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1. Introduction

Understanding the plethysm coefficients is a fundamental problem in the representa-

tion theories of symmetric and general linear groups. It was identified by R. Stanley as 

one of the most important open problems in algebraic combinatorics [40]. Beyond pure 

mathematics, the plethysm coefficients arise in quantum information theory [1,4] and are 

central objects in geometric complexity theory (GCT), an approach that seeks to settle 

the P �= NP problem. The importance of plethysm coefficients in GCT derives from their 

frequent appearance in formulas for multiplicities in coordinate rings: the orbit of the 

product of variables [29, Section 9], the permanent polynomial [8, Equation (5.5.2)], the 

power sum polynomial and the unit tensor [19, Introduction]. Thus the problems of both 

calculating and bounding plethysm coefficients are of fundamental importance in GCT.

One of the most effective ways to study plethysm coefficients is through their stability 

phenomena (for example, these stabilities were used to spectacular effect in [7]). Through-

out this paper we set α[d] = (d − |α|, α1, α2, . . . , αℓ(α)) and we write p(β[n], α[m], κ[mn])

for the plethysm coefficient 〈sβ[n] ◦ sα[m] , sκ[mn]〉 defined using the plethysm product of 

Schur functions. Our original motivation was to study the stable plethysm coefficients, 

defined by

lim
m,n→∞

p(β[n], (m), κ[mn]).

(This stability is proven in [14,41].) In the very special case when β = ∅, the stable coef-

ficients are amongst the most celebrated and well-understood of all plethysm coefficients: 

they satisfy the stable version of Foulkes’ conjecture [32, Theorem 4.3.1] and they were 

an important stepping stone in the resolution of Weintraub’s conjecture [32,4]. Moreover, 

there is a positive combinatorial formula for their calculation [32, Theorem 4.1.1] (see 

also [9, Theorem B]). Our first main result is a vast generalisation of this formula to the 

case when the partition β is arbitrary.

Theorem A. Let β ⊢ b and κ ⊢ r be partitions such that β[n] and κ[mn] are also parti-

tions. The plethysm coefficient p(β[n], (m), κ[mn]) is constant for m � r − |β| + [β �= ∅]

and n � r + β1 and its value is

∑

cp, q : p+q = r
γ=(pcp ,...,1c1 )⊢p, ℓ(γ)=b

βi⊢ci for 1�i�p
ε∈P>1(q)

cβ
βp,...,β1

[(( p ⊗

i=1 
Inf

Si≀Sci

Sci
S

βi)�⏐Sp
⊗ CStab(ε)

�⏐Sq

)�⏐Sr
: S

κ
]

Sr

.

Unavoidably, this formula is heavy on notation:

◦ [β �= ∅] is an Iverson bracket, equal to 1 when β �= ∅ and 0 when β = ∅;

◦ ℓ(γ) is the length of the partition γ: thus cp + · · · + c1 = b;
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◦ P>1(q) is the set of partitions of q having no singleton parts;

◦ cβ
βp,...,β1 is a generalised Littlewood–Richardson coefficient, as defined in equa-

tion (2.3);

◦ S
κ denotes the right Specht module canonically labelled by the partition κ;

◦ Stab(ε) is the stabiliser in the symmetric group Sq of a set-partition of {1, . . . , q}

into parts of sizes ε1, . . . , εℓ(ε), as defined in Definition 2.5;

◦ Inf
Si≀Sci

Sci
is the usual inflation functor along the canonical surjection Si ≀Sci

→ Sci
.

The entire proof of Theorem A is outlined in Section 1.7 at the end of this introduction.

1.1. Recasting plethysm in terms of diagram algebras

We deduce Theorem A as a corollary of a number of more powerful theorems for 

calculating and bounding plethysm coefficients proved in this paper. The key to our 

approach is the see-saw pair (in the sense of [24]) below.

Smn

Sm ≀ Sn

Pr(mn)

Rr(m, n)

(Cmn)⊗r

This shows the partition algebra Pr(mn) in its well-known Schur–Weyl duality with the 

symmetric group Smn: see Sections 3 and 5. Restricting to the subgroups Sm ≀ Sn �

Smn, we obtain a larger algebra of invariants on the other side of Schur–Weyl duality, 

the ramified partition algebras Rr(m, n): see Sections 4 and 5. By (2.7), the plethysm 

coefficients are the branching coefficients for the subgroups Sm ≀ Sn � Smn and thus, 

by the general theory of see-saw pairs [24], we can recast these coefficients as branching 

coefficients for restriction to the subalgebra Pr(mn) of the ramified partition algebra 

Rr(m, n). In Section 6 we match up the labels of simple modules under these Schur–

Weyl dualities and interpret plethysm coefficients as composition multiplicities in the 

partition algebra.

Theorem B. Let α, β, κ be partitions such that α[m], β[n] and κ[mn] are partitions. Sup-

pose that r � |κ|. The plethysm coefficient p(β[n], α[m], κ[mn]) is equal to the composition 

multiplicity of the simple module Lr(κ) for the partition algebra Pr(mn) in the relevant 

restricted simple module for the ramified partition algebra specified on the right-hand side 

below:

p(β[n], α[m], κ[mn]) =

⎧
⎨
⎩

[
Lr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

if α = ∅, r � |β|,
[
Lr(αβ[n])

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

if α �= ∅, r � n|α|.
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A key observation in the proof of Theorem B, used at the start of each case in the 

proof of Proposition 6.1, is that the ramified partition algebras are quasi-hereditary and 

hence their simple modules Lr(αβ), which are in general difficult to construct, arise as 

the simple heads of corresponding standard modules Δr(αβ), which in turn can easily 

be constructed using Young symmetrisers: see (3.6).

This provides a new dichotomy between the role played by the inner partition μ and 

the outer partition ν in a plethysm product sν ◦ sμ; another such dichotomy is obtained 

in [19, Theorem 3.1 versus Proposition 3.3]. This is discussed in detail in Subsection 1.5.

1.2. Stability and ramified branching coefficients

The simple modules Lr(αβ) for the ramified partition algebras are quotients of the 

standard modules Δr(αβ). We may therefore bound the plethysm coefficients appearing 

in Theorem B by the multiplicity of a simple module in the restriction of a standard 

module to the partition algebra, as in the first part of Theorem C below. In the case 

when α = ∅ we improve on this bound. In Section 7 we prove that the standard module 

Δr(∅β) for the ramified partition algebra is simple whenever both m � r − |β|+ [β �= ∅]

and n � r + β1, proving the equality in the second part of the theorem below.

Theorem C. Let α, β, κ be partitions such that α[m], β[n], κ[mn] are also partitions. Sup-

pose that r � |κ|. Then

p(β[n], α[m], κ[mn]) �

⎧
⎨
⎩

[
Δr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

if α = ∅, r � |β|,
[
Δr(αβ[n])

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

if α �= ∅, r � n|α|.

Moreover, if m � r − |β| + [β �= ∅] and n � r + β1, then

p(β[n], (m), κ[mn]) =
[
Δr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

.

1.3. Combinatorial formulas for ramified branching coefficients

In light of Theorem B, we seek to calculate the ramified branching coefficients[
Δr(αβ)↓

Rr(m,n)
Pr(mn) : Lr(κ)

]
Pr(mn)

, and hence calculate and bound the plethysm coeffi-

cients. The partition algebras and ramified partition algebras arise as towers of recolle-

ment in the sense of [13]; roughly speaking this means that they arise as sequences of 

algebras and are equipped with idempotents which allow us to work by induction on the 

rank. In Proposition 8.6 and Corollary 8.7, we utilise this theory to construct quotient 

Pr(mn)-modules

Δr(αβ)
⏐�Rr(m,n)

Pr(mn)
−−→ DQ

(
Δr(αβ)

)
. (1.1)
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These quotient modules possess beautiful planar diagram bases (see Section 9.2) which 

are amenable to computation. By decomposing these quotient modules we are able to 

calculate the ramified branching coefficients explicitly, as follows.

Theorem D. The ramified branching coefficient [Δr(αβ)↓
Rr(m,n)
Pr(mn) : Lr(κ)] for α ⊢ a, β ⊢ b

and κ ⊢ r is equal to the multiplicity of Sκ in the following CSr-module:

⊕

cp, q : p+q = r−ab
γ=(pcp ,...,1c1 ,0c0 )∈P

(ab)
(p)

βi
⊢ci for 0�i�p
ε∈P>1(q)

c
β

βp,...,β1,β0

( p ⊗

i=0 

(
(Sα ⊗ C)

�⏐Sa+i

Sa×Si
) ⊘ Sβi

)
⊗ CStab(ε)

)�⏐Sr

Stab((ab)+γ)×Stab(ε)

where P>1(q) is the set of partitions of q with no singleton parts, (ab) is the empty 

partition if a = 0 and otherwise the partition with b parts all of size a, and the set 

P(ab)(p) is as defined in Definition 9.5. The wreath product of modules, denoted ⊘, is 

defined in Subsection 2.3.

By Definition 9.5, the elements γ ∈ P(ab)(p) are partitions having exactly b parts 

including c0 distinguished zero parts. Thus cp + · · · + c1 + c0 = b and the Littlewood–

Richardson coefficient cβ
βp,...,β1,β0 is well-defined. When a = 0, the partitions γ ∈

P(ab)(p) have exactly b non-zero parts and c0 = 0, and the sum is the same as in 

Theorem A.

Theorem C provides a combinatorial formula for computing arbitrary ramified branch-

ing coefficients in terms of much smaller plethysm products and Littlewood–Richardson 

coefficients. We prove Theorem D in Section 9 and then immediately deduce Theorem A

as a corollary of Theorem C and Theorem D.

Using symmetric functions we prove in Section 11 that the bounds on m and n in 

Theorem A cannot be weakened in infinitely many cases. This is notable because, unlike 

the usual direction in this paper, we successfully apply symmetric functions to deduce a 

result about the ramified partition algebra.

1.4. Examples and applications

To make this paper accessible, particularly to a non-diagrammatic-algebra audience, 

we give plenty of examples throughout the paper. After the proof of Theorem A is 

complete, we begin Section 10 by giving two substantial examples showing how the 

decomposition of the depth quotient (see Definition 8.4) determines plethysm coeffi-

cients. We then give a more conceptual restatement of Theorem A using a functor 

on symmetric group modules in Proposition 10.4, before proving Proposition 10.11

which restates Theorem A and Proposition 10.4 in the language of symmetric func-

tions. As applications we find explicitly positive formulae for the stable limits of the 

plethysm coefficients p
(
(n − b, b), (m), (mn − r, r)

)
, p

(
(n − b, 1b), (m), (mn − r, r)

)
and 

p
(
(n − b, 1b), (m), (mn − r, 1r)

)
.
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1.5. Contrasting the cases α = ∅ and α �= ∅

Since it illuminates two key points in the proof, we remark on the qualitative difference 

in our results on plethysm coefficients in these two cases. The reader may prefer to return 

to this remark after reading Section 6.

The ramified Schur functor

The outer partition in the standard module in Theorem C is β when α = ∅ and β[n]

when α �= ∅. The difference arises from the behaviour of the ramified Schur functor 

HomSm≀Sn

(
−, (Cmn)⊗r

)
mapping left CSm ≀ Sn-modules to right Rr(m, n)-modules. 

The module S(m) ⊘ Sβ[n] = InfSm≀Sn

Sn
Sβ[n] is acted on trivially by the base group Sm ×

· · · × Sm in the wreath product Sm ≀ Sn and embeds in the tensor space (Cmn)⊗r

whenever r � b; its image under the Schur functor is then the simple module Lr(∅β) for 

the ramified partition algebra Rr(m, n). In contrast, when α �= ∅, the base group acts 

non-trivially on Sα ⊘ Sβ[n] and it is necessary to take r � n|α| to get an embedding. 

We then obtain the simple module Lr(αβ[n]). The distinction can be seen by comparing 

equations (6.1) and (6.2). This is the first and most critical point where the two cases 

diverge.

Standard modules versus simple modules and semisimplicity

In the case when α = ∅, the standard Rr(m, n)-module Δr(∅β) is isomorphic to the 

simple module Lr(∅β) by Theorem 7.1 for suitably large values of m and n, and so 

the plethysm coefficient p(β[n], (m), κ[mn]) is equal to the ramified branching coefficient [
Δr(∅β)↓

Rr(m,n)
Pr(mn) : Lr(κ)

]
Pr(mn)

. Putting aside bounds for now, this leads to the formula 

in Theorem A for the joint limit of the plethysm coefficient when m and n independently 

become large. When α �= ∅, the equality of Theorem B requires r � n|α|, but Rr(m, n)

is never semisimple when this condition holds. In this case we obtain only an inequality 

bounding p(β[n], α[m], κ[mn]) by the ramified branching coefficient 
[
Δr(αβ[n])↓

Rr(m,n)
Pr(mn) :

Lr(κ)
]

Pr(mn)
. This is the second point of divergence and explains why our results on 

plethysm coefficients are sharp only when α = ∅.

1.6. Analogies and motivation from Kronecker coefficients

It is worth emphasising that all the ideas of this paper have analogues in the context 

of the Kronecker coefficients.

By Theorem B, the plethysm and ramified branching coefficients can be interpreted 

as restriction multiplicities of simple and standard modules from the ramified partition 

algebra to the partition algebra. By [5, Equation 3.1.3] the Kronecker coefficients and 

stable Kronecker coefficients can be interpreted as the restriction multiplicities of simple 

and standard modules from the partition algebra to a certain Young subalgebra. The 

formula for calculating ramified branching coefficients in Theorem D of this paper has 
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an exact analogue for the stable Kronecker coefficients, which is proven in the partition 

algebra context in [5, Theorem 4.3].

Theorem C of this paper says that the plethysm coefficients are bounded above by 

their ramified branching coefficient analogues and examines when this bound is sharp. 

The Kronecker coefficients are bounded above by their stable analogues and analogous 

bounds were found by Brion in [10] and reproved in the context of the partition algebra 

[5, Corollary 3.6].

1.7. Structure of the paper

We intend that this paper will be found readable both by people primarily interested in 

plethysms of symmetric functions and by people primarily interested in diagram algebras. 

We therefore take some care to collect all the necessary background.

◦ In Section 2 we give background on symmetric functions and modules for symmetric 

groups and wreath products.

◦ In Section 3 we give a self-contained introduction to the partition algebra, showing 

how to use diagrams to compute its action on its standard modules in Example 3.2.

◦ In Section 4 we give a similar self-contained introduction to the ramified partition 

algebra.

◦ In Section 5 we finish the background material with results on Schur–Weyl duality.

The proofs of the main theorems occupy Sections 6 to 9, following the outline above: 

Section 6 proves Theorem B; Section 7 proves Theorem C, showing in particular that 

the simple module Lr(∅β) for the ramified partition algebra is equal to the standard 

module Δr(∅β) provided m and n satisfy the inequalities in Theorem A; Sections 8 and 

9 study the restricted module Δr(∅β)↓
Rr(m,n)
Pr(mn) and hence prove Theorem D and deduce 

Theorem A. Thus, when presented as a series of equations, the proof of Theorem A is

p(β[n], (m), κ[mn])

= 〈sβ[n] ◦ sμ, sκ[mn]〉 (a)

=
[
(S(m) ⊘ Sβ[n])

�⏐Smn

Sm≀Sn
: Sκ[mn]

]
Smn

(b)

=
[
HomCSmn

(
(S(m)⊘ Sβ[n])

�⏐Smn

Sm≀Sn
, (Cmn)⊗r

)
: HomCSmn

(
Sκ[mn], (Cmn)⊗r

)]
Pr(mn)

(c)

=
[
HomCSm≀Sn

(
S(m) ⊘ Sβ[n], (Cmn)⊗r

)⏐�
Sm≀Sn

: Lr(κ)
]

Pr(mn)
(d)

=
[
Lr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

(e)

=
[
Δr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

(f)

=
[
DQ

(
Δr(∅β)

)
: Lr(κ)

]
Pr(mn)

(g)
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=
∑

cβ
βp,...,β1

[((⊗
Inf

Si≀Sci

Sci
S

βi)�⏐Sp
⊗ CStab(ε)

�⏐Sq

)�⏐Sr

Sp×Sq
: S

κ
]

Sr

(h)

where the outline argument for each step is as follows:

(a) Definition of plethysm coefficients;

(b) Apply (2.7) to get the equivalent restatement using left Specht modules;

(c) Apply the Schur functor for the partition algebra in Corollary 5.2 to get right modules 

for Pr(mn); the module action is defined using the action of Pr(mn) on (Cmn)⊗r;

(d) Apply Frobenius reciprocity on the left-hand module and use Corollary 5.2 to identify 

the Pr(mn)-module HomCSmn

(
Sκ[mn], (Cmn)⊗r

)
with the simple module Lr(κ);

(e) Apply the case of α = ∅ of Proposition 6.1 (with the conclusion that the right-hand 

side equals p(β[n], (m), α) being a special case of Theorem A);

(f) Apply Theorem 7.1 using the hypotheses m � r −|β|+[β �= ∅] and n � r +β1 (with 

the conclusion that the right-hand side equals p(β[n], (m), α) being a special case of 

Theorem C);

(g) Apply Corollary 8.7;

(h) Apply Theorem 9.16 decomposing the depth quotient into right Specht modules 

(from which we deduce Theorem D).

We end in Sections 10 and 11 with the examples and applications already outlined.

1.8. Other diagram algebras

In recent work Orellana, Saliola, Schilling and Zabrocki have recast the plethysm 

coefficients in the context of the party algebra, a subalgebra of the partition algebra [37]. 

There does not appear to be any overlap in our results, but the ideas do have a similar 

diagrammatic flavour.
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2. Symmetric groups, wreath products and symmetric functions

2.1. Symmetric groups

We let Sn denote the symmetric group on n letters generated by the Coxeter genera-

tors si = (i, i+1) for 1 � i < n. The combinatorics underlying the representation theory 

of symmetric groups, and also of partition algebras, is based on integer partitions. A

partition of n is defined to be a sequence (λ1, λ2, . . . , λℓ) of strictly positive weakly de-

creasing integers which sum to n. We write λ ⊢ n and say that the length of λ, denoted 

ℓ(λ), is ℓ. There is a unique partition of zero, namely the empty partition ∅. We let 

P(n) denote the set of all partitions of n and we let P>1(n) denote the subset of those 

partitions with no singleton parts. (That is, all parts are strictly greater than 1.)

Given λ ∈ P(n), we define a tableau of shape λ to be a filling of the nodes of the 

Young diagram of λ with the numbers {1, . . . , n}. We define a standard tableau to be a 

tableau in which the entries increase along the rows read left to right and the columns 

read top to bottom. We let Std(λ) denote the set of all standard tableaux of shape 

λ ∈ P(n). For λ ⊢ n, let tλ denote the λ-tableau with the numbers 1, 2, . . . , n entered 

in increasing order along the rows from left to right and then from top to bottom. For 

example,

t(3,2,1) =
1 2 3

4 5

6

.

We denote by C(tλ) the subgroup of Sn that preserves the set of entries in each column 

of tλ and by R(tλ) the subgroup that preserves the set of entries in each row. Recall (for 

example from [18, Chapter 4]) that the Young symmetriser cλ is defined by

cλ =
( ∑

ρ∈R(tλ)

ρ
)( ∑

π∈C(tλ)

sgn(π)π
)

. (2.1)

It is well-known that cλ is a quasi-idempotent (that is c2
λ is equal to cλ up to a non-zero 

scalar), and, for partitions λ, ν of n, that

cλ(CSn)cν =

{
Ccλ if λ = ν,

0 otherwise.

The left Specht module labelled by λ is the CSn-module CSncλ = Sλ. Later, we shall 

use right modules for symmetric groups to construct right modules for partition algebras. 

We define the right Specht CSn-module labelled by λ to be Sλ = c∗
λCSn where
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c∗
λ =

( ∑

π∈C(tλ)

sgn(π)π
)( ∑

ρ∈R(tλ)

ρ
)

. (2.2)

Observe that c∗
λ is the image of cλ under the anti-involution on CSn that sends each 

group element to its inverse. The Specht modules are a full set of non-isomorphic irre-

ducible CSn-modules.

2.2. The Littlewood–Richardson rule

The Littlewood–Richardson rule is a combinatorial rule for the restriction of a Specht 

module to a Young subgroup of the symmetric group. Through Schur–Weyl duality, the 

rule also computes the decomposition of a tensor product of simple representations of 

GLn(C).

Theorem 2.1 (The Littlewood–Richardson rule). For λ ⊢ m + n, μ ⊢ m and ν ⊢ n,

Sλ

⏐�Sm+n

Sm×Sn

∼ = 
⊕

μ⊢m,ν⊢n

cλ
μ,ν(Sμ ⊗ Sν)

where the cλ
μ,ν are the Littlewood–Richardson coefficients as defined in [26, Section 

2.8.13].

Given a partition β and c1, . . . , cr ∈ N0 such that cr + · · · + c1 = |β|, we have

Sβ

⏐�
Scr ×···×Sc1

∼ = 
⊕

βi⊢ci

cβ
βr,...,β1

(
Sβr ⊗ · · · ⊗ Sβ1

)
(2.3)

for some coefficients cβ
βr,...,β1 ∈ N0. (As a standing convention βi ⊢ ci in a sum indicates 

that the sum is over all relevant sequences of partitions.) We call these coefficients gener-

alised Littlewood–Richardson coefficients; they may be computed by iterative applications 

of Theorem 2.1. In our examples it works best to order these sequences by decreasing

index, hence the order βr, . . . , β1 above; since cλ
μ,ν = cλ

ν,μ, this is just a matter of nota-

tion. Later, for example in the proof of Theorem 9.16, we use the equivalent formulation 

of the rule for right Specht modules. The coefficients are of course the same.

2.3. Wreath products and their modules

Let m, n ∈ N. Following [26, Section 4.1], we consider

Sm ≀ Sn =
{

(σ1, σ2, . . . , σn; π) | σi ∈ Sm, i = 1, . . . , n, π ∈ Sn

}
, (2.4)

which we identify with a subgroup of Smn via the embedding
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(σ1, σ2, . . . , σn; π) �→
( (j − 1)m + i

(π(j) − 1)m + σπ(j)(i)

)
i=1,...,m
j=1...,n 

. (2.5)

The representation theory of Sm ≀ Sn is well-developed (see [26, chapter 4] or [15]). If 

μ ⊢ m and ν ⊢ n then we can use the irreducible CSm-module Sμ and the irreducible 

CSn-module Sν to construct an irreducible CSm ≀ Sn-module

Sμ ⊘ Sν = (Sμ)⊗n ⊗ InfSm≀Sn

Sn
Sν ,

where elements of the distinguished top group Sn in the wreath product Sm ≀Sn act on 

(Sμ)⊗n by place permutation. (The symbol ⊘ was introduced in [15].) A complete set of 

irreducible left CSm ≀ Sn-modules is obtained by inducing suitable tensor products of 

these modules.

2.4. Young symmetrisers for wreath product modules

We shall need an alternative construction of a complete set of simple CSm ≀ Sn-

modules using Young symmetrisers that generalises the theory for symmetric groups 

outlined above to wreath products of symmetric groups. Generalising [18, Chapter 4] we 

define Young symmetrisers for the wreath product Sm ≀ Sn. Let L = |P(m)| and list 

the L partitions of m in decreasing lexicographic order as

μ1 > μ2 > . . . > μL.

An L-partition ν = (ν(1), . . . , ν(L)) of n is an L-tuple of partitions such that |ν(1)| + · · · +

|ν(L)| = n. We define P(m, n) to be the set of all L-partitions of n. (This is the labelling 

set for the simple CSm ≀ Sn-modules.) We shall write elements of P(m, n) as

µ
ν = (μ1, μ2, . . . , μL)(ν1,ν2,...,νL),

remembering that µ is fixed and is the tuple of all partitions of m in lexicographic order. 

For example

(
(3), (2, 1), (13)

)((2),∅,(3,1))
∈ P(3, 6).

We shall frequently be interested in the case where there is a unique non-empty entry νj

of ν; in this case, we shall write (μj)νj

in place of µν . For example, we write (2, 1)(3,2,1)

in place of 
(
(3), (2, 1), (13)

)(∅,(3,2,1),∅)
; this labels the simple CS3 ≀ S6-module S(2,1) ⊘

S(3,2,1).

Given ν ∈ P(m, n) we define

tν = (tν1 , tν2 , . . . , tνL)
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by placing the entries {1, . . . , n} in the tableaux tνi in increasing order along the rows 

from left to right, finishing with the bottom row in each tableau, working in order of 

increasing i. For example

t((3,2,1),(22,1),(3,1)) =

⎛
⎝

1 2 3

4 5

6

, 

7 8

9 10

1 1

, 
1 2 13 14

1 5

⎞
⎠.

