the Penalty 

method calculated by the software depending on the properties of the contacting elements. Figure 3 

demonstrates that both models exhibit the similar characteristics for each mode. The mode frequencies 

reduce by decreasing kv but at different rate depending on the level of kv.  

(a) (b)

 

Figure 3: Mode frequency changes of the beam-with-CLD obtained from: (a) RKU model and (b) FEM 

model.  

As the effective mass properties (m1 and m2) are maintained for each mode, the sensitivity of k to kv is 

calculated as shown in Figure 4. The piece-wise cubic interpolation was applied to the calculated FEM 

results to obtain the FEM result curves. As can be seen, all curves exhibit the “s” shape characteristic stated 

in the methodology. It should be noted here that although Uv/U was directly obtained for various Ev in the 

RKU model the sensitivity of k to kv was also computed by the RKU model to obtain the three-spring model 

fit by using the RKU mode frequencies.  

In order to fit the three-spring model and simulate the general case given in Figure 2a, the three conditions 

established for Figure 2a were applied to each case shown in Figure 4. The three-spring model parameters 

calculated for each case are listed in Table 3. Using these three-spring model parameters, Uv/U was evaluated 

using both RKU and FEM for each mode as shown in Figure 5. As can be seen from this figure, the three-

spring fitted Uv/U curves computed by using the RKU frequencies match with those obtained directly by 

the RKU model. This shows the accuracy level of the three-spring model approach presented in this paper. 

It can also be seen from this figure that the three-spring fitted Uv/U curves obtained by using the FEM 



frequencies underestimates the RKU Uv/U curves. This results from the differences in the mode frequencies 

observed between the FEM and RKU models.  

(a) (b)

(c) (d)

 

Figure 4: Effective stiffness sensitivity of the beam-with-CLD to the viscoelastic layer stiffness (a) first 

mode – RKU model, (b) first mode – FEM model, (c) second mode – RKU model and (d) second mode – 

FEM model.  

Table 3: Three-spring model fit parameters of the beam-with-CLD.  

Model Mode No 
Three-spring model fit parameters 

ks in terms of effective mass ks in terms of varying elastic property  kp/ks 

RKU 1 1.28m1105 3.41fgeo105 4.98 

2 1.00m2106 9.01fgeo105 4.82 

FEM 1 1.11m1105 6.44kc10-5 5.75 

2 0.85m2106 2.35kc10-4 5.68 
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Figure 5: Strain energy ratio comparisons of the beam-with-CLD: (a) first mode and (b) second mode.  

4 Damping prediction of a rotor with viscoelastic adhesive joints  

To demonstrate the three-spring model fit implemented for the structural modes of a more complicated 

machine component and compare the damping predictions with experimental results, a pole-piece rotor 

(PPR) was considered as a second case study. As shown in Figure 6, the rotor was formed by a cylindrical 

composite casing, 60 laminated pole-pieces that were bonded into the casing slots by using a viscoelastic 

epoxy adhesive and a composite end plate.  

4.1 Three-spring model fit of the rotor  

In order to generate the three-spring model fit, a FEM model of the PPR was constructed as can also be seen 

in Figure 6. The FEM model was composed of the standard 20-node solid and 10-node tetrahedral element 

types. Rather than model the adhesive layers, the penalty method was employed to represent the varying 

elasticity level of the thin adhesive layers inserted between the pole-pieces and the casing slots by changing 

the contact stiffness.  

 

Figure 6: Picture of the PPR and its FEM model.  



As the adhesive layers were used in the casing slots, the first two free casing-dominated modes were 

considered for the three-spring model fitting process. The eigen-solution of the FEM model was executed 

for varying contact stiffness between the pole-pieces and the casing to compute the reduction levels in the 

mode frequencies with respect to the rigid connection case. The mode shapes and the corresponding mode 

frequency changes can be found in Figure 7. As can be seen from the results, both mode frequencies decrease 

as kv reduces with different rate depending on the level of kv. The second mode is more sensitive to the 

change in kv than the firs mode as its mode shape involves more relative motion on the adhesive regions.  

Mode 1

Mode 2

 

Figure 7: Mode frequency changes of the PPR.  

Supposing that the effective mass properties (m1 and m2) are maintained for each mode, the sensitivity of k 

to kv is obtained as demonstrated in Figure 8. Note that the piece-wise cubic interpolation was used to obtain 

the resulting curves. Similar to the observation in the beam with a CLD case study, both curves show the 

“s” shape characteristic.  

(a) (b)

 

Figure 8: Effective stiffness sensitivity of the PPR to the adhesive stiffness (a) first mode and (b) second 

mode.  

The three-spring model fit parameters were computed for each mode as provided in Table 1. Utilising these 

three-spring model fit parameters, the Uv/U curves were obtained for both modes as shown in Figure 9. This 



plot shows that the second mode of the PPR produces larger Uv/U at any level of the adhesive elasticity. 

This means that the second mode has the potential to exhibit larger damping property than the first mode. 

