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ABSTRACT 

Infrastructural development geared towards sustainable cities and communities requires the adoption of sustainable 

construction materials. As a contribution towards this, optimization of the unconfined compressive strength (UCS) 

and desiccation-induced shrinkage (DS) behavior of expansive soil stabilized with alkali-activated waste materials 

was executed. A novel approach was applied for the multiple characteristics optimization of the developed industrial 

waste-based soil-composite binder for use in construction. Laboratory experiments were done employing Taguchi 

design and considering several process parameters.  The outcome of the single response optimization based on Taguchi 

signal–to–noise ratio (SN) analysis resulted in conflicting optimal levels for the UCS and DS. Hence, a novel multi-

response optimization was applied to concurrently optimize the UCS and DS based on grey–vector analysis (GVA). 

The outcome of the GVA identified the greatest factor effects on the vector resultant to be waste quantity, type and 

preparation method. The new method was compared with the renowned Taguchi–grey relational analysis and was 

found to be more computationally efficient, in addition to matched performance based on Euclidean distance between 

the optimal solutions. Thus, the new method can serve construction engineers in development of alkali-activated 

waste–treated soil as sustainable construction material for embankments and waste containment.  

Keywords: desiccation–induced shrinkage, grey–vector analysis, industrial wastes, optimization, unconfined 

compressive strength. 

Introduction 

Expansive soils, which are widely distributed globally potentially constitutes an integral component of many civil 

engineering infrastructures such as roads, embankments, fills, buried pipelines, railways and waste containment 

facilities. Indeed, the utilization of such material in construction applications is clearly inevitable. Great concerns 

however, arise due to the adverse volume change orchestrated by the proliferation of moisture infiltration in contact 

with the soil, which causes severe distress to overlying infrastructure and other geo-structures. Instructively, this nature 

of expansive soils obviously encourages various mechanisms of infrastructure deterioration, one form of which is the 

renowned desiccation-induced shrinkage (DS) cracking. 
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Superficial and subterranean cracking of expansive clays resulting from desiccation effect on environmental exposure 

has been reported as the cause of various geo-hazards including failure of pavements, waste containment 

infrastructures, reservoirs, natural and engineered slopes [1, 2, 3, 4]. In the case of road pavements, macro-cracks 

constitute pathways for moisture infiltration and the subsequent loss of bearing strength of the subgrade layer that acts 

as the pavement foundation, ultimately resulting to pavement failure [4, 5, 6]. In waste containment infrastructures, 

desiccation – induced volumetric shrinkage leads to increment in the permeability of the liner material, which can 

permit leachate, mine tailings or other toxic wastes to find its way to the groundwater, in addition to the shear failure 

of engineered landfills [1, 8, 9]. Similarly, surficial slope failures occur due to cracks, which not only increases 

infiltration to increase pore water pressures, but also causes suction loss that ultimately results in shear strength 

attenuation with time [4, 10, 11]. These considerations therefore necessitate the adoption of sustainable technologies 

to mitigate the DS cracking of expansive soils, while improving strength for durability as a veritable construction 

material.  

In this regard, various technologies have been experimented in recent years to improve expansive soils in a sustainable 

manner. This is often attempted by adopting the use of industrial waste materials, which not only serve as a soil 

improvement strategy, but also serves the complementary purpose of waste management. Several industrial wastes 

have been used in soil improvement, including rice husk ash, fly ash, quarry waste (QW), tailings, waste tires and 

others [12]. In the study by Ahmed and Naggar [13], basanite-tire waste mixtures were deployed to improve the 

strength of a silty soil. The results show that the addition of recycled basanite waste had a more positive effect on the 

compressive strength improvement, while the rubber tire waste increased the tensile resistance of the soil. In a related 

study [14], various percentages of waste marble powder additive (5, 10, 20, 30 and 50%) and curing time (0, 7, 30 and 

60 days) were considered for soil strength improvement. The UCS of the uncured soil samples attained peak values at 

5% marble waste content, whereas the cured specimens only showed strength gain at 7 days, which suggest a threshold 

for the occurrence of chemical reactions within the soil-additive matrix. The stabilized soil generally resisted freeze-

thaw cycles up to the 5th cycle before failure. It was also reported that mass loss increased with increase in the freeze-

thaw cycles; however, for each cycle, the stabilized soil had lower mass loss in comparison with the untreated soil, 

indicating its durability for practical application. Other studies have similarly reported strength improvement with the 

addition of industrial waste materials [15, 16, 17, 18]. 

