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Abstract 

Background There is increasing interest in the capacity of adaptive designs to improve the efficiency of clinical trials. 

However, relatively little work has investigated how economic considerations – including the costs of the trial – might 

inform the design and conduct of adaptive clinical trials.

Methods We apply a recently published Bayesian model of a value‑based sequential clinical trial to data 

from the ‘Hydroxychloroquine Effectiveness in Reducing symptoms of hand Osteoarthritis’ (HERO) trial. Using param‑

eters estimated from the trial data, including the cost of running the trial, and using multiple imputation to estimate 

the accumulating cost‑effectiveness signal in the presence of missing data, we assess when the trial would have 

stopped had the value‑based model been used. We used re‑sampling methods to compare the design’s operating 

characteristics with those of a conventional fixed length design.

Results In contrast to the findings of the only other published retrospective application of this model, the equivocal 

nature of the cost‑effectiveness signal from the HERO trial means that the design would have stopped the trial close 

to, or at, its maximum planned sample size, with limited additional value delivered via savings in research expenditure.

Conclusion Evidence from the two retrospective applications of this design suggests that, when the cost‑effective‑

ness signal in a clinical trial is unambiguous, the Bayesian value‑adaptive design can stop the trial before it reaches its 

maximum sample size, potentially saving research costs when compared with the alternative fixed sample size design. 

However, when the cost‑effectiveness signal is equivocal, the design is expected to run to, or close to, the maximum 

sample size and deliver limited savings in research costs.

Introduction
There is increasing interest in the use of adaptive designs 

to improve the efficiency of clinical trials. Such designs 

monitor outcome data as they arrive over the course of 

the trial, so that planned design changes can be made 

in response to accumulating evidence [1–8]. There is 

also growing interest in using clinical trials to examine 

the cost-effectiveness of the technologies under inves-

tigation, alongside their clinical effectiveness, with the 
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objective of assessing their ‘value for money’ to the health 

care system [9, 10]. However, relatively little work has 

investigated how economic considerations – including 

the cost of carrying out a clinical trial – might inform the 

design and conduct of adaptive clinical trials.

Recent NIHR-funded research initiatives in the United 

Kingdom – notably the ‘EcoNomics of Adaptive Clini-

cal Trials’ (ENACT) and the ‘Costing of Adaptive Tri-

als’ (CAT) projects1 – have sought to address this gap 

in the literature. In this paper, we focus on one of the 

principal outputs of the ENACT project; a retrospective 

application of a recently developed Bayesian value-based 

sequential clinical trial design [13, 14] to data from the 

‘Hydroxychloroquine Effectiveness in Reducing symp-

toms of hand Osteoarthritis’ (HERO) trial [15–17].

The HERO trial was a fixed sample size, non-sequential 

clinical trial designed according to frequentist principles. 

It recruited and randomised a fixed, predetermined num-

ber of patients to its two arms, collected data on a key 

primary clinical endpoint and tested a null hypothesis 

positing that the experimental treatment (hydroxychlo-

roquine) was no better than placebo for the treatment 

of hand osteoarthritis (OA) with respect to this end-

point. The sample size was chosen to target 80% power 

for this hypothesis test. In this paper we investigate: (1) 

what would have happened had the HERO trial been 

conducted as a Bayesian value-based, sequential, clinical 

trial; (2) how much additional value such a design might 

have delivered to the health care system, over and above 

that delivered by a non-adaptive design and (3) how mul-

tiple imputation methods for missing data can be incor-

porated into the implementation of the value-based 

sequential model.

The sequential model that we investigate permits the 

clinical trial to stop short of its maximum sample size 

through explicit consideration of the trade-off between 

the benefits and costs of continuing the trial. As we dis-

cuss below, the sequential trial’s maximum sample size 

can be chosen to be equal to, smaller than, or greater 

than the sample size that is required for a traditional, fre-

quentist, fixed sample size design. In contrast to notions 

of efficiency considered by most proposed sequential 

designs, where the objective is to reduce the expected 

sample size of a trial (subject to some constraints), the 

objective of the value-based sequential model is to max-

imise the overall expected net benefit of the trial and 

subsequent treatment adoption recommendation to the 

health care system. As our results show, a value-based 

approach could motivate a sample size that exceeds that 

which would be planned for a traditional, frequentist, 

fixed sample size clinical trial.

To date, the published literature contains only one 

other retrospective application of this model: [18] 

applied it to the ‘PROximal Fracture of the Humerus: 

Evaluation by Randomisation’ (ProFHER) pragmatic 

trial [19] and found that the design could have reduced 

the number of patients randomised by an estimated 

14% (saving about 5% of the research budget), while at 

the same time resulting in an adoption recommenda-

tion which was consistent with that of the actual trial. 

A bootstrap analysis investigating the performance 

of the model ‘on average’ suggested a reduction in 

expected sample size of approximately 38% (compared 

with a fixed length design), an estimated 13% saving in 

the research budget, and an estimated probability of 

0.92 of an adoption recommendation consistent with 

that of the actual trial.

These results were driven by a relatively strong cost-

effectiveness signal in favour of one of the two inter-

ventions that were under investigation. In contrast, the 

HERO trial’s cost-effectiveness evidence was much less 

clear-cut, with neither of the treatments showing a clear 

cost-effectiveness advantage over the other. The data 

from the HERO study therefore provide an ideal opportu-

nity to assess the value-based sequential model’s perfor-

mance in the presence of an equivocal cost-effectiveness 

signal. In doing so, we note that our focus in this paper is 

not on whether the Bayesian sequential rule that is pro-

posed could replace a frequentist fixed sample size or 

group sequential design. Instead, our interest is whether 

the model could complement existing designs, by provid-

ing additional information to trials teams about whether 

or not interim evidence suggests that the expected ben-

efit of continuing the trial outweighs the expected benefit 

of stopping it.

The rest of this paper is structured as follows. In  the 

Methods  section we provide an overview of the value-

based sequential model and the HERO trial, and describe 

in detail the application of the former to the latter. In the 

Results section we report the quantitative findings of our 

application. The Discussion section discusses our results, 

compares them with those from the ProFHER applica-

tion and considers directions for future research.

Methods
The Bayesian value‑based model of a sequential clinical 

trial

In this section we provide an intuitive account of the 

Bayesian value-based sequential model that we apply 

to the HERO trial. Full details may be found in the two 

papers which state and solve the model [13, 14].

1 The principal publication from the ENACT project is [11]. A principal 
publication from the CAT project is [12] and the project’s website is https:// 
www. newca stle- biost atist ics. com/ metho dology_ resea rch/ adapt ive_ desig ns/

https://www.newcastle-biostatistics.com/methodology_research/adaptive_designs/
https://www.newcastle-biostatistics.com/methodology_research/adaptive_designs/
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Consider a randomised clinical trial in which a new 

health technology, N, is to be compared with a control, 

or standard, technology, S, on cost-effectiveness grounds. 

Patients are randomised sequentially, and in a pairwise 

manner, to the two arms of the trial and outcome and 

treatment cost data are measured over a follow-up period 

of defined length. The outcome of interest is whether 

technology N is a cost-effective choice for the reimburse-

ment agency responsible for funding the health tech-

nology, where cost-effectiveness is measured in terms 

of incremental net monetary benefit (INMB). Label the 

pairwise allocations as i = 1, . . . ,Tmax , where Tmax is the 

maximum number of pairwise allocations that can be 

made. Define the net benefit of technology j for pairwise 

allocation i as NBij = �Eij − Cij , j ∈ {N , S} , where the 

random variables E and C denote effectiveness and cost, 

respectively, and � denotes the reimbursement agency’s 

maximum willingness to pay for one unit of effectiveness 

(as an example, in the HERO trial, E is a Quality Adjusted 

Life Year (QALY), so � could be the UK National Health 

Service’s valuation of one QALY, generally taken to equal 

between £20,000 and £30,000 [20]).