We extend the notion of row and column stabilisers in the obvious fashion. For µν ∈

P(m, n), define

cµν =
∑

cπ∈C(tν )
ρ∈R(tν )

sgn(π)
(

cμ1 , . . . , cμ1

︸ ︷︷ ︸
|ν1| 

, . . . , cμL , . . . , cμL

︸ ︷︷ ︸
|νL| 

; ρπ
)
.

Here each cμi should be interpreted as the appropriate sum over elements of Sm ≀ Sn

using the notation of (2.4). In particular, if μ ⊢ m and ν ⊢ n then

cμν =
∑

cπ∈C(tν)
ρ∈R(tν )

sgn(π)
(

cμ, . . . , cμ︸ ︷︷ ︸
n 

; ρπ
)
.

The following proposition is well-known to experts, but we do not believe it has appeared 

before in print. The proof is technical but follows precisely the method of [18, Chapter 4].

Proposition 2.2. For µν , µλ ∈ P(m, n),

cµν (CSm ≀ Sn)cµλ =

{
Ccµλ if µλ = µ

ν ,

0 otherwise.

In particular, cµν is a quasi-idempotent and cµν cµλ = 0 for µλ �= µ
ν . The set

{
Sµν = (CSm ≀ Sn)cµν | µ

ν ∈ P(m, n)
}

(2.6)

provides a full set of pairwise non-isomorphic simple left CSm ≀ Sn-modules and

(CSm ≀ Sn)cµν
∼ = 

[
(Sμ1 ⊘ Sν1) ⊗ · · · ⊗ (SμL ⊘ SνL)

]�⏐Sm≀Sn

Sm≀S|ν|
.

In particular, if μ ⊢ m and ν ⊢ n then (CSm ≀ Sn)cμν ∼ = Sμ ⊘ Sν . Analogous state-

ments hold for the right modules Sµν

= c∗
µν (CSm ≀ Sn). Here c∗

µν is obtained from cµν

by applying the anti-involution of Sm ≀ Sn that inverts group elements.
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2.5. Symmetric functions and plethysm

For background on symmetric functions we refer the reader to [39, Ch. 7] or [31]. 

Here we recall that the ring Λ of symmetric functions has as an orthonormal Z-basis the 

Schur functions sλ indexed by partitions λ and is graded by degree: sλ has degree |λ|. 

The plethysm product sν ◦sμ may be defined by substituting the monomials in sμ (taken 

with multiplicities) for the variables in sν ; see [39, A2.6 Definition] or [31, Ch. I (8.2)]. 

As a small example, s(2)(x1, x2, x3, . . .) = x2
1 + x2

2 + x2
3 + · · · + x1x2 + x1x3 + x2x3 + · · ·

is the complete homogeneous symmetric function of degree 2, and so working with two 

variables, we have s(2)(x1, x2) = x2
1 + x2

2 + x1x2 and

(s(2) ◦ s(2))(x1, x2)

= s(2)(x
2
1, x2

2, x1x2)

= (x2
1)(x2

1) + (x2
2)(x2

2) + (x1x2)(x1x2) + (x2
1)(x2

2) + (x2
1)(x1x2) + (x2

2)(x1x2)

= x4
1 + x3

1x2 + 2x2
1x2

2 + x1x3
2 + x4

2

= s(4)(x1, x2) + s(2,2)(x1, x2).

For our purposes we need two key results on the characteristic isometry from the 

character ring of Sd to the degree d component of Λ.

Lemma 2.3. For all partitions ν of n and μ of m we have

(a) the induced product 
(
Sμ ⊗ Sν

)
↑
Sm+n

Sm×Sn
corresponds to the ordinary product sμsν ;

(b) the Smn-module 
(
Sμ ⊘ Sν

)
↑Smn

Sm≀Sn
corresponds to the plethysm product sν ◦ sμ.

Proof. See [39, Proposition 7.18.2, A2.2.3] or [31, Ch. I (7.3), Appendix A (6.2)]. �

In Section 10 we also use the analogous versions of (a) and (b) for right Specht 

modules.

2.6. Plethysm coefficients

We are now ready to introduce the combinatorial objects which motivate this paper: 

the plethysm coefficients.

Definition 2.4. Given ν ⊢ n and μ ⊢ m we define the plethysm coefficient p(ν, μ, λ) for 

λ ⊢ mn by

sν ◦ sμ =
∑

λ⊢mn

p(ν, μ, λ)sλ.
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Equivalently by Lemma 2.3(b), the plethysm coefficients may be defined by

(Sμ ⊘ S
ν)

�⏐Smn

Sm≀Sn

∼ = 
⊕

λ⊢mn

p(ν, μ, λ)Sλ. (2.7)

We invite the reader to use (2.7) to show that p
(
(2), (2), λ

)
�= 0 only in the two cases λ =

(4) or λ = (2, 2) identified in the previous subsection by considering the 3-dimensional 

symmetric group module 
(
S

(2) ⊘ S
(2)

)
↑S4

S2≀S2
.

2.7. Stabiliser subgroups and induction

The following subgroups are used in Theorem A and Theorem D.

Definition 2.5. Given a partition ε of q we define Stab(ε) to be the stabiliser in Sq of a 

set-partition of {1, . . . , q} into parts of sizes ε1, . . . , εℓ(ε).

Equivalently, if ε has exactly ej parts of size j then

Stab(ε) ∼ = S1 ≀ Se1
× S2 ≀ Se2

· · · × Sq ≀ Seq
.

We note that Stab(ε) � Se1
×S2e2

×· · ·×Sqeq
and that (by transitivity of induction) the 

induced module C↑
Sq

Stab(ε) decomposes as a direct sum of Specht modules with coefficients 

equal to products of Littlewood–Richardson and plethysm coefficients. For example the 

induced module C↑S4

S2≀S2
=

(
S

(2) ⊘ S
(2)

)
↑S4

S2≀S2
is the permutation module of S4 acting 

on the cosets of S2 ≀ S2, and so it may be written as CStab((2,2))↑
S4

S2≀S2
.

3. Partition algebras

The partition algebra was originally defined by Martin in [33]. In this section we recall 

the definition and basic properties of this algebra, which can be found in [34].

3.1. Set-partitions

For r, s ∈ N, we consider the set {1, 2, . . . , r, 1̄, 2̄, . . . , s̄} with the total ordering

1 < 2 < · · · < r < 1̄ < 2̄ < · · · < s.

We refer to a set-partition of {1, 2, . . . , r, 1̄, 2̄, . . . , s̄} as an (r, s)-set-partition. A subset 

appearing in a set-partition is called a block. For example,

Λ =
{

{1, 2, 4, 2̄, 5̄}, {3}, {5, 6, 7, 4̄, 6̄, 7̄, 8̄}, {8, 3̄}, {1̄}
}

, (3.1)

is an (8, 8)-set-partition with five blocks.
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••• • • • • •

••• • • • • •

Fig. 1. The diagram dΛ for Λ as in (3.1). 

Remark 3.1. Let Λ be an (r, s)-set-partition. We order the subsets in Λ = {Λ1, . . . , Λl}

by increasing minima, so that

1 = min Λ1 < min Λ2 < · · · < min Λl−1 < min Λl � s.

An (r, s)-set-partition, Λ, can be represented by an (r, s)-partition diagram, dΛ, con-

sisting of r northern and s southern vertices. We number the northern vertices from left to 

right by 1, 2, . . . , r and the southern vertices from left to right by 1̄, 2̄, . . . , s̄ and connect 

two vertices by an edge if they belong to the same block and are adjacent in the total 

ordering given by restriction of the above ordering to the given block. In this manner, 

we pick a unique representative from the equivalence class of all diagrams having the 

same connected components. For example, the diagram dΛ of the (8, 8)-set-partition Λ

in (3.1) is shown in Fig. 1. 

A block of a set-partition is called a propagating block if it contains at least one 

northern and at least one southern vertex; a block consisting of either all southern or 

all northern vertices is called a non-propagating block. In (3.1), Λ has three propagat-

ing blocks and two non-propagating blocks; both non-propagating blocks are singleton 

blocks, consisting of a single vertex.

To each (r, s)-set-partition diagram dΛ, we have an associated permutation πΛ given 

by deleting all nodes which are not incidental to an edge connecting a northern vertex to 

the southern vertex, and then interpreting the diagram as a permutation. For instance, 

for the diagram dΛ above, we have πΛ = (2, 3) ∈ S3.

We now consider a parameter δ ∈ C. We define the product dΛdΓ of two (r, r)-partition 

diagrams dΛ and dΓ by concatenating dΛ above dΓ, and identifying the southern vertices 

of dΛ with the northern vertices of dΓ. If there are t connected components consisting only 

of middle vertices, then the product is δt times the (r, r)-partition diagram equivalent 

to the diagram with the middle components removed.

For example, take dΛ to be the diagram of Fig. 1 and dΓ to be the diagram of

Γ = {{1}, {2, 1̄, 2̄}, {3, 4̄}, {4, 3̄}, {5, 5̄, 6̄}, {6}, {7, 8, 7̄, 8̄}}.

Then dΛdΓ equals δ times the diagram of {{1, 2, 4, 1̄, 2̄, 5̄, 6̄}, {3}, {5, 6, 7, 8, 3̄, 4̄, 7̄, 8̄}}, as 

shown in Fig. 2.

We let Pr(δ) denote the complex vector space with basis given by all set-partitions 

of {1, 2, . . . , r, 1̄, 2̄, . . . , r̄} and with multiplication given by linearly extending the mul-

tiplication of diagrams. Then Pr(δ) is an associative C-algebra, known as the partition 
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••• • • • • •

••• • • • • •••• • • • • •

••• • • • • •

= δ

••• • • • • •

••• • • • • •

Fig. 2. An example of a product in P8(δ). 

•••

. . .

. . . •

••• • ••• •

. . .

. . . •

••• • •

Fig. 3. The non-Coxeter generators p1 and p1,2 of Pr(δ). 

•

•

•

•

•

•

•

•

⊛ 

•

•

•

•

•

•

= 

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Fig. 4. A horizontal concatenation. 

algebra. The (r, r)-set-partitions with exactly r propagating blocks are just the permu-

tations, hence CSr is a subalgebra of Pr(δ).

The partition algebra is generated by the usual Coxeter generators of Sr together with 

the two diagrams p1 = dΛ for Λ = {{1}, {1}} ∪ {{k, k} | k > 1} and p1,2 = dΛ for Λ =

{{1, 2, 1, 2}} ∪ {{k, k} | 2 < k � r} depicted in Fig. 3. Set pi = si−1 . . . s2s1p1s1s2 . . . si−1

for i � 2.

3.2. Horizontal concatenation

Given an (r1, s1)-set-partition diagram dΛ1
and an (r2, s2)-set-partition diagram dΛ2

we define their horizontal concatenation, dΛ1
⊛dΛ2

, to be the (r1 +r2, s1 +s2)-set-partition 

obtained by placing the diagram dΛ1
to the left of dΛ2

and relabelling the vertices (that 

is, the kth northern vertex in dΛ2
is relabelled by r1 + k and the kth southern vertex in 

dΛ2
is relabelled by s1 + k). This is illustrated in Fig. 4.

3.3. A filtration of the partition algebra

Recall that a block of a set-partition is propagating if the block contains both northern 

and southern vertices. It is clear that multiplication in Pr(δ) cannot increase the number 



C. Bowman et al. / Advances in Mathematics 462 (2025) 110090 17

• • •

. . .

. . .•

• • •• •

•

•

•

. . .

. . .

r − l

Fig. 5. The idempotent el is defined to be δl−r times the diagram above having ℓ propagating blocks. 

of propagating blocks. This leads to a filtration of the algebra Pr(δ) by the number of 

propagating blocks. Supposing that δ �= 0, there are idempotents el = δl−rprpr−1 . . . pl+1

for 0 � l � r, as depicted in Fig. 5.

We have

{0} ⊂ Pr(δ)e0Pr(δ) ⊂ Pr(δ)e1Pr(δ) ⊂ . . . ⊂ Pr(δ)er−1Pr(δ) ⊂ Pr(δ). (3.2)

Set Jl = Pr(δ)elPr(δ) for 0 � l � r. The ideal Jl is spanned by all (r, r)-partition-

diagrams having at most l propagating blocks. It is easy to see that

er−1Pr(δ)er−1
∼ = Pr−1(δ), (3.3)

and that this generalises to Pl(δ) ∼ = elPr(δ)el for 0 � l � r. Moreover, since 

Pr(δ)er−1Pr(δ) is the span of all (r, r)-partition diagrams with at most r − 1 propa-

gating blocks,

Pr(δ) 

Pr(δ)er−1Pr(δ)
∼ = CSr (3.4)

where the left-hand side is Jr/Jr−1.

3.4. Standard and simple modules for the partition algebra

We use this filtration to construct the standard modules for the partition algebra. 

Since we later use the commuting left action of the symmetric group and right action of 

the partition algebra on tensor space (see Section 5), we require right Pr(δ)-modules.

We set Vr(k) = ek(Jk/Jk−1). Observe that Vr(k) has a basis given by all (r, r)-

partition diagrams with exactly k propagating blocks such that {j} is a singleton part 

for all j � k +1. Thus the corresponding diagrams have no edges from the north vertices 

k+1, . . . , r. We identify such diagrams with the (k, r)-partition diagrams having precisely 

k propagating blocks. For instance, two different examples of (3, 5)-partition diagrams 

with 3 propagating blocks appear as bottom halves of the concatenated diagrams in 

Fig. 6.

Since ekPr(δ)ek
∼ = Pk(δ) and Pk(δ) has CSk as a quotient by (3.4), Vr(k) has the 

structure of a (CSk, Pr(δ))-bimodule. We remark that Vr(k) ⊗Sk
CSk ⊗Sk

Vr(k) ∼ = 

Jk/Jk−1 where the isomorphism is defined on diagrams by u ⊗ σ ⊗ v �→ u∗σv, where 
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u∗ denotes the (r, k)-partition diagram obtained from the (k, r)-partition diagram u by 

horizontal reflection; this makes concrete the filtration in (3.2). From (3.4), we see that 

any right CSk-module can be inflated to a Pk(δ)-module. The simple right CSk-modules 

are the right Specht modules Sκ for κ ⊢ k. Thus by induction using (3.3) and (3.4) we 

find that the simple Pr(δ)-modules are indexed by P(� r) =
⋃

0�i�r P(i). For any 

κ ⊢ k, we define the standard (right) Pr(δ)-module, Δr(κ), by

Δr(κ) ∼ = Sκ ⊗Sk
Vr(k) (3.5)

where the action of (r, r)-diagrams d ∈ Pr(δ) is given as follows. Let v be a (k, r)-partition 

diagram in Vr(k) and let x ∈ S
κ. Concatenate v above d to get δtv′ for some (k, r)-

partition diagram v′ and some non-negative integer t. If v′ has fewer than k propagating 

blocks then we set (x ⊗ v)d = 0. Otherwise we set (x ⊗ v)d = δtx ⊗ v′.

By [25, 8.4], the CSk-Specht module Sκ has basis {c∗
κσ | tκσ ∈ Std(κ)}, where c∗

κ is 

the dual Young symmetriser defined in (2.2). By (3.5), we have v ⊗ τd = vτ ⊗ d for any 

τ ∈ Sk, and so we need to multiply the basis elements of Sκ only by diagrams d such 

that πd is the identity permutation. After this reduction, we obtain the basis

{
c∗

κσdΛ

∣∣∣ tκσ ∈ Std(κ), Λ is a (k, r)-set-partition with k prop-

agating blocks, πΛ = 1 ∈ Sk

}
(3.6)

of Δr(κ), with the action of Pr(δ) as specified after (3.5).

In particular, taking k = r, we have

Δr(κ) ∼ = Sκ ⊗Sr
Vr(r) ∼ = Sκ, (3.7)

where the right-hand side is viewed as a Pr(δ)-module by inflation using (3.4).

Example 3.2. Three distinct basis elements of Δ5

(
(2, 1)

)
are depicted in Fig. 6. The 

middle diagram shows c∗
(2,1)(2, 3)dΛ where Λ =

{
{1, 1, 3}, {2, 2, 5}, {3, 4

}
. Consider the 

two diagrams dΓ and dΓ′ shown in Fig. 7. The product c∗
(2,1)(2, 3)dΛdΓ is non-zero as dΛdΓ

has 3 propagating blocks; it is computed in Fig. 8 using the action described after (3.5), 

with a further ‘untwisting’ step to obtain a canonical basis element from (3.6). On the 

other hand since dΛdΓ′ has only 2 propagating blocks, we have c∗
(2,1)(2, 3)dΛdΓ′ = 0.

Theorem 3.3. [34, Proposition 3, Proposition 9] The partition algebra Pr(δ) is semisimple 

if and only if δ �∈ {0, 1, . . . , 2r − 2} and, in this case, the set {Δr(κ) : κ ∈ P(� r)} is a 

complete set of non-isomorphic simple right Pr(δ)-modules. More generally, provided 

δ �= 0, the standard module Δr(κ) has a simple head, which we denote Lr(κ), and 

{Lr(κ) : κ ∈ P(� r)} is a complete set of non-isomorphic simple right Pr(δ)-modules.

Martin showed in [34] that Pr(δ) is a quasi-hereditary algebra provided δ �= 0. The 

partition algebra Pr(δ) is also a cellular algebra [42], for any value of δ, and the standard 
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• • • • •

• • •

• • •

(
1 − (1, 3)

)(
1 + (1, 2)

)

• • • • •

• • •

• • •

(
1 − (1, 3)

)(
1 + (1, 2)

)

• • • • •

• • •

• • •

(
1 − (1, 3)

)(
1 + (1, 2)

)

Fig. 6. Three elements shown in the form c∗
(2,1)σdΛ in the basis of Δ5

(
(2, 1)

)
from equation (3.6). The bottom 

halves are (3, 5)-diagrams lying in the basis of V5(3), regarding these halves as (5, 5)-diagrams using the 
identification made at the start of Section 3.4.

• • • • •

• • • • •

• • • • •

• • • • •

Fig. 7. The diagrams dΓ and dΓ′ of two (5, 5)-set-partitions. 

• • • • •

• • •

• • •

(
1 − (1, 3)

)(
1 + (1, 2)

)

• • • • •

• • • • •

=

• • • • •

• • •

• • •

(
1 − (1, 3)

)(
1 + (1, 2)

)

=

• • • • •

• • •

• • •

(
1 − (1, 3)

)(
1 + (1, 2)

)

Fig. 8. The product c∗
(2,1)(2, 3)dΛdΓ shown first in non-canonical form as 

(
1 − (1, 3)

)(
1 + (1, 2)

)
(2, 3)d where 

πd = (2, 3) and then as a canonical basis element from (3.6) as 
(
1 − (1, 3)

)(
1 + (1, 2)

)
d′ where πd′ = 1.

modules Δr(κ) for κ ∈ P(� r) are the cell modules. The following proposition tells us 

that certain standard modules are simple.

Lemma 3.4. [34, Proposition 23] Let δ = n ∈ Z>0, suppose that κ is a partition such that 

κ[n] is a partition of n (i.e. n−|κ| � κ1). Then the Pr(n)-standard module Δr(κ) = Lr(κ)

if and only if δ � r + κ1. Moreover, in this case, the module belongs to a simple block.

3.5. The orbit basis of Benkart–Halverson

The diagram basis is the most natural basis for the partition algebra. In particular, 

we were able to define a multiplication with respect to this basis with ease. There is 

another basis of the partition algebra, the orbit basis, which was studied by Benkart–

Halverson in [6]. The advantage of this basis is that it is more intimately connected to 

the semisimple quotient of the partition algebra that acts faithfully on tensor space.
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We note that the set of (r, r)-set-partitions is a lattice (a partially ordered set in which 

each pair of elements admits an upper and lower bound) under the partial order

Λ � Λ′ if every block of Λ is contained in a block of Λ′. (3.8)

If Λ � Λ′ we say that Λ′ is coarser than Λ; equivalently Λ′ is coarser than Λ if Λ′ may 

be formed from Λ by merging some of its blocks together.

The orbit basis of the partition algebra consists of the elements xΛ indexed by set-

partitions Λ defined by the coarsening relation as follows

dΛ =
∑

Λ�Λ′

xΛ′ . (3.9)

In other words, the diagram basis element dΛ is the sum of all orbit basis elements xΛ′

for which Λ′ is coarser than Λ. Conversely, the elements xΛ can be written as a sum of 

diagram basis elements by way of the Möbius function for the coarsening partial order; 

we refer to [6, Section 4.3] for more details. The orbit basis was so-named by Benkart 

and Halverson because, by [6, Remark 4.7], the action (see equation (5.3) below) of xΛ

on tensor space corresponds to an Sn-orbit on simple tensors.

In this paper, we shall only need to know that the elements xΛ form a basis and 

to know how these basis elements act on tensor space (shown later in equation (5.3)). 

Knowing this set forms a basis of the partition algebra, and using (3.6), we deduce 

immediately that the standard module Δr(κ) has an orbit basis given by

{
c∗

κσxΛ

∣∣∣ tκσ ∈ Std(κ), Λ is a (k, r)-set-partition with k prop-

agating blocks, πΛ = 1 ∈ Sk

}
. (3.10)

4. Ramified partition algebras

The ramified partition algebra was originally defined by Martin–Elgamal in [35] and 

later rediscovered by Kennedy [28], who referred to it as the class partition algebra.

4.1. Ramified set-partitions

We define a ramified (r, s)-set-partition to be an ordered pair (Λ, Λ′) such that Λ, Λ′

are set-partitions of {1, 2, . . . , r, 1̄, 2̄, . . . , s̄} and Λ′ is coarser than Λ in the sense of 

equation (3.8). We refer to Λ as the inner set-partition and Λ′ as the outer set-partition. 

Diagrammatically we represent these ordered pairs by drawing the partition diagram 

of the inner set-partition as usual and then merging parts from dΛ to form dΛ′ . We 

continue to draw the (inner and outer) set-partitions with respect to the conventions of 

Remark 3.1. Examples are depicted in Figs. 9 and 11.

We now consider two parameters δin and δout ∈ C. The product of ramified set-

partitions is derived from the product in the two partition algebras Pr(δin) and Pr(δout)
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Fig. 9. Some examples of ramified (2, 2)-set-partitions. The propagating indices (see Section 4.3) are 
(1, 1), (2), (1, 0), (1), (0, 0), (0), and ∅ respectively.

in a manner we shall now describe. To distinguish the products in these two algebras let 

us temporarily denote the product in the partition algebra Pr(δin) by ·δin
, and that in 

Pr(δout) by ·δout
. Then we define the product of two ramified (r, r)-set-partition diagrams 

as follows:

(dΛ, dΛ′)(dΓ, dΓ′) = (δin)t(δout)
s(dΔ, dΔ′), (4.1)

where dΛ ·δin
dΓ = (δin)sdΔ and dΛ′ ·δout

dΓ′ = (δout)
sdΔ′ . In other words, the multiplica-

tion of inner set-partition diagrams yields a parameter δin and the multiplication of outer 

set-partition diagrams a parameter δout. The fact that Δ′ is a coarsening of Δ is proven in 

[35, Proposition 2]. We let Rr(δin, δout) denote the complex vector space with basis given 

by all ramified set-partitions of {1, 2, . . . , r, 1̄, 2̄, . . . , r̄} and with multiplication given by 

linearly extending the multiplication of ramified diagrams. Then Rr(δin, δout) is an asso-

ciative C-algebra, known as the ramified partition algebra. We define an anti-involution ∗

on Rr(δin, δout) by reflecting a diagram through its horizontal axis.

Example 4.1. The square of the third diagram Fig. 9 is equal to δin times itself and the 

square of the seventh diagram in Fig. 9 is equal to δinδout times itself.

It is apparent that the ramified partition algebra Rr(δin, δout) contains a subalgebra 

isomorphic to the partition algebra Pr(δinδout) whose parameter is the product of the 

two original parameters: simply take the span of basis elements (dΛ, dΛ) whose inner and 

outer partitions are identical.

Example 4.2. The first, fourth, and seventh diagrams in Fig. 9 belong to the subalgebra 

P2(δinδout) of R2(δin, δout).

In addition to the Coxeter generators si for 1 � i < r (embedded via the partition 

algebra embedding, see for example the first diagram of Fig. 9), we shall also require the 
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Fig. 10. Important diagrams for 1 � i 
= j � r. Note that the diagrams pi and pi,j are simply the generators 
of the partition algebra embedded as a subalgebra of the ramified partition algebra. We have drawn two 
propagating lines for the inner block {i, i, j, j} of pi,j , going against our conventions from Subsection 3.1, 
as we think this makes the block structure clearer to the reader.

diagrams in Fig. 10. These diagrams, together with the Coxeter generators, generate the 

algebra Rr(δin, δout), see [28, Theorem 3.1.3].