Instructively, these studies suggest that soils can be improved using industrial wastes, albeit the extent of improvement 

achievable is less when compared with the conventional materials such as cement and lime, which are considered to 

be eco-unfriendly. The search for a more robust technology birthed the utilization of geopolymer technology in soil 

improvement, which has comparative strength improvement with cement and lime, while maintaining eco-friendliness 

[19, 20]. Geopolymer soil stabilization has emerged in recent years in the area of soft ground improvement and has 

been widely reported. Murmu et al. [19] improved the properties of black clay using fly ash waste as geopolymer 

binder, considering different binder contents and curing ages (0, 7, 14, 28 and 90 days). The outcome of the study 

revealed that with increase in geopolymer content and curing time, the UCS and bearing strength of the soil 

significantly improved. The UCS increased from an initial value of about 200 kPa to an ultimate high of about 3250 
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kPa, while the bearing strength improved from 3% to about 42% under unsoaked condition. Furthermore in a similar 

study [21], the shrinkage limit of black clay was minimized from a value of about 32% to less than 1%. Similar studies 

have also shown that geopolymer soil stabilization using industrial waste materials significantly improves soils for 

various construction applications [22, 23, 24]. 

Previously, it has been reported that several process parameters influence the development of geopolymer binders for 

soft ground improvement, which necessitates the costly and time-consuming experimental trials [20, 25]. Thus, this 

motivates the search for robust optimization approaches for their development. Taguchi method has shown to be the 

preferred and reliable method so far and is typically opted for in the robust development of geopolymers for 

construction applications [26, 27, 28]. However, the Taguchi method can only optimize responses singly and hence; 

a multi-response technique has to be integrated into it for the concurrent optimization, which inspired a novel aspect 

of the present study. 

In the present study, geopolymer binders based on industrial wastes including QW and palm oil fuel ash (PFA) were 

used to minimize the DS of an expansive soil while maximizing the UCS, adopting the Taguchi method. The novel 

highlight of this study showcases an optimization method, which has been developed from the simple concept of 

vector analysis. Furthermore, a comparative analysis is conducted with a renowned multi-response method based on 

grey relational analysis (GRA), and the advantages of the new method have been emphasized.  

Optimization Background 

Taguchi method 

Design of experiment that is based on the Taguchi method is a renowned robust approach for product development. 

The method employs the use of orthogonal arrays, which ensures that the experimental space is navigated in a balance 

manner to achieve an optimized product [29]. Moreover, the signal-to-noise ratio (SN) optimization function is used 

to ensure minimum deviation from a specified target to ascertain the overall quality of the product development 

process [29]. These unique attributes, make the Taguchi method a very simple and reliable method for industrial 

product development. Lately, ample applications of the method have been reported in different ground improvement 

schemes for single response optimization [29, 30, 31]. Thus, it is a highly favored method for the construction industry 

in single response scenarios. 

On the other hand, when multiple responses are involved, other multi-response methods have to be integrated with the 

Taguchi method. Some of these methods include genetic algorithm weighting, GRA, data envelopment analysis, utility 

concept, to mention but a few. More often than not, in addition to the issue of lack of distinctiveness in the optimal 

solution; these methods require great computational effort and are often based on advanced analytical or numerical 

approaches, which make them inapt for direct practical use [7, 32]. For instance, in the analytical method based on 

GRA, several computations are required for the multi-response attribute known as grey relational grade (GRG). These 

computations include: comparability sequence (grey relational generation), deviation sequence, grey relational 

coefficients and then the GRG. Moreover, a weighting factor, which is more commonly denoted as the identification 
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coefficient, 𝜁 is required for weighting the prioritization of each multiple attribute [33]. As such, various methods are 

adopted for its selection namely intuitionist approach, entropy weighting method, analytic hierarchy process, et cetera. 

This further compounds the GRA and could introduce bias depending on the level of subjectivity inherent in the 

adopted response prioritization method. This challenge is similarly shared by other multiple response methods such 

as the utility concept [28]. Apparently, there is need for improved techniques that will surmount the aforementioned 

drawbacks associated with Taguchi multi-response optimization. In view of this, a new approach is proposed in the 

present study.     

Proposed grey-vector analysis 

In this study, a method is presented, which is based on the processes of grey-based normalization and vector analysis. 

In an orthogonal array experiment, each individual response data representing the quality attributes of a product is 

obtained as a 𝑛 × 1 vector. Instructively, this data is rightly a vector since it has magnitude and a direction, which is 

defined by the optimization objective. As such, it is amenable for vector analysis using algebra of vectors. Since the 

concurrent attainment of the desired optimum is required for the product development, the concurrent effect of all the 

vectors representing the quality attributes is determined. In vector physics, this overall effect of vectors is known as 

the resultant vector, Ʀ and can be expediently obtained from vector algebra. The method proposed in the present study 

is mathematically represented thus: 

Consider a product, in which the overall quality 𝑌 is based on 𝑋𝑘 attributes defined as the function in Equation 1. 𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑘) 

(1) 

Each 𝑋𝑖 attribute is considered as a 𝑛 × 1 vector representing the product’s experimental data space, while the overall 

product quality is also represented as a 𝑛 × 1  vector. Hence, Equation 1 is aptly represented in vector notation as 

shown in Equation 2. 