Define the incremental net monetary benefit of the new 

technology versus the standard for pairwise allocation i, 

denoted hereafter as Xi , as the net benefit of N minus the 

net benefit of S for allocation i:

The Xi are assumed to have a normal distribution with 

unknown expected value µX ≡ E[X] , but known variance 

σ
2
X

 (the assumption of normality of the data is something 

that could be tested during the course of the trial, and 

is something we carry out in our application). Taking a 

Bayesian perspective, prior beliefs about µX are modelled 

using a normal prior distribution with expected value 

and variance equal to µ0 and σ 2

0
 , respectively. These val-

ues can be informed by existing evidence concerning the 

two technologies, a pilot study, or expert opinion, with 

limited or unreliable prior evidence being represented by 

a ‘diffuse’ prior distribution with expected value close to, 

or equal to, zero.

As the trial progresses, measurements of incremen-

tal net monetary benefit arrive sequentially from pairs 

of patients who have been followed-up and Bayes’ rule 

is used to obtain successive posterior distributions for 

µX . Under the assumptions of the model, namely that 

the prior distribution is normal and the data and associ-

ated likelihood function are normal, the posterior distri-

bution is also normal. After n pairwise allocations have 

been observed, the posterior mean and variance for µX , 

denoted µn and σ 2
n  respectively, are given by standard 

expressions [21]:

(1)
Xi = NBiN − NBiS = �(EiN − EiS) − (CiN − CiS).

where n0 = σ 2
X
/σ 2

0
 is the prior’s so-called ‘effective sam-

ple size’ and x̄ is the sample average of the n observations 

of INMB.

The objective of the model is to define a policy, or rule, 

that determines whether, conditional upon the observed 

data and hence the resulting posterior distribution, 

recruitment to the trial should stop, or another pair of 

patients should be recruited and randomised. The policy 

maximises the expected net benefit of the trial and sub-

sequent technology adoption decision, defined as the 

difference between the expected benefit accruing to the 

P patients whose treatment will be determined by the 

adoption of the superior technology once the trial con-

cludes, minus any costs incurred in switching technolo-

gies, minus the expected cost of carrying out the trial. 

The policy takes the form of a stopping boundary in ( n × 

prior/posterior mean space) which indicates that recruit-

ment should continue if the posterior mean for µX lies 

within the area enclosed by the stopping boundary and 

recruitment should cease if the posterior mean lies out-

side the boundary.

The stopping boundary is obtained by solving what is 

known as an ‘optimal stopping problem’, using the tech-

niques of dynamic programming [22, 23]. It is important 

to note that the solution to this problem uses information 

provided by the posterior distribution for the unknown 

value of µX and not just the expected value of the pos-

terior distribution. That is, the expected benefit from 

stopping the trial uses a distribution which predicts the 

value of µX once remaining pipeline patients have been 

observed, and the expected value of recruiting an addi-

tional pair of patients (continuing the trial) weights opti-

mal values for continuing the trial once that additional 

pair of patients has been recruited, using information 

derived from the posterior distribution. Full details of 

this process, and the so-called ‘Bellman equation’ which 

compares the expected values of stopping and continu-

ing the trial, may be found in the discussion of Equations 

(6)–(8b) of [13].

In line with frequentist approaches to sequential trial 

design (see, for example, [24]), it is necessary to specify 

a maximum sample size for the clinical trial, represented 

here by the maximum number of pairwise allocations, 

Tmax , that can be recruited. In theory, Tmax could be any 

value that the research team or funder chooses. There 

are a number of ways in which Tmax could be chosen. For 

example, one method sets it to equal the sample size that 

would be set for a fixed sample size trial designed accord-

ing to frequentist principles. This approach permits the 

trial to stop at, or before, the frequentist design’s target 

(2)µn =
n0µ0 + nx̄

n0 + n
, σ

2
n =

σ
2
X

n0 + n
,
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sample size. Alternatively, Tmax could be set equal to the 

sample size which maximises the expected net benefit of 

sampling in a so-called ‘value of information’ calculation 

for a fixed sample size design [25]. Whatever method is 

chosen, the value-based sequential design stops the trial 

as soon as the estimated additional benefit of recruiting 

an extra pair of patients is estimated not to be worth the 

additional cost of doing so.

Under the value-based sequential model, the trial has 

three stages: during Stage I, patients are recruited and 

randomised to the two arms, but no accrual of cost-

effectiveness data takes place because no patient has 

completed their follow-up period; during Stage II, val-

ues of INMB are observed sequentially and Eq. (2) are 

used to update the posterior distribution for µX . After 

each observation of INMB, there is the option to ran-

domise a further pair of patients to each arm of the 

trial, or stop recruitment. During Stage III, recruitment 

has stopped, but follow-up continues for the remaining 

pipeline patients. Once all patient outcomes have been 

observed and used to update the posterior mean for µX , 

Stage III concludes and the decision about whether to 

adopt the new technology is made. Adoption of technol-

ogy N is recommended if the total reward from adopt-

ing the technology exceeds any switching cost (that is, 

if P × µñ > I , where ñ is the total number of pairwise 

allocations made and I ≥ 0 is the cost of switching from 

technology S to N).

Figure 1 shows how the policy works in practice for the 

case in which I = 0 . Consider first the region marked 

(Stage) ‘I’. Under the assumption that the prior mean, 

µ0 , lies between the values indicated by points labelled 

‘D’ and ‘C’ on the vertical axis, the sequential design is 

preferred. Recruitment takes place during Stage I and 

the first observation of INMB occurs once the first pair 

of patients have been followed up. The point marked τ 

in Fig. 1 is the delay to observation of outcomes, and is 

measured in terms of the number of pairwise allocations 

that are expected to have been made during the follow-

up period for the first (and subsequent) observation(s) 

of INMB. During Stage II, as outcomes are observed, Eq. 

(2) are used to calculate the posterior mean and variance 

for µX in a series of interim analyses. If, at an interim 

analysis, the posterior mean lies within the area marked 

‘Continuation region’ in Fig.  1, it is optimal to continue 

recruitment to the trial. The first time that an interim 

analysis shows that the posterior mean has crossed the 

upper or the lower part of the stopping boundary, it is 

optimal to halt recruitment and move to Stage III. Dur-

ing Stage III, cost and outcome data for the remaining 

patients in the pipeline are observed. Once all data from 

all pipeline patients have been observed and used to 

update the posterior mean for µX , the adoption recom-

mendation is made. If the posterior mean is greater than 

zero, technology N is recommended over technology S, 

otherwise it is not2.

There are two scenarios in which it is not optimal to 

run the sequential trial, defined because their expected 

rewards are higher than the expected reward of the 

sequential design. If the prior mean lies on, or between, 

Fig. 1 Stopping boundary for the value‑based sequential model, showing the three stages of the trial (marked ‘I’, ‘II’ and ‘III’), the stopping boundary 

and the continuation region. [Source: adapted from [13, 18]]

2 The Stage III that is labelled in Fig.  1 refers to a trial which runs to the 
maximum sample size, Tmax . Stage III starts earlier if Stage II finishes before 
reaching Tmax.
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the points marked ‘A’ and ‘C’ or ‘D and B’, it is optimal 

to run a fixed sample size trial where the optimal sam-

ple size is chosen so that the expected net benefit of sam-

pling is maximised, according to established one-stage 

expected net benefit of sampling calculations (see, for 

example, [25]). We call such a trial design the ‘value-

based one stage design’. If the prior mean is greater than 

‘A’ or less then ‘B’, it is optimal to not run any trial and 

adopt N if µ0 > A and adopt S if µ0 < B , for a reward 

equal to Pµ0.

