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The performance of a Bayesian value-based =

sequential clinical trial design in the presence
of an equivocal cost-effectiveness signal:
evidence from the HERO trial

Charlie Welch"", Martin Forster?, Sarah Ronaldson', Ada Keding', Belen Corbacho-Martin' and
Puvan Tharmanathan'

Abstract

Background There is increasing interest in the capacity of adaptive designs to improve the efficiency of clinical trials.
However, relatively little work has investigated how economic considerations — including the costs of the trial — might
inform the design and conduct of adaptive clinical trials.

Methods We apply a recently published Bayesian model of a value-based sequential clinical trial to data

from the ‘Hydroxychloroquine Effectiveness in Reducing symptoms of hand Osteoarthritis’(HERO) trial. Using param-
eters estimated from the trial data, including the cost of running the trial, and using multiple imputation to estimate
the accumulating cost-effectiveness signal in the presence of missing data, we assess when the trial would have
stopped had the value-based model been used. We used re-sampling methods to compare the design’s operating
characteristics with those of a conventional fixed length design.

Results In contrast to the findings of the only other published retrospective application of this model, the equivocal
nature of the cost-effectiveness signal from the HERO trial means that the design would have stopped the trial close
to, or at, its maximum planned sample size, with limited additional value delivered via savings in research expenditure.

Conclusion Evidence from the two retrospective applications of this design suggests that, when the cost-effective-
ness signal in a clinical trial is unambiguous, the Bayesian value-adaptive design can stop the trial before it reaches its
maximum sample size, potentially saving research costs when compared with the alternative fixed sample size design.
However, when the cost-effectiveness signal is equivocal, the design is expected to run to, or close to, the maximum
sample size and deliver limited savings in research costs.

Introduction

There is increasing interest in the use of adaptive designs
to improve the efficiency of clinical trials. Such designs
monitor outcome data as they arrive over the course of
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objective of assessing their ‘value for money’ to the health
care system [9, 10]. However, relatively little work has
investigated how economic considerations — including
the cost of carrying out a clinical trial — might inform the
design and conduct of adaptive clinical trials.

Recent NIHR-funded research initiatives in the United
Kingdom — notably the ‘EcoNomics of Adaptive Clini-
cal Trials’ (ENACT) and the ‘Costing of Adaptive Tri-
als’ (CAT) projects! — have sought to address this gap
in the literature. In this paper, we focus on one of the
principal outputs of the ENACT project; a retrospective
application of a recently developed Bayesian value-based
sequential clinical trial design [13, 14] to data from the
‘Hydroxychloroquine Effectiveness in Reducing symp-
toms of hand Osteoarthritis’ (HERO) trial [15-17].

The HERO trial was a fixed sample size, non-sequential
clinical trial designed according to frequentist principles.
It recruited and randomised a fixed, predetermined num-
ber of patients to its two arms, collected data on a key
primary clinical endpoint and tested a null hypothesis
positing that the experimental treatment (hydroxychlo-
roquine) was no better than placebo for the treatment
of hand osteoarthritis (OA) with respect to this end-
point. The sample size was chosen to target 80% power
for this hypothesis test. In this paper we investigate: (1)
what would have happened had the HERO trial been
conducted as a Bayesian value-based, sequential, clinical
trial; (2) how much additional value such a design might
have delivered to the health care system, over and above
that delivered by a non-adaptive design and (3) how mul-
tiple imputation methods for missing data can be incor-
porated into the implementation of the value-based
sequential model.

The sequential model that we investigate permits the
clinical trial to stop short of its maximum sample size
through explicit consideration of the trade-off between
the benefits and costs of continuing the trial. As we dis-
cuss below, the sequential trial's maximum sample size
can be chosen to be equal to, smaller than, or greater
than the sample size that is required for a traditional, fre-
quentist, fixed sample size design. In contrast to notions
of efficiency considered by most proposed sequential
designs, where the objective is to reduce the expected
sample size of a trial (subject to some constraints), the
objective of the value-based sequential model is to max-
imise the overall expected net benefit of the trial and
subsequent treatment adoption recommendation to the
health care system. As our results show, a value-based

! The principal publication from the ENACT project is [11]. A principal
publication from the CAT project is [12] and the project’s website is https://
www.newcastle-biostatistics.com/methodology_research/adaptive_designs/
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approach could motivate a sample size that exceeds that
which would be planned for a traditional, frequentist,
fixed sample size clinical trial.

To date, the published literature contains only one
other retrospective application of this model: [18]
applied it to the ‘PROximal Fracture of the Humerus:
Evaluation by Randomisation’ (ProFHER) pragmatic
trial [19] and found that the design could have reduced
the number of patients randomised by an estimated
14% (saving about 5% of the research budget), while at
the same time resulting in an adoption recommenda-
tion which was consistent with that of the actual trial.
A bootstrap analysis investigating the performance
of the model ‘on average’ suggested a reduction in
expected sample size of approximately 38% (compared
with a fixed length design), an estimated 13% saving in
the research budget, and an estimated probability of
0.92 of an adoption recommendation consistent with
that of the actual trial.

These results were driven by a relatively strong cost-
effectiveness signal in favour of one of the two inter-
ventions that were under investigation. In contrast, the
HERO trial’s cost-effectiveness evidence was much less
clear-cut, with neither of the treatments showing a clear
cost-effectiveness advantage over the other. The data
from the HERO study therefore provide an ideal opportu-
nity to assess the value-based sequential model’s perfor-
mance in the presence of an equivocal cost-effectiveness
signal. In doing so, we note that our focus in this paper is
not on whether the Bayesian sequential rule that is pro-
posed could replace a frequentist fixed sample size or
group sequential design. Instead, our interest is whether
the model could complement existing designs, by provid-
ing additional information to trials teams about whether
or not interim evidence suggests that the expected ben-
efit of continuing the trial outweighs the expected benefit
of stopping it.

The rest of this paper is structured as follows. In the
Methods section we provide an overview of the value-
based sequential model and the HERO trial, and describe
in detail the application of the former to the latter. In the
Results section we report the quantitative findings of our
application. The Discussion section discusses our results,
compares them with those from the ProFHER applica-
tion and considers directions for future research.

Methods

The Bayesian value-based model of a sequential clinical
trial

In this section we provide an intuitive account of the
Bayesian value-based sequential model that we apply
to the HERO trial. Full details may be found in the two
papers which state and solve the model [13, 14].
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Consider a randomised clinical trial in which a new
health technology, N, is to be compared with a control,
or standard, technology, S, on cost-effectiveness grounds.
Patients are randomised sequentially, and in a pairwise
manner, to the two arms of the trial and outcome and
treatment cost data are measured over a follow-up period
of defined length. The outcome of interest is whether
technology N is a cost-effective choice for the reimburse-
ment agency responsible for funding the health tech-
nology, where cost-effectiveness is measured in terms
of incremental net monetary benefit (INMB). Label the
pairwise allocations as i = 1,. .., Tax, where Tiay is the
maximum number of pairwise allocations that can be
made. Define the net benefit of technology j for pairwise
allocation i as NBj = AE;; — Cjj, j € {N,S}, where the
random variables E and C denote effectiveness and cost,
respectively, and 4 denotes the reimbursement agency’s
maximum willingness to pay for one unit of effectiveness
(as an example, in the HERO trial, E is a Quality Adjusted
Life Year (QALY), so A could be the UK National Health
Service’s valuation of one QALY, generally taken to equal
between £20,000 and £30,000 [20]).