�⃗� = 𝑓(𝑋1⃗⃗⃗⃗ , 𝑋2⃗⃗⃗⃗ , … , 𝑋𝑘⃗⃗ ⃗⃗  ) 

(2) 

 The quantities representing each 𝑖𝑡ℎ row entry of the 𝑋𝑗 column are the scalar elements for each vector, which defines 

the magnitude, while the optimization objective defines the vector direction. These scalar elements are the normalized 

SN, known as the comparability sequence. Thus, the analytical function that defines the overall effect of each 

component vector is the resultant vector. This resultant represents the overall multi-characteristics quality attribute, 𝑌 

and can be expressed as the sum of each vector component as shown in Equation 3, based on a priori definitions 

explained subsequently. 
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�⃗� ≡ Ʀ⃗⃗ =  ∑𝑋𝑗⃗⃗  ⃗𝑘
𝑗=1  

(3) 

In order to assuage bias towards vectors of higher magnitude, grey normalization is applied on the data prior to the 

vector analysis. The min-max grey normalization functions are shown in Equations 4 and 5 for the respective 

minimization and maximization objectives.  

ƞ𝑖∗(𝑗) = 𝑚𝑎𝑥 ƞ𝑖0(𝑗) − ƞ𝑖0(𝑗)𝑚𝑎𝑥 ƞ𝑖0(𝑗) − 𝑚𝑖𝑛 ƞ𝑖0(𝑗) 

(4) 

ƞ𝑖∗(𝑗) = ƞ𝑖0(𝑗) − 𝑚𝑖𝑛 ƞ𝑖0(𝑗)𝑚𝑎𝑥 ƞ𝑖0(𝑗) − 𝑚𝑖𝑛 ƞ𝑖0(𝑗) 

(5) 

Where ƞ𝑖0(𝑗) is the base sequence, which represents the SN; 𝑚𝑖𝑛 ƞ𝑖0(𝑗) and 𝑚𝑎𝑥 ƞ𝑖0(𝑗) are taken as the respective 

minimum and maximum of the sequence (that is min and max of SN); ƞ𝑖∗(𝑗) is then the comparability sequence, which 

represents the normalized SN. 

The SN for the respective minimization and maximization respectively denoted as smaller-the-better (STB) and 

higher-the-better (HTB) functions are given as shown in Equations 6 and 7. 

ƞ = −10𝑙𝑜𝑔10 (1𝑛 ∑(𝑋𝑖 + 𝑋0)2𝑛
𝑖=1 ) 

                                                                                                                    (6) 

ƞ = −10𝑙𝑜𝑔10 (1𝑛 ∑( 1𝑋𝑖 + 𝑋0)2𝑛
𝑖=1 ) 

                                                                                                              (7) 

 Where the number of response data per experimental run is 𝑛, 𝑋𝑖 is the response value and 𝑋0 is the target value. In 

the case of the HTB and STB SN, the unstated target is zero. 

It is noteworthy at this juncture that Equation 3 holds as long as the SN functions are used. This is true because an 

implicit requirement of Equation 3 is that all the 𝑋𝑗⃗⃗  ⃗ have the same direction, which is attainable for SN functions that 
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are always maximized. Hence, when SN is used, the vector directions are the same. In contrast, when the individual 

responses require either of minimization or maximization, the appropriate vector resultant function has to be used in 

Equation 3 since the vector directions differ in an opposing manner. Similarly, Equation 5 must be used with the SN; 

else, either of Equations 4 or 5 should be employed for the respective minimization or maximization objective. 

However, the SN functions are strongly recommended for use to prevent computation errors and ensure a robust 

optimization design. The final optimization Equation is represented in Equations 8-9. 

Maximize: 

Ʀ⃗⃗ =  ∑𝑋𝑗⃗⃗  ⃗𝑘
𝑗=1  

(8) 

Subject to 0 ≤ ƞ𝑖∗(𝑗) ≤ 1 

  ∀ 𝑋𝑗𝑘⃗⃗ ⃗⃗   
(9) 

The overall product quality is thus obtained from the optimization shown in Equations 8-9 taking the resultant 

function to be the HTB SN function. 