The HERO trial

The HERO trial was a double-blind, randomised, clinical 

trial carried out in 13 primary and secondary care centres 

across England. It evaluated whether hydroxychloroquine 

is superior to placebo for the treatment of hand osteoar-

thritis (OA). Recruitment took place between 24 Septem-

ber 2012 and 27 May 2014, with follow-up completed on 

29 June 2015. The study was funded by Arthritis Research 

UK (now Versus UK) and had a budget of £900,000.

For the clinical evaluation, follow-up of the primary 

endpoint took place at six months post-randomisation. 

For the economic evaluation it took place at 12 months 

post-randomisation. The trial protocol is published in 

[15] and results of the clinical evaluation are published in 

[16]. The original trial analyses/reporting were conducted 

according to CONSORT standards. Results of the within-

trial economic evaluation are reported in [17]. Costs in 

the study were measured in UK £sterling, at 2015 prices.

The trial recruited 248 patients presenting with symp-

tomatic pain and radiographic hand OA. Patients were 

randomised to receive either: (1) hydroxychloroquine 

in 200mg, 300mg or 400mg doses or (2) placebo. The 

primary clinical endpoint was average hand pain sever-

ity during the previous two weeks, measured on an 

eleven-point (0 to 10) numerical rating scale (NRS), at 

six months post-randomisation. Secondary endpoints, 

including quality of life, were also recorded. In particu-

lar, the trial used the EQ-5D-5L instrument to meas-

ure quality of life at baseline, 6 months and one year 

post-randomisation.

The economic evaluation consisted of a cost-utility 

analysis (estimating the cost per Quality Adjusted Life 

Year (QALY) at one year follow-up) and a cost-effec-

tiveness analysis (estimating the cost per unit reduction 

in pain score). It was characterised by a considerable 

amount of missing data, particularly missing healthcare 

resource use data, a frequent problem in RCTs [26, 27]. 

The missing data problem is amplified when the sum-

mary measures used for analysis (e.g. total costs incurred 

during the follow-up period) are derived using repeated 

measurements of a large number of variables, as in the 

HERO trial’s economic evaluation. For example, the total 

cost associated with a given participant’s treatment and 

healthcare resource use during the follow-up period 

is missing if the participant is missing any one of the 

numerous variables that are used to derive this total.

The assumption that the missing cost and QALY data 

are ‘Missing Completely at Random’ (MCAR) is often 

less less plausible than the assumption that they are 

‘Missing at Random’ (MAR) or ‘Missing not at Random’ 

(MNAR). In essence, MCAR means that the missing 

values are independent of both the observed and miss-

ing data, so that analysis which ignores them remains 

unbiased, albeit at the cost of precision. If the data 

are MAR, the missing values are not independent of 

observed data, potentially causing bias if this is ignored 

during analysis. In such a situation, multiple imputa-

tion and likelihood based methods can be used for valid, 

unbiased inference; see, amongst others, [26, 28–30]. 

Missing data are MNAR if the probability of missing-

ness depends on the unobserved values themselves. 

The issue of MNAR outcome data in RCTs has received 

some interest recently [31, 32], but is beyond the scope 

of the current paper.

The base case economic analysis reported in [17] takes 

the perspective of the UK National Health Service and 

Personal Social Services and uses multiple imputation by 

chained equations under the assumption that the miss-

ing data are MAR [33–35]. Analysis of the clinical data 

found that hydroxychloroquine was not superior to pla-

cebo in terms of its effect on expected severity of pain 

at six months [16] and expected QALYs at one year [17]. 

The base case economic analysis found essentially no evi-

dence that hydroxychloroquine is superior to placebo on 

cost-effectiveness grounds. Using a maximum willingness 

to pay for one QALY of £30,000, the estimate of expected 

incremental net monetary benefit of hydroxychloroquine 

compared to placebo was –£144.34 (95% confidence 

interval of (–£158.67, –£130.02)) and the probability that 

hydroxychloroquine is cost-effective was estimated to be 

0.39 [17].

Applying the Bayesian value‑based sequential design 

to HERO

Referring to Eq. (1), we consider the new technology, N, 

to be hydroxychloroquine and the standard technology, 

S, to be placebo. Assuming a maximum willingness to pay 

for one QALY of £30,000, the incremental net monetary 

benefit for pairwise allocation i is:

Positive values of INMBi indicate greater net benefit 

from hydroxychloroquine and negative values indicate 

greater net benefit from placebo.

(3)INMBi = £30, 000(Ei,hyd − Ei,placebo) − (Ci,hyd − Ci,placebo).
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Although the value-based sequential model can, in 

principle, operate in a fully sequential manner (that is, 

the posterior mean for E[INMB] during Stage II can be 

updated after each observed value of INMB and com-

pared with the relevant Stage II stopping boundary), the 

analyses presented in this paper assume that the poste-

rior mean is updated once every 10 pairwise allocations. 

This recognises the fact that continuous monitoring of 

the cost-effectiveness signal is unlikely to be feasible in 

most trials3. We assume that recruitment stops imme-

diately following the first interim analysis that indicates 

the posterior mean for E[INMB] has crossed the stopping 

boundary.

Total costs and QALYs accruing during the follow-up 

period are derived in an identical manner to the origi-

nal HERO economic analysis. For the purposes of this 

paper, point estimates of E[INMB] are obtained via sim-

ple comparisons of mean net monetary benefit between 

randomised groups, absent conditioning on any baseline 

covariates. This is sufficient to assess the performance of 

the value-based sequential model that is the focus of this 

paper, but is in contrast to the analysis reported in [17], 

which estimated E[INMB] using a seemingly unrelated 

regression model that conditioned on several baseline 

covariates.

Our analysis proceeded as follows. Firstly, we obtained 

the path of the posterior mean of E[INMB] using the 

actual trial data and assuming a time to follow-up 

equal to that used in the trial’s economic evaluation (12 

months). Observations were ordered according to the 

date of randomisation, and we used multiple imputation 

to fill in missing values (refer to Handling missing data 

using multiple imputation section). We used the imputed 

datasets (generated using the entire sample) to obtain the 

estimate of the sampling standard deviation, σX . We used 

this estimate, together with estimates of other relevant 

parameter values (see Choice of parameter values  sec-

tion), to obtain the stopping boundary for the value-

based sequential model. We then compared the path of 

the posterior mean to the stopping boundary to answer 

the question: ‘had the Bayesian value-based sequen-

tial model been used, when would the HERO trial have 

stopped?’ Next we considered the average performance 

of the value-based model by re-sampling from the HERO 

data and comparing these re-sampled paths of posterior 

mean with the relevant stopping boundary (Re-sampled 

data analysis section). In light of the fact that researchers 

have flexibility in setting the maximum sample size for 

the value-based sequential trial, Tmax , our main re-sam-

pled data analyses set Tmax = 124 and Tmax = 248 pair-

wise allocations.

Finally, we carried out sensitivity analysis to investigate 

how robust our results were to: (1) increasing the maxi-

mum sample size to 1000 pairwise allocations and (2) 

reducing the time to follow-up of the cost-effectiveness 

data from 12 to 6 months.

Handling missing data using multiple imputation

The value-based sequential model assumes that the 

recruitment and follow-up of patients provides a series 

of independent and identically distributed observations 

of incremental net monetary benefit. If cost-effectiveness 

data are MAR or MNAR, then the observations of incre-

mental net monetary benefit that are obtained using just 

the observed data on costs and utilities may not result in 

a representative sample from the population distribution 

of incremental net monetary benefit. As with any statisti-

cal analysis of incomplete data, the precise impact of the 

missing values will depend on the mechanisms that gave 

rise to them. These are, in general, not known. Hence the 

validity of any quantities obtained using the incomplete 

data, such as the posterior distribution for the expected 

value of incremental net monetary benefit, will generally 

rest on strong and largely unverifiable assumptions about 

the mechanisms that resulted in the missing data.