Define the incremental net monetary benefit of the new
technology versus the standard for pairwise allocation i,
denoted hereafter as X;, as the net benefit of N minus the
net benefit of S for allocation i:

X; = NBix — NBjs = A(Eiv — Eis) — (Cin — Cis).
(1)

The X; are assumed to have a normal distribution with
unknown expected value uy = E[X], but known variance
o (the assumption of normality of the data is something
that could be tested during the course of the trial, and
is something we carry out in our application). Taking a
Bayesian perspective, prior beliefs about ux are modelled
using a normal prior distribution with expected value
and variance equal to 1o and of, respectively. These val-
ues can be informed by existing evidence concerning the
two technologies, a pilot study, or expert opinion, with
limited or unreliable prior evidence being represented by
a ‘diffuse’ prior distribution with expected value close to,
or equal to, zero.

As the trial progresses, measurements of incremen-
tal net monetary benefit arrive sequentially from pairs
of patients who have been followed-up and Bayes’ rule
is used to obtain successive posterior distributions for
ux. Under the assumptions of the model, namely that
the prior distribution is normal and the data and associ-
ated likelihood function are normal, the posterior distri-
bution is also normal. After n pairwise allocations have
been observed, the posterior mean and variance for uy,
denoted 1, and o2 respectively, are given by standard
expressions [21]:
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b 2
nolo + nx o
Un = ’ 0;42 = X ’ (2)
no+n no+n

where ny = 0/ 002 is the prior’s so-called ‘effective sam-
ple size’ and x is the sample average of the # observations
of INMB.

The objective of the model is to define a policy, or rule,
that determines whether, conditional upon the observed
data and hence the resulting posterior distribution,
recruitment to the trial should stop, or another pair of
patients should be recruited and randomised. The policy
maximises the expected net benefit of the trial and sub-
sequent technology adoption decision, defined as the
difference between the expected benefit accruing to the
P patients whose treatment will be determined by the
adoption of the superior technology once the trial con-
cludes, minus any costs incurred in switching technolo-
gies, minus the expected cost of carrying out the trial.
The policy takes the form of a stopping boundary in (n x
prior/posterior mean space) which indicates that recruit-
ment should continue if the posterior mean for uy lies
within the area enclosed by the stopping boundary and
recruitment should cease if the posterior mean lies out-
side the boundary.

The stopping boundary is obtained by solving what is
known as an ‘optimal stopping problem; using the tech-
niques of dynamic programming [22, 23]. It is important
to note that the solution to this problem uses information
provided by the posterior distribution for the unknown
value of uyx and not just the expected value of the pos-
terior distribution. That is, the expected benefit from
stopping the trial uses a distribution which predicts the
value of uy once remaining pipeline patients have been
observed, and the expected value of recruiting an addi-
tional pair of patients (continuing the trial) weights opti-
mal values for continuing the trial once that additional
pair of patients has been recruited, using information
derived from the posterior distribution. Full details of
this process, and the so-called ‘Bellman equation’ which
compares the expected values of stopping and continu-
ing the trial, may be found in the discussion of Equations
(6)—(8b) of [13].

In line with frequentist approaches to sequential trial
design (see, for example, [24]), it is necessary to specify
a maximum sample size for the clinical trial, represented
here by the maximum number of pairwise allocations,
Tmax, that can be recruited. In theory, Tmax could be any
value that the research team or funder chooses. There
are a number of ways in which Tax could be chosen. For
example, one method sets it to equal the sample size that
would be set for a fixed sample size trial designed accord-
ing to frequentist principles. This approach permits the
trial to stop at, or before, the frequentist design’s target
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Fig. 1 Stopping boundary for the value-based sequential model, showing the three stages of the trial (markedl;'ll'and’lll'), the stopping boundary

and the continuation region. [Source: adapted from [13, 18]]

sample size. Alternatively, Tmax could be set equal to the
sample size which maximises the expected net benefit of
sampling in a so-called ‘value of information’ calculation
for a fixed sample size design [25]. Whatever method is
chosen, the value-based sequential design stops the trial
as soon as the estimated additional benefit of recruiting
an extra pair of patients is estimated not to be worth the
additional cost of doing so.

Under the value-based sequential model, the trial has
three stages: during Stage I, patients are recruited and
randomised to the two arms, but no accrual of cost-
effectiveness data takes place because no patient has
completed their follow-up period; during Stage II, val-
ues of INMB are observed sequentially and Eq. (2) are
used to update the posterior distribution for pyx. After
each observation of INMB, there is the option to ran-
domise a further pair of patients to each arm of the
trial, or stop recruitment. During Stage III, recruitment
has stopped, but follow-up continues for the remaining
pipeline patients. Once all patient outcomes have been
observed and used to update the posterior mean for uy,
Stage III concludes and the decision about whether to
adopt the new technology is made. Adoption of technol-
ogy N is recommended if the total reward from adopt-
ing the technology exceeds any switching cost (that is,
if P x up > I, where n is the total number of pairwise
allocations made and I > 0 is the cost of switching from
technology S to N).

Figure 1 shows how the policy works in practice for the
case in which I = 0. Consider first the region marked
(Stage) ‘I. Under the assumption that the prior mean,
1o, lies between the values indicated by points labelled

‘D’ and ‘C’ on the vertical axis, the sequential design is
preferred. Recruitment takes place during Stage I and
the first observation of INMB occurs once the first pair
of patients have been followed up. The point marked t
in Fig. 1 is the delay to observation of outcomes, and is
measured in terms of the number of pairwise allocations
that are expected to have been made during the follow-
up period for the first (and subsequent) observation(s)
of INMB. During Stage II, as outcomes are observed, Eq.
(2) are used to calculate the posterior mean and variance
for uy in a series of interim analyses. If, at an interim
analysis, the posterior mean lies within the area marked
‘Continuation region’ in Fig. 1, it is optimal to continue
recruitment to the trial. The first time that an interim
analysis shows that the posterior mean has crossed the
upper or the lower part of the stopping boundary, it is
optimal to halt recruitment and move to Stage III. Dur-
ing Stage III, cost and outcome data for the remaining
patients in the pipeline are observed. Once all data from
all pipeline patients have been observed and used to
update the posterior mean for wy, the adoption recom-
mendation is made. If the posterior mean is greater than
zero, technology N is recommended over technology S,
otherwise it is not>

There are two scenarios in which it is not optimal to
run the sequential trial, defined because their expected
rewards are higher than the expected reward of the
sequential design. If the prior mean lies on, or between,

2 The Stage III that is labelled in Fig. 1 refers to a trial which runs to the
maximum sample size, Trmax. Stage III starts earlier if Stage II finishes before
reaching Tmay.
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the points marked ‘A’ and ‘C’ or ‘D and B it is optimal
to run a fixed sample size trial where the optimal sam-
ple size is chosen so that the expected net benefit of sam-
pling is maximised, according to established one-stage
expected net benefit of sampling calculations (see, for
example, [25]). We call such a trial design the ‘value-
based one stage design’ If the prior mean is greater than
‘A’ or less then ‘B it is optimal to not run any trial and
adopt N if ;o > A and adopt S if o < B, for a reward
equal to Puy.