Methodology 

Materials 

The data used in the present study is based on the Taguchi-based experiment conducted by Nwonu [35] for the 

development and application of expansive soil geopolymer binders. In the study by Nwonu [35], a locally sourced 

expansive soil with geotechnical properties as shown in Table 1 was treated with alkali-activated binders made from 

two industrial waste materials QW and PFA. These waste materials were also sourced locally from their point of 

disposal and were then characterized to obtain their chemical oxide composition summarized in Table 2. 

Laboratory experiments 

Laboratory experiments were conducted to determine the UCS and DS of the alkali-activated treated samples as 

reported by Nwonu [35]. The UCS test was conducted in a compression testing machine based on the specifications 

of the British standard institute. The tested samples were initially compacted in the laboratory based on the British 

standard light compactive energy at the required moisture content and then cured for 7 days under humidity controlled 

condition for strength development. The required moisture content was obtained from the moisture density 
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relationship for the geopolymer mixtures, which was generally within the optimum moisture content for the natural 

soil 19.7 ± 2% as reported in previous study [9]. The compaction was done in the standard Proctor mold, after which 

cylindrical 38 mm diameter by 76 mm height specimens were extruded for the UCS test.  

The DS test was conducted as per previous studies [36, 37]. The samples were prepared at the required moisture 

content using the previously described compaction method. Then, three cylindrical specimens of 38 mm diameter by 

76 mm height were extruded from the compaction mold. The cylinderical specimens were allowed to air-dry on the 

laboratory bench in order to closely simulate the in situ environmental condition. At least, three measurements of the 

height and diameter were taken using a vernier calliper until there was no further reduction in mass, representing no 

further moisture loss. The average measurements were used to compute the final volume and determine the volumetric 

shrinkage, which is the DS in this study. 

Experimental design and optimization 

The aforedescribed laboratory experiments were performed based on a designed experiment by Nwonu [35], 

empoying the L8 Taguchi orthogonal array. The process parameters considered were the waste type (factor A), waste 

content (factor B), activator type (factor C), ratio of activator to waste content on mass basis (factor D) and method of 

mixing (factor E). the two levels used in factor C are the sodium hydroxide (NaOH) and potassium hydroxide (KOH), 

while two mixing methods M1 and M2 were used. In M1, the soil and industrial wastes were homogenously mixed 

before the activator was added, whereas in M2, the activator and industrial waste were mixed prior to adding to the 

soil. The alkali-activator comprised of an equal amount of alkali hydroxide and water glass. The factors and their two-

level designations are shown in Table 3, while the orthogonal array containing both the coded and uncoded variables 

is shown in Table 4 along with the obtained SN. The SN was obtained for the UCS using HTB fuction for 

maximization, whereas that of the DS was computed using the STB for minimization. 

The flow charts for the GVA and the GRA used for the multi-response optimization are clearly presented in Figs 1 

and 2 respectively. It is clear that the GVA is more computationally efficient because it requires less computation 

processes than the GRA for the multi-response optimization.  

Results & Discussion 

Individual response optimization 

Assessment of the effect of process factors on the DS is clearly shown in the SN plot of Fig 3. It can be seen that 

factors E, A and B have the most significant effect on the variation of the DS based on the magnitude of the difference 

in SN between the factor levels. Apparently, the method of soil stabilization that involves mixing the industrial waste 

with the soil prior to alkaline activation is more effective for the reduction of the DS. Furthermore, the choice of PFA 

as a preferable industrial waste for DS minimization is also inferred. Moreover, the use of a higher percentage (20%) 

of the industrial waste gives a better improvement in the DS behavior of the soil. These factors are very pertinent in 

achieving a stabilized soil with minimum DS. Based on the Taguchi SN analysis, the optimal factor levels is obtained 
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from Fig 3 as A1 – B2 – C2 – D1 – E1. Using this optimal, the predicted DS based on the Taguchi additive model is 

1.1% (SN = -8.849). This represents a tremendous reduction in the DS of the soil from an initial value of 20.3%, which 

demonstrates the stabilization capability of the alkali-activated additive used in the present study. 

In a related development, a similar representation of the factor effects on the UCS of the stabilized soil is displayed in 

Fig 4. The factors B and C clearly had the most significant influence on the soil strength behavior. This implies that 

the quantity of the industrial waste and the alkali type have notable effect on the strength development of the stabilized 

soil. The potassium-based activator appears to give an improved soil of higher strength than the sodium-based 

activator. The possible underlying mechanisms which are responsible could be similarly attributed to the effect of 

moisture content on the ionic changes which occur at the diffuse double layer of the expansive clay [9]. This causes 

significant modifications in the strength of the bonds at the interlayer, which is dependent upon the nature of the ions 

in contact with the diffuse double layer of the soil within the clay-pore fluid media. The optimal factor level as shown 

by the maximum SN in Fig 4 corresponds to A2 – B2 – C1 – D2 – E1. The predicted UCS value obtained at this 

optimum using the Taguchi additive model is 489. 25 kN/m2 (SN = 54.206). This represents a huge increment of about 

276% in the UCS of the stabilized soil. 