As noted in The HERO trial  section, the HERO tri-

al’s economic evaluation used multiple imputation by 

chained equations to address potential bias resulting 

from missing quality of life outcome and cost data, under 

the assumption that the missing values were MAR. We 

follow this approach in the analyses undertaken in this 

paper and use the same imputation model that was used 

for the base case analysis reported in [17]. Details of the 

variables included in the imputation model are given 

in Appendix Table  1. Assuming the imputation model 

encoded by this set of chained equations does a reason-

able job of approximating the true joint model of the 

observed and incomplete cost-effectiveness data, the 

imputed datasets can be used to obtain unbiased obser-

vations of incremental net monetary benefit, which can 

then be used to update the posterior distribution. Clearly, 

this depends on unverifiable assumptions regarding the 

missing data mechanism. If for example, the missing data 

were truly MNAR, and particularly if the MNAR mecha-

nisms differed by allocation, the observations of incre-

mental net monetary benefit obtained from our imputed 

datasets may not be representative of the distribution 

that would have been obtained were the cost-effec-

tiveness data complete. While a more comprehensive 

3 In principle, interim analyses could take place as frequently, or as infre-
quently, as desired. We have chosen to hold an interim analysis every ten 
pairwise allocations because we believe it strikes a reasonable balance 
between continuous data monitoring during the trial – we believe this to 
be unrealistic – and only monitoring the data once during Stage II – which, 
we believe, minimises the sequential benefits which could be provided by 
the model.
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discussion of MNAR cost-effectiveness data is beyond 

the scope of the current paper, we note that recent work 

on sensitivity analyses using controlled multiple imputa-

tion - for example, [32, 36] - could be applied in the con-

text of the value-based sequential model.

For each interim analysis, we firstly imputed missing 

cost and QALY data using all data available at the time 

of that interim analysis, generating five imputed datasets, 

as per [17]. We then obtained an estimate of E[INMB] for 

the most recent interim analysis by obtaining five esti-

mates of E[INMB] , one from each of the five imputations, 

for just the most recent block of pairwise allocations. 

We then combined these using Rubin’s rules [28, 37, 38]. 

These ‘by-block’ estimates were then used to obtain the 

values of the posterior mean and variance at each interim 

analysis using Eq. (2). It was not possible to obtain an 

estimate for the first interim analysis (that would have 

been based on 10 pairs) owing to data sparsity, which 

caused numerical difficulties for the chained equations 

algorithm used for the multiple imputation.

Re‑sampled data analysis

We re-sampled observations with replacement from the 

HERO data, placed them into sequential blocks of 10 

pairwise allocations based on a random order, and used 

the estimates of E[INMB] from these blocks to obtain the 

posterior mean of E[INMB] , following the same approach 

to sequential multiple imputation as outlined in Handling 

missing data using multiple imputation section.

For the Tmax = 248 analyses, 5000 paths were gener-

ated by drawing two re-samples of 124 pairwise alloca-

tions and placing them into a single dataset, with the 248 

pairs then randomly sorted into sequential blocks of 10 

pairwise allocations. We recognise that this approach 

uses the data twice, which places limitations on the sta-

tistical validity of conclusions drawn based on the re-

sampled data for the Tmax = 248 setting. However, in 

the absence of additional data, we feel that this is a rea-

sonable approach to approximating the path of the pos-

terior mean, had the original trial been permitted to run 

beyond its planned sample size of 248 patients. A further 

limitation of the re-sampling of participant level data 

described here is that it treats the observations as being 

independent, ignoring potential clustering of costs and 

health outcome data by centre. This is primarily because 

it is not possible to undertake re-sampling at the level of 

centre in the present study, because the centres recruited 

to the HERO trial differed substantially in terms of the 

number of patients they recruited. This implies that, were 

re-sampling to be undertaken by centre, there would 

be substantial fluctuations in the number of patients in 

each of the re-samples, would make it difficult to esti-

mate sample sizes and research costs. While failure to 

properly account for dependence between observations 

obtained from patients recruited from the same cluster 

would compromise the frequentist properties of boot-

strap standard errors and confidence intervals, we do not 

think this issue compromises our analyses. Again this is 

because the re-sampling undertaken in the present study 

was primarily a means of simulating some plausible paths 

of posterior mean of expected incremental incremen-

tal net monetary benefit with a weak signal, as opposed 

to being used for any formal frequentist inference. The 

re-sampled datasets for the Tmax = 124 analyses were 

obtained by using just the first half of the randomly 

sorted re-sampled datasets generated for the Tmax = 248 

analysis. Appendix A provides further details.

To investigate the potential influence of increasing 

the maximum possible sample size of the HERO trial, 

we simulated trials with Tmax set equal to the following 

values: 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 4000 

and 5000 pairwise allocations. We simulated 5000 repli-

cates for each value of Tmax . In each case, Tmax observa-

tions of incremental net monetary benefit were drawn 

from a Gaussian distribution with a mean of -£45 (as 

estimated using the multiply imputed HERO trial data), 

and a standard deviation of £7,615 (see Table  1). These 

simulated data were then used to obtain 5,000 paths of 

the posterior mean for the expected value of incremen-

tal net monetary benefit to compare with a value-based 

sequential model stopping boundary for the relevant 

value of Tmax.

Choice of parameter values

We used the parameter values reported in Table 1 to cal-

culate the stopping boundary for the value-based sequen-

tial model. Here we discuss some of the main choices of 

parameter values. Full details about how each was chosen 

are presented in Appendix B.

We used the trial data to estimate the rate of accrual 

of patients and information on how the trial budget was 

spent to estimate the variable costs of research. For the 

valuation of the total benefit provided by the trial to the 

UK healthcare system, we set the maximum willingness 

to pay for one Quality Adjusted Life Year to £30,000. 

After reviewing literature on the prevalence and inci-

dence of hand OA within the United Kingdom, we set 

the size of the population to benefit from the adoption 

decision, P, to 24,500 (equal to 2,450 patients per year for 

10 years). Absent guidance about how fixed and variable 

costs in a clinical trial’s budget should be allocated, we 

assumed an even split between fixed and variable costs 

during the recruitment and follow-up periods. This gives 

an estimate of the cost of randomising a pair of patients 

of £1,650. We estimated σX using multiply imputed data 

from all 124 patient pairs recruited in the trial.
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We set the prior mean for the expected value of 

incremental net monetary benefit, µ0 , to zero, reflect-

ing the idea that, prior to the HERO trial, there was 

little evidence suggesting that hydroxychloroquine was 

more, or less, cost-effective than placebo. We set the 

prior variance, σ 2

0
 , to give a low weight to the prior 

mean relative to the trial data, equivalent to an effec-

tive sample size of the prior of n0 = σ 2
X
/σ 2

0
= 2 pair-

wise allocations. Our choice of prior distribution is 

intended to reflect the lack of cost-effectiveness infor-

mation available to investigators prior to the trial tak-

ing place.

In line with the HERO trial’s economic analysis, 

we set the follow-up period for the cost-effectiveness 

data to be one year and we assumed a constant rate of 

recruitment to the trial that matched the average rate 

of accrual (124 pairs recruited over 611 days). Hence 

we assume that approximately τ = 74 pairwise allo-

cations were made by the time Stage II commences. 

This implies that, during Stage II, there are 74 pairs of 

patients in the so-called ‘pipeline’ of the trial. These 

are patients who have been randomised into the trial, 

but whose outcomes have yet to be observed. Hence, 

if the trial stops when an interim analysis has assessed 

outcome data for 30 patient pairs, the total sample size 

for the trial is 30 + 74 = 104 pairs, so 208 patients.

Results
First, we consider the HERO trial’s research expendi-

ture and cost-effectiveness signal over time. The black 

continuous line in Fig. 2 (left axis scale) plots the cumu-

lative spend of its research budget, using data from the 

financial accounts. Cumulative spend includes all costs 

recorded in the financial accounts, for whatever reason. 