We also find subalgebras of Rr(δin, δout) isomorphic to group algebras of wreath prod-

ucts. Suppose a, b are positive integers with ab = r. Then CSa ≀ Sb is a subalgebra of 

Rab(δin, δout). Diagrammatically, elements of Sa ≀ Sb can be visualised as the ramified 

diagrams with b consecutive outer blocks each consisting of a inner propagating pairs. 

The element (σ1, . . . , σb; π) ∈ Sa ≀ Sb is visualised as the ramified diagram with outer 

blocks

{
(j − 1)a + 1, (j − 1)a + 2, . . . , ja, (π(j) − 1)a + 1, (π(j) − 1)a + 2 . . . , π(j)a

}
,
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Fig. 11. The visualisation of 
(
(12), 1S2

, 1S2
; (1, 2, 3)

)
∈ S2 ≀ S3 as a ramified (6, 6)-set-partition. 
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Fig. 12. The diagram of a ramified (10, 10)-set-partition with propagating index (2, 2, 1, 0). Note that the 
unique zero entry in the propagating index records that there is a unique outer propagating block con-
taining no inner propagating blocks. No information about non-propagating outer blocks is recorded in the 
propagating index.

for j = 1, . . . b, and inner blocks 
{

(j − 1)a + i, (π(j) − 1)a + σj(i)
}

, for i = 1, . . . a. An 

example for a = 2 and b = 3 is depicted in Fig. 11.

4.2. Horizontal concatenation

Given a ramified (r1, s1)-set-partition (dΛ1
, dΛ′

1
) and a ramified (r2, s2)-set-partition 

(dΛ2
, dΛ′

2
), we define their horizontal concatenation (dΛ1

, dΛ′
1
)⊛(dΛ2

, dΛ′
2
) in the analogous 

fashion to the partition algebra case (see Section 3.2). Note that the resulting diagram 

is indeed a ramified (r1 + r2, s1 + s2)-set-partition.

4.3. Propagating indices and a filtration of the ramified partition algebra

Following [35], we define the propagating index of a ramified (r, s)-set-partition (Λ, Λ′)

to be (a1, a2, . . . , ak) if the outer partition Λ′ has k propagating blocks and, within the 

ith such block of Λ′, the inner partition Λ has ai propagating blocks, for i = 1, . . . , k. 

We arrange the numbers of the propagating index so that a1 � a2 � · · · � ak � 0. An 

example is depicted in Fig. 12.

We let Θr denote the set of all possible propagating indices for Rr(δin, δout). For 

example, if r = 2 then Θ2 = {(1, 1), (2), (1, 0), (1), (0, 0), (0),∅}; an example of a ramified 

diagram with each propagating index is depicted in Fig. 9. We write ϑ′ < ϑ if ϑ′ is 

obtained by subtracting 1 from a single entry from ϑ, or if ϑ′ is obtained from ϑ by 

merging two parts into a single part, or finally if ϑ′ = ∅ and ϑ = (0). Abusing notation, 

we let < denote the transitive closure of the above relation. Then Θr is partially ordered 
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(1, 1, 1)

(2, 1) (1, 1, 0)

(1, 1) (2, 0)(3) (1, 0, 0)

(1, 0) (0, 0, 0)(2)

(1) (0, 0)

(0)

∅

Fig. 13. The Hasse diagram for the poset Θ3. 
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Fig. 14. The quasi-idempotent eϑ for ϑ = (3, 22, 1, 02) in R13(δin, δout). Note that there are two outer-
propagating blocks that are not inner-propagating from the two zero entries. Since 1.3+2.2+1.1+2.1 = 10, 
there are 3 remaining northern and southern nodes forming singleton outer blocks.

by �. The poset Θ3 is illustrated in the Fig. 13; for example, (1, 0, 0) < (1, 1, 0) because 

we have subtracted 1 from the second entry of (1, 1, 0) and (2, 0) < (1, 1, 0) because we 

have merged the first two parts of (1, 1, 0). Martin and Elgamal [35, Proposition 6] show 

that multiplication in Rr(δin, δout) preserves or decreases the propagating index under �.

To each element ϑ = (a1, a2, . . . ak) ∈ Θr, we have a canonically associated basis 

element, eϑ ∈ Rr(δin, δout) constructed as follows (an example is depicted in Fig. 14). 

The first outer block of eϑ consists of the leftmost a1 (or 1 if a1 = 0) nodes from both 

top and bottom rows, the second outer block consists of the next a2 nodes (or 1 if 

a2 = 0) from both top and bottom rows, and so on until the kth outer block consists 

of the next ak nodes (or 1 if ak = 0) from top and bottom rows, and any remaining 

nodes form singleton outer blocks (necessarily containing a singleton inner block). Inside 

the jth outer propagating block, each top row node is joined to the bottom row node 

immediately below it, unless aj = 0 when the inner blocks are singletons. The basis 

element eϑ can be scaled to an idempotent (provided δin, δout �= 0).
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We fix ≺ to be any total refinement of the ordering � on Θr. We set

J�ϑ =
⋃

ϑ′�ϑ

Rr(δin, δout)eϑ′Rr(δin, δout)

and we define J≺ϑ in the obvious fashion. Similarly, we define J�ϑ, J<ϑ in an analogous 

fashion in terms of the partial ordering �. Denote the list of all elements of Θr in order 

as

∅ = ϑ1 ≺ ϑ2 · · · ≺ ϑN = (1r).

Then we obtain the chain of ideals

0 ⊂ J�ϑ1
⊂ J�ϑ2

⊂ · · · ⊂ J�ϑN
= Rr(δin, δout). (4.2)

analogous to (3.2). The quotient J�ϑi
/J�ϑi−1

= J�ϑi
/J≺ϑi

has basis consisting of those 

ramified diagrams with propagating index ϑi. We observe, for ϑ = (ab1
1 , . . . , abℓ

ℓ ) ∈ Θr, 

that

eϑ(J�ϑ/J≺ϑ)eϑ
∼ = CStab(ϑ) = C

ℓ ∏

i=1

Sai
≀ Sbi

(4.3)

simply using the identification of group elements with ramified diagrams illustrated in 

Fig. 11 for each 1 � i � ℓ. We set Vr(ϑ) to be the (Stab(ϑ), Rr(δin, δout))-bimodule

Vr(ϑ) = eϑ(J�ϑ/J≺ϑ)

with basis given by all ramified diagrams in eϑRr(δin, δout) with propagating index ϑ. 

For ϑ = (ab1
1 , . . . , abℓ

ℓ ), we have that

J�ϑ

J≺ϑ

∼ = Vr(ϑ) ⊗CStab(ϑ) CStab(ϑ) ⊗CStab(ϑ) Vr(ϑ). (4.4)

The isomorphism in equation (4.4) is the key observation needed for the following theo-

rem.

Theorem 4.3 ([35, Proposition 11], [11]). The algebra Rr(δin, δout) is an iterated inflation 

of the algebras CStab(ϑ) for ϑ ∈ Θr and thus is a cellular algebra. If δin, δout �= 0, then 

Rr(δin, δout) is quasi-hereditary.

Remark 4.4. The conditions for an iterated inflation in [23, Theorem 1] are checked in 

[11]. The group algebra C(
∏ℓ

i=1 Sai
≀Sbi

) is cellular by the work of [20] or [23, Proposition 

1, Theorem 4]. Thus Rr(δin, δout) is an iterated inflation of cellular algebras and hence a 

cellular algebra. If δin, δout �= 0, then J�ϑ (for ϑ ∈ Θr) is a heredity ideal containing the 

quasi-idempotent eϑ which can be rescaled. Hence the algebra is quasi-hereditary (see 

also [35, Proposition 11]).
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4.4. Standard and simple modules for the ramified partition algebra

By Theorem 4.3, the ramified partition algebra has distinguished cell modules. We 

shall assume δin, δout �= 0 and therefore the cell modules are standard modules. We 

describe these standard modules in generality here, although we require only a good 

understanding of the most elementary case when ϑ = (ab). Fix ϑ = (ab1
1 , . . . , abℓ

ℓ ) ∈ Θr. 

The simple right modules for CStab(ϑ) of equation (4.4) are the outer tensor products 

of the (right module analogues of) modules from equation (2.6) as follows:

S
αβ

= S
α

β1
1 ⊗ S

α
β2
2 ⊗ · · · ⊗ S

α
βℓ
ℓ , (4.5)

where αβ is an ℓ-tuple of α
βi

i ∈ P(ai, bi). We define the (right) standard Rr(δin, δout)-

module, Δr(αβ), by

Δr(αβ) ∼ = Sαβ

⊗Stab(ϑ) Vr(ϑ) (4.6)

where the action of Rr(δin, δout) is given as follows. Let v be a ramified partition diagram 

in Vr(ϑ), x ∈ S
αβ

and d be an ramified (r, r)-set-partition diagram. Concatenate v

above d to get δs
inδt

outv
′ for some ramified partition diagram v′ and s, t ∈ Z�0. If the 

propagating index of v′ is not equal to ϑ (and so it has smaller index in the order ≺) 

then we set (x ⊗ v)d = 0. Otherwise we set (x ⊗ v)d = δs
inδt

outx ⊗ v′. As Rr(δin, δout) is a 

cellular algebra, the simple Rr(δin, δout)-modules are quotients of the standard modules. 

If δin, δout �= 0, then each standard module Δr(αβ) has a simple quotient which we shall 

denote by Lr(αβ), and these are a complete set of non-isomorphic simple modules.

We now restrict our attention to the case ϑ = (ab) (with ab � r or b � r in the 

case a = 0). Ramified diagrams in Vr(ab) = e(ab)(J�(ab)/J≺(ab)) will be identified with 

ramified (ab, r)-set-partition diagrams provided a �= 0 (respectively ramified (b, r)-set-

partition diagrams if a = 0) of propagating index (ab). We simply delete the additional 

r − ab (respectively r − b) northern outer singleton vertices. An example of a ramified 

diagram from V5(22) is shown in Fig. 15. We let α ⊢ a and β ⊢ b and use the right 

CSa ≀ Sb-module Sα ⊘ S
β to construct

Δr(αβ) = (Sα ⊘ S
β) ⊗Sa≀Sb

Vr(ab) = c∗
αβ CSa ≀ Sb ⊗Sa≀Sb

Vr(ab).

Let S(αβ) be a set of elements of Sa ≀ Sb chosen so that {c∗
αβ σ | σ ∈ S(αβ)} is a basis 

of c∗
αβ (CSa ≀ Sb) = S

α ⊘ S
β . This set has cardinality |Std(α)|b|Std(β)|. We therefore 

obtain a basis of Δr(αβ): 

{
c∗

αβ σd(Λ,Λ′)

∣∣∣∣∣

σ ∈ S(αβ)

(Λ, Λ′) is a ramified (ab, r)-set-partition of propagating index (ab)

πΛ′ = 1Sb
, πΛ′

j ∩ Λ = 1Sa
, 1 � j � b

}
.

(4.7)
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Fig. 15. An element d(Λ,Λ′) appearing in the basis in equation (4.7). Note that πΛ = (2, 3) but πΛ′
1

∩Λ =
idS2

= πΛ′
2

∩Λ, as required.

In the case α = ∅, we need to replace ramified (ab, r)-set-partitions with ramified (b, r)-

set-partitions in the above. An example is depicted in Fig. 15. These standard modules 

Δr(αβ), for α ⊢ a and β ⊢ b (with ab � r or b � r in the case a = 0), and their 

simple quotients Lr(αβ), are the only ramified partition algebra modules which will be 

of importance to the plethysm question.

Remark 4.5. The orbit-basis of the ramified partition algebras has not yet been studied 

in the literature. We do not require this basis for our purposes, but we posit that it 

should be worthy of study. In particular, it is natural in light of Benkart–Halverson’s 

work [6] to expect that such orbit bases should exist and that they split into natural 

bases of the kernel and image of the ramified partition algebras acting on tensor space.

5. Partition algebras, ramified partition algebras and Schur–Weyl duality

In this section we review results from the literature regarding the Schur–Weyl dualities 

between group algebras of symmetric groups and partition algebras, and between group 

algebras of wreath products of symmetric groups and ramified partition algebras.

5.1. Symmetric groups and partition algebras

Let I(d, r) = {1, . . . , d}r be the set of multi-indices. For a given multi-index i =

(i1, . . . , ir) ∈ I(d, r), we put ei = ei1 ⊗· · ·⊗eir . Then {ei | i ∈ I(d, r)} is a basis of tensor 

space (Cd)⊗r over C. We define the diagonal action Φ : Sd → End((Cd)⊗r) by

Φ(σ)(ei1 ⊗ · · · eir ) = eσ(i1) ⊗ · · · eσ(ir) (5.1)

for any σ ∈ Sd and i = (i1, . . . , ir) ∈ I(d, r). (The reason for using upper indices will 

be seen in Section 6.) Now we consider the partition algebra Pr(d) with parameter d

and define a right action of this algebra on tensor space. Let Λ be a (r, r)-set-partition. 

Following [6], we define Ψ : Pr(d) → End((Cd)⊗r) on the orbit basis of equation (3.9) 

by first setting

(xΛ)i1,...,ir

i1,...,ir
=

{
1 if ia = ib if and only if a and b are in the same block of Λ,

0 otherwise,
(5.2)
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where (i1, . . . , ir) ∈ I(d, r) and a, b run over {1, . . . , r, 1, . . . , r}. We then set

(ei1 ⊗ · · · ⊗ eir )Ψ(xΛ) =
∑

(i1,...,ir)∈I(d,r)

(xΛ)i1,...,ir

i1,...,ir
(ei1 ⊗ · · · ⊗ eir ). (5.3)

Since the diagram basis is related to the orbit basis by the refinement relation of equa-

tion (3.8) and equation (3.9), we have as an immediate consequence, that, setting

(dΛ)i1,...,ir

i1,...,ir
=

{
1 if ia = ib when a and b are in the same block of Λ,

0 otherwise,
(5.4)

the diagram basis element dΛ acts on the right, by the rule

(ei1 ⊗ · · · ⊗ eir )Ψ(dΛ) =
∑

(i1,...,ir)∈I(d,r)

(dΛ)i1,...,ir

i1,...,ir
(ei1 ⊗ · · · ⊗ eir ). (5.5)

We have constructed actions of the symmetric group and partition algebra on tensor 

space as follows:

CSd
Φ 

−−→ EndC

(
(Cd)⊗r

) Ψ 
←−− Pr(d). (5.6)

Theorem 5.1 ([27,33]). In the situation of (5.6), the image of each representation is equal 

to the full centraliser algebra for the other action. That is,

Φ(CSd) = EndPr(d)

(
(Cd)⊗r

)
, Ψ(Pr(d)) = EndCSd

(
(Cd)⊗r

)
.

Moreover

(i) As a (CSd, Pr(d))-bimodule, the tensor space decomposes as

(Cd)⊗r ∼ = 
⊕

Sκ[d] ⊗ Lr(κ)

where the sum is over all partitions κ ∈ P(� r) with κ1 � d − |κ|.

(ii) For d � 2r, the partition algebra Pr(d) is isomorphic to EndCSd

(
(Cd)⊗r

)
and 

acts faithfully on tensor space. Thus Pr(d) is a semisimple C-algebra and the modules 

{Δr(κ) | κ ∈ P(� r)} provide a complete set of non-isomorphic simple Pr(d)-modules.

As an immediate corollary of the decomposition of tensor space we obtain a Schur 

functor from left symmetric group modules to right modules for the partition algebra. 

This step is very familiar to experts but we give full details as we need an analogous 

argument as part of the proof of Proposition 6.1 on the ramified partition algebra.

Corollary 5.2. Let κ ∈ P(� r) be such that κ[d] is a partition. The functor

HomCSd
(−, (Cd)⊗r) : C(Sd)−mod → mod−Pr(d)
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sends the left Specht module Sκ[d] to the simple module Lr(κ) for the partition algebra 

Pr(d).

Proof. Let ρ ∈ P(� r) be such that ρ[d] is a partition. Considered as a left CSd-module, 

Sρ[d] ⊗Lr(ρ) is a direct sum of dim Lr(ρ) copies of Sρ[d]. Therefore HomCSd

(
Sκ[d], Sρ[d] ⊗

Lr(ρ)
)

= 0 unless ρ = κ; in the remaining case then, considering the right Pr(d)-action 

on the bimodule, we have HomCSd

(
Sκ[d], Sκ[d] ⊗ Lr(κ)

)
∼ = Lr(κ) as Pr(d)-modules. The 

corollary now follows from the decomposition of tensor space in Theorem 5.1(i). �

For subsequent work with tensor space it will be convenient to associate a set-partition 

of {1, 2, . . . , r} to each pure tensor. Given a set partition P , we write i ∼P i′ if i and i′

are in the same part of P .

Definition 5.3. We say that the basis vector

e = ej1 ⊗ ej2 ⊗ · · · ⊗ ejr ∈ (Cd)⊗r

has value-type S if k ∼S l if and only if jk = jl. We write val(e) = S.

For example, e = e1 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e3 ⊗ e2 ⊗ e3 has val(v) = {{1, 2, 3}, {4, 6}, {5, 7}}.

5.2. Wreath product groups and ramified partition algebras

Recall from Section 2.3 that, following [26, Section 4.1], we have defined

Sm ≀ Sn =
{

(σ1, σ2, . . . , σn; π) | σi ∈ Sm, i = 1, . . . , n, π ∈ Sn

}
,

which we identify with a subgroup of Smn via the embedding equation (2.5). The diag-

onal action (5.1) of Smn on tensor space (Cmn)⊗r restricts to an action Φ : Sm ≀ Sn →

End
(
(Cmn)⊗r

)
of Sm ≀ Sn. Having chosen our wreath product subgroup in the fashion 

above, we let this guide our choice of a new labelling set for the basis of tensor space as 

follows. For 1 � i � m and 1 � j � n, we set

vj
i = e(j−1)m+i,

and we note that

(σ1, σ2, . . . , σn; π)(vj1

i1
⊗ vj2

i2
⊗ · · · ⊗ vjr

ir
) = v

π(j1)
σπ(j1)(i1) ⊗ v

π(j2)
σπ(j2)(i2) ⊗ · · · ⊗ v

π(jr)
σπ(jr )(ir). (5.7)

On the other hand, there is an action Ψ : Rr(m, n) → End
(
(Cmn)⊗r

)
of the ramified 

partition algebra Rr(m, n) with parameters δin = m and δout = n on the right on 

tensor space. This is given by identifying a ramified diagram d(Λ,Λ′) ∈ Pr(m, n) with the 
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pair of elements dΛ ∈ Pr(m) and dΛ′ ∈ Pr(n) and then acting by these elements as in 

equation (5.4) on the subscripts and superscripts, respectively:

(vj1

i1
⊗· · ·⊗vjr

ir
)Ψ(d(Λ,Λ′)) =

∑

c(i1,...,ir)∈I(m,r)
(j1,...,jr)∈I(n,r)

(dΛ)i1,...,ir

i1,...,ir
(dΛ′)j1,...,jr

j1,...,jr
(v

j1
i1

⊗· · ·⊗vjr

j1
). (5.8)

The left action Φ of Sm ≀Sn and the right action Ψ of Rr(m, m) on (Cmn)⊗r commute 

and we have the following analogue of Theorem 5.1.

Theorem 5.4 ([28, Corollary 3.3.3]). In the situation outlined above, the image of each 

representation is equal to the full centraliser algebra for the other action. That is,

Φ
(
CSm ≀ Sn

)
= EndRr(m,n)

(
(Cmn)⊗r

)
, Ψ

(
Rr(m, n)

)
= EndCSm≀Sn

(
(Cmn)⊗r

)
.

For parameters m � 2r and n � 2r, the ramified partition algebra Rr(m, n) is isomorphic 

to EndC(Sm≀Sn)

(
(Cmn)⊗r

)
and acts faithfully on tensor space. Therefore Rr(m, n) is a 

semisimple C-algebra and the modules

{
Δr(αβ) | ϑ = (ab1

1 , . . . , abℓ

ℓ ) ∈ Θr and αβ an ℓ-tuple of α
βi

i ∈ P(ai, bi) for 1 � i � ℓ
}

provide a complete set of non-isomorphic simple Rr(m, n)-modules.

We now delve a little deeper into the combinatorics of tensor space. In the following 

definition we associate a ramified set-partition of {1, 2, . . . , r} to each pure tensor.

Definition 5.5. We say that the pure tensor

v = vj1

i1
⊗ vj2

i2
⊗ · · · ⊗ vjr

ir
∈ (Cmn)⊗r

has ramified value-type (R, S) if k ∼S l if and only if jk = jl and k ∼R l if and only if 

jk = jl and ik = il. We write ramval(v) = (R, S). Note that R � S.

Example 5.6. For example, the pure tensor v = v1
2 ⊗ v1

1 ⊗ v1
1 ⊗ v2

3 ⊗ v3
2 ⊗ v2

3 ⊗ v3
3 has

ramval(v) = (R, S) =
({

{1}, {2, 3}, {4, 6}, {5}, {7}}, {{1, 2, 3}, {4, 6}, {5, 7}
})

.

To obtain S = {{1, 2, 3}, {4, 6}, {5, 7}} note that the superscripts match in positions 

1,2,3 and they match in positions 4 and 6 and they also match in positions 5 and 7. 

Although the subscripts match in positions 1 and 5, the superscripts do not match and 

so 1 ≁R 5.

Definition 5.7. Fix a ramified value-type (R, S). We define the associated minimal R

value-type tuple (i∗
1, . . . , i∗

r) by specifying the numbers from left to right so that each is 

the minimal possible value such that
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vj1

i∗
1

⊗ vj2

i∗
2

⊗ . . . vjr

i∗
r

has value-type (R, S) for any j1, . . . , jr such that jk = jl if and only if k ∼S l.

This definition is best understood via an example.

Example 5.8. Fix (R, S) =
({

{1}, {2, 3}, {4, 6}, {5}, {7}
}

,
{

{1, 2, 3}, {4, 6}, {5, 7}
})

. The 

minimal R value-type tuple is given by i∗ = (1, 2, 2, 1, 1, 1, 2). In particular, note that

vj1

1 ⊗ vj1

2 ⊗ vj1

2 ⊗ vj2

1 ⊗ vj3

1 ⊗ vj2

1 ⊗ vj3

2

has value-type (R, S), for any distinct values j1, j2, j3.

6. The ramified Schur functor

To prove Theorem A, we shall use the Schur–Weyl duality seen in Theorem 5.1 between 

CSd and the partition algebra Pr(d), together with the Schur–Weyl duality seen in 

Theorem 5.4 between CSm ≀Sn and the ramified partition algebra Rr(m, n). The former 

is well understood: as seen in the proof of Corollary 5.2, the bimodule decomposition of 

tensor space in Theorem 5.1 immediately provides the correspondence between simple 

left modules for CSd and simple right modules for Pr(d). In the latter case, however, we 

need to establish the correspondence between simple modules.

We shall need this correspondence only for simple CSm ≀ Sn-modules of the special 

form Sμ ⊘ Sν , with μ a partition of m and ν a partition of n. We remark that the case 

where μ = (m) and ν = (n) was studied in [9, Theorem 6.1] entirely in the language 

of classical partition algebras: Δr(∅∅)↓
Rr(m,n)
Pr(mn) is the stable Foulkes module, denoted 

F
r(m, n) in [9]. Our proof includes this in its first case.

Proposition 6.1. The ramified Schur functor

HomCSm≀Sn
(−,

(
C

mn)⊗r
)

: CSm ≀ Sn−mod → mod−Rr(m, n)

satisfies

Sα[m] ⊘ Sβ[n] �→

⎧
⎪⎪⎨
⎪⎪⎩

Lr(∅β) if α = ∅, r � |β|,

Lr(αβ[n]) if α �= ∅, r � n|α|,

0 if either α = ∅, β �= ∅, r < |β| or α �= ∅, r < n|α|.

Proof. The proof splits into two parts considering the top two cases separately. Each 

part ends by showing that the image is zero when the condition for the third case holds.
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The case α = ∅

Suppose that β ⊢ b. Assume first that r � b. We must show that

HomCSm≀Sn

(
S(m) ⊘ Sβ[n], (Cmn)⊗r

)
∼ = Lr(∅β).

The simple module on the left-hand side is

HomCSm≀Sn

(
C(Sm ≀ Sn)c(m)β[n] , (Cmn)⊗r

)
∼ = c(m)β[n](Cmn)⊗r.

Therefore, since the standard module has a simple head, it suffices to construct a non-zero 

homomorphism of right Rr(m, n)-modules from the standard module

Δr(∅β) → c(m)β[n](Cmn)⊗r.