Despite these significant improvements in the DS and UCS of the soil achieved via alkali-activation, it is also 

noteworthy that the optimal levels for factors A, C and D are conflicting. This presents a dilemma to the mix design 

engineer charged with the responsibility of prescribing the optimum mixing method in field application. To resolve 

this identified conflict, further analysis was executed using the novel method developed in the present study and is 

explicitly presented in the subsequent section. 

Grey-vector analysis multi-response optimization 

The outcome of the novel GVA executed for the multi-response optimization of the DS and UCS using the steps 

shown in Fig. 1 produced the result summarized in Table 5. Determination of the factor effects on the Taguchi SN 

computed using the HTB function due to the desirability of higher resultant produced the results shown in Fig. 5 and 

Table 6. The Figure clearly shows that the factors which had the most significant effect on the vector resultant are A, 

B, and E. The extent of their effect on the vector resultant can be summarized in descending order as B > E >A > D > 

C as can be clearly observed from Table 6. 

Furthermore, analysis of variance (ANOVA) was conducted by computation of the sum of squares (SS), mean squares 

(V), variance ratio (F-ratio) and percentage contribution (P), taking into account the degrees of freedom (DOF) of 

each process parameter [29]. The result, which is summarized in Table 7 presents a quantitative assessment of the 

factor effects and is found to be consentient with the Taguchi analysis. It can be seen that the factor B contributed the 

most to the vector resultant variation with 41%, followed by factor E (38.5%) and then A (10.4%). Factors C and D 

have very negligible contribution to the variation of the vector resultant.   

Apparently, a higher quantity of the industrial waste is needed to minimize the DS of the expansive soil, while 

maximizing the UCS. This reveals the high degree of waste reuse inherent in the geopolymer technology utilized in 
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the present study for the expansive soil improvement. Furthermore, it is pertinent to apply the correct preparation 

method for field application. Vividly, the result of the present study show that homogenously mixing the soil and 

industrial waste material prior to alkali-activation produces a stabilized soil of higher strength and minimized DS. 

Furthermore, the choice of PFA as a better industrial waste material for the soil improvement process has also been 

shown and is largely attributed to its large alumino-silicate content anticipated to be more amorphous than that of the 

QW.  Therefore, future studies can explore the pretreatment of the QW (for instance heat treatment) to derive a more 

amorphous alumino-silicate framework before use. 

Furthermore, to obtain the predicted optimum values of the DS and UCS, the optimal factor levels in Fig. 5, which is 

given as A1 – B2 – C1 – D2 – E1  is used for the response prediction. The optimum predicted DS is 1.85%, while that 

of the UCS is 458 kN/m2. To verify the accuracy of the obtained optimum value, 90% confidence interval of the 

confirmation experiment was computed with Equation 10 [28]. 

CI = ±√Fα(1, fe)Ve [R + NeffRNeff ] 
(10) 

Where Fα(1, fe) is the F-ratio at confidence level of 1 − α against DOF 1 and error DOF, fe;  R is the sample size for 

the confirmation experiment and Neff = N 1 + DOFu⁄ ; Ve is the error variance; N is the total number of trials, and DOFu is the total degrees of freedom associated with the estimate of the vector resultant value     

The predicted optimum vector resultant, is given as 2± 0.5895. The obtained SN from the confirmatory experiments 

for the respective DS and UCS were -4.7106 and 53.9794. Similarly, their vector resultant was gotten using Fig. 1, 

including the predicted and confirmatory experimental values in the comparability sequence of the orthogonal array. 

The computed vector resultant is 1.977, which is lucidly within the confidence interval of 2± 0.5895; hence, the 

prediction accuracy is verified.     

Comparative analysis of the novel GVA and GRA 

Multi-response optimization using GRA as applied in soil stabilization [38] is pertinent for comparison with the novel 

GVA. The required computations done for the GRA are summarized in Table 8, showing the comparability sequence, 

deviation sequence, grey relational coefficient, GRG and grey ordinal value (GOV) by applying the sequence in Fig.2. 