Also plotted as a red dashed line on the right axis scale 

is the estimate of E[INMB] at one year as evidence from 

the trial accumulated. These sequential point estimates 

are based on the multiply imputed data. The plotted 

values are given in column (5) of Appendix Table  2, 

with key milestones in the project marked as follows: ‘A’ 

(recruitment starts); ‘B’ (recruitment finishes); ‘C’ (one 

year follow-up finishes); ‘D’ (publication of [16], pre-

senting the results of the clinical evaluation).

Figure  2 shows that, during follow-up, the estimate of 

E[INMB] was never greater than zero, meaning that there 

was never evidence that hydroxychloroquine was cost-effec-

tive. The first estimate, based on cost and outcome data from 

the first 20 pairs of patients allocated, is equal to –£2172. By 

the end of follow-up, the estimate had risen to –£45, with a 

95% confidence interval of (-£1387 to £1296). This implies 

that the trial provides little evidence that one technology is 

superior to the other on cost-effectiveness grounds, which 

we take to be an ‘equivocal’ cost-effectiveness signal.

Table 1 Parameter values used to obtain the stopping boundary for the Bayesian value‑based sequential model applied to the HERO 

trial

Parameter Definition Value Source

Estimated annual number of patients affected by the adoption decision 2,450 [39]

Time horizon for the post‑trial adoption population 10 years Assumption

P Number expected to benefit from the technology adoption decision 24,500 Defined from above parameters

σX Standard deviation of incremental net monetary benefit in population £7,615 Multiple imputation data sets

n0 Effective sample size of the prior distribution for E[INMB] 2 pairwise allocations Assumption

µ0 Prior mean for E[INMB] 0 Assumption

� Delay for observing EQ‑5D‑5L endpoint (in years) 1 [16]

Estimated annual rate of recruitment to trial 74 pairwise allocations [16]

τ Delay for observing EQ‑5D‑5L endpoint (in pairwise allocations) 74 pairwise allocations Annual rate of recruitment

Time horizon of trial 611 days [16]

I Fixed cost of adopting hydroxychloroquine £0 HERO team advice

Estimated spend on fixed costs prior to starting trial £90,216 HERO trial’s accounts

Estimated spend on fixed costs during trial £204,581 HERO trial’s accounts

Estimated spend on variable costs £204,581 HERO trial’s accounts

Estimated spend on fixed costs post follow‑up £336,042 HERO trial’s accounts

cfixed Total spend on fixed costs £630,839 HERO trial’s accounts

Total spend £835,419 HERO trial’s accounts

c Estimated cost per pairwise allocation £1,650 HERO trial’s accounts

� Maximum willingness to pay for one QALY £30,000 [20]
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Comparison of the spend and cost-effectiveness pro-

files provides insight into how much, if any, of the 

research budget might have been saved had the trial 

been allowed to stop recruitment early: approximately 

one third of the trial’s budget had been spent by the time 

that one year follow-up commenced and just under 60% 

had been spent by the time it had finished (‘C’). Crucially, 

around 45% had been spent by the time recruitment 

finished (‘B’). This means that only about 12-15% of the 

trial’s expenditure occurred between the beginning of 

the one year follow-up period and the end of participant 

recruitment.

Figure  3 breaks down the sequential point estimates 

of E[INMB] at one year that are plotted in Fig.  2 into 

estimates of expected incremental QALYs (Fig.  3a) and 

expected incremental treatment costs (Fig.  3b) at one 

year. Limits showing plus and minus two standard errors 

are also shown, to provide some indication of the uncer-

tainty surrounding the estimates. Values above zero show 

hydroxychloroquine to be more effective (Fig. 3a) / more 

costly (Fig. 3b). The plots show that hydroxychloroquine 

was estimated to be less effective than placebo through-

out the follow-up period, although the final estimate 

of incremental QALYs is very close to zero. Figure  3b 

shows that treatment with hydroxychloroquine was esti-

mated to be more expensive than placebo throughout the 

follow-up period, except at the very end, when it was esti-

mated to be £39 cheaper. These plots explain the equivo-

cal estimate of cost-effectiveness that is shown in Fig. 2.

Finally, a plot of the pairwise INMB data is presented 

in Fig.  4, where observations have been paired accord-

ing to their order of arrival in the data set. The histogram 

is superimposed with a kernel density estimator and a 

Gaussian distribution with the same mean and variance 

as the sample mean and variance of the observations on 

INMB. Our tests for normality of the INMB data did not 

reject the null hypothesis of normality at the 5% signifi-

cance level. The Shapiro-Wilk test, Shapiro-Francia test 

and Skewness-Kurtosis test gave p values of 0.439, 0.406 

and 0.680, respectively.

Running the HERO trial as a value‑based sequential design

Figure 5a presents the stopping boundary for the value-

based sequential model applied to the HERO trial when 

the maximum sample size is set equal to the trial’s actual 

sample size (124 pairwise allocations). The Stage II stop-

ping boundary is marked in black, using unnumbered, 

circled points linked by a continuous line. Also marked 

are the letters ‘A’ to ‘D’, showing the ranges of the prior 

mean for which no trial, a value-based one stage design 

and the value-based sequential design are optimal (refer 

to Fig.  1). Where the value-based one-stage design is 

Fig. 2 Estimate of cumulative budget spend (left axis, solid black line) and the point estimate of the expected value of incremental net monetary 

benefit (right axis, red dashed line) for the HERO trial. ‘A’ – recruitment starts; ‘B’ – recruitment finishes; ‘C’ – one year follow‑up finishes; ‘D’ – principal 

publication of the clinical analysis [16]. The cost‑effectiveness data are presented in column 5 of Appendix Table 2
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optimal, a range of optimal sample sizes for that design 

is indicated by blue circles. Figure 5a shows that, under 

the chosen parameter values (refer to Table  1), the 

value-based sequential design is optimal, from the per-

spective of maximising overall expected net benefit to 

the health care system, if the absolute value of the prior 

mean for E[INMB] is less than about £12,000 (points C 

and D). It also shows that no trial is optimal if the abso-

lute value of the prior mean for E[INMB] is greater than 

about £16,000, with immediate adoption of hydroxy-

chloroquine recommended only if the prior mean 

exceeds £16,000.

As noted in  the Choice of parameter values  sec-

tion, we assume a prior mean for the expected value of 

Fig. 3 Estimate of expected incremental QALYs and treatment costs at one year as evidence accumulated, together with limits at ± two standard 

errors, using imputed data. For the expected incremental QALYs values above zero suggest hydroxychloroquine to be superior to placebo 

and for the expected incremental treatment cost values above zero suggest hydroxychloroquine to be more expensive than placebo. The data 

series for a is presented in column 3 of Appendix Table 2. The data series for b is presented in column 4

Fig. 4 Histogram showing the distribution of the paired observations (paired according to their order of arrival in the data set) of incremental net 

monetary benefit for the HERO trial. The solid black line shows a kernel density estimate based on an Epanechnikov kernel, and the dashed black 

line shows a Gaussian distribution with mean and variance equal to the sample mean and variance of the 124 observations of pairwise INMB
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incremental net monetary benefit that is equal to £0. 

Since this value lies between the points C and D, the 

sequential design is optimal. Figure  5a also shows the 

path of the posterior mean for the expected value of 

incremental net monetary benefit, obtained using the 

multiply imputed HERO trial data, assuming that interim 

analyses take place every ten pairwise allocations (with 

the exception of the first interim analysis, which takes 

place at 20 pairwise allocations for the reason stated in 

Handling missing data using multiple imputation). The 

path remains in the continuation region throughout 

Stage II, showing that, under the value-based sequen-

tial design, recruitment would have continued until the 

sample size of the actual trial, 124 pairwise allocations, 

had been reached, and would have resulted in a final esti-

mate of the posterior mean equal to approximately –£30 

(hydroxychloroquine not cost-effective) and a technology 

adoption recommendation consistent with the results of 

the original trial, that is, that hydroxychloroquine should 

not be adopted.