As Rr(m, n)-modules, we have that

Δr(∅β) ∼ = c∗
∅β e(0b)(J�(0b)/J≺(0b)),

where e(0b) ∈ Rr(m, n) is the quasi-idempotent constructed in Section 4.3 and exempli-

fied in Fig. 14. Observe here that e(0b) and c∗
∅β commute, and that e(0b)(J�(0b)/J≺(0b))

is spanned by all ramified diagrams whose propagating index in the sense of Section 4.3

is (0b). Thus the north vertices b + 1, . . . , r are outer singletons; if b = 0 then e(00) = e∅
is the diagram in which all r northern and southern vertices are outer singletons. Our 

aim is to define a non-zero homomorphism of right Rr(m, n)-modules,

c∗
∅β e(0b)(J�(0b)/J≺(0b)) → c(m)β[n](Cmn)⊗r.

Firstly, we define

χ : e(0b)(J�(0b)/J≺(0b)) → c(m)β[n](Cmn)⊗r,

by setting χ(e(0b)) = c(m)β[n]z, where

z =
∑

1�i1,...,ir�m
1�jb+1,...,jr�n

(vn−b+1
i1

⊗ vn−b+2
i2

⊗ · · · ⊗ vn−1
ib−1

⊗ vn
ib

) ⊗ (v
jb+1

ib+1
⊗ · · · ⊗ vjr

ir
). (6.1)

Note that we have assumed that r � b. In the first b places, the superscripts are distinct 

and equal the b entries lying outside the first row of the tableau tβ[n].

We must show that χ is well-defined. In general, given an idempotent e in an algebra 

A, there is a well-defined homomorphism eA → U , to a right A-module U , with e �→ u

provided ue = u. If I is an ideal then we obtain a well-defined map from the quotient 

eA/I → U provided, in addition, ueI = 0, or equivalently, uI = 0.
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Using the diagrammatic right action of Rr(m, n), we have ze(0b)=mb×(mr−bnr−b)z =

mrnr−bz, so (after rescaling) the first condition is certainly satisfied. We now check the 

second. Thus we verify that c(m)β[n]zJ≺(0b) = c(m)β[n]ze(0b)J≺(0b) = 0. Now, e(0b)J≺(0b)

is generated by two types of ramified diagrams: (a) those obtained by merging two outer 

propagating blocks of e(0b), and (b) those obtained by replacing an outer propagating 

block of e(0b) with two non-propagating outer parts, i.e., those which factor through 

e(0b−1). (Thus if b = 0 there are no outer propagating blocks and there is nothing to 

prove; correspondingly (00) = ∅ appears at the bottom of the Hasse diagram in Fig. 13.)

(a) This case is easy: if d(Λ1,Λ′
1) is obtained by merging the ith and jth outer propagating 

blocks of e(0b) (with 1 � i �= j � b), then c(m)β[n]zd(Λ1,Λ′
1) = 0 because the vectors 

in the ith and jth tensor places differ in their superscripts and therefore are killed 

by a ramified partition with i and j in the same outer block.

(b) This case requires a little more work. We shall show that c(m)β[n]ze(0b−1) = 0. Let k

be the length of the final row of β. Then entries k and n appear in the same column 

of tβ[n] and the transposition (k, n) lies in C(tβ[n]). We may take cosets and write

c(m)β[n]z = c̃
∑(

(vn−b+1
i1

⊗ · · · ⊗ vn−1
ib−1

⊗ vn
ib

) ⊗ (v
jb+1

ib+1
⊗ · · · ⊗ vjr

ir
)

− (vn−b+1
i1

⊗ · · · ⊗ vn−1
n−1 ⊗ vk

ib
) ⊗ (v

jb+1

ib+1
⊗ · · · ⊗ vjr

ir
)
)

for some c̃ ∈ CC(tβ[n]). The vectors appearing in all tensor positions except the bth

are equal, and, when we act from the right by the ramified diagram e(0b−1), all terms 

cancel.

Having shown that the map χ is well-defined, we may now define the homomorphism 

of right Rr(m, n)-modules that we require by restriction: we define

χ̃ : c∗
∅β e(0b)(J�(0b)/J≺(0b)) → c(m)β[n](Cmn)⊗r,

by setting

χ̃(c∗
∅β e(0b)) = c(m)β[n]zc∗

∅β .

Here the left action on z is that of the wreath product and the right action is the 

diagrammatic action on tensor space.

Finally, we must show that χ̃ is non-zero. To do this we show there is a strictly positive 

coefficient of the basis vector

v0 = (vn−b+1
1 ⊗ vn−b+2

1 ⊗ · · · ⊗ vn
1 ) ⊗ (v1

1 ⊗ · · · ⊗ v1
1)

in χ̃(c∗
∅β e(0b)) = c(m)β[n]zc∗

∅β . To see this, first note that, expressed as a sum of diagrams,
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c∗
∅β e(0b) =

∑

cσ∈C(tβ)

τ∈R(tβ)

sgn(σ)(e(0b)στ).

Here e(0b)στ is the ramified diagram with 1, . . . , b outer propagating and those outer 

propagating blocks permuted according to the permutation στ . Hence, c(m)β[n]zc∗
∅β

equals

∑
sgn(π) sgn(σ)(c(m), . . . , c(m); ρπ)(vn−b+1

i1
⊗vn−b+2

i2
⊗· · ·⊗vn

ib
⊗v

jb+1

ib+1
⊗· · ·⊗vjr

ir
)(e(0b)στ)

where the sum is over all π ∈ C(tβ[n]), ρ ∈ R(tβ[n]), σ ∈ C(tβ), τ ∈ R(tβ) and indices 

1 � i1, . . . , ir � m and 1 � jb+1, . . . , jr � n.

Taking π, ρ, σ, τ all to be identity permutations and all ik = jk = 1, we have a 

contribution of +1 towards the coefficient of v0. Now suppose π, ρ, σ, τ contribute to the 

coefficient of v0. Then let us first see that π must preserve the set {n−b+1, . . . , n}. If not 

then some k ∈ {n−b+1, . . . , n} has π(k) � n−b and (as ρ ∈ R(tβ[n]) � Sn−b ×Sb) there 

is a vector with superscript at most n−b among the first b tensors. But the diagrammatic 

action of e(0b)στ then only changes its position, not its value, and therefore there is no 

contribution to the coefficient of v0.

Assume now that π ∈ C(tβ[n]) preserves the set {n − b + 1, . . . , n}; i.e. π fixes the 

first row of tβ[n]. By assumption, the left action by π gives a pure tensor of vectors 

having superscripts {n − b + 1, . . . , n} in the first b places, in some order, and to obtain 

v0 the right action must permute them into increasing order. To do this we require 

σ(k) = π(n − b + k) for all k = 1 . . . , b. Therefore sgn(σ) = sgn(π) and the contribution 

is strictly positive.

To complete the part of the proof where α = ∅, we must show that if r < b then

HomCSm≀Sn

(
S(m) ⊘ Sβ[n], (Cmn)⊗r

)
∼ = c(m)β[n](Cmn)⊗r = 0.

Taking any pure tensor vj1

i1
⊗ · · · vjr

ir
, the condition on r ensures that there exist x �=

y ∈ {1, . . . , n} such that the entries x, y lie in the same column of the β[n]-tableau tβ[n]

but neither vx
i nor vy

i appear in the pure tensor for any i ∈ {1, . . . , m}. Taking cosets of 

the subgroup generated by the transposition (x, y) in C(tβ[n]) as a subgroup of the top 

group of Sm ≀ Sn, we may factorise c(m)β[n] to see that c(m)β[n](v
j1

i1
⊗ · · · vjr

ir
) = 0.

The case α �= ∅

Suppose that r � |α|n. We set a = |α|. We follow the same method as above and 

construct a non-zero homomorphism of right Rr(m, n)-modules

Δ(αβ[n]) → cα[m]β[n](Cmn)⊗r.

As Rr(m, n)-modules, we have that
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Δ(αβ[n]) ∼ = c∗
αβ[n]e(an)(J�(an)/J≺(an)),

so we must define a non-zero homomorphism of right Rr(m, n)-modules

c∗
αβ[n]e(an)(J�(an)/J≺(an)) → cα[m]β[n](Cmn)⊗r.

Firstly, define

χ : e(an)(J�(an)/J≺(an)) → cα[m]β[n](Cmn)⊗r,

by setting χ(e(an)) = cα[m]β[n]z, where

z =
∑

1�ik�m
1�jk�n

(v1
m−a+1 ⊗ v1

m−a+2 ⊗ · · · ⊗ v1
m) ⊗ · · · ⊗ (vn

m−a+1⊗vn
m−a+2 ⊗ · · · ⊗ vn

m)

⊗ v
jan+1

ian+1
⊗ · · · ⊗ vjr

ir
.

(6.2)

(In the first a tensors the superscripts are 1 and the subscripts are distinct, and in the 

next a tensors the superscripts are 2 and the subscripts are distinct, and the pattern 

continues until the subscript is n; this is possible as r � an.)

To check that χ is well-defined, again we verify routinely that multiplication by the 

quasi-idempotent e(an) scales z and then we show that acting on cα[m]β[n]z by ramified 

diagrams of the following three types all give zero: (a) ramified diagrams d(Λ,Λ′) obtained 

by merging two outer propagating blocks of e(an); (b) ramified diagrams d(Λ,Λ′) obtained 

by merging two inner propagating blocks of e(an); (c) ramified diagrams d(Λ,Λ′) which 

replace an inner propagating block of e(an) with two inner singleton parts.

(a) We see that cα[m]β[n]zd(Λ,Λ′) = 0 because the vectors in the corresponding tensor 

positions differ in their superscripts.

(b) Similarly, cα[m]β[n]zd(Λ,Λ′) = 0 because the vectors in the corresponding tensor posi-

tions differ in their subscripts.

(c) This case again requires more work. The ramified diagram factors via e(an)p
(2)
1 so 

it suffices to consider d(Λ,Λ′) = e(an)p
(2)
1 . As the transposition (1, m − a + 1) lies in 

C(tα[m]), we may take cosets and write

cα[m]β[n] = c̃
(
1Sm≀Sn

− ((1, m − a + 1), 1Sm
, . . . , 1Sm

; 1Sn
)
)

so that cα[m]β[n]z equals

c̃
(
(v1

m−a+1 ⊗ v1
m−a+2 ⊗ · · · ⊗ v1

m) ⊗ · · · ⊗ (vn
m−a+1 ⊗ · · · ⊗ vn

m) ⊗ v
jan+1

ian+1
⊗ · · · ⊗ vjr

ir

− (v1
1 ⊗ v1

m−a+2 ⊗ · · · ⊗ v1
m) ⊗ · · · ⊗ (vn

m−a+1 ⊗ · · · ⊗ vn
m) ⊗ v

jan+1

ian+1
⊗ · · · ⊗ vjr

ir
.
)
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The vectors appearing in all tensor positions except the first are equal, and, when 

we act from the right by the diagram d(Λ,Λ′) = e(an)p
(2)
1 , all terms cancel.

Having shown that the map χ is well-defined; restriction provides a homomorphism 

of right Rr(m, n)-modules:

χ̃ : c∗
αβ[n]e(an)J�(an)/J≺(an) → cα[m]β[n](Cmn)⊗r, χ̃(c∗

αβ[n]e(an)) = cα[m]β[n]zc∗
αβ[n] .

It remains to show that χ̃ is non-zero, which we do by considering the coefficient of

v0 = (v1
m−a+1 ⊗· · ·⊗v1

m)⊗(v2
m−a+1 ⊗· · ·⊗v2

m)⊗· · ·⊗(vn
m−a+1 ⊗· · ·⊗vn

m)⊗v1
1 ⊗· · ·⊗v1

1

in χ̃(c∗
αβ[n]e(an)

) = cα[m]β[n]zc∗
αβ[n] . Acting on the right of z is c∗

αβ[n] , a sum of ramified 

diagrams which will permute the places of the first an tensors. On the left of z is

cα[m]β[n] =
∑

sgn(π)(cα[m], . . . , cα[m] ; ρπ)

where the sum is over all π ∈ C(tβ[n]) and ρ ∈ R(tβ[n]). (We emphasise that this is 

a linear combination of permutation matrices acting diagonally on tensor space.) Each 

cα[m] is itself a Young symmetriser in Sm, but we observe that, since the right action 

only permutes the tensor places, the only contributions to the coefficient of v0 come 

from those terms in S{m−a+1,...,m} and (up to translation by m − a) we look only at 

cαβ[n] . For every permutation summand in cα[m]β[n] that contributes to the coefficient of 

v0, the inverse permutation appears in c∗
αβ[n] and undoes its effect. The signs of those 

permutations on the left and right agree and the coefficient of v0 is strictly positive.

To complete this part of the proof where α �= ∅, we now suppose that r < an. In this 

case we claim that

HomCSm≀Sn

(
Sα[m] ⊘ Sβ[n], (Cmn)⊗r

)
∼ = cα[m]β[n](Cmn)⊗r = 0.

Take any pure tensor vj1

i1
⊗· · · vjr

ir
. The condition on r ensures that for some j ∈ {1, . . . , n}

there exist entries x �= y ∈ {1, . . . , m} lying in the same column of the standard α[m]-

tableau tα[m] but such that neither of vj
x nor vj

y appear in the pure tensor. Then taking 

cosets of the subgroup generated by (x, y) ∈ C(tα[m]) in the jth copy of Sm inside 

Sm ≀ Sn we may factorise cα[m]β[n] to see that cα[m]β[n](v
j1

i1
⊗ · · · vjr

ir
) = 0. �

Theorem B now follows easily by adapting steps (a) to (d) in the outline proof of 

Theorem A in Section 1.7 as follows. For κ ∈ P(� r), we choose r sufficiently large (see 

the final equality) so that

p
(
β[n], α[m], κ[mn]

)
= 〈sβ[n] ◦ sα[m], sκ[mn]〉

=
[
(Sα[m] ⊘ Sβ[n])

�⏐Smn

Sm≀Sn
: Sκ[mn]

]
CSmn
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=
[
HomCSmn

(
(Sα[m] ⊘ Sβ[n])

�⏐Smn

Sm≀Sn
, (Cmn)⊗r

)
: Lr(κ)

]
Pr(mn)

=
[
HomCSm≀Sn

(
Sα[m] ⊘ Sβ[n], (Cmn)⊗r

⏐�Smn

Sm≀Sn

)
: Lr(κ)

]
Pr(mn)

=
[
HomCSm≀Sn

(
Sα[m] ⊘ Sβ[n], (Cmn)⊗r

)⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

=

⎧
⎪⎨
⎪⎩

[
Lr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

if α = ∅, r � |β|,

[
Lr(αβ[n])

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

if α �= ∅, r � n|α|.

Here, the third equality is obtained by the Schur–Weyl duality between the group algebra 

of the symmetric group and the partition algebra using Corollary 5.2, and the final step 

comes from the Schur–Weyl duality between the group algebra of the wreath product of 

symmetric groups and the ramified partition algebra using Theorem 5.4 and the corollary 

analogous to Corollary 5.2.

This proves Theorem B. and we also obtain an upper bound on plethysm coefficients. 

By choosing r sufficiently large (i.e., if α = ∅ then choose r � |β|, or if α �= ∅ then 

choose r � n|α|), we have

p
(
β[n], α[m], κ[mn]

)

=

⎧
⎨
⎩

[
Lr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
�

[
Δr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
if α = ∅,[

Lr(αβ[n])
⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
�

[
Δr(αβ[n])

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
if α �= ∅.

In the next section we shall show that this is an equality when α = ∅.

7. Stability phenomena when the inner partition is trivial

The CSm ≀Sn-modules of the form S(m) ⊘Sν are obtained by inflation from the CSn-

modules Sν . Thus certain questions about these modules can be simplified to questions 

for only the ‘outer’ symmetric group structure, for example dim(S(m) ⊘ Sν) = |Std(ν)|. 

In this section, we start by restricting our focus to the relationship between this ‘outer’ 

symmetric group and the ‘outer’ partition algebra, via Schur–Weyl duality. Our aim is 

to prove the following theorem.

Theorem 7.1. Let β ⊢ b � r and suppose that n � r + β1 and m � r − b + [b �= 0]. Then, 

as a (CSm ≀ Sn, Rr(m, n))-bimodule, the tensor space (Cmn)⊗r has a direct summand 

isomorphic to

(S(m) ⊘ Sβ[n]) ⊗ Δr(∅β).

In particular, under these assumptions, Δr(∅β) = Lr(∅β).
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We reiterate that the analogous question for the trivial module S(m)⊘S(n) was already 

considered in [9] and so Theorem 7.1 completes our understanding for the case where 

the inner partition is trivial.

Before proving the theorem, we need to understand a basis of the Pr(n)-module Δr(β)

and a basis of the Rr(m, n)-module Δr(∅β).

We begin with the partition algebra, by delving into the orbit basis of the Pr(n)-

module Δr(β) from equation (3.10). Let P ∪ Q be a set-partition of {1, 2, . . . , r} with 

|P | = b; we denote the set of all such pairs (P, Q) by Bb. In other words, we pick a set of 

b distinguished blocks of the set-partition P ∪ Q of {1, 2, . . . , r}. We now define a (b, r)-

set-partition Λ(P, Q) where the b distinguished blocks from P provide the propagating 

blocks. We set Λ(P, Q) to be the (b, r)-set-partition

Λ(P, Q) =
{

{i} ∪ Pi | 1 � i � b
}

∪ Q

where P is written according to the conventions of Remark 3.1. It follows that there are 

no crossings between the b propagating strands of dΛ(P,Q), that is πP = 1Sb
. The orbit 

basis of the Pr(n)-module Δr(β) can now be rewritten as follows

{c∗
βσxΛ(P,Q) | tβσ ∈ Std(β), (P, Q) ∈ Bb}. (7.1)

We now turn our attention to modules of the ramified partition algebra with the aim of 

describing a diagram basis of the Rr(m, n)-module Δr(∅β). Suppose R is a set-partition 

of {1, 2, . . . , r} that is a refinement of P ∪ Q, i.e., R � P ∪ Q. We let

Λ(R) =
{

{i} | 1 � i � b
}

∪ R,

so Λ(R) has no propagating blocks. Then Λ(R) � Λ(P, Q) and the ramified diagram 

d(Λ(R),Λ(P,Q)) has its inner set-partition specified by R, with no inner propagating blocks, 

and its outer set-partition Λ(P, Q) which has b propagating blocks specified by P .

Now we can write down a diagram basis of the Rr(m, n)-module Δr(∅β) =

c∗
∅β CSb ⊗Sb

Vr(0b) as follows:

{
c∗
∅β σd(Λ(R),Λ(P,Q)) | tβσ ∈ Std(β), (P, Q) ∈ Bb, R � P ∪ Q

}
. (7.2)

Proof of Theorem 7.1. We suppose that β[n] is a partition of n such that n � r + β1. 

Then, by Lemma 3.4, the Pr(n)-module Lr(β) = Δr(β) is alone in its block. Thus by 

Theorem 5.1 we have that

HomCSn

(
Sβ[n]

, (Cn)⊗r
)

∼ = cβ[n]
(Cn)⊗r ∼ = Lr(β) = Δr(β) (7.3)

as right Pr(n)-modules.

The remainder of this proof will consist of three steps. Firstly, we write down a basis 

of HomCSn
(Sβ[n]

, (Cn)⊗r). Secondly, we use the previously identified basis to construct 
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dim(Δr(∅β)) elements of HomCSm≀Sn
(S(m) ⊘ Sβ[n]

, (Cn)⊗r) ∼ = Lr(∅β) (where the iso-

morphism is provided by Proposition 6.1). Thirdly, we prove that these dim(Δr(∅β))

distinct CSm ≀Sn-homomorphisms are linearly independent. As Lr(∅β) is a quotient of 

Δr(∅β), this will show that Lr(∅β) = Δr(∅β) as required.

We start by considering Δr(β). A generator of the standard module is c∗
βeb, and we let 

Z ∈ cβ[n]
(Cn)⊗r be the image of this generator under the isomorphism of equation (7.3). 

Now we have a basis of Δr(β) from equation (7.1), and the image of this orbit basis 

under the first isomorphism of (7.3) provides us with a basis of HomCSn

(
Sβ[n]

, (Cn)⊗r
)
:

{ϑσ,P,Q | tβσ ∈ Std(β), (P, Q) ∈ Bb},

where the CSn-homomorphism ϑσ,P,Q is defined on the generator cβ[n]
∈ Sβ[n]

by

ϑσ,P,Q(cβ[n]
) = ZΨ(σxΛ(P ∪Q)) =

∑
αj1,...,jr

σ,P,Q (vj1 ⊗ · · · ⊗ vjr ) (7.4)

for some coefficients αj1,...,jr

σ,P,Q ∈ C. Observe that, by the action of the orbit basis on 

tensor space specified in (5.3) the inequality αj1,...,jr

σ,P,Q �= 0 implies that (j1, . . . , jr) has 

value-type P ∪ Q (as in Definition 5.5).

The second step is to consider inflations of these homomorphisms to construct ele-

ments of HomCSn
(Sβ[n]

, (Cn)⊗r). We now assume that m � r − b+[b � 1]. Given R any 

refinement of the set-partition P ∪Q, we define a map ϑσ,P,Q,R : S(m) ⊘Sβ[n]
→ (Cmn)⊗r

given by

ϑσ,P,Q,R

(
c

(m)
β[n]

)
=

∑

cj1,...,jr∈{1,...,n}
i1,...ir∈{1,...,m}

αj1,...,jr

σ,P,Q (vj1

i1
⊗ · · · ⊗ vjr

ir
) (7.5)

where the coefficients αj1,...,jr are those equation (7.4) and the sum is over all indices

i1, . . . ir ∈ {1, . . . , m}, j1, . . . , jr ∈ {1, . . . , n} satisfying: if jx = jy then ix = iy if and only 

if x, y belong to the same part of R. Observe that if the tensor vj1

i1
⊗vj2

i2
⊗· · ·⊗vjr

ir
appears 

with non-zero coefficient in equation (7.5), then its ramified value-type is (R, P ∪ Q).

We claim that ϑσ,R,P,Q is an Sm ≀ Sn-homomorphism. It is clear from equation (7.4) 

ϑσ,R,P,Q is a homomorphism for modules of the distinguished top group Sn in Sm ≀Sn. 

Therefore, we need only check the action of the base group fixes the right-hand side of 

equation (7.5). The action of the base group is as follows:

(σ1, . . . , σn; 1Sn
)(vj1

i1
⊗ · · · ⊗ vjr

ir
) = (vj1

σj1 (i1) ⊗ · · · ⊗ vjr

σjr (ir)).

Only the subscripts have changed and this action preserves ramified value-type as we 

are applying the same permutation to the subscripts where the superscripts agree. The 

base group acts trivially and ϑσ,R,P,Q is an Sm ≀ Sn-homomorphism.

We have constructed dim Δr(∅β) homomorphisms and the third step is to prove that

{ϑσ,P,Q,R | tβσ ∈ Std(β), (P, Q) ∈ B, R � P ∪ Q} (7.6)
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is a linearly independent set. Assume, for a contradiction, that the set of equation (7.6) 

is linearly dependent and, in particular, that

∑

σ,P,Q,R

(βσ,P,Q,R)(ϑσ,P,Q,R) = 0, (7.7)

for some coefficients βσ,P,Q,R ∈ C which are not all zero. This implies that

∑

σ,P,Q,R

βσ,P,Q,R

∑
αj1,...,jr

σ,P,Q (vj1

i1
⊗ · · · ⊗ vjr

ir
) = 0 (7.8)

where the second summation is over the same indexing set as that of equation (7.5).

We now fix a ramified value-type (R, S) and restrict our attention to the tensor sum-

mand of equation (7.8) whose vectors have this fixed ramified value-type. We consider 

those P, Q with P ∪ Q = S. Because the summation is over all indices of the form in 

equation (7.5), we are able to restrict further and only consider the tensor summand (for 

a given ramified value-type (R, S)) in the image of the projection onto the minimal R

value-type tuple i∗ (as defined in Definition 5.7). This is possible due to our assumption 

that m � r−b+[b � 1]: either b = 0 and we have m � r, so there are r distinct subscripts 

available, or b � 1 and there are b parts in the set-partition P , so the maximal number 

of parts of R in any part of P ∪ Q is r − (b − 1) (obtained when Q = ∅, P has b − 1

singleton parts and one part of r−(b−1) vertices, and R is all singletons). It then follows 

from equation (7.8) that the following holds for some coefficients βσ,P,Q,R that are not 

all zero:

∑

cσ,P,Q,R
P ∪Q=S,

βσ,P,Q,R

∑

j1,...,jr∈{1,...,n}

αj1,...,jr

σ,P,Q (vj1

i∗
1

⊗ · · · ⊗ vjr

i∗
r
) = 0. (7.9)

This implies that

∑

cσ,P,Q
P ∪Q=S

βσ,P,Q,R

∑

j1,...,jr∈{1,...,n}

αj1,...,jr

σ,P,Q (vj1 ⊗ · · · ⊗ vjr ) = 0 (7.10)

for the same coefficients βσ,P,Q,R. Since the CSn-homomorphisms in equation (7.4) are 

linearly independent, this is a contradiction. Thus the set of dim Δr(∅β) homomorphisms 

in equation (7.6) is linearly independent, and

dim HomCSm≀Sn

(
S(m) ⊘ Sβ[n]

, (Cmn)⊗r
)
� dim Δr(∅β).