The HERO trial

The HERO trial was a double-blind, randomised, clinical
trial carried out in 13 primary and secondary care centres
across England. It evaluated whether hydroxychloroquine
is superior to placebo for the treatment of hand osteoar-
thritis (OA). Recruitment took place between 24 Septem-
ber 2012 and 27 May 2014, with follow-up completed on
29 June 2015. The study was funded by Arthritis Research
UK (now Versus UK) and had a budget of £900,000.

For the clinical evaluation, follow-up of the primary
endpoint took place at six months post-randomisation.
For the economic evaluation it took place at 12 months
post-randomisation. The trial protocol is published in
[15] and results of the clinical evaluation are published in
[16]. The original trial analyses/reporting were conducted
according to CONSORT standards. Results of the within-
trial economic evaluation are reported in [17]. Costs in
the study were measured in UK £sterling, at 2015 prices.

The trial recruited 248 patients presenting with symp-
tomatic pain and radiographic hand OA. Patients were
randomised to receive either: (1) hydroxychloroquine
in 200mg, 300mg or 400mg doses or (2) placebo. The
primary clinical endpoint was average hand pain sever-
ity during the previous two weeks, measured on an
eleven-point (0 to 10) numerical rating scale (NRS), at
six months post-randomisation. Secondary endpoints,
including quality of life, were also recorded. In particu-
lar, the trial used the EQ-5D-5L instrument to meas-
ure quality of life at baseline, 6 months and one year
post-randomisation.

The economic evaluation consisted of a cost-utility
analysis (estimating the cost per Quality Adjusted Life
Year (QALY) at one year follow-up) and a cost-effec-
tiveness analysis (estimating the cost per unit reduction
in pain score). It was characterised by a considerable
amount of missing data, particularly missing healthcare
resource use data, a frequent problem in RCTs [26, 27].
The missing data problem is amplified when the sum-
mary measures used for analysis (e.g. total costs incurred
during the follow-up period) are derived using repeated
measurements of a large number of variables, as in the
HERO trial’s economic evaluation. For example, the total
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cost associated with a given participant’s treatment and
healthcare resource use during the follow-up period
is missing if the participant is missing any one of the
numerous variables that are used to derive this total.

The assumption that the missing cost and QALY data
are ‘Missing Completely at Random’ (MCAR) is often
less less plausible than the assumption that they are
‘Missing at Random’ (MAR) or ‘Missing not at Random’
(MNAR). In essence, MCAR means that the missing
values are independent of both the observed and miss-
ing data, so that analysis which ignores them remains
unbiased, albeit at the cost of precision. If the data
are MAR, the missing values are not independent of
observed data, potentially causing bias if this is ignored
during analysis. In such a situation, multiple imputa-
tion and likelihood based methods can be used for valid,
unbiased inference; see, amongst others, [26, 28-30].
Missing data are MNAR if the probability of missing-
ness depends on the unobserved values themselves.
The issue of MNAR outcome data in RCTs has received
some interest recently [31, 32], but is beyond the scope
of the current paper.

The base case economic analysis reported in [17] takes
the perspective of the UK National Health Service and
Personal Social Services and uses multiple imputation by
chained equations under the assumption that the miss-
ing data are MAR [33-35]. Analysis of the clinical data
found that hydroxychloroquine was not superior to pla-
cebo in terms of its effect on expected severity of pain
at six months [16] and expected QALYs at one year [17].
The base case economic analysis found essentially no evi-
dence that hydroxychloroquine is superior to placebo on
cost-effectiveness grounds. Using a maximum willingness
to pay for one QALY of £30,000, the estimate of expected
incremental net monetary benefit of hydroxychloroquine
compared to placebo was —£144.34 (95% confidence
interval of (—£158.67, —£130.02)) and the probability that
hydroxychloroquine is cost-effective was estimated to be
0.39 [17].

Applying the Bayesian value-based sequential design

to HERO

Referring to Eq. (1), we consider the new technology, N,
to be hydroxychloroquine and the standard technology,
S, to be placebo. Assuming a maximum willingness to pay
for one QALY of £30,000, the incremental net monetary
benefit for pairwise allocation i is:

INMB[ = £30, OOO(Ei,hyd - El,placebo) - (Ci,hyd - Ci,placebo)- (3)

Positive values of INMB; indicate greater net benefit
from hydroxychloroquine and negative values indicate
greater net benefit from placebo.
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Although the value-based sequential model can, in
principle, operate in a fully sequential manner (that is,
the posterior mean for E[INMB] during Stage II can be
updated after each observed value of INMB and com-
pared with the relevant Stage II stopping boundary), the
analyses presented in this paper assume that the poste-
rior mean is updated once every 10 pairwise allocations.
This recognises the fact that continuous monitoring of
the cost-effectiveness signal is unlikely to be feasible in
most trials®>. We assume that recruitment stops imme-
diately following the first interim analysis that indicates
the posterior mean for E[INMB] has crossed the stopping
boundary.

Total costs and QALYs accruing during the follow-up
period are derived in an identical manner to the origi-
nal HERO economic analysis. For the purposes of this
paper, point estimates of E[INMB] are obtained via sim-
ple comparisons of mean net monetary benefit between
randomised groups, absent conditioning on any baseline
covariates. This is sufficient to assess the performance of
the value-based sequential model that is the focus of this
paper, but is in contrast to the analysis reported in [17],
which estimated E[INMB] using a seemingly unrelated
regression model that conditioned on several baseline
covariates.

Our analysis proceeded as follows. Firstly, we obtained
the path of the posterior mean of E[INMB] using the
actual trial data and assuming a time to follow-up
equal to that used in the trial’s economic evaluation (12
months). Observations were ordered according to the
date of randomisation, and we used multiple imputation
to fill in missing values (refer to Handling missing data
using multiple imputation section). We used the imputed
datasets (generated using the entire sample) to obtain the
estimate of the sampling standard deviation, ox. We used
this estimate, together with estimates of other relevant
parameter values (see Choice of parameter values sec-
tion), to obtain the stopping boundary for the value-
based sequential model. We then compared the path of
the posterior mean to the stopping boundary to answer
the question: ‘had the Bayesian value-based sequen-
tial model been used, when would the HERO trial have
stopped? Next we considered the average performance
of the value-based model by re-sampling from the HERO
data and comparing these re-sampled paths of posterior
mean with the relevant stopping boundary (Re-sampled

3 In principle, interim analyses could take place as frequently, or as infre-
quently, as desired. We have chosen to hold an interim analysis every ten
pairwise allocations because we believe it strikes a reasonable balance
between continuous data monitoring during the trial — we believe this to
be unrealistic — and only monitoring the data once during Stage II — which,
we believe, minimises the sequential benefits which could be provided by
the model.
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data analysis section). In light of the fact that researchers
have flexibility in setting the maximum sample size for
the value-based sequential trial, Tjhax, our main re-sam-
pled data analyses set Tmax = 124 and Tiax = 248 pair-
wise allocations.

Finally, we carried out sensitivity analysis to investigate
how robust our results were to: (1) increasing the maxi-
mum sample size to 1000 pairwise allocations and (2)
reducing the time to follow-up of the cost-effectiveness
data from 12 to 6 months.