This part of our application shows that, had the HERO 

trial been run according to the value-based sequential 

trial model, with a switching cost, I, assumed equal to 

zero, it would not have stopped before reaching the max-

imum planned sample size, and therefore the sequential 

design would not have saved any of the trial’s research 

budget. The principal reason for this is the relatively weak 

cost-effectiveness signal in the trial. However, an addi-

tional factor is the relatively small number of interim 

analyses (three) that occurred during Stage II of the trial, 

which offer limited scope for early stopping, and there-

fore limited scope for the sequential design to deliver 

increase value via reduced research expenditure.

Re‑sampled data analysis

Figure 5b shows the same Stage II stopping boundary and 

path of the posterior mean that are plotted in Figure 5a, 

together with the stopping boundary for Tmax = 248 and 

three re-sampled paths for the posterior mean generated 

according to the procedure described in Re-sampled data 

analysis. These paths show three scenarios in which the 

value-based sequential design would cease recruitment 

before reaching a maximum sample size of 124 pairwise 

allocations. For example, ‘Re-sampled path 1’ first crosses 

the Stage II stopping boundary at the third interim analy-

sis, informed by outcome data from the first 40 pairwise 

allocations, at which point recruitment stops, having 

recruited a total of 114 pairs of patients – the 40 that 

contributed to the interim analysis, plus the 74 ‘pipeline’ 

pairs. The posterior mean upon conclusion of follow-up 

is positive and so favours adoption of hydroxychloro-

quine. Similarly, ‘Re-sampled path 3’ crosses the stopping 

boundary at the first interim analysis, after outcomes 

for 20 pairwise allocations have been observed, so that 

94 pairwise allocations have been recruited to the trial. 

However, for this path, the final estimate of E[INMB] is 

negative and so favours placebo.

As described in Re-sampled data analysis, in our main 

analysis we obtained 5000 paths for two different trial 

Fig. 5 Stopping boundary and paths for the posterior mean for the HERO trial for: a the case of Tmax = 124 and b Tmax = 124 and Tmax = 248 , 

together with three resampled paths
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scenarios, Tmax = 124 and Tmax = 248 . We obtained 

summary statistics regarding the final estimate of the 

posterior mean of E[INMB] and the number of pairs ran-

domised, and compared them with fixed length designs 

equal to the chosen values of Tmax . Table 2 presents sum-

mary statistics for the two scenarios. The proportions of 

re-sampled paths that conclude that hydroxychloroquine 

is cost-effective under each of the designs are presented 

in Table 3.

When the maximum sample size of the value-based 

sequential model is set to 124 pairwise allocations, 

only around 3% of the re-sampled paths cease recruit-

ment before the maximum sample size. As alluded to 

in the Running the HERO trial as a value-based sequen-

tial design section, this is due to the equivocal cost-effec-

tiveness signal in the trial data, combined with the small 

number of interim analyses that can take place during 

Stage II. As a result, the final estimates of the posterior 

mean of E[INMB] , and the expected sample size and 

the proportion of re-sampled paths that conclude that 

hydroxychloroquine is cost-effective are very similar to 

those of the fixed sample size design. Under the assumed 

cost per pairwise allocation of £1,650 (see Table  1), the 

small reduction in expected sample size under the value-

based sequential approach translates to an estimated 

cost-saving for the trial of around £700 in total, less than 

0.1% of the HERO trial’s budget.

When the maximum sample size is set to 248 pairwise 

allocations, about 22% of the re-sampled paths cease 

recruitment before the maximum sample size is reached. 

This is driven by the increased length of Stage II, which 

now permits 16 interim analyses. However, the sample 

sizes for these ‘early-stopping’ paths are generally quite 

close to the maximum number of pairwise allocations 

permitted in the trial, again due to the equivocal cost-

effectiveness signal. As a result, the expected sample size 

is only around 4.5% smaller for the value-based sequen-

tial design than it is for the fixed length design. Apply-

ing the same assumptions as before, this translates into 

an estimated cost saving of around £18,000 (=(248-237) 

× £1650) over the fixed design. Despite there being more 

paths stopping early under this version of the value-based 

Table 2 Re‑sampled data analysis: comparison of the performance of the value‑based sequential model designs with fixed sample 

size designs with maximum sample sizes of 124 and 248 pairwise allocations

Average Standard deviation Minimum Maximum

Maximum sample size = 124 pairwise allocations

   HERO trial (original fixed sample size design)

      Posterior mean for E[INMB] (£) ‑91.47 647.51 ‑2559.69 2538.94

   Value-based sequential model

      Posterior mean for E[INMB] (£) ‑92.85 654.24 ‑2817.26 2538.94

      Sample size (pairwise allocations) 123.56 2.93 94 124

Maximum sample size = 248 pairwise allocations

   Fixed length trial

      Posterior mean for E[INMB] (£) ‑87.78 474.12 ‑1683.60 1804.17

   Value-based sequential model

      Posterior mean for E[INMB] (£) ‑101.07 543.69 ‑2559.69 2466.24

      Sample size (pairwise allocations) 236.91 27.77 94 248

Table 3 The proportion of re‑sampled paths which suggest that hydroxychloroquine is cost‑effective, for the designs summarised in 

Table 2

Final decision

Hydroxychloroquine not cost‑effective Hydroxychloroquine 
cost‑effective

Maximum sample size = 124 pairwise allocations

    HERO trial (original fixed sample size design) 0.552 0.448

    Value-based sequential model 0.552 0.448

Maximum sample size = 248 pairwise allocations

    Fixed length trial 0.570 0.430

    Value-based sequential model 0.570 0.430
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sequential model, the final estimates of E[INMB] for the 

fixed and sequential designs are again similar. Finally, the 

proportions of paths favouring hydroxychloroquine from 

the cost-effectiveness perspective, equal to 0.430, are 

essentially identical across the two Tmax = 248 designs 

that we consider, albeit being slightly lower than the pro-

portions observed for the Tmax = 124 designs (0.448).

To summarise, the qualitative message from the appli-

cation of the value-based sequential model to the HERO 

trial is that, contrary to the findings reported in [18] for 

the ProFHER trial, there is little prospect of stopping ear-

lier than the planned maximum sample size of the trial, 

and therefore little prospect of saving research monies, 

regardless of whether the maximum sample size is set at 

124 or 248 pairwise allocations. This is primarily due to 

the equivocal evidence concerning cost-effectiveness in 

the HERO trial, with a secondary reason being the lim-

ited number of Stage II interim analyses that are feasible, 

given the choices of Tmax.

Sensitivity analyses

To test how our main result is affected by alternative 

specifications of the design, we undertook two additional 

analyses. The first of these analyses increased the trial’s 

maximum possible sample size, examining the operating 

characteristics of the value-based sequential model for 

Tmax equal to the following values: 250, 500, 750, 1000, 

1500, 2000, 2500, 3000, 4000 and 5000 pairwise alloca-

tions. The second analysis reduced the delay to observ-

ing cost-effectiveness outcomes (from 12 months to 6 

months). Both of these specifications increase the num-

ber of interim analyses during Stage II. Further methodo-

logical details are contained in Appendix D.

The impact of increasing Tmax on expected sample 

size is plotted in Fig. 6. This plot shows the ratio of the 

expected sample size of the value-based sequential trial 

(across the 5000 replicates) to Tmax as a function of Tmax . 

We found that, while expected sample size increases as 

Tmax increase, it appears to do so at a diminishing rate. 

For example, when Tmax = 250 the average sample 

size across the 5000 simulated paths was 239 (96% of 

Tmax ), roughly aligning with the re-sampled data analy-

ses undertaken for Tmax = 248 (see Re-sampled data 

analysis  section). For Tmax = 1000 it was 640 (64% of 

Tmax ) and by Tmax = 5000 it was 1460 (29% of Tmax ). 