The factor effects are shown in Fig 6, which suggests the existence of two optimum solutions. The first solution is 

given as A1 – B2 – C2 – D2 – E1, while the second solution is A2 – B2 – C2 – D2 – E1. The predicted optimum for 

UCS and DS obtained with the first solution are 364.25 kN/m2 and 1.275% while that of the second solution gave 

UCS of 366 kN/m3 and DS of 3.7%. Rationally, the first solution is a better multi-response compromise to the single 

response optimization solution and thus was used further in the comparative analysis. 
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Confidence interval for the confirmatory experiment was similarly obtained using Equation 10. The predicted 

optimum solution was also verified at the 90% confidence interval of the confirmatory tests. In order to execute a 

direct comparison of the aptness of the compromise solution gotten using both GVA and GRA, a new approach was 

adopted in the present study by consideration of the Euclidean distance between the single response optimization 

solution (ideal solution) and each of the obtained multi-response optimization solution (compromise solution). The 

Euclidean distance is a robust approach, which is typically used as a similarity index measure in hierarchical cluster 

analysis [20], as well as in machine learning such as K-nearest neighbors. The general formula for the computation as 

applicable in the comparison of the optimization solutions is provided in Equation 11. 

𝛥 = [∑(ƞ𝑠𝑗 − ƞ𝑚𝑗 )2𝑘
𝑗=1 ]12 

(11) 

Where the Euclidean distance is 𝛥, ƞ𝑠𝑗 is the grey-based normalized single response predicted value for the 𝑗𝑡ℎ 

response and ƞ𝑚𝑗  is the grey-based normalized multi-response predicted value for the 𝑗𝑡ℎ response.  

It is noteworthy that the normalized responses are used in Equation 11 to resolve any inherent bias in responses of 

large magnitude. The grey-based normalization is executed using a comparability sequence comprised of the single 

response predicted values and all the multi-response solutions involved in the comparison. The outcome of this 

analysis is summarized in Table 9. The result clearly reveals the introduction of bias in the raw Euclidean distance 

computed using the non-normalized response. On the other hand, the normalized Euclidean distance clearly shows 

that the two multi-response methods exhibit a matched performance in their predicted optimum values. In a related 

development, the optimal solution obtained from the GVA is the same with that obtained using the utility concept [39] 

for the main effects. The upshot of this study also highlights the issue of non-uniqueness in the optimal solution for 

multi-response methods and is an aspect that requires further attention to create room for improvement. However, the 

GVA method developed in the present study is more computationally efficient than both GRA and the utility concept, 

because it requires fewer computations for multi-response optimization. 

Microstructural analysis of geopolymer structure 

Evidence of geopolymerization from the alkali-activation of alumino-silicate rich industrial waste materials can be 

revealed via microstructural analysis. The results of Fourier transform infrared spectroscopy (FTIR) and energy 

dispersive spectrophotometer elemental (EDSE) analysis are presented for the natural soil and the optimally stabilized 

soil in the respective Table 10 and Table 11, Fig 7.  

The significant peaks for the natural soil from FTIR analysis show the presence of weakly bonded water molecules, 

typically expected within the clay-pore fluid media of expansive soils. Furthermore, peaks for inactive sites of 

alumino-silicate and quartz are present due to the crystalline nature of the alumino-silicate content of the natural soil, 
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in addition to the presence of significant amount of quartz mineral in the soil. The stabilized soil exhibited nuances, 

which give an indication of the occurrence of geopolymerization in the stabilized soil. The peaks for the water 

molecules slightly dropped to lower wave numbers, became broad, and sharp as presented in previous study [28]. 

These suggest that the water molecules have become strongly bonded. This is likely attributed to the stronger –OH 

bonding anticipated from the alkali activator [28, 39]. The inactive sites occurring in the stabilized soil could likely 

have resulted from that in the natural soil and some residual industrial waste particles in the stabilized soil matrix. 

Further indication of the geopolymerization reaction is provided by the carbonate functional group due to reaction of 

atmospheric CO2 with the alkali activator (KOH) during mixing to form K2CO3 [28, 40]. The occurrence of the 

alumino-silicate gel band associated with the T–O sialate and siloxo framework confirms the formation of geopolymer 

binders in the stabilized soil [41, 42, 43]. 

Furthermore, the EDSE in Figure 7a show that the major elements prominent in the natural soil are Si, Al and Fe, 

based on the peaks. The atomic concentration of the elements is also shown in Table 11. This is as expected due to 

the rich content of the oxides of Si, Al and Fe in the oxide composition of the natural soil (Table 2). The stabilized 

soil EDSE peak show slight variation in the prominence of relevant elements in the soil. The peak for Al slightly 

dropped, while the peaks for Na and K became more prominent. These nuances are attributed to the formation of more 

siloxo alumino-silicate framework structures; in addition to the contributions of the sodium-based water glass 

(Na2SiO3) and potassium hydroxide (KOH) activator used for the alkali-activation.   