Handling missing data using multiple imputation

The value-based sequential model assumes that the
recruitment and follow-up of patients provides a series
of independent and identically distributed observations
of incremental net monetary benefit. If cost-effectiveness
data are MAR or MNAR, then the observations of incre-
mental net monetary benefit that are obtained using just
the observed data on costs and utilities may not result in
a representative sample from the population distribution
of incremental net monetary benefit. As with any statisti-
cal analysis of incomplete data, the precise impact of the
missing values will depend on the mechanisms that gave
rise to them. These are, in general, not known. Hence the
validity of any quantities obtained using the incomplete
data, such as the posterior distribution for the expected
value of incremental net monetary benefit, will generally
rest on strong and largely unverifiable assumptions about
the mechanisms that resulted in the missing data.

As noted in The HERO trial section, the HERO tri-
al's economic evaluation used multiple imputation by
chained equations to address potential bias resulting
from missing quality of life outcome and cost data, under
the assumption that the missing values were MAR. We
follow this approach in the analyses undertaken in this
paper and use the same imputation model that was used
for the base case analysis reported in [17]. Details of the
variables included in the imputation model are given
in Appendix Table 1. Assuming the imputation model
encoded by this set of chained equations does a reason-
able job of approximating the true joint model of the
observed and incomplete cost-effectiveness data, the
imputed datasets can be used to obtain unbiased obser-
vations of incremental net monetary benefit, which can
then be used to update the posterior distribution. Clearly,
this depends on unverifiable assumptions regarding the
missing data mechanism. If for example, the missing data
were truly MNAR, and particularly if the MNAR mecha-
nisms differed by allocation, the observations of incre-
mental net monetary benefit obtained from our imputed
datasets may not be representative of the distribution
that would have been obtained were the cost-effec-
tiveness data complete. While a more comprehensive
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discussion of MNAR cost-effectiveness data is beyond
the scope of the current paper, we note that recent work
on sensitivity analyses using controlled multiple imputa-
tion - for example, [32, 36] - could be applied in the con-
text of the value-based sequential model.

For each interim analysis, we firstly imputed missing
cost and QALY data using all data available at the time
of that interim analysis, generating five imputed datasets,
as per [17]. We then obtained an estimate of E[INMB] for
the most recent interim analysis by obtaining five esti-
mates of E[INMB], one from each of the five imputations,
for just the most recent block of pairwise allocations.
We then combined these using Rubin’s rules [28, 37, 38].
These ‘by-block’ estimates were then used to obtain the
values of the posterior mean and variance at each interim
analysis using Eq. (2). It was not possible to obtain an
estimate for the first interim analysis (that would have
been based on 10 pairs) owing to data sparsity, which
caused numerical difficulties for the chained equations
algorithm used for the multiple imputation.

Re-sampled data analysis

We re-sampled observations with replacement from the
HERO data, placed them into sequential blocks of 10
pairwise allocations based on a random order, and used
the estimates of E[INMB] from these blocks to obtain the
posterior mean of E[INMB], following the same approach
to sequential multiple imputation as outlined in Handling
missing data using multiple imputation section.

For the Tmax = 248 analyses, 5000 paths were gener-
ated by drawing two re-samples of 124 pairwise alloca-
tions and placing them into a single dataset, with the 248
pairs then randomly sorted into sequential blocks of 10
pairwise allocations. We recognise that this approach
uses the data twice, which places limitations on the sta-
tistical validity of conclusions drawn based on the re-
sampled data for the T = 248 setting. However, in
the absence of additional data, we feel that this is a rea-
sonable approach to approximating the path of the pos-
terior mean, had the original trial been permitted to run
beyond its planned sample size of 248 patients. A further
limitation of the re-sampling of participant level data
described here is that it treats the observations as being
independent, ignoring potential clustering of costs and
health outcome data by centre. This is primarily because
it is not possible to undertake re-sampling at the level of
centre in the present study, because the centres recruited
to the HERO trial differed substantially in terms of the
number of patients they recruited. This implies that, were
re-sampling to be undertaken by centre, there would
be substantial fluctuations in the number of patients in
each of the re-samples, would make it difficult to esti-
mate sample sizes and research costs. While failure to
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properly account for dependence between observations
obtained from patients recruited from the same cluster
would compromise the frequentist properties of boot-
strap standard errors and confidence intervals, we do not
think this issue compromises our analyses. Again this is
because the re-sampling undertaken in the present study
was primarily a means of simulating some plausible paths
of posterior mean of expected incremental incremen-
tal net monetary benefit with a weak signal, as opposed
to being used for any formal frequentist inference. The
re-sampled datasets for the Tmax = 124 analyses were
obtained by using just the first half of the randomly
sorted re-sampled datasets generated for the Ty = 248
analysis. Appendix A provides further details.

To investigate the potential influence of increasing
the maximum possible sample size of the HERO trial,
we simulated trials with Trmax set equal to the following
values: 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 4000
and 5000 pairwise allocations. We simulated 5000 repli-
cates for each value of Tjax. In each case, Tiax Observa-
tions of incremental net monetary benefit were drawn
from a Gaussian distribution with a mean of -£45 (as
estimated using the multiply imputed HERO trial data),
and a standard deviation of £7,615 (see Table 1). These
simulated data were then used to obtain 5,000 paths of
the posterior mean for the expected value of incremen-
tal net monetary benefit to compare with a value-based
sequential model stopping boundary for the relevant
value of Tiax.

Choice of parameter values

We used the parameter values reported in Table 1 to cal-
culate the stopping boundary for the value-based sequen-
tial model. Here we discuss some of the main choices of
parameter values. Full details about how each was chosen
are presented in Appendix B.

We used the trial data to estimate the rate of accrual
of patients and information on how the trial budget was
spent to estimate the variable costs of research. For the
valuation of the total benefit provided by the trial to the
UK healthcare system, we set the maximum willingness
to pay for one Quality Adjusted Life Year to £30,000.
After reviewing literature on the prevalence and inci-
dence of hand OA within the United Kingdom, we set
the size of the population to benefit from the adoption
decision, P, to 24,500 (equal to 2,450 patients per year for
10 years). Absent guidance about how fixed and variable
costs in a clinical trial’s budget should be allocated, we
assumed an even split between fixed and variable costs
during the recruitment and follow-up periods. This gives
an estimate of the cost of randomising a pair of patients
of £1,650. We estimated ox using multiply imputed data
from all 124 patient pairs recruited in the trial.
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Table 1 Parameter values used to obtain the stopping boundary for the Bayesian value-based sequential model applied to the HERO

trial

Parameter Definition Value Source
Estimated annual number of patients affected by the adoption decision 2,450 [39]
Time horizon for the post-trial adoption population 10 years Assumption

P Number expected to benefit from the technology adoption decision 24,500 Defined from above parameters

ox Standard deviation of incremental net monetary benefit in population £7,615 Multiple imputation data sets

no Effective sample size of the prior distribution for E[INMB] 2 pairwise allocations Assumption

o Prior mean for E[INMB] 0 Assumption

A Delay for observing EQ-5D-5L endpoint (in years) 1 [16]
Estimated annual rate of recruitment to trial 74 pairwise allocations [16]

T Delay for observing EQ-5D-5L endpoint (in pairwise allocations) 74 pairwise allocations Annual rate of recruitment
Time horizon of trial 611 days [16]

/ Fixed cost of adopting hydroxychloroquine £0 HERO team advice
Estimated spend on fixed costs prior to starting trial £90,216 HERO trial's accounts
Estimated spend on fixed costs during trial £204,581 HERO trial's accounts
Estimated spend on variable costs £204,581 HERO trial's accounts
Estimated spend on fixed costs post follow-up £336,042 HERO trial's accounts

Chixed Total spend on fixed costs £630,839 HERO trial's accounts
Total spend £835,419 HERO trial's accounts

c Estimated cost per pairwise allocation £1,650 HERO trial's accounts

A Maximum willingness to pay for one QALY £30,000 [20]

We set the prior mean for the expected value of
incremental net monetary benefit, (1o, to zero, reflect-
ing the idea that, prior to the HERO trial, there was
little evidence suggesting that hydroxychloroquine was
more, or less, cost-effective than placebo. We set the
prior variance, of, to give a low weight to the prior
mean relative to the trial data, equivalent to an effec-
tive sample size of the prior of ny = 0¢/0f = 2 pair-
wise allocations. Our choice of prior distribution is
intended to reflect the lack of cost-effectiveness infor-
mation available to investigators prior to the trial tak-
ing place.