Since

HomCSm≀Sn

(
S(m) ⊘ Sβ[n]

, (Cmn)⊗r
)

∼ = Lr(∅β),

and Lr(∅β) is a quotient of Δr(∅β), we conclude that equation (7.6) specifies a basis of 

Δr(∅β) and Δr(∅β) ∼ = Lr(∅β). �
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We show later in Corollary 11.5 that the bounds on m and n are tight. We now 

complete the proof of Theorem B.

Corollary 7.2. Provided n � r + β1 and m � r − |β| + [β �= ∅] the plethysm coefficient 

p(β[n], (m), κ[mn]) satisfies

p(β[n], (m), κ[mn]) =
[
Δr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

.

Proof. By Theorem 7.1 we have Δr(∅β) = Lr(∅β). The result now follows from the 

final displayed equation at the end of Section 6, which states in the case α = ∅ that 

p(β[n],∅, κ[mn]) =
[
Lr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

. �

In §9 we derive a combinatorial formula for the calculation of the right-hand side 

which shows that it is independent of m and n for sufficiently large r, and therefore 

Corollary 7.2 provides the new stability of plethysm coefficients stated in Theorem A.

8. Restricting our attention to a layer of fixed depth

In this section, we consider the restriction of the ramified partition algebra modules 

Δr(αβ) to the partition algebra. We show the restriction to the partition algebra has a 

standard module filtration with well-defined filtration multiplicities. We prove that these 

multiplicities provide upper bounds for plethysm coefficients. In the case that the inner 

partition is trivial, we obtain new closed formulas for plethysm coefficients by way of 

Theorem 7.1.

Definition 8.1. Assume that δin, δout �= 0. Given partitions α, β and λ, we define the

ramified branching coefficient of the standard module Δr(λ) for Pr(δinδout) in the standard 

module Δr(αβ) for Rr(δin, δout) to be the filtration multiplicity

[
Δr(αβ)

⏐�Rr(δin,δout)

Pr(δinδout)
: Δr(λ)

]
Pr(δinδout)

.

We shall see that the filtration multiplicities are well-defined in Corollary 8.8 regardless 

of the non-zero values of δin, δout. We have already seen that Rr(δin, δout) is semisimple 

for sufficiently large parameters in Theorem 5.4, and so the reader may prefer to consider 

only the semisimple case where these filtrations are direct sums.

8.1. The action of the partition algebra by restriction

The right module Sαβ

for the wreath product Sa≀Sb was defined in (4.5) to be Sα⊘S
β . 

We shall describe the action of the generators of the partition algebra Pr(δinδout) on a 

basis of Δr(αβ) = S
αβ

⊗Sa≀Sb
Vr(ab) for α ⊢ a and β ⊢ b, with ab � r or, in the case 

a = 0, with b � r. (If b = 0 then (00) = ∅ and Vr(∅) is generated by the idempotent e∅; 
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recall that this is the diagram in which all r northern and southern vertices are outer 

singletons.)

Consider first the right Pr(δinδout) action on the usual diagram basis of Vr(ab). Let 

(Λ, Λ′) ∈ Vr(ab) be a ramified diagram with inner blocks Λ = {S1, S2, . . . , Sp} and outer 

blocks Λ′ = {Σ1, Σ2, . . . , Σq} written using the convention of Remark 3.1 so that the 

blocks are ordered by increasing minima. We set

d(Λ,Λ′)p1,2 =

⎧
⎪⎪⎨
⎪⎪⎩

d({S1,S2,S3,...Sp},{Σ1,Σ2,...,Σq}) if 1, 2 ∈ S1 ⊆ Σ1

d({S1∪S2,S3,...Sp},{Σ1∪Σ2,...,Σq}) if 1 ∈ S1 ⊆ Σ1, 2 ∈ S2 ⊆ Σ2

d({S1∪S2,S3,...Sp},{Σ1,Σ2,...,Σq}) if 1 ∈ S1 ⊆ Σ1, 2 ∈ S2 ⊆ Σ1,

(8.1)

providing the resulting diagram belongs to Vr(ab) and we leave d(Λ,Λ′)p1,2 undefined oth-

erwise. (The diagram does not belong to Vr(ab) if taking the product with p1,2 decreases 

the number of propagating outer-blocks or the number of propagating inner-blocks.) We 

also set

d(Λ,Λ′)p1 =

⎧
⎪⎪⎨
⎪⎪⎩

δinδoutd(Λ,Λ′) if {1} = S1 = Σ1

d({{1},S1−{1},S2,S3,...Sp},{{1},Σ1−{1},Σ2,...,Σq}) if {1} ⊂ S1 ⊆ Σ1

δind({{1},S2,S3,...Sp},{{1},Σ1−{1},Σ2,...,Σq}) if {1} = S1 ⊂ Σ1,

(8.2)

providing the resulting diagram belongs to Vr(ab) and we leave d(Λ,Λ′)p1 undefined other-

wise. It is worth noting that the elements on the right of equation (8.2) are not necessarily 

written in the form specified by Remark 3.1. For p = p1 or p = p1,2 and x ∈ S
αβ

, we 

observe that

(x ⊗Sa≀Sb
d(Λ,Λ′))p =

{
x ⊗Sa≀Sb

(d(Λ,Λ′)p) if d(Λ,Λ′)p ∈ Vr(ab) is defined

0 otherwise.

The generators si,i+1 for 1 � i < r act in the usual fashion by permuting {1, 2, . . . , r}. 

For ease of notation, we do not write these actions out explicitly.

8.2. The depth quotient

In this section we identify a quotient of the standard module Δr(αβ) that contains 

all simple modules Lr(κ) in which the partition κ has the maximum possible size r.

Definition 8.2. Let r ∈ N and (ab) ∈ Θr. We define the depth-radical of Vr(ab) to be the 

subspace Wr(ab) ⊆ Vr(ab) spanned by the ramified diagrams d(Λ,Λ′) satisfying either of 

the following two conditions:

(i) the inner set-partition Λ contains two southern vertices in the same block;
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• • • • • • • • • • • • • ••

• • • • • •

• • • •

Fig. 16. An example of an element of V 0
14(23). There are no inner southern arcs and there are no outer 

southern singletons.

(ii) the outer set-partition Λ′ contains a singleton southern block.

We define the depth-radical of Δr(αβ) to be the subspace

DR
(
Δr(αβ)

)
= S(αβ) ⊗Sa≀Sb

Wr(ab) ⊆ S(αβ) ⊗Sa≀Sb
Vr(ab) = Δr(αβ).

This construction will allow us to study the smallest possible modules in which we 

can see the ramified branching coefficients.

Proposition 8.3. Given r ∈ N, the depth radical DR
(
Δr(αβ)

)
is a Pr(δinδout)-submodule 

of Δr(αβ)↓
Rr(δin

Pr(δinδout).

Proof. It is clear that the generators si,i+1 for 1 � i < r preserve the space DR
(
Δr(αβ)

)

as both conditions of Definition 8.2 are invariant under the permutation action. By equa-

tion (8.2), the generator p1 acts on a given diagram d(Λ,Λ′) either by scalar multiplication, 

or by removing an edge from Λ at the expense of introducing a singleton into Λ′. There-

fore the generator p1 preserves DR
(
Δr(αβ)

)
by Definition 8.2(ii). By equation (8.1) the 

generator p1,2 acts on a given diagram d(Λ,Λ′) either trivially or by introducing an edge 

in Λ. Therefore the generator p1,2 preserves DR
(
Δr(αβ)

)
by Definition 8.2(i). �

Definition 8.4. Define the depth quotient DQ(Δr(αβ)) to be the quotient Pr(δinδout)-

module 

Δr(αβ) = S
αβ

⊗Sa≀Sb
Vr(ab) ։ S

αβ

⊗Sa≀Sb
V 0

r (ab) = DQ
(
Δr(αβ)

)
,

where V 0
r (ab) is the quotient vector space Vr(ab)/Wr(ab), that is the span of those 

ramified diagrams in V 0
r (ab) that do not lie in Wr(ab).

Example 8.5. An example element of V 0
14(23) is depicted in Fig. 16.

The next proposition is an elementary application of idempotent truncation (see for 

example [22, Section 6.2]) which will allow us to decompose the restriction of Δr(αβ)

to the partition algebra. Recall that for δinδout �= 0 we have defined the idempotent 



44 C. Bowman et al. / Advances in Mathematics 462 (2025) 110090 

er−1 = 1 
δinδout

pr ∈ Pr(δinδout) ⊆ Rr(δin, δout), and, that in (3.3) and (3.4), we saw that 

er−1Pr(δinδout)er−1
∼ = Pr−1(δinδout) and Pr(δinδout)/Pr(δinδout)er−1Pr(δinδout) ∼ = CSr.

Proposition 8.6. For r � 2,

DR
(
Δr(αβ)

)
er−1Pr(δinδout) = DR

(
Δr(αβ)

)
, DQ

(
Δr(αβ)

)
er−1 = 0,

and moreover

DR
(
Δr(αβ)

)
er−1

∼ = Δr−1(αβ)

as an er−1Pr(δinδout)er−1
∼ = Pr−1(δinδout)-module if the right-hand side is defined, and 

otherwise DR(Δr(αβ))er−1 = 0. When r = 1,

DR
(
Δ1((1)(1))

)
= 0, DR

(
Δ1(∅(1))

)
= 0, DR

(
Δ1(∅∅)

)
= Δ1(∅∅

)
.

Proof. We consider the first statement. We let d(Λ,Λ′) be a ramified diagram basis element 

of Wr(ab) and x ∈ S(αβ). We shall write x ⊗Sa≀Sb
d(Λ,Λ′) in the form

x ⊗Sa≀Sb
d(Λ,Λ′) = x ⊗Sa≀Sb

d(Λ̄,Λ̄′)er−1d

for some ramified diagram d(Λ̄,Λ̄′) ∈ Wr(ab) and some partition diagram d ∈ Pr(δinδout)

and hence deduce the result. First, suppose that Λ′ contains a singleton block {i} for 

1 � i � r. In this case we set

d(Λ̄,Λ̄′) = d(Λ,Λ′)si,r,

where si,r = si,i+1 · · · sr−1,r−2sr−1,rsr−1,r−2 · · · si,i+1. We set

d(Λ,Λ′) = d(Λ̄,Λ̄′)er−1si,r

as required. Now suppose that Λ′ contains a block J with two southern vertices j1 < j2. 

We suppose that j2 is maximal with respect to this property. In this case we set

d(Λ̄,Λ̄′) = d(Λ,Λ′)sj2,rsj1,r−1.

We easily observe that

d(Λ,Λ′) = d(Λ̄,Λ̄′)er−1,r(pr−1,rsj1,r−1sj2,r).

We further observe that

x ⊗Sa≀Sb
d(Λ,Λ′) = (x ⊗Sa≀Sb

d(Λ̄,Λ̄′))er−1d
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because of our maximality assumption on j2; as there is no inner block to the right of J

containing a pair of southern vertices, thus sj1,r−1sj2,r does not swap the order of blocks 

which can be permuted by the left action of Sa ≀ Sb. The first statement follows.

We now consider the second and third statements. Again, consider x ⊗Sa≀Sb
d(Λ,Λ′) a 

basis element of Δr(αβ) and consider d(Λ,Λ′)er−1 using equation (8.2) and conjugation. 

In all three cases the resulting outer partition contains a singleton block and therefore 

d(Λ,Λ′)er−1 ∈ DR(Δr(αβ)). Therefore the second statement holds. Finally, we see that 

all possible (Π, Π′) ∈ Vr(ab) with a singleton part {r} in both Π and Π′ can occur as 

d(Λ,Λ′)er−1, thus the third statement holds. For r = 1 modules are all 1-dimensional and 

the statement is easily verified. �

The calculations of Proposition 8.6, together with equation (3.3) and equation (3.4) 

provide the following corollary.

Corollary 8.7. There is a short exact sequence of Pr(δinδout)-modules

0 → DR
(
Δr(αβ)

)
→ Δr(αβ)

⏐�
Pr(δinδout)

→ DQ
(
Δr(αβ)

)
→ 0,

where

DR
(
Δr(αβ)

)
∼ = Δr−1(αβ) ⊗Pr−1(δinδout) er−1Pr(δinδout) (8.3)

and DQ
(
Δr(αβ)

)
decomposes as a direct sum of inflated simple CSr-modules.

Corollary 8.8. For arbitrary parameters δin, δout �= 0, the restriction Δr(αβ)↓
Rr(δin,δout)
Pr(δinδout)

has a well-defined standard filtration with the following equality of filtration multiplicities:

[
Δr(αβ)

⏐�Rr(δin,δout)

Pr(δinδout)
: Δr(λ)

]
Pr(δinδout)

=

⎧
⎨
⎩

[
DQ(Δr(αβ)) : Δr(λ)

]
Pr(δinδout)

if |λ| = r,
[
Δr−1(αβ)

⏐�Rr(δinδout)

Pr(δinδout)

⏐�Pr(δinδout)

Pr−1(δinδout)
: Δr−1(λ)

]
Pr−1(δinδout)

if |λ| < r.

Proof. Since Pr(δinδout) is quasi-hereditary [34] when δin, δout �= 0, one need only show 

that Δr(αβ)
⏐�Rr(δin,δout)

Pr(δinδout)
possesses a standard filtration in order to deduce that this filtra-

tion is well-defined (see, for example [17, Appendix, A1(8)]). The existence of a standard 

module filtration of Δr(αβ)
⏐�Rr(δin,δout)

Pr(δinδout)
is proved by induction. The base case r = 1 is 

clear from Proposition 8.6: the three (1-dimensional) standard modules for the ramified 

partition algebra restrict to standard modules for the partition algebra. For r > 1, we use 

the short exact sequence above. The quotient is a direct sum of simple CSr-modules, 

which are Pr(δinδout)-standard modules by inflation. If the submodule DR(Δr(αβ)) is 

non-zero then a standard filtration of DR(Δr(αβ)) ∼ = Δr−1(αβ) ⊗ er−1Pr(δinδout) is 

obtained from the Pr−1(δinδout)-standard filtration of Δr−1(αβ)↓
Rr−1(δin,δout)
Pr−1(δinδout) by global-

isation using the isomorphism Δr−1(κ) ⊗ er−1Pr(δinδout) ∼ = Δr(κ). �
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•

•

•

•

•

•

•

•

•

•• • • • • • •

Fig. 17. A ramified diagram d(Λ,Λ′) ∈ V 0
7 (22). Here the outer set-partition is Λ = {{1, 2, 1, 3}, 

{3, 4, 2, 4, 5}, {6, 7}} and the inner set-partition is Λ′ = {{1, 1}, {2, 3}, {3, 5}, {4, 2}, {4}, {6}, {7}}. Com-
pare with Fig. 18.

•

•

•

•

•

•

•

•

•

•• • • • • • •

Fig. 18. Another ramified diagram in V 0
7 (22). This diagram can be obtained from that of Fig. 17 by acting 

on the right by the permutation (1, 4, 6)(2, 5, 7, 3) ∈ S7.

9. General formula for ramified branching coefficients

We now consider the decomposition of the module

DQ
(
Δr(αβ)

)
= S

αβ

⊗Sa≀Sb
V 0

r (ab).

Using the canonical quotient map Pr(mn) → CSr arising from equation (3.4), we regard 

V 0
r (ab) as a (CSa ≀ Sb, CSr)-bimodule. Thus, for the remainder of this paper, we need 

not consider the partition algebra structure, we can simply discuss bimodules for wreath 

products of symmetric groups.

9.1. Types of diagrams

Fix a, b, r with ab � r or b � r if a = 0. We wish to understand the left action of 

Sa ≀Sb and the right action Sr on V 0
r (ab). Recall that V 0

r (ab) ⊂ Vr(ab) has a basis given 

by the ramified diagrams d(Λ,Λ′) of propagating index (ab), as defined in Section 4.3, 

such that

◦ the outer set-partition Λ has no singleton blocks;

◦ the inner set-partition Λ′ consists of propagating pairs (that is, pairs {i, j} for i a 

northern vertex and j a southern vertex) and southern singletons.

Examples are depicted in Figs. 16 to 22. The purpose of this section is to define the 

propagating type and the non-propagating type of such a ramified diagram d(Λ,Λ′) ∈

V 0
r (ab) in such a way as to decompose this module and to determine a direct sum 

decomposition of DQ(Δr(αβ)) as a CSr-module.
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•

•

•

•

•

•

•

•

•

•• • • • • • •

Fig. 19. Another diagram in V 0
7 (22). This ramified diagram can be obtained from that of Fig. 18 by acting 

on the left by ((1, 2), 1S2
; (1, 2)) ∈ S2 ≀ S2. Observe that it cannot be obtained from the ramified diagram 

of Fig. 18 via a right action.

•

•

•

•

•

•

•

•

•

•• • • • • • •

Fig. 20. A diagram in V 0
7 (22). This diagram cannot be obtained from any of Figs. 17 to 19 or Fig. 21 via 

the S2 ≀S2-left-action or S7-right-action (although it can be obtained from any of these diagrams by right 
multiplication by a ramified partition diagram).

•

•

•

•

•

•

•

•

•

•• • • • • • •

Fig. 21. A diagram in V 0
7 (22). This diagram cannot be obtained from any of Figs. 17 to 20 via the S2 ≀ S2-

left-action or S7-right-action.

Our aim is to decompose V 0
r (ab) and so we shall first focus on the properties of the 

ramified diagram basis elements d(Λ,Λ′) which are preserved by the left and right actions. 

Roughly speaking, this means we shall need to describe the number of singletons and 

their positioning within the blocks of (Λ, Λ′). For example, the diagrams in Figs. 17 to 19

are all obtained from one another by left action by Sa ≀ Sb and/or right action by Sr. 

On the other hand, those in Figs. 17, 20 and 21 cannot be obtained from one another 

by these actions. In order to discuss this in more detail, we first note that within the 

ramified diagram basis element d(Λ,Λ′) ∈ V 0
r (ab) we have that:

◦ there are precisely b propagating outer-blocks P1, . . . , Pb. The refinement of each 

block, Λ ∩ Pi for 1 � i � b, consists of precisely a propagating pairs and some 

number, γi say, of southern singletons; 

◦ there are some non-propagating southern outer-blocks, say Q1, . . . , Ql for some l � 0. 

The refinement of each block, Λ ∩ Qi for 1 � i � ℓ, consists of some number, εi � 2

say, of singleton southern blocks.

Example 9.1. The diagrams in Figs. 17 to 19 each have a = b = 2 and r = 7. Each has 

two outer propagating blocks, P1 and P2, one of which contains a singleton and the other 
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•

•

•

•

•

•

•

•

•

•

Fig. 22. A diagram in V 0
5 (03) with propagating type (2, 2, 1) and non-propagating type ∅. 

contains no singletons. Each has a unique non-propagating outer block, Q1, containing 

2 singletons.

Example 9.2. Consider the ramified diagram in Fig. 16. Here a = 2, b = 3 and r = 14. 

We call the propagating outer-blocks P1, P2, P3 reading from left to right, and observe 

that P1 and P2 each contain 2 inner singleton southern blocks and P3 contains no inner 

singleton southern blocks (in addition to the a = 2 inner propagating pairs). There are 

also two non-propagating southern outer-blocks, Q1, Q2, each of which contains precisely 

two singleton southern blocks.

Before continuing further, we now introduce some notation for recording the inner-

singleton blocks. We let p denote the total number of southern singletons belonging to an 

outer propagating block and q denote the total number of southern singletons belonging 

to an outer non-propagating block. We note that every southern vertex belongs to either 

a propagating pair inner-block (of which there are ab in total) or a singleton inner-block 

and therefore p + q = r − ab.

Example 9.3. The ramified diagrams in Figs. 17 to 19 each have p = 1 and q = 2.

We next consider how these singleton vertices are partitioned into propagating and 

non-propagating blocks. We remind the reader that the non-propagating outer-blocks 

each contain at least 2 inner-singleton vertices. Recall that P>1(q) denotes the set of 

all integer partitions of q whose parts are all strictly greater than 1.

Definition 9.4. We suppose that d(Λ,Λ′) has non-propagating outer blocks Q1, . . . , Qℓ such 

that, for 1 � i � ℓ, Λ ∩ Qi consists of some number εi � 2 of singleton southern blocks. 

We define the non-propagating type of d(Λ,Λ′) to be the partition ε = (ε1, ε2, ε3, . . . , εℓ) ∈

P>1(q) if ℓ �= 0 and to be ∅ if ℓ = 0.

We remind the reader that the propagating outer-blocks must each contain at least 

one southern vertex. When a = 0 this implies that every propagating outer-block must 

contain at least one southern inner-singleton (see for example, Fig. 22). When a > 0 a 

propagating outer-block is allowed to contain zero southern inner-singletons (as already 

seen in Figs. 17 to 19). In what follows, we use γ to denote the numbers of southern 
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inner-singletons in the propagating outer-blocks, ordering these numbers so that they 

are weakly decreasing. Thus γ ∈ P(ab)(p) where P(ab) is specified as follows.

Definition 9.5. Let b ∈ N0.

(i) We define P(0b)(p) to be the set of all weakly decreasing sequences of positive 

integers γ of length b which sum to p.

(ii) For a ∈ N, we define P(ab)(p) to be the set of all weakly decreasing sequences of 

non-negative integers γ of length b which sum to p − ab.

Definition 9.6. We suppose that d(Λ,Λ′) has propagating outer-blocks P1, . . . , Pb such 

that, for 1 � i � b, Λ ∩ Pi consists of precisely a propagating pairs and some number, γi

say, of southern singletons. We define the propagating type of d(Λ,Λ′) to be the sequence 

γ = (pcp , . . . , 1c1 , 0c0) ∈ P(ab)(p).

Note that by the remarks before Definition 9.5, γ ∈ P(ab)(p). In particular, when 

a = 0, since each propagating outer-block must contain at least one southern inner-

singleton, the sequence γ has no zero terms, and the zero multiplicity c0 is 0. In case (ii) 

when a > 0, elements of P(ab)(γ) may have zero parts: these are counted by c0 in the 

sums in Theorem D.

Definition 9.7. We say that a ramified diagram d(Λ,Λ′) as in Definitions 9.4 and 9.6 has

type (γ, ε).

We shall see that the (CSa ≀ Sb, CSr)-bimodule V 0
r (ab) decomposes as a direct sum 

in which each summand is spanned by the diagrams of a fixed type.

Example 9.8. The diagrams in Figs. 17 to 19 all have propagating-type (1, 0) and non-

propagating-type (2).

Example 9.9. The diagrams in Figs. 20 and 21 have propagating-type (2, 1) and (3, 0)

respectively. Both diagrams in Figs. 20 and 21 have non-propagating-type ∅.

9.2. Elementary diagrams

Let x, y ∈ Z�0. For each pair (0, 0) �= (x, y) ∈ Z
2
�0 we define a ramified (max{1, x}, x+

y)-set-partition diagram vx,y by setting the first x inner blocks to be of the form {k, k}

for 1 � k � x and the remaining inner blocks to be singletons; there is a single outer 

block that is the union of all max{1, x}+x+y vertices. Examples are depicted in Fig. 23. 

We set (∅, y) to be (0, y)-set-partition consisting of precisely one outer block, and whose 

inner blocks are all singletons (see Fig. 24 for an example).
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•
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•

•

•

•

• • • •

• •

• • • • • •

• • • •

Fig. 23. Diagrams vx,y = v0,3, v2,2, and v4,2 respectively. Note that x is the number of propagating strands 
and y is the number of southern inner-singletons.

• • • •

Fig. 24. The diagram v(∅,4). Here ∅ records that this a diagram consisting purely of southern vertices. 

• • • • • • • • • • • • • • •

• • • • • •

Fig. 25. The diagram vγ,ε for γ = (22, 0) and ε = (3, 2) with a = 2 and b = 3, obtained via horizontal 
concatenation as (v(2,2))⊛2 ⊛ v(2,0) ⊛ v(∅,3) ⊛ v(∅,2). This diagram is discussed in Example 9.12.

Definition 9.10. For γ = (pcp , . . . , 1c1 , 0c0) ∈ P(ab)(p) and ε ∈ P>1(q), the diagram vγ,ε, 

is defined by horizontal concatenation as follows:

vγ,ε =
(
(va,p)⊛cp ⊛ · · · ⊛ (va,1)⊛c1 ⊛ (va,0)⊛c0

)
⊛ (v∅,ε1

⊛ v∅,ε2
⊛ · · · ⊛ v∅,εℓ

).