These results suggest that even in the context of a very 

weak cost-effectiveness signal, the value-based sequen-

tial model can deliver substantial reductions in expected 

sample size and variable costs, compared to an equivalent 

fixed sample size design. However, they also suggest that 

large values of Tmax may be required to realise important 

reductions in these quantities. For example, Tmax = 1000 

Fig. 6 The ratio of expected sample size to Tmax as a function of Tmax for the HERO trial
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pairwise allocations is around eight times the sample 

size of the original trial, and the expected sample size of 

640 pairwise allocations is more than a five-fold increase 

in the sample size of the original trial, equating to an 

increase in research costs of approximately £851,400 

(assuming a cost per pairwise allocation of £1,650). Fur-

ther, around 27% of the simulated paths continued to 

1000 pairwise allocations. Indeed, the proportion of sim-

ulated paths reaching Tmax dropped rapidly from around 

77% when Tmax = 250 to around 20% for Tmax = 2000 , 

but changed little thereafter with around 19% of simu-

lated paths running to Tmax for all values of Tmax larger 

than 2000. Finally, we note that despite the clear impact 

of the choice of Tmax on expected sample size, the final 

estimates of expected incremental net monetary ben-

efit and the proportion of paths concluding in favour of 

hydroxychloroquine varied little with changes in Tmax . A 

full set of operating characteristics are shown in Appen-

dix Tables 3 and 4 for the Tmax = 1000 scenario.

On the one hand, these results suggest that, in the 

context of an equivocal cost-effectiveness signal, the 

value-based sequential model can provide a meaning-

ful reduction in expected research expenditure if given 

sufficient opportunity to do so. On the other hand, it is 

perhaps unrealistic to think that a healthcare system 

would set a maximum sample size so large, relative to 

the planned sample size of the frequentist design. We 

therefore do not consider the substantial reductions in 

expected sample size evident for Tmax = 1000 and above 

to alter materially the conclusions of our main analyses, 

at least in the context of the HERO trial.

Appendix Table  3 shows that halving the time to fol-

low-up for measuring the cost-effectiveness outcomes, by 

setting a six month time horizon instead of a 12 month 

horizon, has relatively little impact on the results. For 

the trial with Tmax = 124 , the expected sample size for 

the value-based sequential design was 120 pairwise allo-

cations. When Tmax = 248 , the value-based sequential 

design showed a modest reduction in expected sample 

size of around 30 pairwise allocations compared with the 

fixed length design. In both cases the additional value 

delivered to the healthcare system via reduced costs of 

research is small.

Discussion
The analysis reported in this paper represents only the 

second published application of the Bayesian value-based 

sequential model of [13, 14] to data from a clinical trial. 

It is the first application to investigate the behaviour of 

the model in the presence of an equivocal cost-effective-

ness signal, and also the first to use multiple imputation 

to address the problem of missing cost-effectiveness data.

Table 4 compares some of the principal results reported 

in the Results section with those from the application of 

the value-based sequential model to data from the ProF-

HER trial [18]. Column (2) reports the final estimate of 

E[INMB] based on the original trial data, showing that 

the cost-effectiveness signal was much stronger in the 

ProFHER trial than in the HERO trial. Columns (4) to 

(7) show the actual and percentage changes in the sample 

size and budget when Tmax is equal to the actual sample 

size of the trials (124 pairwise allocations for HERO, 125 

for ProFHER) and with a sample size equal to double that 

number. For columns (6) and (7), which report the results 

for the re-sampled data, the figures are based on the 

expected values. Column (8) reports the percentage of 

re-sampled paths that report a result consistent with the 

trial’s recommendation (that surgery is not cost-effective 

(ProFHER); that hydroxychloroquine is not cost-effective 

(HERO)).

The table shows that the value-based sequential model 

offers non-negligible savings in sample size and budget 

in the ProFHER application (equal to 14% for the trial’s 

sample size and 5% of the budget, with averages from the 

re-sampled data estimated to be 42%/38% and 14%/13%, 

respectively), but not the HERO application. This is prin-

cipally due to the strong evidence suggesting that sur-

gery is not cost-effective in the ProFHER trial (the final 

Table 4 Performance of some of the principal operating characteristics in the ProFHER and HERO applications of the Bayesian value‑

based sequential model

a The trial’s actual sample size, measured in pairwise allocations

(1) (2) (3) (4) (5) (6) (7) (8)

Estimate of E[INMB]

(£) (95% CI)
Tmax Original trial data Re‑sampled data % paths consistent 

with trial 
recommendationSample size Budget % 

change
Sample size 
Mean (SD)

Budget % 
change

ProFHER ‑1758 (‑2389, ‑1126) 125a 107 ‑5 73 (19) ‑14 91

250 ‑ ‑ 77 (27) ‑13 92

HERO ‑45 (‑1387, 1296) 124a 124 0 124 (3) 0 55

248 ‑ ‑ 237 (28) +22 57
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estimate of the expected value of incremental net mone-

tary benefit is -£1758), a result not reflected in the HERO 

trial, where the equivalent figure is -£45.

The absence of material reductions in expected sample 

size or costs in the HERO application should not be taken 

to be a negative result. Early termination of recruitment 

would generally not be indicated, or indeed desirable, in 

such a scenario. The absence of evidence of early stop-

ping indicates that the expected benefits from continu-

ing to learn about the comparative cost-effectiveness of 

the two technologies for the 24,500 patients who will be 

impacted by the adoption decision is, in general, greater 

than the expected benefits of stopping recruitment dur-

ing Stage II.

Our results also show that the impact of the equivo-

cal cost-effectiveness signal on the expected cost-savings 

delivered by the value-based sequential model is affected 

by the duration of Stage II, as well as the proportion of 

variable costs committed by the time Stage II starts. This 

is particularly evident for the scenario which sets the 

maximum sample size of the sequential design, Tmax , to 

be the sample size chosen for the HERO trial (124 pair-

wise allocations), with a time to follow-up of cost-effec-

tiveness data equal to one year. In this scenario, 60% of 

patients are randomised into the trial before Stage II 

starts and only three interim analyses occur prior to Tmax 

being reached. Hence, even in the presence of a stronger 

cost-effectiveness signal, the cost-saving offered by the 

value-based sequential model is likely to be small. In con-

trast, for the application to the ProFHER trial, only 38% 

of the maximum sample size was committed prior to the 

start of Stage II and seven, not three, interim analyses 

could be undertaken during Stage II. This relationship 

between the recruitment horizon and time to follow-up 

is consistent with what has already been observed in the 

literature [40].

It is important to note that there is no requirement 

to set Tmax to the sample size chosen for the conven-

tional frequentist design. It could be set to a value that 

is considerably greater than that, such as the Tmax = 248 

scenario we have considered. Or it could be set to the 

sample size that would maximise the expected net ben-

efit of sampling, using the Bayesian one-stage trial design 

principles, which would permit comparison of expected 

values of the one stage and the value-based designs to 

be made4. Such an increase could be advantageous in 

terms of maximising the overall net-benefit delivered 

by the value-based sequential model. Of course, if a 

strong cost-effectiveness signal emerges during Stage II, 

the value-based sequential model is likely to terminate 

recruitment well before Tmax is reached, as is shown in 

the ProFHER application. It would also be interesting to 

explore in more detail the implications of deploying the 

model in very large trials, buiding on the analysis that is 

reported in the Sensitivity analyses section.

One further difference between the ProFHER and 

HERO applications that is evident from Table  4 con-

cerns the proportion of re-sampled paths that result 

in a decision consistent with the results of the original 

trial. For the ProFHER trial, more than 90% of the paths 

show that surgery is not cost-effective in the UK setting. 