In line with the HERO trial’s economic analysis,
we set the follow-up period for the cost-effectiveness
data to be one year and we assumed a constant rate of
recruitment to the trial that matched the average rate
of accrual (124 pairs recruited over 611 days). Hence
we assume that approximately T = 74 pairwise allo-
cations were made by the time Stage II commences.
This implies that, during Stage II, there are 74 pairs of
patients in the so-called ‘pipeline’ of the trial. These
are patients who have been randomised into the trial,
but whose outcomes have yet to be observed. Hence,
if the trial stops when an interim analysis has assessed
outcome data for 30 patient pairs, the total sample size
for the trial is 30 + 74 = 104 pairs, so 208 patients.

Results

First, we consider the HERO trial’s research expendi-
ture and cost-effectiveness signal over time. The black
continuous line in Fig. 2 (left axis scale) plots the cumu-
lative spend of its research budget, using data from the
financial accounts. Cumulative spend includes all costs
recorded in the financial accounts, for whatever reason.
Also plotted as a red dashed line on the right axis scale
is the estimate of E[INMB] at one year as evidence from
the trial accumulated. These sequential point estimates
are based on the multiply imputed data. The plotted
values are given in column (5) of Appendix Table 2,
with key milestones in the project marked as follows: ‘A’
(recruitment starts); ‘B’ (recruitment finishes); ‘C’ (one
year follow-up finishes); ‘D’ (publication of [16], pre-
senting the results of the clinical evaluation).

Figure 2 shows that, during follow-up, the estimate of
E[INMB] was never greater than zero, meaning that there
was never evidence that hydroxychloroquine was cost-effec-
tive. The first estimate, based on cost and outcome data from
the first 20 pairs of patients allocated, is equal to —£2172. By
the end of follow-up, the estimate had risen to —£45, with a
95% confidence interval of (-£1387 to £1296). This implies
that the trial provides little evidence that one technology is
superior to the other on cost-effectiveness grounds, which
we take to be an ‘equivocal’ cost-effectiveness signal.
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Comparison of the spend and cost-effectiveness pro-
files provides insight into how much, if any, of the
research budget might have been saved had the trial
been allowed to stop recruitment early: approximately
one third of the trial’s budget had been spent by the time
that one year follow-up commenced and just under 60%
had been spent by the time it had finished (‘C’). Crucially,
around 45% had been spent by the time recruitment
finished (‘B’). This means that only about 12-15% of the
trial’s expenditure occurred between the beginning of
the one year follow-up period and the end of participant
recruitment.

Figure 3 breaks down the sequential point estimates
of E[INMB] at one year that are plotted in Fig. 2 into
estimates of expected incremental QALYs (Fig. 3a) and
expected incremental treatment costs (Fig. 3b) at one
year. Limits showing plus and minus two standard errors
are also shown, to provide some indication of the uncer-
tainty surrounding the estimates. Values above zero show
hydroxychloroquine to be more effective (Fig. 3a) / more
costly (Fig. 3b). The plots show that hydroxychloroquine
was estimated to be less effective than placebo through-
out the follow-up period, although the final estimate
of incremental QALYs is very close to zero. Figure 3b
shows that treatment with hydroxychloroquine was esti-
mated to be more expensive than placebo throughout the

follow-up period, except at the very end, when it was esti-
mated to be £39 cheaper. These plots explain the equivo-
cal estimate of cost-effectiveness that is shown in Fig. 2.

Finally, a plot of the pairwise INMB data is presented
in Fig. 4, where observations have been paired accord-
ing to their order of arrival in the data set. The histogram
is superimposed with a kernel density estimator and a
Gaussian distribution with the same mean and variance
as the sample mean and variance of the observations on
INMB. Our tests for normality of the INMB data did not
reject the null hypothesis of normality at the 5% signifi-
cance level. The Shapiro-Wilk test, Shapiro-Francia test
and Skewness-Kurtosis test gave p values of 0.439, 0.406
and 0.680, respectively.

Running the HERO trial as a value-based sequential design
Figure 5a presents the stopping boundary for the value-
based sequential model applied to the HERO trial when
the maximum sample size is set equal to the trial’s actual
sample size (124 pairwise allocations). The Stage II stop-
ping boundary is marked in black, using unnumbered,
circled points linked by a continuous line. Also marked
are the letters ‘A’ to ‘D; showing the ranges of the prior
mean for which no trial, a value-based one stage design
and the value-based sequential design are optimal (refer
to Fig. 1). Where the value-based one-stage design is
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optimal, a range of optimal sample sizes for that design
is indicated by blue circles. Figure 5a shows that, under
the chosen parameter values (refer to Table 1), the
value-based sequential design is optimal, from the per-
spective of maximising overall expected net benefit to
the health care system, if the absolute value of the prior
mean for E[INMB] is less than about £12,000 (points C

and D). It also shows that no trial is optimal if the abso-
lute value of the prior mean for E[INMB] is greater than
about £16,000, with immediate adoption of hydroxy-
chloroquine recommended only if the prior mean
exceeds £16,000.

As noted in the Choice of parameter values sec-
tion, we assume a prior mean for the expected value of
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together with three resampled paths

incremental net monetary benefit that is equal to £0.
Since this value lies between the points C and D, the
sequential design is optimal. Figure 5a also shows the
path of the posterior mean for the expected value of
incremental net monetary benefit, obtained using the
multiply imputed HERO trial data, assuming that interim
analyses take place every ten pairwise allocations (with
the exception of the first interim analysis, which takes
place at 20 pairwise allocations for the reason stated in
Handling missing data using multiple imputation). The
path remains in the continuation region throughout
Stage II, showing that, under the value-based sequen-
tial design, recruitment would have continued until the
sample size of the actual trial, 124 pairwise allocations,
had been reached, and would have resulted in a final esti-
mate of the posterior mean equal to approximately —£30
(hydroxychloroquine not cost-effective) and a technology
adoption recommendation consistent with the results of
the original trial, that is, that hydroxychloroquine should
not be adopted.

This part of our application shows that, had the HERO
trial been run according to the value-based sequential
trial model, with a switching cost, 7, assumed equal to
zero, it would not have stopped before reaching the max-
imum planned sample size, and therefore the sequential
design would not have saved any of the trial’s research
budget. The principal reason for this is the relatively weak
cost-effectiveness signal in the trial. However, an addi-
tional factor is the relatively small number of interim
analyses (three) that occurred during Stage II of the trial,

which offer limited scope for early stopping, and there-
fore limited scope for the sequential design to deliver
increase value via reduced research expenditure.