Let V 0
r (ab : γ, ε) ⊆ V 0

r (ab) denote the (CSa ≀ Sb, CSr)-bimodule generated by vγ,ε ∈

V 0
r (ab).

Since the propagating type and non-propagating type of a ramified diagram are in-

variant under both the left-Sa ≀ Sb and the right-Sr actions, the following proposition 

follows.

Proposition 9.11. There is a direct sum decomposition of the (Sa ≀Sb,Sr)-module V 0
r (ab)

as follows:

V 0
r (ab) =

⊕

cp+q=r−ab
γ∈P

(ab)
(p)

ε∈P>1(q)

V 0
r

(
(ab) : γ, ε

)
.

Example 9.12. Suppose that r = 15, a = 2, b = 3 and r − ab = 9. We let p = 4 and 

q = 5. There are 4 possible choices of γ ∈ P(23)(4), namely (4, 02), (3, 1, 0), (22, 0) and 

(2, 12). There are two choices of ε ∈ P>1(5), namely (5) and (3, 2). The diagram vγ,ε

for γ = (22, 0) and ε = (3, 2) is depicted in Fig. 25.
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• • • •
• • • •

• • • •

Fig. 26. The diagrammatic basis of V 0
4 (∅, (22)). This right S4-module is the transitive permutation module 

isomorphic to C↑S4

S2≀S2
. Observe that the stabiliser of the first diagram shown is the usual copy of S2 ≀ S2 �

S4.

9.3. The direct sum decomposition of the depth quotient

We are now ready to provide the complete decomposition of DQ(Δr(αβ)) =

S
αβ

⊗Sa≀Sb
V 0

r (ab) into irreducible summands. Examples 10.1 and 10.2 and the discussion 

before Definition 10.3 illustrate the key ideas in the proof. In light of Proposition 9.11, 

we focus our attention on a fixed summand V 0
r (ab : γ, ε) ⊆ V 0

r (ab). We shall consider 

two extremal cases first.

Lemma 9.13. For any ε ∈ P>1(q), there is an isomorphism of right Sq-modules

V 0
q

(
∅ : ∅, ε

)
∼ = C

�⏐Sq

Stab(ε)
.

Proof. The diagrammatic module is a transitive permutation Sq-module with the re-

quired stabiliser, and so the result follows. �

We remark that this lemma is also proved in [9, Theorem 7.11].

Example 9.14. Let q = 4 and ε = (22). The module V 0
4 (∅, ε) is 3-dimensional with basis 

as depicted in Fig. 26. This module is isomorphic to C↑S4

S2≀S2
.

We next consider another extreme case, where q = 0 and γ = (sb) so r = (a + s)b.

Lemma 9.15. Let r = (a + s)b. There is an isomorphism of right Sr-modules

(
S

α ⊘ S
β
)

⊗Sa≀Sb
V 0

r

(
(ab) : (sb),∅

)
∼ = 

(
S

α ⊗ CSs

�⏐Sa+s

Sa×Ss
⊘ Sβ

)�⏐S(a+s)b

Sa+s≀Sb

Proof. By [2, page 56, Corollary 3], it suffices to find a right CSa+s ≀ Sb-submodule X

of 
(
S

α ⊘ S
β
)

⊗Sa≀Sb
V 0

r

(
(ab) : (sb),∅

)
that is isomorphic to 

(
S

α ⊗ CSs

)�⏐Sa+s

Sa×Ss
⊘ Sβ

and such that

dim (Sα ⊘ S
β) ⊗Sa≀Sb

V 0
r

(
(ab) : (sb),∅

)
= |S(a+s)b : Sa+s ≀ Sb| dim X.

Let k = [Sa+s : Sa × Ss] and let ϑ1, . . . , ϑk be right-coset representatives for Sa × Ss

in Sa+s; thus Sa+s = ⊔k
j=1(Sa × Ss)ϑj . Recall that v(a,s) denotes the diagram
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. . .

• • •

• • • • • •. . .

where there are a northern and a + s southern vertices. As a vector space, we define X

by

X =
〈
(x ⊗ y) ⊗ va,sϑi1

⊛ · · · ⊛ va,sϑib
| i1, . . . , ib ∈ {1, . . . , k}, x ∈ (Sα)⊗b, y ∈ S

β
〉

See Fig. 27. Note that the ramified 
(
ab, (a + s)b

)
diagrams appearing in the final tensor 

factor in each chosen basis element of X have outer blocks

{
1, . . . , a, 1, . . . , a + s

}
,
{

a + 1, . . . , 2a, (a + s) + 1, . . . , 2(a + s)
}

, . . .

Thus there are no outer crossings. Observe that any π ∈ Sa � Sa+s satisfies v(a,s)π =

πv(a,s); this is the (a, a + s)-diagram with the permutation π on the first a strings, 

followed by s isolated souther vertices.

We now give X the structure of a right CSa+s ≀ Sb-module. For the action of the 

base group we must first understand how Sa+s acts on each v(a,s)ϑic
. Let σ ∈ Sa+s and 

suppose that ϑic
σ ∈ (Sa × Ss)ϑj , so that ϑic

σ = π1π2ϑj where π1 ∈ Sa and π2 ∈ Ss. 

We then have

v(a,s)ϑic
· σ = v(a,s) · π1π2ϑj = π1v(a,s)ϑj (9.1)

since π2 acts trivially on the isolated southern dots. We now define the action of an 

arbitrary element (σ1, . . . , σb) of the base group Sa+s × · · · × Sa+s of Sa+s ≀ Sb in the 

obvious way by

(x⊗y)⊗v(a,s)ϑi1
⊛· · ·⊛v(a,s)ϑis

·(σ1, . . . , σb) = (x⊗y)⊗(v(a,s)ϑi1
·σ1)⊛· · ·⊛(v(a,s)ϑis

·σs)

where each factor in the concatenation of the right-hand side is defined by (9.1). Now 

let τ ∈ Sb. We define

v(a,s)ϑi1
⊛· · ·⊛v(a,s)ϑib

(1Sa
, . . . , 1Sa

; τ) = (1Sa
, . . . , 1Sa

; τ)(v(a,s)ϑiτ(1)
⊛· · ·⊛v(a,s)ϑiτ(b)

).

Let w denote a basis vector spanning the trivial SSs
-module. We now claim that as 

right-C(Sa+s × Sb)-modules there is an isomorphism

X ∼ = 
(
S

α ⊗ CSs

)�⏐Sa+s

Sa×Ss
⊘ Sβ

defined by
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(x1⊗· · ·⊗xb⊗y)⊗(v(a,s)ϑi1
⊛· · ·⊛v(a,s)ϑib

) �→
(
(x1⊗w)⊗ϑi1

)
⊗· · ·⊗

(
(xb⊗w)⊗ϑib

)
⊗y.

(9.2)

To see that this commutes with the action of the base group it suffices to check this for

(σ, 1Sa+s
, . . . , 1Sa+s

)

where σ ∈ Sa+s. Suppose that ϑi1
· σ = π1π2ϑj where, as before π1 ∈ Sa, π2 ∈ Ss. 

Acting on the left-hand side of (9.2) we obtain

(x1π1 ⊗ x2 ⊗ · · · ⊗ xb ⊗ y) ⊗ (v(a,s)ϑi1
⊛ · · · ⊛ v(a,s)ϑib

).

Acting on the right-hand side of (9.2) we obtain

(x1 ⊗ w) ⊗ ϑ1σ ⊗ (x2 ⊗ w) ⊗ ϑi2
· · · ⊗ (xb ⊗ w) ⊗ ϑib

⊗ y

= (x1 ⊗ w) ⊗ π1π2ϑj ⊗ (x2 ⊗ w) ⊗ ϑi2
· · · ⊗ (xb ⊗ w) ⊗ ϑib

⊗ y

= (x1π1 ⊗ wπ2) ⊗ ϑj ⊗ (x2 ⊗ w) ⊗ ϑi2
· · · ⊗ (xb ⊗ w) ⊗ ϑib

⊗ y

and we see that the actions are compatible with (9.2). For the top group, again let 

τ ∈ Sb. Acting on the left-hand side of (9.2) we obtain

(xτ(1) ⊗ · · · ⊗ xτ(b) ⊗ τy) ⊗ (v(a,s)ϑiτ(1)
⊛ · · · ⊛ v(a,s)ϑiτ(b)

)

and on the right-hand side

(xτ(1) ⊗ w ⊗ ϑiτ(1)
) ⊗ · · · ⊗ (xτ(b) ⊗ w ⊗ ϑiτ(b)

) ⊗ τy

and again the actions agree.

Finally we check the dimensions. We have

dim
(
(Sα ⊗ CSa

)
�⏐Sa+s

Sa×Ss
⊘ Sβ

)
× |S(a+s)b : Sa+s ≀ Sb|

=
(
dim S

α × |Sa+s : Sa × Ss|
)b

dim S
β × |S(a+s)b : Sa+s ≀ Sb|

=
(
dim S

α
)b (a + s)!b

a!bs!b
dim S

β

(
(a + s)b

)
!

(a + s)!bb! 

=
(
dim S

α
)b

dim S
β

(
((a + s)b

)
!

a!bs!bb! 
.

The number of Sa × Sb-coset representatives required for the diagrams in V 0
r ((ab) :

(sb),∅) is

((a + s)b)!

(a + s)!bb! 

(a + s)!b

a!bs!b
=

(a + s)b)!

a!bs!bb! 
.
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• • • • • • • • • • • •

• • • • • •

Fig. 27. A prototypical diagram appearing in an element of X. Here a = 2 and b = 3 and s = 2. The cosets 
(of minimal length) are ϑ1 = (2, 4), ϑ2 = (1, 2, 4) and ϑ3 = idS4

.

To see this, note that we can choose the b blocks of a + s bottom row dots that will be 

the blocks in

(
(a + s)b 

a + s, . . . , a + s

)
1 

b!

ways and we then choose the s dots within each block to be singletons in 
(

a+s
s 

)b
ways. 

Therefore

dim
(
S

α ⊘ S
β ⊗ V 0

r (sb,∅)
)

= (dim S
α)b dim S

β ×

(
(a + s)b

)
!

a!bs!bb! 

and the dimensions agree. �

We may now use the previous two lemmas to describe the decomposition in the general 

case. We remind the reader that the set P(ab)(p) was defined in Definition 9.5; splitting 

into the two cases a > 0, in which c0 > 0 is permitted, and a = 0 in which case, as we 

observed after Definition 9.6, c0 = 0. We remind the reader of our standing convention 

that βi ⊢ ci in a sum indicates that the sum is over all relevant sequences of partitions 

indexed by i.

Theorem 9.16. Suppose that r − ab = p + q, γ = (pcp , . . . , 1c1 , 0c0) ∈ P(ab)(p) and 

ε ∈ P>1(q). Then the Pr(δinδout)-submodule

S
αβ

⊗
Sa≀Sb

V 0
r

(
(ab) : γ, ε

)
⊆ DQ

(
Δr(αβ)

)

decomposes as follows

⊕

βi⊢ci

cβ
βp,...,β1,β0

( p ⊗

i=0 

(
(Sα ⊗ C)

�⏐Sa+i

Sa×Si
) ⊘ S

βi
)

⊗ CStab(ε)

)�⏐Sr

Stab((ab)+γ)×Stab(ε)

via the canonical quotient map Pr(δinδout) → CSr from equation (3.4).

Proof. We first note that as an CSr-module,

V 0
r

(
(ab) : γ, ε

)
∼ = 

(
V 0

p+ab

(
(ab) : γ,∅

)
⊗ V 0

q

(
∅ : ∅, ε)

)�⏐Sr

Sp+ab×Sq
,
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simply because the action of Sr permutes propagating outer blocks amongst themselves 

and permutes non-propagating outer blocks amongst themselves. Thus, by Lemma 9.13

and the transitivity of induction, it suffices to show that Sαβ

⊗ V 0
ab+p

(
(ab) : γ,∅

)
de-

composes as follows:

⊕

βi⊢ci

cβ
βp,...,β1,β0

( p ⊗

i=0 
(Sα ⊗ C)

�⏐Sa+i

Sa×Si
⊘ Sβi

)�⏐Sab+p

Stab((ab)+γ)
. (9.3)

We prove this statement. Firstly, for any right CSa ≀ Sb-module X,

X ⊗Sa≀Sb
V 0

ab+p

(
(ab) : γ,∅

)
∼ = X

⏐�
Sa≀Sc

⊗Sa≀Sc

( p ⊗

i=0 
V 0

(a+i)ci

(
(aci) : (ici),∅

))�⏐Sab+p∏
i S(a+i)ci

,

where c = (cp, . . . , c1, c0). To see this, observe that a ramified diagram v ∈ V 0
ab+p((ab) :

γ,∅) may be written as

v = ϑ
(
(va,p)⊛cp ⊛ · · · ⊛ (va,1)⊛c1 ⊛ (va,0)⊛c0

)
σ,

for ϑ ∈ Sa ≀ Sb and σ ∈ Sab+p. (Recall that ci is the multiplicity of i as a part of γ.) 

Then, for x ∈ X, the isomorphism sends

x ⊗ v �→ xϑ ⊗
(
(va,p)⊛cp ⊛ · · · ⊛ (va,1)⊛c1 ⊛ (va,0)⊛c0

)
σ.

Therefore Sαβ

⊗ V 0
ab+p

(
(ab) : γ,∅) is isomorphic to

(Sα ⊘ S
β)

⏐�
Sa≀Sc

⊗Sa≀Sc

( p ⊗

i=0 
V 0

(a+i)ci

(
(aci) : (ici),∅

))�⏐Sab+p∏p
i=0 S(a+i)ci

.

Using [15, Lemma 3.3(2)], this is isomorphic to

⊕

βi⊢ci

cβ
βp,...,β1,β0

( p ⊗

i=0 
S

α ⊘ S
βi

)
⊗Sa≀Sc

( p ⊗

i=0 
V 0

(a+s)ci

(
(aci) : (ici),∅

))�⏐Sab+p∏p
i=0 S(a+i)ci

.

where cβ
βp,...,β1,β0 is the generalised Littlewood–Richardson coefficient defined in (2.3). 

Regrouping terms, this becomes

⊕

βi⊢ci

cβ
βp,...,β1,β0

( p ⊗

i=0 

(
(Sα ⊘ S

βi

) ⊗Sa≀Sci
V 0

(a+i)ci

(
(aci) : (ici),∅

)))�⏐Sab+p∏p
i=0 S(a+i)ci

.

Lemma 9.15 provides the isomorphism to

⊕

βi⊢ci

cβ
βp,...,β1,β0

( p ⊗

i=0 

(
(Sα ⊗ CSi

)
�⏐Sa+i

Sa×Si
⊘ Sβi))�⏐Sab+p∏p

i=0 S(a+i)ci

,
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and then transitivity of induction yields the desired statement. �

9.4. Proofs of Theorems A and D

We are now ready to prove Theorem D and as a corollary, Theorem A.

Proof of Theorem D. The full decomposition of the depth quotient is obtained from 

Proposition 9.11 and Theorem 9.16 by summing over all partitions γ ∈ P(ab)(p) and 

ε ⊢ q such that p + q = r − ab, using Corollary 7.2 and the first case of Corollary 8.8, 

applied with λ = κ. Theorem D then follows from Corollary 8.8. �

Proof of Theorem A. This follows immediately from the case α = ∅ of Theorem C and 

Theorem D. �

10. Examples and applications

We shall write rc for the ramified branching coefficients formally defined in Defini-

tion 8.1 and determined in Theorem D. Thus

rc(αβ , κ) =
[
Δr(αβ)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

. (10.1)

The values of m, n and r will be clear from context. By the final part of Theorem C, 

when α = ∅ we have p(β[n], (m), κ[mn]) = rc(∅β , κ) provided m � r − |β| + [β �= ∅]

and n � r + β1.

10.1. Examples of Theorems A, C and D

We consider

Δ5(∅(2,1))
⏐�R5(m,n)

P5(mn)
, Δ5

(
(1)(2,1)

)⏐�R5(m,n)

P5(mn)

and find all the composition factors L5(κ) for κ ⊢ 5 of these modules by decompos-

ing the depth quotient. We have chosen to change only the partition α (from ∅ to 

(1)) as this minor change results in big changes in the ramified branching coefficient 

[Δr(αβ)↓
Rr(m,n)
Pr(mn) : Lr(κ)]P5(mn) and even bigger changes in the stable plethysm coeffi-

cients. Indeed, as we discussed in Section 1.5, in the first case we obtain the stable values 

of p
(
(n − 3, 2, 1), (m), κ[mn]

)
for κ ⊢ 5 and arbitrary m and n, whereas in the second 

case we obtain the stable values of p
(
(2, 1), (m − 1, 1), κ[mn]

)
for κ ⊢ 5 and arbitrary m; 

the outer partition (2, 1) is now fixed.

Example 10.1. We take α = ∅ and β = (2, 1) and κ ⊢ 5. By Theorem C, provided n � 7

and m � 3 we have p
(
(n−3, 2, 1), (m), κ[mn]

)
= rc

(
∅

(2,1), κ
)
. We shall derive below the 

stable plethysm and ramified branching coefficients
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• • • • •

• • •

(
1 − (1, 3)

)(
1 + (1, 2)

)

• • • • •

• • •

(
1 − (1, 3)

)(
1 + (1, 2)

)

• • • • •

• • •

(
1 − (1, 3)

)(
1 + (1, 2)

)

Fig. 28. The generators c∗
(2,1) ⊗ v(γ,ε) for (γ, ε) equal to 

(
(3, 12),∅

)
and 

(
(22, 1),∅

)
and 

(
(13), (2)

)
respec-

tively. These generate the direct summands, which we denote by M1, M2, and M3 of DQ
(
Δ5(∅(2,1))

)
.

p
(
(n − 3, 2, 1), (m), (mn − 5, 5)

)
= 2 = rc

(
∅

(2,1), (5)
)
,

p
(
(n − 3, 2, 1), (m), (mn − 5, 4, 1)

)
= 5 = rc

(
∅

(2,1), (4, 1)
)
,

p
(
(n − 3, 2, 1), (m), (mn − 5, 3, 2)

)
= 4 = rc

(
∅

(2,1), (3, 2)
)
,

p
(
(n − 3, 2, 1), (m), (mn − 5, 3, 12)

)
= 3 = rc

(
∅

(2,1), (3, 12)
)
,

p
(
(n − 3, 2, 1), (m), (mn − 5, 22, 1)

)
= 2 = rc

(
∅

(2,1), (22, 1)
)
,

p
(
(n − 3, 2, 1), (m), (mn − 5, 2, 13)

)
= 0 = rc

(
∅

(2,1), (2, 13)
)
,

p
(
(n − 3, 2, 1), (m), (mn − 5, 15)

)
= 0 = rc

(
∅

(2,1), (15)
)

for m and n satisfying these bounds. We decompose the depth quotient DQ
(
Δ5(∅(2,1))

)

as in Theorem 9.16 thereby computing the coefficients above by the formula in Theo-

rems A and D. There are three summands of DQ
(
Δ5(∅(2,1))

)
which are of interest. These 

are generated by the diagrams v(γ,ε) depicted in Fig. 28. To see this from the formulae, 

note that |γ| + |ε| = 5 − 0 × 3 = 5 and since α = ∅ and |β| = 3, the partition γ has three 

non-zero parts. As always, ε has no parts of size 1 since non-propagating blocks may not 

be singletons (such basis elements lie in the depth radical). Each outer block has at least 

one southern dot, so we have two further dots to place. Our options are as follows:

◦ place both extra dots in the same propagating block (set γ = (3, 12)) leaving no 

extra dots to place in a non-propagating block (that is, ε = ∅).

◦ place each extra dot in a separate propagating block (set γ = (22, 1)) leaving no 

extra dots to place in a non-propagating block (that is, ε = ∅).

◦ place both extra dots in the same non-propagating block (set ε = (2) and γ = (13))

For M1 we have γ = (3, 12) so the multiplicities of the parts (read as throughout 

in decreasing order) are 1 and 2 and we restrict the Specht module S(2,1) to S1 × S2, 

obtaining

S
(2,1)

⏐�S3

S1×S2
= S

(1) ⊗ S
(2) ⊕ S(1) ⊗ S

(12). (10.2)

Since ε = ∅ we have
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M1
∼ = 

(
(S(1) ⊗ S

(2) ⊕ S
(1) ⊗ S

(12)
)�⏐S3×S2

S1×S2

�⏐S5

S3×S2

∼ = S
(5) ⊕ 2S

(4,1) ⊕ S
(3,2) ⊕ S

(3,12).

For M2 we have γ = (22, 1) so the multiplicities of the parts are now 2 and 1 and we 

take a similar restriction

S
(2,1)

⏐�S3

S2×S1
= S

(2) ⊗ S
(1) ⊕ S(12) ⊗ S

(1). (10.3)

Since ε = ∅ we have

M2
∼ = 

(
(S(2) ⊘ S

(12)) ⊗ S
(1)

)�⏐S5

S2≀S2×S1
⊕ 

(
(S(2) ⊘ S

(2)) ⊗ S
(1)

)�⏐S5

S2≀S2×S1

∼ = S(5) ⊕ 2S
(4,1) ⊕ 2S

(3,2) ⊕ S
(3,12) ⊕ S

(22,1)

For M3 we have γ = (13) and so we do not restrict the Specht module S(2,1). Since 

ε = (2) we have

M3
∼ = (S(2,1) ⊗ CS2

)
�⏐S5

S3×S2

∼ = S(4,1) ⊕ S
(3,2) ⊕ S

(3,12) ⊕ S
(22,1).

Summing over the coefficients appearing in the decompositions of M1, M2 and M3 we 

obtain the ramified branching coefficients as stated at the beginning of this example.

Example 10.2. We now take α = (1) and keep β = (2, 1) and κ ⊢ 5. Now n = |β| = 3 is 

fixed. By Theorem C we have

p
(
(2, 1), (m − 1, 1), κ[3m]

)
� rc

(
(1)(2,1), κ

)
.

(Note that the hypothesis r � n|α| holds because 5 � 3 × 1.) By Theorem 1.2 in [16] 

or the theorem proved in §2.1 of [10], given any partition κ ⊢ 5 the plethysm coefficient 

p
(
(2, 1), (m − 1, 1), κ[12] + (3m − 12)

)
is constant for all m � 4.

We shall derive the following stable plethysm and ramified branching coefficients:

p
(
(2, 1), (m − 1, 1), (3m − 5, 5)

)
= 1 � 2 = rc

(
(1)(2,1), (5)

)
,

p
(
(2, 1), (m − 1, 1), (3m − 5, 4, 1)

)
= 3 � 6 = rc

(
(1)(2,1), (4, 1)

)
,

p
(
(2, 1), (m − 1, 1), (3m − 5, 3, 2)) = 4 � 7 = rc

(
(1)(2,1), (3, 2)

)
,

p
(
(2, 1), (m − 1, 1), (3m − 5, 3, 12)

)
= 4 � 6 = rc

(
(1)(2,1), (3, 12)

)
,

p
(
(2, 1), (m − 1, 1), (3m − 5, 22, 1)

)
= 3 � 6 = rc((1)(2,1), (22, 1)

)
,

p
(
(2, 1), (m − 1, 1), (3m − 5, 2, 13)

)
= 2 � 3 = rc

(
(1)(2,1), (2, 13)

)
,

p
(
(2, 1), (m − 1, 1), (3m − 5, 15)

)
= 0 � 1 = rc

(
(1)(2,1), (15)

)

for m � 4. Note that in contrast to the previous case, the outer partition in the plethysm 

is fixed as (2, 1) and only the inner partition (m−1, 1) varies. We notice that none of the 
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• • • • •

• • •

(
1 − (1, 3)

)(
1 + (1, 2)

)

• • • • •

• • •

(
1 − (1, 3)

)(
1 + (1, 2)

)

• • • • •

• • •

(
1 − (1, 3)

)(
1 + (1, 2)

)

Fig. 29. The generators c∗
(2,1) ⊗ v(γ,ε) for (γ, ε) equalling ((12, 0), ∅) and ((2, 02), ∅) and (∅, (2)) respec-

tively. The distinguished zero parts for each γ ∈ P(13) are indicated. These diagrams generate the direct 
summands, which we denote by N1, N2, and N3 of DQ(Δ5((1)(2,1))).

bounds are sharp in this case. The stable values of the plethysm coefficients can easily be 

calculated using computer algebra. We now calculate the ramified branching coefficients. 

Again using Theorem 9.16, there are three summands of DQ
(
Δ5((1)(2,1))

)
which are of 

interest. These are generated by the diagrams v(γ,ε) depicted in Fig. 29.