However, Equation (2) indicates that the exact level of modal damping also depends on the damping of the 

viscoelastic material (i.e., adhesive in this case).  

Table 4: Three-spring model fit parameters of the PPR.  

Mode No 
Three-spring model fit parameters 

ks in terms of effective mass ks in terms of varying elastic property  kp/ks 

1 4.22m1106 7.49kc10-2 1.17 

2 3.68m2107 8.52kc10-2 0.54 

 

Figure 9: Strain energy ratios of the PPR.  

4.2 Material characterisation of viscoelastic adhesive  

To predict the modal damping ratios of the PPR with the three-spring model fitted above, the damping ratio 

for the adhesive material should be known as formulated in Equation (2). Thus, the viscoelastic properties 

of the adhesive material was measured in this study using Metravib VA2000 Viscoanalyser shown in Figure 

10.  

The viscoelastic behaviour of the adhesive material can be represented by the complex modulus, Ev
*, as:  

 ( ) ( ) ( )( )* , , 1 ,
v v v

E f T E f T j f T= +  (8) 

where Ev and ηv respectively represent the elastic modulus and loss factor of the adhesive material (i.e., 

viscoelastic properties) and j = (-1)0.5. It should be noted that both Ev and ηv are the functions of frequency 

(f) and temperature (T). In order to obtain the viscoelastic properties over a broad range of frequency and 

temperature, the master curve of the adhesive material was generated by applying the Time-Temperature 

Superposition principle [9]. the Time-Temperature Superposition allows to obtain the viscoelastic properties 

for a frequency and temperature different than those measured in the experiment. The viscoelastic properties 

at any temperature and frequency are computed by:  

 ( ) ( ), ,
v T v T ref

E f T b E f T=  (9) 

 ( ) ( ), ,
v T v T ref

f T b f T  =  (10) 



where Tref is the reference temperature at which the master curve is produced, and both αT and bT are 

temperature-dependent coefficients. The scaling factor, bT can be approximated as [10]:  

 /
T ref

b T T=  (11) 

whereas the shift parameter, αT can be described using the original Williams-Landell-Ferry equation:  

 ( ) ( ) ( )( )10 1 2log /
T ref ref

C T T C T T = − + −  (12) 

where C1 and C2 the constants that can be determined by using an optimisation algorithm for the 

measurements. Note that the Differential Evolution approach [11] was used in this study to determine these 

constants.  

 

Figure 10: Viscoanalyser used to measure the material properties of the adhesive and sample geometry.  

The adhesive material used was Araldite® 2019 epoxy. As can be seen from Figure 10, the cylindrical 

specimens having 18 mm of length and 6 mm of diameter were considered in the measurements. In the 

measurements, 6 different specimens were tested for repeatability by applying cycling tension-compression 

with the amplitude of 0.01% strain. To avoid slipping of specimens, 0.1% of pre-strain was applied to each 

measurement. Using the dynamic stiffness of each specimen and its geometry, the machine provided the 

elastic modulus and loss factor reliably over the frequency range 1 to 100 Hz at temperatures between 30° 

and 190°. Using the measured data, the shift curve was calculated for the adhesive material as shown in 

Figure 11a.  

(a) (b)

 

Figure 11: Master curve and measured material properties of the adhesive material.  



Using this shift curve and the scaling factor, the master curves were produced for both elastic modulus and 

damping ratio as shown with black lines in Figure 11b. The measured data (discrete points) is also provided 

in these plots to show the reliability of the master curves. It should be noted that freduced = αTf.  

4.3 Predicted damping ratios and comparison with experiments  

In order to compare the three-spring model fits of the PPR with physical experiments, a modal testing setup 

was prepared as shown in Figure 12. The modal testing was carried out by placing the PPR in a temperature-

controlled environment chamber to measure the damping ratio at different temperatures. The temperature-

controlled modal testing aimed to produce noticeable damping ratios by changing the adhesive viscoelastic 

properties with temperature to achieve Uv/U levels around the peak of Uv/U curve shown in Figure 9. By 

investigating the adhesive master curve shown in Figure 11, the measurement temperatures were selected 

as 60, 80, 100 and 110 °C to be around the glass-transition where a higher Uv/U level and thus a higher level 

of damping ratio can be produced.  

PPR SuspensionTemperature-

controlled 

chamber

Shaker

Response from the top edge 

of the PPR at 60 °C

First mode Second mode

Line fit applied for the first mode

 

Figure 12: Demonstration of the temperature-controlled modal testing for the PPR.  

The PPR was lightly suspended in the temperature-controlled chamber to simulate the free boundary 

conditions for which the three-spring model fits were achieved for its modes. The PPR was excited at the 

top edge by a shaker using a sine-sweep excitation, and the forces resulted from this excitation were 

collected by using a oscilloscope via the force transducer attached between the shaker and the PPR. To 

obtain point responses, an accelerometer was used at the same position. The time-domain force and 

acceleration signals were recorded along the excitation duration completed for about 180 seconds with 50 

kHz sampling rate. For repeatability, 5 measurements were taken for each temperature case investigated.  