Re-sampled data analysis
Figure 5b shows the same Stage II stopping boundary and
path of the posterior mean that are plotted in Figure 5a,
together with the stopping boundary for Ty = 248 and
three re-sampled paths for the posterior mean generated
according to the procedure described in Re-sampled data
analysis. These paths show three scenarios in which the
value-based sequential design would cease recruitment
before reaching a maximum sample size of 124 pairwise
allocations. For example, ‘Re-sampled path 1’ first crosses
the Stage II stopping boundary at the third interim analy-
sis, informed by outcome data from the first 40 pairwise
allocations, at which point recruitment stops, having
recruited a total of 114 pairs of patients — the 40 that
contributed to the interim analysis, plus the 74 ‘pipeline’
pairs. The posterior mean upon conclusion of follow-up
is positive and so favours adoption of hydroxychloro-
quine. Similarly, ‘Re-sampled path 3’ crosses the stopping
boundary at the first interim analysis, after outcomes
for 20 pairwise allocations have been observed, so that
94 pairwise allocations have been recruited to the trial.
However, for this path, the final estimate of E[INMB] is
negative and so favours placebo.

As described in Re-sampled data analysis, in our main
analysis we obtained 5000 paths for two different trial



Welch et al. BMC Medical Research Methodology (2024) 24:155

Page 12 0f 18

Table 2 Re-sampled data analysis: comparison of the performance of the value-based sequential model designs with fixed sample
size designs with maximum sample sizes of 124 and 248 pairwise allocations

Average Standard deviation Minimum Maximum
Maximum sample size = 124 pairwise allocations
HERO trial (original fixed sample size design)
Posterior mean for E[INMB] (£) -91.47 647.51 -2559.69 2538.94
Value-based sequential model
Posterior mean for E[INMB] (£) -92.85 654.24 -2817.26 2538.94
Sample size (pairwise allocations) 123.56 293 94 124
Maximum sample size = 248 pairwise allocations
Fixed length trial
Posterior mean for E[INMB] (£) -87.78 47412 -1683.60 1804.17
Value-based sequential model
Posterior mean for E[INMB] (£) -101.07 543.69 -2559.69 2466.24
Sample size (pairwise allocations) 236.91 2777 94 248

Table 3 The proportion of re-sampled paths which suggest that hydroxychloroquine is cost-effective, for the designs summarised in

Table 2

Final decision

Hydroxychloroquine not cost-effective Hydroxychloroquine

cost-effective

Maximum sample size = 124 pairwise allocations
HERO trial (original fixed sample size design)
Value-based sequential model

Maximum sample size = 248 pairwise allocations
Fixed length trial
Value-based sequential model

0.552 0448
0.552 0448
0.570 0430
0.570 0430

scenarios, Tmax = 124 and Tpax = 248. We obtained
summary statistics regarding the final estimate of the
posterior mean of E[INMB] and the number of pairs ran-
domised, and compared them with fixed length designs
equal to the chosen values of Ti,«. Table 2 presents sum-
mary statistics for the two scenarios. The proportions of
re-sampled paths that conclude that hydroxychloroquine
is cost-effective under each of the designs are presented
in Table 3.

When the maximum sample size of the value-based
sequential model is set to 124 pairwise allocations,
only around 3% of the re-sampled paths cease recruit-
ment before the maximum sample size. As alluded to
in the Running the HERO trial as a value-based sequen-
tial design section, this is due to the equivocal cost-effec-
tiveness signal in the trial data, combined with the small
number of interim analyses that can take place during
Stage II. As a result, the final estimates of the posterior
mean of E[INMB], and the expected sample size and
the proportion of re-sampled paths that conclude that
hydroxychloroquine is cost-effective are very similar to

those of the fixed sample size design. Under the assumed
cost per pairwise allocation of £1,650 (see Table 1), the
small reduction in expected sample size under the value-
based sequential approach translates to an estimated
cost-saving for the trial of around £700 in total, less than
0.1% of the HERO trial’s budget.

When the maximum sample size is set to 248 pairwise
allocations, about 22% of the re-sampled paths cease
recruitment before the maximum sample size is reached.
This is driven by the increased length of Stage II, which
now permits 16 interim analyses. However, the sample
sizes for these ‘early-stopping’ paths are generally quite
close to the maximum number of pairwise allocations
permitted in the trial, again due to the equivocal cost-
effectiveness signal. As a result, the expected sample size
is only around 4.5% smaller for the value-based sequen-
tial design than it is for the fixed length design. Apply-
ing the same assumptions as before, this translates into
an estimated cost saving of around £18,000 (=(248-237)
x £1650) over the fixed design. Despite there being more
paths stopping early under this version of the value-based
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sequential model, the final estimates of E[INMB] for the
fixed and sequential designs are again similar. Finally, the
proportions of paths favouring hydroxychloroquine from
the cost-effectiveness perspective, equal to 0.430, are
essentially identical across the two Tmax = 248 designs
that we consider, albeit being slightly lower than the pro-
portions observed for the Ty = 124 designs (0.448).

To summarise, the qualitative message from the appli-
cation of the value-based sequential model to the HERO
trial is that, contrary to the findings reported in [18] for
the ProFHER trial, there is little prospect of stopping ear-
lier than the planned maximum sample size of the trial,
and therefore little prospect of saving research monies,
regardless of whether the maximum sample size is set at
124 or 248 pairwise allocations. This is primarily due to
the equivocal evidence concerning cost-effectiveness in
the HERO trial, with a secondary reason being the lim-
ited number of Stage II interim analyses that are feasible,
given the choices of Tax.

Sensitivity analyses

To test how our main result is affected by alternative
specifications of the design, we undertook two additional
analyses. The first of these analyses increased the trial’s
maximum possible sample size, examining the operating
characteristics of the value-based sequential model for

Tmax equal to the following values: 250, 500, 750, 1000,
1500, 2000, 2500, 3000, 4000 and 5000 pairwise alloca-
tions. The second analysis reduced the delay to observ-
ing cost-effectiveness outcomes (from 12 months to 6
months). Both of these specifications increase the num-
ber of interim analyses during Stage II. Further methodo-
logical details are contained in Appendix D.