Arguing as in the previous example, we have that

N3
∼ = (S(2,1) ⊗ CS2

)
�⏐S5

S3×S2

∼ = S(4,1) ⊕ S
(3,2) ⊕ S

(3,12) ⊕ S
(22,1).

However, the other two direct summands behave very differently.

For N1 we have γ = (2, 02) and so the multiplicities of the parts are again 1 and 

2 and the restriction of S
(2,1) is given by (10.2). Following Theorem 9.16, from the 

first summand S
(1) ⊗ S

(2) we obtain S
(1) ⊗ C↑S3

S1×S2
⊘ S

(2) which we may write as 

M (2,1) ⊘ S
(2), where the first tensor factor is the Young permutation module M (2,1) for 

CS3; similarly from the second summand S(1) ⊗ S
(12) we obtain M (2,1) ⊘ S

(12). Thus

N1
∼ = (M (2,1) ⊗ S

(2))
�⏐S5

S3×S2
⊕ (M (2,1) ⊗ S

(12))
�⏐S5

S3×S2

∼ = 
(
S

(5) ⊕ 2S
(4,1) ⊕ 2S

(3,2) ⊕ S
(3,12) ⊕ S

(22,1)
)

⊕
(
S

(4,1) ⊕ S
(3,2) ⊕ 2S

(3,12) ⊕ S
(22,1)) ⊕ S

(2,13)
)

∼ = S(5) ⊕ 3S
(4,1) ⊕ 3S

(3,2) ⊕ 3S
(3,12) ⊕ 2S

(22,1) ⊕ S
(2,13).

For N2 we have γ = (12, 0) and so the restriction is as in equation (10.3). Again the 

induction function differs, and we have

N2
∼ = 

(
(S(12) ⊘ S

(2) ⊕ S
(2) ⊘ S

(2) ⊕ S
(12) ⊘ S

(12) ⊕ S
(2) ⊘ S

(12)) ⊗ S
(1)

)�⏐S5

S2≀S2×S1

=
(
(S(3,1) + S

(22) + S
(4) ⊕ S

(2,12) + S
(22) + S

(14)) ⊗ S
(1)

)�⏐S5

S4×S1

= S
(5) ⊕ 2S

(4,1) ⊕ 3S
(3,2) ⊕ 2S

(3,12) ⊕ 3S
(22,1) ⊕ 2S

(2,13) ⊕ S
(15).

Summing over the coefficients appearing in the decompositions of N1, N2 and N3 we 

obtain the ramified branching coefficients as stated at the beginning of this example.
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10.2. IndInfRes

As motivation for the following definition, we return to Example 10.1. In this example 

we computed the summand of DQ
(
Δr(∅β)↓

Rr(m,n)
Pr(mn)

)
corresponding to a diagram v(γ,ε)

in four steps. In the first step we restricted Sβ to Sc where c is the composition recording 

the number of propagating outer parts in the diagram v(γ,ε) (see Definition 9.10) having 

each possible number of southern dots between 1 and r. (Thus ci is the number of parts 

of γ equal to i and since there are |β| = b outer propagating parts, c is a composition of 

b.) This gives us a sum of tensor products 
⊗r

i=1 S
βi

where each βi is a partition of ci. 

For instance, for the first diagram in the example, reproduced below,

• • • • •

• • •

we have c = (c5, c4, c3, c2, c1) = (0, 0, 1, 0, 2) recording the multiplicities of the parts 

in γ = (3, 1, 1). We saw in (10.2) that the restricted module satisfies S
(2,1)↓S3

S1×S2
=

S
(1) ⊗ S

(2) ⊕ S
(1) ⊗ S

(12). As seen in Lemma 9.15, the outer propagating parts having i

southern dots are permuted amongst themselves by the wreath product Si ≀ Sci
. Since 

α = ∅ and so there are no inner propagating parts, the base group acts trivially. In the 

second step we obtain the action of the base group by inflating each tensor factor Sβi

from Sci
to Si ≀ Sci

, obtaining

InfS3≀S1

S1
S

(1) ⊗ InfS1≀S2

S2
S

(2) ⊕ InfS3≀S1

S1
S

(1) ⊗ InfS1≀S2

S2
S

(1,1).

Setting p =
∑

i ici, the full action of the symmetric group Sp is then given, as seen in 

the proof of Theorem 9.16 by a third step in which we induce from 
∏

i Si ≀ Sci
to Sp. 

(Note that here α = ∅ so a = 0 and the module (Sα ⊗ C)↑
Sa+i

Sa×Si
is simply the trivial 

Si-module.) Using transitivity of induction we then finish by tensoring with the trivial 

module CStab(ε) and inducing from Sp × Stab(ε) to Sr. The following functor performs 

the first three steps.

Definition 10.3. Let γ = (pcp , . . . , 1c1) be a partition of p having exactly b parts. We 

define IndInfResγ : mod−CSb → mod−CSp on each right CSb-module W by

IndInfResγ W =
( p ∏

i=1

Inf
Si≀Sci

Sci

(
W

⏐�
Scp ×···×Sc1

))�⏐Sp

G

where the subgroup G in the induction functor is Sp≀Scp
×· · ·×S1≀Sc1

. Given b, p ∈ N we 

define IndInfRes
Sp

Sb
: mod−CSb → mod−CSp by IndInfRes

Sp

Sb
=

∑
γ IndInfResγ , where 

the sum is over all γ ⊢ p having exactly b parts.
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Proposition 10.4. Let κ ⊢ r. For any partition β of b, the ramified branching coefficient 

rc(∅β , κ) satisfies

rc(∅β , κ) =
∑

p,q:p+q=r
ε∈P>1(q) 

[(
IndInfRes

Sp

Sb
S

β ⊗ CStab(ε)

�⏐Sq
)�⏐Sr

Sp×Sq
: S

κ
]
Sr

.

Moreover if m � r−|β|+[β �= ∅] and n � r+β1 then either side is equal to the plethysm 

coefficient p(β[n], (m), κ[mn]).

Proof. Fix a partition γ = (pcp , . . . , 1c1) ⊢ p having exactly b parts. We have

S
β
⏐�
Scp ×···×Sc1

=
⊕

βi⊢ci

cβ
βp,...,β1S

βp

⊗ · · · ⊗ S
β1

where cβ
βp,...,β1 is a generalised Littlewood–Richardson coefficient as defined in (2.3). By 

transitivity of induction it follows that for each ε ∈ P>1(q), the composition multiplicity

[(
IndInfResγ Sβ ⊗ CStab(ε)

�⏐Sq
)�⏐Sr

Sp×Sq
: S

κ
]
Sr

is precisely the contribution to the sum in Theorem D coming from the partitions γ

and ε. The result now follows from the definition of IndInfResγ and IndInfRes
Sp

Sb
by 

summing over all partitions γ and ε. The result on p(β[n], (m), κ[mn]) follows similarly 

from Theorem A. �

10.3. Marked partitions and plethysm coefficients when β has one row and α = ∅

In this subsection we apply Proposition 10.4 to give an elegant and clearly positive

formula for the ramified branching coefficients when β has a single part. We require the 

following definition.

Definition 10.5. Let b ∈ N. A b-marked partition of r ∈ N is a pair of partitions (γ, ε) such 

that ℓ(γ) = b, ε ∈ P>1(|ε|) and |γ| + |ε| = r. Let MPb(r) denote the set of b-marked 

partitions of r.

Thus a b-marked partition of r may be regarded as an ordinary partition of r having 

b distinguished parts, such that only the distinguished parts may have size 1. Marked 

partitions (γ, ε) are the types, in the sense of Definition 9.7, of ramified diagrams when 

a = 0.

Proposition 10.6. Let κ be a partition of r and let b ∈ N0. Then

rc(∅(b), κ) =
∑

(γ,ε)∈MPb(r)

[
CStab(γ)×Stab(ε)

�⏐Sr
: S

κ
]
Sr

.
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Moreover if m � r − b + [b �= 0] and n � r + b then either side is the plethysm coefficient 

p
(
(n − b, b), (m), κ[mn]

)
.

Proof. It is easy to see that IndInfResSb

Sp
S

(b) =
∑

γ CStab(γ)↑
Sp where the sum is over all 

γ ⊢ p such that ℓ(γ) = b. The result now follows from Proposition 10.4 using transitivity 

of induction. �

The special case κ = (r) is worth noting. For any partitions γ and ε, it follows from 

Frobenius reciprocity that 
[
CStab(γ)×Stab(ε)

�⏐Sr
: S

(r)
]
Sr

= 1 and so

rc
(
∅

(b), (r)
)

=
∣∣MPb(r)

∣∣. (10.4)

This leads to a simple closed form for the generating function of the stable limit of 

the corresponding plethysm coefficients. Let P (z) =
∏∞

i=1(1 − zi)−1 be the generating 

function for the sequence of partition numbers.

Proposition 10.7. Let b ∈ N0. We have

∞ ∑

r=0 
lim

m,n→∞
p
(
(n − b, b), (m), (mn − r, r)

)
zr =

zb

(1 − z2) . . . (1 − zb)
P (z).

Proof. By (10.4) it is equivalent to show that the generating function for b-marked 

partitions is the right-hand side in the proposition. In turn this follows because partitions 

with exactly b parts are enumerated by zb/(1 − z) . . . (1 − zb) and partitions with no 

singleton parts are enumerated by (1 − z)P (z). �

One reason for the interest in Proposition 10.7 is that, via Euler’s Pentagonal Number 

Theorem (see for instance [3, Corollary 1.7]), it gives an efficient recurrence relation for 

the stable limits of the plethysm coefficients p
(
(n − b, b), (m), (mn − r, r)

)
. When b = 0

the generating function in the proposition enumerates partitions of r into non-singleton 

parts; this is OEIS [36] sequence A002865. When b = 1 the generating function is zP (z)

enumerating partitions, with a shift by 1. This is OEIS sequence A000041. When b = 2

the generating function is

z2P (z)

1 − z2
=

z2

(1 − z2)2

1 

(1 − z)(1 − z3) . . .
.

Since z2/(1−z2)2 =
∑∞

k=1 kz2k and the remaining part of the right-hand side enumerates 

partitions into parts not of size 2, the coefficient of zr in the right-hand side is the total 

number of parts of size 2 in all partitions of r. The coefficients of z2P (z)/(1 − z2) form 

sequence A024786 in OEIS. The sequences for greater b do not, at the time of writing, 

appear in OEIS.
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10.4. Symmetric functions

We finish this section by restating Theorems A and D in the language of symmetric 

functions and using this restatement to prove three new stability results. We remind the 

reader of our standing convention that βi ⊢ i in a sum indicates that the sum is over all 

relevant sequences of partitions.

Definition 10.8. Let β ⊢ b and let γ = (pcp , . . . , 1c1) ⊢ p be a partition such that ℓ(γ) � b. 

Given a non-empty partition α we set c0 = |β| − ℓ(γ) and define

Gα
β,γ =

∑

βi⊢ci

cβ
βp,...,β1,β0

p ∏

i=0

sβi ◦ (sαs(i)).

If ℓ(γ) = b we define

G∅

β,γ =
∑

βi⊢ci

cβ
βp,...,β1

p ∏

i=1

sβi ◦ s(i).

We set Gα
β,γ = 0 in all other cases.

Note that in the first product s(0) should be interpreted as s∅ = 1. Thus whenever 

Gα
β,γ is non-zero its degree is |γ|+ |α||β|. For example Gα

β,∅ = sβ ◦sα for any partitions α

and β and G∅

β,(1b)
= sβ ◦ s(1) = sβ for any partition β. The coefficients Gα

β,γ have not 

appeared before in the literature.

Definition 10.9. Given a partition ε = (qeq , . . . , 2e2 , 1e1), we define Hε =
∏q

j=1 s(ej) ◦s(j).

In our application we have ε ∈ P>1(q) for some q and so e1 = 0. It is worth noting 

that if ε has at most one part of any given size then Hε is the complete homogeneous 

symmetric function denoted hε in the standard notation. By the following lemma, Hε

corresponds to the permutation module of Sq acting on the set-partitions into parts of 

size specified by ε.

Lemma 10.10. For each partition ε ⊢ q, the symmetric function corresponding under the 

characteristic isometry to the module CStab(ε)↑
Sq is Hε.

Proof. By Lemma 2.3(b) the plethysm s(ej) ◦ s(j) corresponds under the characteristic 

isometry to the induced module C↑
Sjej

Sj ≀Sej
. Using that Stab(ε) = Sq ≀Seq

×· · ·×S1 ≀Se1

where ej is the multiplicity of j as a part of ε, the lemma now follows from Lemma 2.3(a), 

that the induced product of modules corresponds to the ordinary product of symmetric 

functions. �
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Proposition 10.11. Let α ⊢ a, β ⊢ b and κ ⊢ r be partitions. The ramified branching 

coefficient rc(αβ , κ) satisfies

rc(αβ , κ) =
∑

cp, q : p+q = r−ab
γ⊢p, ε∈P>1(q)

〈
Gα

β,γHε, sκ

〉
.

Moreover if α = ∅, m � r − b + [b �= 0] and n � r + b then either side is the plethysm 

coefficient p(β[n], (m), κ[mn]).

Proof. By Lemma 10.10, Hε is the symmetric function corresponding to CStab(ε)↑
Sq . 

Therefore, by Lemma 2.3(b) and Theorem D, to prove the claim on the ramified branch-

ing coefficient it suffices to show that Gα
β,γ is the symmetric function corresponding under 

the characteristic isometry to

⊕

cγ=(pcp ,...,1c1 ,0c0 )∈P
(ab)

(p)

βi⊢ci for 1�i�p

cβ
βp,...,β1,β0

( p ⊗

i=0 

(
(Sα ⊗ C)

�⏐Sa+i

Sa×Si
) ⊘ Sβi

)�⏐Sp

Stab((ab)+γ)

)
.

(The set P(ab)(p) was defined in Definition 9.5.) By Lemma 2.3(b), S
α ⊗ C↑

Sa+i

Sa×Si

corresponds to sαs(i) and hence, using both parts of this lemma, the tensor product 

corresponds to the symmetric function 
∏p

i=1 sβi ◦
(
sαs(i)

)
. The proposition now follows 

from the definition of Gα
β,γ , noting that if α �= ∅ then γ ∈ P(ab)(p) and γ has c0 = b−ℓ(γ)

distinguished zero parts, while if α = ∅ then γ ∈ P(0b)(p) and so ℓ(γ) = b. The result 

on p(β[n], (m), κ[mn]) follows as in the proof of Proposition 10.4. �

Note that each Gγ and Hε can be expressed as a linear combination of Schur functions 

using the Littlewood–Richardson rule and plethysm coefficients p(βk, (k), λ) for varying 

partitions λ. A further application of the Littlewood–Richardson rule then expresses each 

GγHε as a linear combination of Schur functions. This makes precise the claim in the 

introduction that Corollary D allows stable plethysm coefficients to be computed using 

much smaller Littlewood–Richardson and plethysm coefficients.

10.5. Applications of Proposition 10.11

As a warm up we give the symmetric functions proof of Proposition 10.6. It is well 

known that the Littlewood–Richardson coefficient cλ
μν is non-zero only if ℓ(λ) � ℓ(μ). 

It follows that the generalised Littlewood–Richardson coefficient c
(b)
βp,...,β1 in the sum 

defining G∅

(b),γ
is non-zero if and only if βi = (ci) for each i, and in this case its value is 

1. Therefore

G∅

(b),(pcp ,...,1c1 ) =

p ∏

i=1

s(ci) ◦ s(i).
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Observe that this is the symmetric function Hγ in Definition 10.9. Therefore, by Propo-

sition 10.11, provided m � r − b + [b �= 0] and n � r + b, we have

p
(
(n − b, b), (m), κ

)
=

∑

p,q:p+q=r
γ⊢p,ℓ(γ)=b
ε∈P>1(q)

〈HγHε, sκ〉

in which we may simplify the condition defining the summation to (γ, ε) ∈ MPb(r). 

This expresses the plethysm coefficient p
(
(n − b, b), (m), κ[mn]

)
for m � r and n � r as 

a clearly positive sum of generalised plethysm coefficients of smaller degrees.

Remark 10.12. Taking the special case b = 0 of this result and substituting the definition 

of Hε, we obtain

p
(
(n), (m), κ[mn]

)
=

∑

ε∈P>1(r)

〈∏

j�2

s(ej) ◦ s(j), sκ

〉

where ej is the multiplicity of j as a part of the partition ε. This recovers the main 

result, Theorem B, of [9], originally proved as the main theorem in [32].

We now give three further applications of Proposition 10.11 that prove new results in 

the case when α = ∅.

The case β = (1b)

We require the following basic results on symmetric functions.

Lemma 10.13. Let p ∈ N be divisible by i ∈ N and let π be a partition of p/i.

(a) The plethysm sπ ◦ s(i) has s(p) as a constituent if and only if π has exactly one 

part; in this case the multiplicity is 1.

(b) The plethysm sπ ◦ s(i) has s(1p) as a constituent if and only if i = 1 and π = (1p).

Proof. Part (a) follows from Corollary 9.1 of [38], which implies as a special case that 

the lexicographically greatest constituent of sπ ◦ s(i) is (|π|(i − 1) + π1, π2, . . . , πℓ(π)). 

For (b), we use that every constituent of sπ ◦ s(i) appears in s(i) × · · · × s(i) where there 

are |π| factors in the product. By the Littlewood–Richardson rule (or its simpler special 

case, Young’s rule), if sρ appears in this product then ℓ(ρ) � |π|. Therefore sπ ◦ s(i) has 

s(1p) as a constituent only if i = 1, and then since sπ ◦ s(1) = sπ, we have π = (1p). �

Let MP
⋆
b(r) be the set of b-marked partitions (γ, ε) of r such that the parts of γ are 

distinct.

Proposition 10.14. Let m, n ∈ N and let b < n. Suppose that m � r−b+1 and n � r+1.
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(i) We have p
(
(n − b, 1b), (m), (mn − r, r)

)
= |MP

⋆
b(r)|.

(ii) We have p
(
(n − b, 1b), (m), (mn − r, 1r)

)
= [r = b].

Proof. Observe that, dually to the case β = (b), the generalised Littlewood–Richardson 

coefficient c
(1b)
βp,...,β1 in the sum defining G∅

(1b),γ
where γ = (pcp , . . . , 1c1) is non-zero if and 

only if βi = (1ci) for each i, and in this case its value is 1. Therefore

G∅

(1b),γ
=

p ∏

i=1

s(1ci ) ◦ s(i).

For (i), it follows easily from Lemma 10.13(a) that G∅

(1b),γ
Hε has s(r) as a constituent 

if and only if γ has distinct parts, and in this case the multiplicity is 1. Therefore 

by Proposition 10.11 we have p
(
(n − b, 1b), (m), (r)

)
= |MP

⋆
b(r)|, as required. Sim-

ilarly for (ii), it follows easily from Lemma 10.13(b) that G∅

(1b),γ
Hε has s(1r) as a 

constituent only if γ = (1p) and then, since ε ∈ P(> 1), ε = ∅. Since we require 

ℓ(γ) = |(1b)| and |γ| + |ε| = r, it then follows that r = b. Hence by Proposition 10.11, 

p
(
(n − b, 1b), (m), (mn − r, 1r)

)
�= 0 if and only if r = b, and in this case, the coefficient 

is 1. �

We remark that (ii) is a special case of Theorem 3.1(2) in [30]; the short proof given 

here and the explicit positive formula in (i) are both new.

The case κ = (b)

We now generalise the argument for Proposition 10.14(i). Given a partition β, let 

Sβ(p) be the set of semistandard β-tableaux having entries from N whose sum of entries 

is p. For example,

1 1 2 3

2 3

3

∈ S(4,2,1)(15)

Proposition 10.15. Let β ⊢ b be a partition. Then

rc
(
∅

β , (r)
)

=

r∑

p=b 

∣∣Sβ(p)
∣∣∣∣P>1(r − p)

∣∣.

Moreover if m � r − b + [b �= 0] and n � r + b then either side is the plethysm coefficient 

p(β[n], (m), κ[mn]).

Proof. Let γ = (pcp , . . . , 1c1) be a partition with ℓ(γ) = b. By Lemma 10.13(a), the 

contribution to G∅

β,γ from partitions βp, . . . , β1 in the sum in Definition 10.8 is non-

zero if and only if each βi has at most one part, and in this case the contribution is 1. 

Since cβ

(c1),(c2),...,(cp) is the number of semistandard tableaux of shape β having exactly ci
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entries equal to i for each 1 � i � p, and by the hypothesis |γ| = p we have 
∑p

i=1 ici = p, 

it follows that

∑

γ⊢p 
ℓ(γ)=b

〈G∅

β,γ , s(p)〉 = |Sβ(p)|.

Note that this set is empty unless p � |β| = b. Again by Lemma 10.13(a), 〈Hε, s(q)〉 = 1

for each partition ε. Now by Proposition 10.11 we have

rc
(
∅

β , (r)
)

=
∑

cp, q : p+q = r
γ⊢p, ε∈P>1(q)

〈G∅

β,γHε, s(r)〉

=
∑

p,q : p+q=r

∑

γ⊢p:ℓ(γ)=b

〈G∅

β,γ , s(p)〉
∑

ε∈P>1(q)

〈Hε, s(q)〉

=
∑

p, q : p+q=r
p�b 

∣∣Sβ(p)
∣∣∣∣P>1(q)

∣∣

where the second line is a final application of Lemma 10.13(a), and that G∅

β,γ = 0 unless 

ℓ(γ) = b, the third line substitutes the results on G∅

β,γ and Hε just obtained. �

For instance, to deduce Proposition 10.14(i) from this proposition, observe that each 

t ∈ S(1b)(p) has b distinct entries summing to p, and so there is an obvious bijection 

between the set S(1b)(p)×P>1(q) and the subset of MPb(r) of those marked partitions 

(γ, ε) such that |γ| = p, |ε| = q and γ has distinct parts. Again it is a notable feature of 

Proposition 10.15 that the formula is explicit and clearly positive.

Cases where |κ| � |β| + 2

We end by showing how Theorem A determines the plethysm coefficients p(β[n], (m), 

κ[mn]) when |κ| � |β| + 1 and giving an illustrative example of how it can be used to 

compute this plethysm coefficient when |κ| = |β| + 2. We require the following lemma; 

in (iii), β − � denotes a partition obtained from β by removing a single removable box 

from its Young diagram.

Lemma 10.16. Let β ⊢ b and let κ ⊢ p.

(i) Let p < b. Then G∅

β,γ = 0.

(ii) Let p = b. Then G∅

β,γ �= 0 if and only if γ = (1b) and G∅

β,(1b)
= sβ.

(iii) Let p = b + 1. Then G∅

β,γ �= 0 if and only if γ = (2, 1b−1) and G∅

β,(2,1b−1)
=∑

π=β−�
sπs(2).

Proof. That G∅

β,γ = 0 in each case follows easily from the remark after Definition 10.8

that G∅

β,γ has degree p whenever it is non-zero. For (ii) we use that a generalised 
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Littlewood–Richardson coefficient with a single bottom factor cβ
π is non-zero if and only if 

π = β and for (iii) that if π ⊢ b−1 then cβ

π,(1) is non-zero if and only if π is obtained from 

β by removing a single box; the product in G∅

β,γ is then (sπ ◦ s(1))(s(1) ◦ s(2)) = sπs(2), 

as required. �

Proposition 10.17. Let β ⊢ b and let κ ⊢ r. Suppose that m � r − |β| + [β �= ∅] and 

n � r + β1.

(i) If r < b then p(β[n], (m), κ[mn]) = 0.

(ii) If r = b then p(β[n], (m), κ[mn]) �= 0 if and only if κ = β and then the coefficient 

is 1.

(iii) If r = b + 1 then p(β[n], (m), κ[mn]) �= 0 if and only if κ is obtained from β by first 

removing a box and then adding two boxes, not both in the same column.

Proof. Each part follows easily from the corresponding part in Lemma 10.16, using 

Proposition 10.11, noting that in each case since ε ∈ P>1 and |ε| � 1, we have ε = ∅ in 

the sum in this proposition; for (iii) we use Young’s rule to multiply sπ by s(2). �

We remark that the multiplicity in case (iii) can be arbitrarily high in the case when κ

is obtained from β by adding a single box: for example if β is the staircase partition 

(ℓ, ℓ − 1, . . . , 1) and κ = (ℓ + 1, ℓ − 1, . . . , 1), then κ can be obtained by removing any

of the b removable boxes from β, and then adding two boxes, not both in the same 

column. Therefore p
(
(ℓ, ℓ − 1, . . . , 1)[n], (m), (ℓ + 1, ℓ − 1, . . . , 1)[mn]

)
= ℓ whenever m

and n satisfy m � 2 and n �
(

ℓ+1
2 

)
+ ℓ + 1 =

(
ℓ+2

2 
)
.

We conclude with an example illustrative of the case when r = b + 2.