Conclusion 

Sustainable and improved construction materials are attainable by harnessing the reuse of industrial waste materials. 

This has been shown in the present study via the adoption of alkali-activation of PFA and QW for the improvement 

of the DS and UCS of an expansive soil. A robust and systematic experimental design and novel multi-response 

optimization approach was further adopted to ensure a replicable process when considered for field application. The 

developed composite material achieved very low volumetric DS (less than 4%) and high UCS value (far above 200 

kPa) and can be employed as a sustainable construction material in embankments and waste containment facilities. 

The following summarizes the key findings of this study. 

1. The key process factors which significantly influence the DS and UCS of the stabilized expansive soil 

using alkali-activated waste materials are the industrial waste quantity, method of preparation and waste 

type. 

2. A computationally efficient novel multi-response optimization for the DS and UCS of the stabilized soil 

was developed based on grey normalization and vector analysis (GVA). 

3. The optimally stabilized soil based on the GVA predicted significant improvement in the UCS (from 130 to 

458kPa) and DS (from 20.3 to 1.85%). Moreover, the prediction was verified to be accurate at 90% 

confidence interval of the confirmation experiments. 

4. The multi-response optimization and prediction using the novel GVA matched the performance of GRA 

based on the computed Euclidean distance between the single response prediction (ideal solution) and 
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multi-response prediction (compromise solution). In addition, the GVA gave the same optimization 

solution as the utility concept. 

5. The GVA is regarded to be particularly advantageous, more desirable and expedient for construction and 

mix design engineers because it requires less computational effort than other multi-response methods. 

6. Evidence of the geopolymerization process achieved via alkali-activation was confirmed based on FTIR 

and EDSE analysis, which revealed the formation of alumino-silicate gels in the stabilized soil. 
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Fig 1. Flowchart for the novel multi-response optimization based on Taguchi-GVA  
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Fig 2. Flowchart for the multi-response optimization based on Taguchi-GRA  

 

 

COMPUTE RESPONSE SN: 
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ƞ𝒊∗(𝒋) = ƞ𝒊𝟎(𝒋) − 𝒎𝒊𝒏 ƞ𝒊𝟎(𝒋)𝒎𝒂𝒙 ƞ𝒊𝟎(𝒋) − 𝒎𝒊𝒏 ƞ𝒊𝟎(𝒋) 

COMPUTE DEVIATION SEQUENCE: 𝜹𝒊∗(𝒋) = ‖ƞ𝟎(𝒋) − ƞ𝒊∗(𝒋)‖ 
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GREY RELATIONAL GRADE: 

Ø = 𝒌−𝟏 ∑ 𝜸𝒊∗(𝒋)𝒌𝑱=𝟏  



 

Fig 3. Plot of factor effect on the SN of DS 

 

Fig 4. Plot of factor effect on the SN of UCS 



 

Fig 5. Plot of factor effect on the SN of vector resultant 

 

Fig 6. Plot of factor effect on the SN of grey ordinal value 



 

 

(a) 

 

(b) 

Fig 7. EDSE peaks for (a) natural soil (b) optimally stabilized soil 



Table 1. Geotechnical/physical properties of the TBC soil  

S/No Property Description 

1 Specific gravity  2.62 

2 Natural moisture content 9.9% 

3 Fines 80.1% 

4 Sand 19.9% 

5 Liquid limit 66.0% 

6 Plastic limit 34.9% 

7 Plasticity index 31.1% 

8 Optimum moisture content (OMC) 19.7% 

9 Maximum dry density (MDD)  1.59g/cm3 

10 AASHTO classification A-7-5 

11 USCS classification CH 

12 Permeability 2.025x10-9 ms-1 

13 UCS 130 kN/m2 

14 DS 20.3% 

 

Table 2. Major oxide composition of the soil and industrial waste materials 

Compound (%) Soil  QW PFA 

Al2O3 17.7 20.4 16.3 

SiO2 59.3 50.3 59.8 

Fe2O3 5.4 0.7 9.6 

CaO 0.8 1.5 0.8 

K2O 2.1 2.3 1.2 

TiO2 0.7 0.2 0.5 

SO3 0.3 <0.1 <0.1 

Loss on ignition <10 <10 <10 

 

 

 

 

 

 

 

Table



Table 3. Designation of process parameters and their levels 

Factor Designation Level 

1 2 

A PFA QW 

B 10% 20% 

C NaOH KOH 

D 0.5 0.7 

E M1 M2 

 

 