For each measurement, the Frequency Response Function (FRF) was evaluated by applying the Discrete 

Fourier Transform for the collected time-domain signals. A sample average FRF measured at 60 °C can be 

found in Figure 12 showing the first two casing-dominated modes considered in the three-spring model fits. 

As can also be seen from Figure 12, to extract the modal damping ratio, the line-fit method [12] which 

allows obtaining modal properties from a measured FRF was used for the measured complex FRF data 

around the peak frequencies. The line-fit process was achieved by providing both less than 5% root-mean-

square error between the fitted line and the measured FRF data and less than 0.5 Hz error in estimating the 

peak frequency.  

The damping ratios calculated from the measured FRFs involved all dissipative sources within the PPR 

assembly (such as the joint between the end plate and the casing, the material loss factors of the PPR 

components). Thus, the damping ratio resulted from only adhesive material should be obtained for sensible 

comparisons with the three-spring model fits. To quantify the effect of other dissipative sources without 

involving the effect of the adhesive material, FRF measurements were carried out on the end plate by using 

simple hammer modal tests. By investigating the first bending mode of the end plate, the modal damping 

ratio was found to be 0.49%. Assuming that the other dissipative sources other than the adhesive material 

are not significantly affected by temperature and frequency changes, this damping ratio was subtracted from 

the measured damping ratios of the casing-dominated modes. The results are summarised in Table 5 as a 

function of temperature for each mode considered.  

To relate kv in the three-spring model fit with the elastic modulus changes of the adhesive material and thus 

conduct the appropriate comparisons, the maximum and minimum extremum points observed in Figure 8 

and Figure 11 were used by simply scaling the elastic modulus value at the investigated temperature to the 

corresponding kv value. These are also provided in Table 5.  

Table 5: Comparison of predicted PPR modal damping ratios with physical experiments.  

Mode Properties 
T [°C] 

60 80 100 110 

1 

From material 

properties  

ηv [%] 4.0 4.6 9.6 13.6 

(Ev-min(Ev))/(max(Ev)-min(Ev)) [-] 0.70 0.58 0.37 0.27 

From three-

spring model fit 

kv [in terms of ks] 2.70 1.50 0.46 0.26 

Uv/U [-] 0.09 0.11 0.12 0.09 

Comparison ζ – predicted [%] 0.18 0.26 0.58 0.61 

ζ – measured [%] 0.21 0.39 0.55 0.74 

2 

From material 

properties  

ηv [%] 4.0 4.6 9.2 12.8 

(Ev-min(Ev))/(max(Ev)-min(Ev)) [-] 0.72 0.59 0.39 0.30 

From three-

spring model fit 

kv [in terms of ks] 3.20 1.30 0.54 0.30 

Uv/U [-] 0.14 0.19 0.20 0.18 

Comparison ζ – predicted [%] 0.28 0.44 0.92 1.15 

ζ – measured [%] 0.36 0.55 0.85 1.16 

The measured damping ratios presented in Table 5 show that the damping ratio of the second mode is 

consistently higher than the first mode for any temperature as estimated by comparing Uv/U curves in Figure 

9. It is clear that the measured damping ratios of both modes increase with temperature as the adhesive 

material provides more damping when the temperature approaches to the glass-transition (see Figure 11a 

for justification). The comparison of the predicted damping ratios with those measured indicates that the 

three-spring model fits successfully represent the modal damping changes with temperature and the 

predictions are fairly accurate despite many adhesive connections and complicated structure of the PPR. It 



can be seen that the measured damping ratios are predicted with a varying level of error. The source of error 

can be attributed to the listed factors:  

i. difference in the estimated mode frequencies of the PPR with the FEM model,  

ii. effect of other damping mechanisms in the PPR,  

iii. error in the line-fit method used to extract the damping ratio from a measured FRF,  

iv. experimental errors while measuring FRFs.  

5 Conclusions  

This paper shows that the sensitivity of a structure to the stiffness of viscoelastic elements within it can be 

represented using a three-spring model. Even if the structure has a complex geometry, the three-spring 

representation gives a good quality fit on a mode-by-mode basis. The fitted three spring model can then 

easily be used to estimate the damping present in the mode.  

The effectiveness of this approach is first shown by comparing results for a beam using the well-known 

RKU method with those from the three-spring approach. In this study, it is also shown that the effect of a 

thin viscoelastic layer can be represented in finite element analysis using the host structure and the 

constraining layer. The viscoelastic layer is not modelled, but instead represented using a scaled value of 

the contact stiffness – a parameter available in many commercial FEM packages.  

The validation of the approach is also demonstrated by investigating the modal properties of a complex 

composite element in an electric machine containing many thin viscoelastic layers. Using the three-spring 

approach along with the finite element model using the penalty method, a close agreement between 

measured and predicted modal damping levels was achieved.  

Overall, the ability of the three-spring model to match the sensitivity of the relevant system natural 

frequency to the stiffness of the viscoelastic material is the basis for the success of the method.  
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