The impact of increasing Tmax on expected sample
size is plotted in Fig. 6. This plot shows the ratio of the
expected sample size of the value-based sequential trial
(across the 5000 replicates) to Timax as a function of Tiyay.
We found that, while expected sample size increases as
Tmax increase, it appears to do so at a diminishing rate.
For example, when Tma.x =250 the average sample
size across the 5000 simulated paths was 239 (96% of
Tmax), roughly aligning with the re-sampled data analy-
ses undertaken for Ty = 248 (see Re-sampled data
analysis section). For Tmax = 1000 it was 640 (64% of
Tmax) and by Tpmax = 5000 it was 1460 (29% of Tmax)-
These results suggest that even in the context of a very
weak cost-effectiveness signal, the value-based sequen-
tial model can deliver substantial reductions in expected
sample size and variable costs, compared to an equivalent
fixed sample size design. However, they also suggest that
large values of Tmax may be required to realise important
reductions in these quantities. For example, Tmax = 1000
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Table 4 Performance of some of the principal operating characteristics in the ProFHER and HERO applications of the Bayesian value-

based sequential model

(1) (2) (3) (4) (5) (6) (7) (8)
Estimate of E[INMB] T max Original trial data Re-sampled data % paths consistent
(£) (95% ClI) with trial
Sample size Budget % Sample size Budget % recommendation
change Mean (SD) change
ProFHER -1758 (-2389,-1126) 125° 107 -5 73(19) -14 91
250 - - 77 (27) -13 92
HERO -45 (-1387,1296) 1242 124 0 124 (3) 0 55
248 - - 237 (28) +22 57

@The trial’s actual sample size, measured in pairwise allocations

pairwise allocations is around eight times the sample
size of the original trial, and the expected sample size of
640 pairwise allocations is more than a five-fold increase
in the sample size of the original trial, equating to an
increase in research costs of approximately £851,400
(assuming a cost per pairwise allocation of £1,650). Fur-
ther, around 27% of the simulated paths continued to
1000 pairwise allocations. Indeed, the proportion of sim-
ulated paths reaching Tax dropped rapidly from around
77% when Tax = 250 to around 20% for Tiax = 2000,
but changed little thereafter with around 19% of simu-
lated paths running to Tmax for all values of Trmax larger
than 2000. Finally, we note that despite the clear impact
of the choice of T ax on expected sample size, the final
estimates of expected incremental net monetary ben-
efit and the proportion of paths concluding in favour of
hydroxychloroquine varied little with changes in Tax. A
full set of operating characteristics are shown in Appen-
dix Tables 3 and 4 for the Tjax = 1000 scenario.

On the one hand, these results suggest that, in the
context of an equivocal cost-effectiveness signal, the
value-based sequential model can provide a meaning-
ful reduction in expected research expenditure if given
sufficient opportunity to do so. On the other hand, it is
perhaps unrealistic to think that a healthcare system
would set a maximum sample size so large, relative to
the planned sample size of the frequentist design. We
therefore do not consider the substantial reductions in
expected sample size evident for Tr,x = 1000 and above
to alter materially the conclusions of our main analyses,
at least in the context of the HERO trial.

Appendix Table 3 shows that halving the time to fol-
low-up for measuring the cost-effectiveness outcomes, by
setting a six month time horizon instead of a 12 month
horizon, has relatively little impact on the results. For
the trial with T,x = 124, the expected sample size for
the value-based sequential design was 120 pairwise allo-
cations. When Ty = 248, the value-based sequential
design showed a modest reduction in expected sample

size of around 30 pairwise allocations compared with the
fixed length design. In both cases the additional value
delivered to the healthcare system via reduced costs of
research is small.

Discussion

The analysis reported in this paper represents only the
second published application of the Bayesian value-based
sequential model of [13, 14] to data from a clinical trial.
It is the first application to investigate the behaviour of
the model in the presence of an equivocal cost-effective-
ness signal, and also the first to use multiple imputation
to address the problem of missing cost-effectiveness data.

Table 4 compares some of the principal results reported
in the Results section with those from the application of
the value-based sequential model to data from the ProF-
HER trial [18]. Column (2) reports the final estimate of
E[INMB] based on the original trial data, showing that
the cost-effectiveness signal was much stronger in the
ProFHER trial than in the HERO trial. Columns (4) to
(7) show the actual and percentage changes in the sample
size and budget when T,y is equal to the actual sample
size of the trials (124 pairwise allocations for HERO, 125
for ProFHER) and with a sample size equal to double that
number. For columns (6) and (7), which report the results
for the re-sampled data, the figures are based on the
expected values. Column (8) reports the percentage of
re-sampled paths that report a result consistent with the
trial's recommendation (that surgery is not cost-effective
(ProFHER); that hydroxychloroquine is not cost-effective
(HERO)).

The table shows that the value-based sequential model
offers non-negligible savings in sample size and budget
in the ProFHER application (equal to 14% for the trial’s
sample size and 5% of the budget, with averages from the
re-sampled data estimated to be 42%/38% and 14%/13%,
respectively), but not the HERO application. This is prin-
cipally due to the strong evidence suggesting that sur-
gery is not cost-effective in the ProFHER trial (the final
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estimate of the expected value of incremental net mone-
tary benefit is -£1758), a result not reflected in the HERO
trial, where the equivalent figure is -£45.

The absence of material reductions in expected sample
size or costs in the HERO application should not be taken
to be a negative result. Early termination of recruitment
would generally not be indicated, or indeed desirable, in
such a scenario. The absence of evidence of early stop-
ping indicates that the expected benefits from continu-
ing to learn about the comparative cost-effectiveness of
the two technologies for the 24,500 patients who will be
impacted by the adoption decision is, in general, greater
than the expected benefits of stopping recruitment dur-
ing Stage II.

Our results also show that the impact of the equivo-
cal cost-effectiveness signal on the expected cost-savings
delivered by the value-based sequential model is affected
by the duration of Stage II, as well as the proportion of
variable costs committed by the time Stage II starts. This
is particularly evident for the scenario which sets the
maximum sample size of the sequential design, Tax, to
be the sample size chosen for the HERO trial (124 pair-
wise allocations), with a time to follow-up of cost-effec-
tiveness data equal to one year. In this scenario, 60% of
patients are randomised into the trial before Stage II
starts and only three interim analyses occur prior to Tmax
being reached. Hence, even in the presence of a stronger
cost-effectiveness signal, the cost-saving offered by the
value-based sequential model is likely to be small. In con-
trast, for the application to the ProFHER trial, only 38%
of the maximum sample size was committed prior to the
start of Stage II and seven, not three, interim analyses
could be undertaken during Stage II. This relationship
between the recruitment horizon and time to follow-up
is consistent with what has already been observed in the
literature [40].

It is important to note that there is no requirement
to set Tax to the sample size chosen for the conven-
tional frequentist design. It could be set to a value that
is considerably greater than that, such as the T = 248
scenario we have considered. Or it could be set to the
sample size that would maximise the expected net ben-
efit of sampling, using the Bayesian one-stage trial design
principles, which would permit comparison of expected
values of the one stage and the value-based designs to
be made®. Such an increase could be advantageous in
terms of maximising the overall net-benefit delivered
by the value-based sequential model. Of course, if a
strong cost-effectiveness signal emerges during Stage II,

* Although not the central focus of this paper, we note that such compari-
sons are reported in the HERO trial in [11].
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the value-based sequential model is likely to terminate
recruitment well before Ty, is reached, as is shown in
the ProFHER application. It would also be interesting to
explore in more detail the implications of deploying the
model in very large trials, buiding on the analysis that is
reported in the Sensitivity analyses section.