Table 4. Design orthogonal array with coded and uncoded variables and SN 

  Run A B C D E A B C D E UCS SN DS SN 

1 PFA 10% NaOH 0.5 M1 1 1 1 1 1 48.9432 -12.041 

2 PFA 10% KOH 0.7 M1 1 1 2 2 1 49.218 -10.63 

3 PFA 20% NaOH 0.7 M2 1 2 1 2 2 51.5957 -13.255 

4 PFA 20% KOH 0.5 M2 1 2 2 1 2 47.9935 -10.37 

5 QW 10% NaOH 0.7 M2 2 1 1 2 2 49.9662 -18.69 

6 QW 10% KOH 0.5 M2 2 1 2 1 2 44.5577 -18.486 

7 QW 20% NaOH 0.5 M1 2 2 1 1 1 53.5339 -11.821 

8 QW 20% KOH 0.7 M1 2 2 2 2 1 51.2696 -11.364 

 

Table 5. Output for the multi-response GVA 

  Run Comparability sequence Vector resultant 

ƞ𝑖∗(𝑈𝐶𝑆) ƞ𝑖∗(𝐷𝑆) Ʀ 

1 
0.799 0.489 1.288 

2 
0.969 0.519 1.488 

3 
0.653 0.784 1.437 

4 
1.000 0.383 1.383 

5 
0.000 0.603 0.603 

6 
0.025 0.000 0.025 

7 
0.826 1.000 1.826 

8 
0.881 0.748 1.628 

 

 

 

 



Table 6. Response table for the vector resultant HTB SN 

Level A B C D E 

1 2.904 -7.736 1.544 -5.488 3.778 

2 -6.783 3.857 -5.423 1.609 -7.657 

Delta 9.686 11.593 6.967 7.098 11.435 

Rank 3 1 5 4 2 

 

Table 7. Analysis of variance for vector resultant 

Process factor DOF SS V F-ratio P (%) 

A 1 0.200 0.200 4.703 10.4 

B 1 0.805 0.805 18.915 41.7 

C 1 0.501 0.501 1.192 2.6 

D 1 0.046 0.046 1.076 2.4 

E 1 0.741 0.741 17.424 38.5 

Error  2 0.085 0.043  4.4 

Total 7 1.927   100.0 

 

Table 8. Output for the multi-response GRA 

  Run Deviation sequence Grey relational coefficient GRG Ordinal values (rank) 𝜹𝒊∗(𝑈𝐶𝑆) 𝜹𝒊∗(𝐷𝑆) 𝜸𝒊∗(𝑈𝐶𝑆) 𝜸𝒊∗(𝐷𝑆) Ø 

1 
0.201 0.511 0.713 0.494 0.604 3 

2 
0.031 0.481 0.941 0.510 0.726 6 

3 
0.347 0.216 0.590 0.698 0.644 4 

4 
0.000 0.617 1.000 0.448 0.724 5 

5 
1.000 0.397 0.333 0.557 0.445 2 

6 
0.975 1.000 0.339 0.333 0.336 1 

7 
0.174 0.000 0.741 1.000 0.871 8 

8 
0.119 0.252 0.807 0.665 0.736 7 

 

Table 9. Euclidean distance for performance comparison 

Designation UCS DS ƞ𝑼𝑪𝑺 ƞ𝑫𝑺 𝜟𝒓𝒂𝒘 𝜟𝒏𝒐𝒓𝒎 

Single response  489.25 1.1 1 1 -  -  

Multi-response GVA 458 1.85 0.75 0 31.2589987 1.03 

Multi-response GRA 364.25 1.275 0 0.766667 125.0001225 1.03 

 

 

 

 

 



Table 10. Summary of relevant FTIR peaks and related functional groups 

 Wave number (cm-1) Functional group 

Natural soil 3698, 3623, 3392, 1636 – OH and H – O – H weakly bonded water 

molecules 

1979, 775 Inactive alumino-silicate sites 

995, 682 Quartz band 

Stabilized soil  3694, 3619, 3366, 1636 H – O – H strongly bonded water molecules 

2099 Inactive alumino-silicate site 

1394 O – C – O carbonate group 

999, 746 T – O (T = Si/Al) alumino-silicate gel band, 

siloxo Si-O-Si alumino-silicate framework 

structures 

 

Table 11. Summary of atomic concentration for relevant EDSE peaks 

Element Symbol Natural soil atomic concentration  Stabilized soil atomic concentration 

Si 50.1 51 

Al 27.6 23 

Fe 10.8 7.2 

K 2.9 4.4 

Ti 1.4 0.9 

Ca 1.6 1.6 

Mg 2.1 2.3 

Na 1.4 7.7 

 

Formatted Table