For the HERO trial, only around 55% of paths conclude 

in favour of placebo. This is again due to the difference 

in the strength of the cost-effectiveness signal between 

the two studies, but it is also a consequence of the dif-

ferences in inferential and/or decision-making criteria 

that are adopted by the value-based sequential model 

and the original frequentist methods, particularly with 

regards to the strength of evidence that is required to 

induce a switch to a new health technology. If the one-

time switching cost of adopting the new technology (i.e. 

hydroxychloroquine in the HERO trial) is assumed to 

be £0, then under the value-based sequential model, 

the new treatment should be adopted if and only if the 

final estimate of the posterior mean of E[INMB] exceeds 

£0. Given the equivocal cost-effectiveness signal in the 

HERO data, a reasonably large proportion of the re-

sampled paths – approximately 45% – conclude with 

a posterior mean that is slightly greater than £0. This 

is in contrast to the frequentist approach (see [17]), for 

which hydroxychloroquine would only have been recom-

mended for adoption if the data provided sufficient infor-

mation to refute the null hypothesis of no difference in 

a direction favouring hydroxychloroquine. A discussion 

of the advantages and disadvantages of different systems 

of inference and decision-making is beyond the scope of 

this paper. However, the asymmetry and conservatism of 

the frequentist approach – which would likely be desir-

able if a given technology is expected to impose impor-

tant costs to the health system – can be incorporated 

into the value-based sequential model in an explicit and 

readily interpretable way, via the inclusion of the non-

zero switching cost I > 0 in the derivation of the optimal 

policy.

The quantitative findings that we report in  the 

Results section are dependent on the precise values of the 

various parameters what we have chosen for our appli-

cation, including the size and timing of interim analy-

ses. However, the qualitative results, and the contrast 

between the HERO and ProFHER results, are likely to be 

relatively insensitive to any reasonable choice of param-

eters, owing to the nature of the cost-effectiveness signals 
4 Although not the central focus of this paper, we note that such compari-
sons are reported in the HERO trial in [11].
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from the two trials. That said, a limitation of our analysis 

is that all choices of parameter values were fully retro-

spective, and in some cases, were based on the observed 

trial data and records of actual trial expenditure. In prac-

tice, the unknown parameter values required for the 

value-based sequential model would need to be specified 

during trial set-up. Obtaining accurate estimates of some 

of these parameters prospectively could be challenging, 

although we note that the issue of specifying prospective 

estimates of unknown design parameters is by no means 

unique to the value-based sequential approach.

As an example, consider estimation of the delay to 

observing outcomes in terms of pairwise allocations ( τ ). 

This requires an accurate estimate of the expected rate of 

patient recruitment during the trial, as well as the time 

horizon for follow-up. Although trial teams generally spec-

ify target recruitment figures during trial set-up, observed 

rates of accrual can differ considerably from those that are 

anticipated. While small departures from the anticipated 

rate of accrual may not be a major issue, large deviations 

could compromise the validity of the Stage II stopping 

boundary because the number of pipeline patients may 

differ considerably from the planned number. One way 

that this could be addressed in practice is by using an 

internal pilot phase to assess the rate of accrual, and mod-

ify the Stage II stopping boundary accordingly.

A second example concerns the number of patients, P, 

affected by the technology adoption decision. This depends 

on both the incidence of the condition and the time hori-

zon over which the adoption decision will apply. While, 

from a value-based perspective, it is clear that these param-

eters are a prerequisite to informed and rational decision 

making, in practice there is likely to be uncertainty regard-

ing both incidence and time horizon. Further work could 

explore the practicalities of eliciting prospective estimates 

of these parameters, as well as the potential impact of dis-

crepancies between such estimates and their true values.

A final example concerns the cost per pairwise alloca-

tion, c. Our estimate of this parameter was derived under 

the assumption of an even split between fixed and vari-

able costs during the recruitment and follow-up periods, 

a strong and probably overly simplified assumption. We 

believe our results concerning sample size and resource 

savings in the Results section are unlikely to be materially 

affected by small-to-moderate changes in this input, at 

least for Tmax = 124 or 248. However in other scenarios, 

accurate estimation of the cost per pairwise allocation 

could be of great importance in terms of its impact on 

both the optimal policy and any cost-savings that might 

be obtained by stopping recruitment early under the 

sequential design. While there is some literature on costs 

per patient in the commercial context (for example, [41]), 

there is little published literature providing figures for 

non-commercial clinical trials (such as the HERO trial). 

Published data concerning expected costs per patient in 

the non-commercial context would likely be of consider-

able value to any future work investigating the potential 

economic benefits of sequential clinical trials, whether 

they take a value-based perspective or otherwise.

The analyses reported in this paper assumed a fixed, 

known value for the sampling standard deviation of 

pairwise observations of incremental net monetary ben-

efit, σX . We based this estimate on the observed data, 

but in practice, a reasonable estimate of σX is required 

prospectively in order to derive the optimal policy. It is 

worth noting that accurate specification of variance/

nuisance parameters prior to a trial’s commencement is 

also necessary for many other approaches to trial design, 

whether they be frequentist or Bayesian. Furthermore, 

the assumption that the sampling standard deviation, σX , 

is known can be relaxed so that the prior-posterior dis-

tributions of both the expected value of incremental net 

monetary benefit and the variance of incremental net 

monetary benefit are updated as outcomes are observed 

(see Section 4 of [13]). Finally, although our tests of nor-

mality of the data for incremental net monetary benefit 

were not rejected in the HERO trial, the general question 

of the performance of the model when data are not nor-

mal is an interesting topic for future research.

A further area for future research effort is to consider 

the additional costs of designing and running a trial 

according to the value-based sequential model. It is plau-

sible that, although increasing the number of interim 

analyses introduces additional flexibility and is therefore 

likely to deliver better value, the additional costs arising 

from frequent monitoring could outweigh this increase 

in expected net benefit. Future work could consider how 

to estimate the additional costs of running a trial accord-

ing to the value-based sequential model (possibly follow-

ing similar methods to those used in [12]), and the extent 

to which this impacts the expected net benefit of this 

approach over some comparable designs.

We also did not explore alternative approaches to 

incorporating multiple imputation into the sequential 

analyses that were undertaken as part of our applica-

tion of the value-based sequential model, or the poten-

tial impacts of leveraging informative baseline covariates 

when obtaining estimates of E[INMB] . While the quali-

tative results for HERO are unlikely to be particularly 

sensitive to either aspect, there might be alternative trial 

settings where these analytical choices matter more. 

Future work could explore different methods of incorpo-

rating both multiple imputation and more sophisticated 

model-based estimation of E[INMB] into the value-

based sequential approach, and their advantages and 

disadvantages.
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Two final matters are worthy of note. Firstly, we 

have focused exclusively on applying the value-based 

sequential model in the context of two-arm individually 

randomised trials. This is motivated by the theory under-

lying the value-based sequential model of [13], which 

focused on this setting. However, there are potential ave-

nues for theoretical developments to extend the value-

based sequential framework to handle hierarchical data 

as, for example, are encountered in cluster-randomised 

trials [42–44]. Secondly, there exist alternative metrics 

to evaluate the value-based sequential design, using met-

rics from the Bayesian value of information literature (see 

[25] and related literature). These were deemed beyond 

the scope of this article, but are included in Appendix E 

for the interested reader.

Conclusions
We have investigated the implementation of the Bayesian 

value-based sequential model proposed by [13, 14] in the 

context of the HERO trial’s equivocal cost-effectiveness 

signal, and illustrated how multiple imputation might 

be used to address missing data within this framework. 

Considered alongside the findings from the ProFHER 

application, our results suggest that, in the presence of 

an unambiguous cost-effectiveness signal, such as in the 

ProFHER trial, the value-based sequential model can 

produce material reductions in expected sample size 

and research costs, but that this is not the case when the 

signal is equivocal, such as in the HERO trial. This work 

helps build a more complete picture of the behaviour of 

the value-based sequential model under different scenar-

ios, which can help inform any future prospective appli-

cation of this approach alongside existing trial designs 

and decision making criteria.
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