One further difference between the ProFHER and
HERO applications that is evident from Table 4 con-
cerns the proportion of re-sampled paths that result
in a decision consistent with the results of the original
trial. For the ProFHER trial, more than 90% of the paths
show that surgery is not cost-effective in the UK setting.
For the HERO trial, only around 55% of paths conclude
in favour of placebo. This is again due to the difference
in the strength of the cost-effectiveness signal between
the two studies, but it is also a consequence of the dif-
ferences in inferential and/or decision-making criteria
that are adopted by the value-based sequential model
and the original frequentist methods, particularly with
regards to the strength of evidence that is required to
induce a switch to a new health technology. If the one-
time switching cost of adopting the new technology (i.e.
hydroxychloroquine in the HERO trial) is assumed to
be £0, then under the value-based sequential model,
the new treatment should be adopted if and only if the
final estimate of the posterior mean of E[INMB] exceeds
£0. Given the equivocal cost-effectiveness signal in the
HERO data, a reasonably large proportion of the re-
sampled paths — approximately 45% — conclude with
a posterior mean that is slightly greater than £0. This
is in contrast to the frequentist approach (see [17]), for
which hydroxychloroquine would only have been recom-
mended for adoption if the data provided sufficient infor-
mation to refute the null hypothesis of no difference in
a direction favouring hydroxychloroquine. A discussion
of the advantages and disadvantages of different systems
of inference and decision-making is beyond the scope of
this paper. However, the asymmetry and conservatism of
the frequentist approach — which would likely be desir-
able if a given technology is expected to impose impor-
tant costs to the health system — can be incorporated
into the value-based sequential model in an explicit and
readily interpretable way, via the inclusion of the non-
zero switching cost I > 0 in the derivation of the optimal
policy.

The quantitative findings that we report in the
Results section are dependent on the precise values of the
various parameters what we have chosen for our appli-
cation, including the size and timing of interim analy-
ses. However, the qualitative results, and the contrast
between the HERO and ProFHER results, are likely to be
relatively insensitive to any reasonable choice of param-
eters, owing to the nature of the cost-effectiveness signals
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from the two trials. That said, a limitation of our analysis
is that all choices of parameter values were fully retro-
spective, and in some cases, were based on the observed
trial data and records of actual trial expenditure. In prac-
tice, the unknown parameter values required for the
value-based sequential model would need to be specified
during trial set-up. Obtaining accurate estimates of some
of these parameters prospectively could be challenging,
although we note that the issue of specifying prospective
estimates of unknown design parameters is by no means
unique to the value-based sequential approach.

As an example, consider estimation of the delay to
observing outcomes in terms of pairwise allocations (7).
This requires an accurate estimate of the expected rate of
patient recruitment during the trial, as well as the time
horizon for follow-up. Although trial teams generally spec-
ify target recruitment figures during trial set-up, observed
rates of accrual can differ considerably from those that are
anticipated. While small departures from the anticipated
rate of accrual may not be a major issue, large deviations
could compromise the validity of the Stage II stopping
boundary because the number of pipeline patients may
differ considerably from the planned number. One way
that this could be addressed in practice is by using an
internal pilot phase to assess the rate of accrual, and mod-
ify the Stage II stopping boundary accordingly.

A second example concerns the number of patients, P,
affected by the technology adoption decision. This depends
on both the incidence of the condition and the time hori-
zon over which the adoption decision will apply. While,
from a value-based perspective, it is clear that these param-
eters are a prerequisite to informed and rational decision
making, in practice there is likely to be uncertainty regard-
ing both incidence and time horizon. Further work could
explore the practicalities of eliciting prospective estimates
of these parameters, as well as the potential impact of dis-
crepancies between such estimates and their true values.

A final example concerns the cost per pairwise alloca-
tion, ¢. Our estimate of this parameter was derived under
the assumption of an even split between fixed and vari-
able costs during the recruitment and follow-up periods,
a strong and probably overly simplified assumption. We
believe our results concerning sample size and resource
savings in the Results section are unlikely to be materially
affected by small-to-moderate changes in this input, at
least for Tiax = 124 or 248. However in other scenarios,
accurate estimation of the cost per pairwise allocation
could be of great importance in terms of its impact on
both the optimal policy and any cost-savings that might
be obtained by stopping recruitment early under the
sequential design. While there is some literature on costs
per patient in the commercial context (for example, [41]),
there is little published literature providing figures for
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non-commercial clinical trials (such as the HERO trial).
Published data concerning expected costs per patient in
the non-commercial context would likely be of consider-
able value to any future work investigating the potential
economic benefits of sequential clinical trials, whether
they take a value-based perspective or otherwise.

The analyses reported in this paper assumed a fixed,
known value for the sampling standard deviation of
pairwise observations of incremental net monetary ben-
efit, ox. We based this estimate on the observed data,
but in practice, a reasonable estimate of ox is required
prospectively in order to derive the optimal policy. It is
worth noting that accurate specification of variance/
nuisance parameters prior to a trial's commencement is
also necessary for many other approaches to trial design,
whether they be frequentist or Bayesian. Furthermore,
the assumption that the sampling standard deviation, oy,
is known can be relaxed so that the prior-posterior dis-
tributions of both the expected value of incremental net
monetary benefit and the variance of incremental net
monetary benefit are updated as outcomes are observed
(see Section 4 of [13]). Finally, although our tests of nor-
mality of the data for incremental net monetary benefit
were not rejected in the HERO trial, the general question
of the performance of the model when data are not nor-
mal is an interesting topic for future research.

A further area for future research effort is to consider
the additional costs of designing and running a trial
according to the value-based sequential model. It is plau-
sible that, although increasing the number of interim
analyses introduces additional flexibility and is therefore
likely to deliver better value, the additional costs arising
from frequent monitoring could outweigh this increase
in expected net benefit. Future work could consider how
to estimate the additional costs of running a trial accord-
ing to the value-based sequential model (possibly follow-
ing similar methods to those used in [12]), and the extent
to which this impacts the expected net benefit of this
approach over some comparable designs.

We also did not explore alternative approaches to
incorporating multiple imputation into the sequential
analyses that were undertaken as part of our applica-
tion of the value-based sequential model, or the poten-
tial impacts of leveraging informative baseline covariates
when obtaining estimates of E[INMB]. While the quali-
tative results for HERO are unlikely to be particularly
sensitive to either aspect, there might be alternative trial
settings where these analytical choices matter more.
Future work could explore different methods of incorpo-
rating both multiple imputation and more sophisticated
model-based estimation of E[INMB] into the value-
based sequential approach, and their advantages and
disadvantages.
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Two final matters are worthy of note. Firstly, we
have focused exclusively on applying the value-based
sequential model in the context of two-arm individually
randomised trials. This is motivated by the theory under-
lying the value-based sequential model of [13], which
focused on this setting. However, there are potential ave-
nues for theoretical developments to extend the value-
based sequential framework to handle hierarchical data
as, for example, are encountered in cluster-randomised
trials [42-44]. Secondly, there exist alternative metrics
to evaluate the value-based sequential design, using met-
rics from the Bayesian value of information literature (see
[25] and related literature). These were deemed beyond
the scope of this article, but are included in Appendix E
for the interested reader.

Conclusions

We have investigated the implementation of the Bayesian
value-based sequential model proposed by [13, 14] in the
context of the HERO trial’s equivocal cost-effectiveness
signal, and illustrated how multiple imputation might
be used to address missing data within this framework.
Considered alongside the findings from the ProFHER
application, our results suggest that, in the presence of
an unambiguous cost-effectiveness signal, such as in the
ProFHER trial, the value-based sequential model can
produce material reductions in expected sample size
and research costs, but that this is not the case when the
signal is equivocal, such as in the HERO trial. This work
helps build a more complete picture of the behaviour of
the value-based sequential model under different scenar-
ios, which can help inform any future prospective appli-
cation of this approach alongside existing trial designs
and decision making criteria.
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