Example 10.18. We take β = (3, 3, 3) and r = 11. There are three non-zero products 

G∅

β,γHε in the right-hand side of Proposition 10.11.

◦ γ = (3, 18) and ε = ∅: the multiplicities of the parts of γ are c3 = 1, c2 = 0 and 

c1 = 8, and since (3, 3, 3) has a unique removable box we must then take β3 = (1)

and β1 = (3, 3, 2) to obtain a non-zero Littlewood–Richardson coefficient c
(3,3,3)
β3,∅,β1 . 

Thus in this case the product is (s(1) ◦ s(3))(s(3,3,2) ◦ s(1)) = s(3)s(3,3,2).

◦ γ = (2, 2, 17) and ε = ∅: the multiplicities of the parts of γ are c2 = 2 and c1 = 7, 

and we may take either β2 = (2) and β1 = (3, 3, 1) or β2 = (1, 1) and β1 = (3, 2, 2)

to obtain a non-zero Littlewood–Richardson coefficient. The product is

(s(2) ◦ s(2))(s(3,3,1) ◦ s(1)) + (s(1,1) ◦ s(2))(s(3,2,2) ◦ s(1))

= s(4)s(3,3,1) + s(2,2)s(3,3,1) + s(3,1)s(3,2,2).

◦ γ = (19) and ε = (2): the product is s(3,3,3)s(2).
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Therefore

p
(
(n − 9, 3, 3, 3), (m), κ[mn]

)

= 〈s(3)s(3,3,2) + s(4)s(3,3,1) + s(2,2)s(3,3,1) + s(3,1)s(3,2,2) + s(3,3,3)s(2), sκ〉.

It is now routine to use the Littlewood–Richardson rule to calculate the plethysm coef-

ficients p
(
(n − 9, 3, 3, 3), (m), κ[mn]

)
for n � 14 and m � 3 for each κ ⊢ 11. For instance 

when κ = (3, 3, 3, 2), the plethysm coefficient is 4, with contributions of 1, 2 and 1 from 

the three products. In fact it suffices to take n = 13 and m = 3 to get the stable value.

11. The bounds in Theorems A and D when α = ∅ cannot be weakened

In this section we show that when β = (b) the bound on n in Theorems A and C

cannot be weakened for infinitely many κ, and when β = ∅, similarly the bound on m

cannot be weakened when κ = (r).

We require the following proposition and lemma, which generalise the Cayley–

Sylvester formula (see [12, §20] or, for an elegant modern proof using the symmetric 

group, [21, Corollary 2.12]) that the plethysm coefficient p
(
(n), (m), (mn − r, r)

)
is the 

difference between the number of partitions of r and r − 1 contained in the n × m box. 

To prove Proposition 11.1, we shall use the combinatorial model for a general plethysm 

sν ◦ sμ from [16]; we give enough details to make this section self-contained provided the 

reader takes one basic lemma from [16] on trust.

Proposition 11.1. For k, r ∈ N satisfying n − k � k and mn − r � r, we define 

T
(
(n − k, k), m

)
r

to be the set of semistandard Young tableaux of shape (n − k, k) with 

entries from {0, 1, . . . , m} whose sum of all n entries is r. Then

p
(
(n − b, b), (m), (mn − r, r)

)
=

∣∣T
(
(n − b, b), m

)
r

∣∣ −
∣∣T

(
(n − b, b), m

)
r−1

∣∣

Proof. The set of (m)-tableaux with entries from N0 is totally ordered by comparing 

their entries, read left-to-right, by the lexicographic order. Let < denote this total order. 

For example when m = 3 we have 0 1 2 < 0 1 3 < 0 3 3 . Define a plethystic 

semistandard tableaux of shape
(
(n−b, b), (m)

)
to be an (n−b, b)-tableau T whose entries 

are (m)-tableaux, arranged in T so that they are weakly increasing under < read along 

each row, and strictly increasing under < read down each column. If for each i ∈ N, the 

plethystic semistandard tableau T has exactly ωi entries of i in its (m)-tableau entries, 

then we say T has weight ω and write xT = xω1
1 xω2

2 . . .. (Note that, by this definition, 

zero entries are not considered when computing the weight.) Let PSSYT
(
(n−b, b), (m)

)
ω

denote the set of plethystic semistandard tableau of shape 
(
(n − b, b), (m)

)
and weight 

ω. For example
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0 0 0 0 0 1

0 1 1 0 1 1
,

0 0 0 0 0 1

0 1 1 0 1 2

are in PSSYT
(
(2, 2), (3)

)
(5)

and PSSYT
(
(2, 2), (3)

)
(4,1)

, respectively. By [16, Lemma 3.1], 

we have

s(n−b,b) ◦ s(m) =
∑

T

xT

where the sum is over all plethystic semistandard tableaux T of shape 
(
(n − b, b), (m)

)
. 

Hence the coefficient of the monomial symmetric function labelled by the partition (mn−

r, r) in s(n−b,b) ◦s(m) is 
∣∣PSSYT

(
(n−b, b), (m)

)
(r)

∣∣. By the duality between the complete 

homogeneous and monomial symmetric functions (see [39, (7.30)]), this coefficient is 

〈s(n−b,b) ◦s(m), h(mn−r,r)〉. Hence, by the relation s(mn−r,r) = h(mn−r,r) −h(mn−r+1,r−1), 

we get

〈s(n−b,b) ◦ s(m), s(mn−r,r)〉 =
∣∣PSSYT

(
(n − b, b), (m)

)
(r)

∣∣−
∣∣PSSYT

(
(n − b, b), (m)

)
(r−1)

∣∣.

Finally observe that each (m)-tableau entry in a plethystic semistandard tableaux 

of weight (r) has entries from 0 and 1, with exactly r entries of 1, and so the set 

PSSYT
(
(n − b, b), (m)

)
(r)

and the set T
(
(n − b, b), m

)
r

are in bijection by the map that 

replaces each (m)-tableau entry in a plethystic semistandard tableau by its number of 

1 s. Note that the map preserves the semistandard condition thanks to our choice of 

the order < on (m)-tableaux. For example, the image of the plethystic semistandard 

tableaux shown left above is 0 1

2 2
. �

Let PPm
b (r) denote the set of pairs of partitions (γ, π) such that γ1, π1 � m, ℓ(γ) = b

and |γ| + |π| = r. Note there is no restriction on ℓ(π).

Lemma 11.2. 

(i) If n � r + b and n � 2b then 
∣∣T

(
(n − b, b), m

)
r

∣∣ =
∣∣PPm

b (r)
∣∣.

(ii) We have 
∣∣T

(
(r − 1, b), m

)
r

∣∣ =
∣∣PPm

b (r)
∣∣ − 1.

Proof. For (i) we suppose that n � r + b. Let t(i,j) be the entry in box (i, j) of the tableau 

t ∈ T
(
(n − b, b), m

)
r
. Suppose, for a contradiction, that t(1,c) � 1 for some c � b; that 

is, there is an entry of 1 above a box in the second row of t. Since t(2,j) > t(1,j) for each 

j, the sum of the entries of t, namely r, is at least

(n − b − c + 1) + (c − 1) + 2(b − c + 1) = n + b − 2(c − 1)
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where n − b − c + 1 counts entries in the boxes (1, c), . . . , (1, n − b), c − 1 counts entries in 

the boxes (2, 1), . . . , (2, c−1) and 2(b−c+1) counts entries in the boxes (2, c), . . . , (2, b). 

Therefore r � (n+b)−2(c−1), which given the hypothesis n � r +b, implies that c > b, 

a contradiction. Therefore t(1,1) = . . . = t(1,b) = 0 and t is determined by the pair of 

partitions γ = (t(2,b), . . . t(2,1)) and π = (t(1,n−b), . . . , t(1,b+1)). Note that since t(2,1) � 1, 

we have ℓ(γ) = b. Therefore (γ, π) ∈ PPm
b (r). For example, taking n = 8, b = 3, r = 5

and any m � 2,

0 0 0 1 1

1 1 1
, 0 0 0 0 2

1 1 1
, 0 0 0 0 1

1 1 2

are in bijection with 
(
(1, 1, 1), (1, 1)

)
,
(
(1, 1, 1), (2)

)
,
(
(2, 1, 1), (1)

)
∈ PPm

3 (5), respec-

tively. Conversely, given (γ, π) ∈ PPm
b (r), since ℓ(π) � |π| = r − |γ| � r − ℓ(γ) =

r − b � (n − b) − b = n − 2b, we may reverse the process just to described to define a 

tableau t ∈ T
(
(n − b, b), m

)
r

whose image is (λ, π). This gives a bijection proving (i).

If instead n = r + b−1 then the inverse map fails to be well-defined when ℓ(π) = r − b

and ℓ(γ) = b and π1 � γℓ(γ). Thus the partition pair (γ, π) = ((1b), (1r−b)) ∈ PPm
b (r)

is not the image of a tableau t ∈ T
(
(r + b − 1 − b, b), m

)
r
. Since this is the only case 

where π1 � γℓ(γ), (ii) now follows from (i). �

The subset of PPm
b (r) of those partition pairs (γ, π) in which π has a singleton part is 

in bijection with PPm
b (r−1) by removing the final part of π. Recall from Definition 10.5

that a b-marked partition of r is a pair (γ, ε) such that |γ| + |ε| = r, ℓ(γ) = b and ε has 

no singleton parts. Let MP
m
b (r) be the subset of MPb(r) consisting of those marked 

partitions (γ, ε) for which γ1 � m and ε1 � m. By this bijection we have

∣∣PP
m
b (r)

∣∣ −
∣∣PP

m
b (r − 1)

∣∣ =
∣∣MP

m
b (r)

∣∣. (11.1)

Recall that, by Theorem C, the ramified branching coefficient rc(∅(b), (r)
)

is the stable 

limit of the plethysm coefficients p
(
(n − b, b), (m), (mn − r, r)

)
for large m and n.

Corollary 11.3. Let m, n ∈ N. Let b ∈ N0 and let r ∈ N with r > b.

(i) If n � r+b then p
(
(n−b, b), (m), (mn−r, r)

)
=

∣∣MP
m
b (r)

∣∣ and if m � r−b+[b �= 0]

then each side is rc
(
∅

(b), (r)
)
.

(ii) If b > 0 then p
(
(r, b), (r − b), ((r − b)(r + b) − r, r)

)
= rc

(
∅

(b), (r)
)

− 1.

(iii) We have p
(
(r), (r − 1), (r2 − r, r)

)
= rc

(
∅

∅, (r)
)

− 1.

(iv) We have p
(
(r−1, b), (m), m(r+b−1)−r, r

)
=

∣∣MP
m
b (r)

∣∣−1 and if m � r−b+[b �=

0], then each side is rc
(
∅

(b), (r)
)

− 1.

Proof. (i) By Proposition 11.1 and Lemma 11.2(i), when n � r + b we have

p
(
(n − b, b), (m), (mn − b, b)

)
=

∣∣T
(
(n − b, b), m

)
r

∣∣ −
∣∣T

(
(n − b, b), m

)
r−1

∣∣
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=
∣∣PP

m
b (r)

∣∣ −
∣∣PP

m
b (r − 1)

∣∣.

The first claim now follows using (11.1). Suppose first of all that b = 0. If 

(γ, π) ∈ MP
m
b (r) then γ = ∅ and the largest possible part in π is r. Since by 

hypothesis, m � r, this restriction has no force, and so MP
m
0 (r) = MP0(r). Thus 

the second claim follows from rc
(
∅

∅, (r)
)

=
∣∣MP0(r)

∣∣. Now suppose b > 0. If 

(γ, π) ∈ MP
m
b (r) then since ℓ(γ) = b, the largest possible part in γ is r − (b − 1)

and the largest possible part in π is r − b. Since m � r − b + [b �= 0] = r − b + 1

by hypothesis, again the restriction that γ1 � m and π1 � m has no force. Ar-

guing in the same way as the case b = 0 we now have MP
m
b (r) = MPb(r) and 

rc
(
∅

(b), (r)
)

=
∣∣MPb(r)

∣∣ and the second claim follows in the same way.

(ii) We have n = r + b. The unique pair in MP
r−b+1
b (r) not present in MP

r−b
b (r) =

MPb(r) is 
(
(r − b + 1, 1b−1),∅), therefore (ii) follows from both parts of (i).

(iii) Again we have n = r+b, since now b = 0. The unique pair in MP
r−1
0 (r) not present 

in MP
r
0(r) = MP0(r) is 

(
(r),∅

)
, therefore (iii) follows similarly from both parts 

of (i).

(iv) We have n = r + b − 1. Arguing similarly to (i) using Proposition 11.1 and then 

Lemma 11.2(ii) for the first summand and Lemma 11.2(i) for the second, we have

p
(
(r−1, b), (m), (m(r + b−1) − r, r)

)
=

∣∣T
(
(r−1, b), m)r

∣∣−1−
∣∣T

(
(r−1, b), m

)
r−1

∣∣

=
∣∣PP

m
b (r)

∣∣ −
∣∣PP

m
b (r − 1)

∣∣ − 1.

The first claim now follows as in (i) using (11.1). As seen in (i), when m �

r − b + [b �= 0] we have MP
m
b (r) = MPb(r) and so the second claim follows 

from rc
(
∅

(b), (r)
)

=
∣∣MPb(r)

∣∣. �

We summarise the results of this section in the following corollary.

Corollary 11.4. Let b ∈ N0. Let r, b ∈ N with r > b. When β = (b) and κ = (r) the 

bounds m � r − b + [b � 1] and n � r + β1 in Theorems A and C cannot be weakened.

Proof. By Corollary 11.3(ii), if b > 0, then p
(
(r, b), (r−b), (m(r+b)−r, r)

)
is one less than 

the stable value, which is attained when m increases from r−b to r−b+[b �= 0] = r−b+1. 

By Corollary 11.3(iii) p
(
(r), (r − 1), (r2 − r, r)

)
is again one less than the stable value, 

which is attained when m increases from r − 1 to r − b + [b �= 0] = r. (Note that here 

b = 0.) By Corollary 11.3(iv), p
(
(r − 1, b), (m), m(r + b − 1) − r, r

)
is one less than the 

stable value, attained when n increases from r + b − 1 to r + b. �

We finish with a corollary for modules for the ramified partition algebra, showing that 

the bounds m � r − |β| + [β �= 0] and n � r + β1 in Theorem C cannot be weakened 

in infinitely many cases. We remark that an alternative proof is given by reading the 

outline in Section 1.7, noting that the only use of these bounds is in step (f): thus if we 
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assume, for a contradiction, that Lr(∅β) = Δr(∅β) then we obtain that the plethysm 

coefficient p
(
β[n], (m), κ[mn]) is equal to its stable value; this contradicts Corollary 11.3

for appropriately chosen m, n and partitions β, κ.

Corollary 11.5. There exist infinitely many partitions β such that if n < r + β1 or m <

r − |β| + [β �= ∅] then Lr(∅β) is a proper quotient of Δr(∅β) and the inequality in 

Theorem C is strict.

Proof. By Theorem B we have p(β[n],∅, κ[mn]) =
[
Lr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

for 

each κ ⊢ r. Hence by Theorem C,

p(β[n],∅, κ[mn]) �
[
Δr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

with equality if every composition factor Lr(κ) of Δr(∅β)
⏐�Rr(m,n)

Pr(mn)
appears in 

Lr(∅β)
⏐�Rr(m,n)

Pr(mn)
, with equal multiplicity. Therefore, taking the contrapositive of the 

case for equality, if

p(β[n],∅, κ[mn]) <
[
Δr(∅β)

⏐�Rr(m,n)

Pr(mn)
: Lr(κ)

]
Pr(mn)

then Δr(∅β)↓
Rr(m,n)
Pr(mn) is not simple. The right-hand side in the two displayed equation 

above is the ramified branching coefficient rc(∅β , κ) found in Theorem C, or its equivalent 

restatement, Theorem 10.11. Since by Theorem C the ramified branching coefficient is 

the stable limit of the plethysm coefficients p(β[n], (m), κ[mn]) for large m and n, the 

result now follows from Corollary 11.4. �

References

[1] M. Altunbulak, A. Klyachko, The Pauli principle revisited, Commun. Math. Phys. 282 (2) (2008) 
287–322, MR 2421478.

[2] J.L. Alperin, Local Representation Theory, Cambridge Studies in Advanced Mathematics, vol. 11, 
CUP, 1986.

[3] G.E. Andrews, The Theory of Partitions, Cambridge Mathematical Library, Cambridge University 
Press, 1998.

[4] P. Bürgisser, M. Christandl, C. Ikenmeyer, Even partitions in plethysms, J. Algebra 328 (2011) 
322–329, MR 2745569.

[5] C. Bowman, M. De Visscher, R. Orellana, The partition algebra and the Kronecker coefficients, 
Trans. Am. Math. Soc. 367 (5) (2015) 3647–3667.

[6] G. Benkart, T. Halverson, Partition algebras and the invariant theory of the symmetric group, in: 
Recent Trends in Algebraic Combinatorics, in: Assoc. Women Math. Ser., vol. 16, Springer, Cham, 
2019, pp. 1–41, MR 3969570.

[7] P. Bürgisser, C. Ikenmeyer, G. Panova, No occurrence obstructions in geometric complexity theory, 
J. Am. Math. Soc. 32 (1) (2019) 163–193, MR 3868002.

[8] P. Bürgisser, J.M. Landsberg, L. Manivel, J. Weyman, An overview of mathematical issues arising 
in the geometric complexity theory approach to VP �= VNP, SIAM J. Comput. 40 (4) (2011) 
1179–1209, MR 2861717.

[9] C. Bowman, R. Paget, The partition algebra and the plethysm coefficients I: Stability and Foulkes’ 
conjecture, J. Algebra 655 (2024) 110–138, MR 4756467.



74 C. Bowman et al. / Advances in Mathematics 462 (2025) 110090 

[10] M. Brion, Stable properties of plethysm: on two conjectures of Foulkes, Manuscr. Math. 80 (4) 
(1993) 347–371, MR 1243152.

[11] D. Brown, Thesis on the ramified partition algebras, Ph.D. thesis, University of Kent, 2023.

[12] A. Cayley, An introductory memoir upon quantics, Philos. Trans. R. Soc. Lond. 144 (1854) 245–258.

[13] A. Cox, P. Martin, A. Parker, C. Xi, Representation theory of towers of recollement: theory, notes, 
and examples, J. Algebra 302 (1) (2006) 340–360, MR 2236606.

[14] C. Carré, J.-Y. Thibon, Plethysm and vertex operators, Adv. Appl. Math. 13 (4) (1992) 390–403.

[15] J. Chuang, K. Meng Tan, Representations of wreath products of algebras, Math. Proc. Camb. 
Philos. Soc. 135 (3) (2003) 395–411, MR 2018255.

[16] M. de Boeck, R. Paget, M. Wildon, Plethysms of symmetric functions and highest weight represen-
tations, Trans. Am. Math. Soc. 374 (11) (2021) 8013–8043, MR 4328690.

[17] S. Donkin, The q-Schur Algebra, London Mathematical Society Lecture Note Series, vol. 253, Cam-
bridge University Press, Cambridge, 1998, MR 1707336.

[18] W. Fulton, J. Harris, Representation Theory, Graduate Texts in Mathematics, vol. 129, Springer-
Verlag, New York, 1991, A first course, Readings in Mathematics, MR 1153249.

[19] N. Fischer, C. Ikenmeyer, The computational complexity of plethysm coefficients, Comput. Com-
plex. 29 (2) (2020), Paper No. 8, 43. MR 4171310.

[20] T. Geetha, F.M. Goodman, Cellularity of wreath product algebras and A-Brauer algebras, J. Algebra 
389 (2013) 151–190, MR 3065998.

[21] E. Giannelli, On the decomposition of the Foulkes module, Arch. Math. (Basel) 100 (2013) 201–214.

[22] J.A. Green, Polynomial Representations of GLn, augmented ed., Lecture Notes in Mathematics, 
vol. 830, Springer, Berlin, 2007, With an appendix on Schensted correspondence and Littelmann 
paths by K. Erdmann, Green and M. Schocker. MR 2349209.

[23] R. Green, Cellular structure of wreath product algebras, J. Pure Appl. Algebra 224 (2) (2020) 
819–835, MR 3987978.

[24] R. Goodman, N.R. Wallach, Representations and Invariants of the Classical Groups, Encyclopedia 
of Mathematics and Its Applications, vol. 68, Cambridge University Press, Cambridge, 1998, MR 
1606831.

[25] G.D. James, The Representation Theory of the Symmetric Groups, Lecture Notes in Mathematics, 
vol. 682, Springer, 1978.

[26] G.D. James, A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of 
Mathematics and Its Applications, vol. 16, Addison-Wesley, 1981.

[27] V.F.R. Jones, The Potts model and the symmetric group, in: Subfactors: Proceedings of the 
Tanaguchi Symposium on Operator Algebras, Kyuzeso, 1993 (NJ), World Sci. Publishing, River 
Edge, 1994, pp. 259–267.

[28] J. Kennedy, Class partition algebras as centralizer algebras of wreath products, Commun. Algebra 
35 (1) (2007) 145–170, MR 2287557.

[29] J.M. Landsberg, Geometry and Complexity Theory, Cambridge Studies in Advanced Mathematics, 
vol. 169, Cambridge University Press, Cambridge, 2017, MR 3729273.

[30] T.M. Langley, J.B. Remmel, The plethysm sλ[sµ] at hook and near-hook shapes, Electron. J. Comb. 
11 (1) (2004), Research Paper 11, 26 pp. (electronic). MR 2035305 (2004j:05128).

[31] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Mathematical Mono-
graphs, Oxford University Press, 1995.

[32] L. Manivel, Gaussian maps and plethysm, in: Algebraic Geometry, Catania, 1993/Barcelona, 1994, 
in: Lecture Notes in Pure and Appl. Math., vol. 200, Dekker, New York, 1998, pp. 91–117.

[33] P.P. Martin, Potts Models and Related Problems in Statistical Mechanics, Series on Advances in 
Statistical Mechanics, vol. 5, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991.

[34] P.P. Martin, The structure of the partition algebras, J. Algebra 183 (1996) 319–358.

[35] P.P. Martin, A. Elgamal, Ramified partition algebras, Math. Z. 246 (3) (2004) 473–500, MR 2073453.

[36] OEIS Foundation Inc, The On-Line Encyclopedia of Integer Sequences, Published electronically at 
http://oeis.org, 2023.

[37] R. Orellana, F. Saliola, A. Schilling, M. Zabrocki, Plethysm and the algebra of uniform block 
permutations, J. Algebraic Comb. 5 (2022) 1165–1203.

[38] R. Paget, M. Wildon, Generalized Foulkes modules and maximal and minimal constituents of 
plethysms of Schur functions, Proc. Lond. Math. Soc. (3) 118 (5) (2019) 1153–1187, MR 3946719.

[39] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics, 
vol. 62, Cambridge University Press, 1999.



C. Bowman et al. / Advances in Mathematics 462 (2025) 110090 75

[40] R.P. Stanley, Positivity problems and conjectures in algebraic combinatorics, in: Mathematics: Fron-
tiers and Perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 295–319.

[41] S. Weintraub, Some observations on plethysms, J. Algebra 129 (1) (1990) 103–114, MR 1037395.
[42] C. Xi, Partition algebras are cellular, Compos. Math. 119 (1) (1999) 99–109, MR 1711582.


	The partition algebra and the plethysm coefficients II: Ramified plethysm
	1 Introduction
	1.1 Recasting plethysm in terms of diagram algebras
	1.2 Stability and ramified branching coefficients
	1.3 Combinatorial formulas for ramified branching coefficients
	1.4 Examples and applications
	1.5 Contrasting the cases α=∅ and α∕=∅
	The ramified Schur functor
	Standard modules versus simple modules and semisimplicity

	1.6 Analogies and motivation from Kronecker coefficients
	1.7 Structure of the paper
	1.8 Other diagram algebras
	Acknowledgements

	2 Symmetric groups, wreath products and symmetric functions
	2.1 Symmetric groups
	2.2 The Littlewood--Richardson rule
	2.3 Wreath products and their modules
	2.4 Young symmetrisers for wreath product modules
	2.5 Symmetric functions and plethysm
	2.6 Plethysm coefficients
	2.7 Stabiliser subgroups and induction

	3 Partition algebras
	3.1 Set-partitions
	3.2 Horizontal concatenation
	3.3 A filtration of the partition algebra
	3.4 Standard and simple modules for the partition algebra
	3.5 The orbit basis of Benkart--Halverson

	4 Ramified partition algebras
	4.1 Ramified set-partitions
	4.2 Horizontal concatenation
	4.3 Propagating indices and a filtration of the ramified partition algebra
	4.4 Standard and simple modules for the ramified partition algebra

	5 Partition algebras, ramified partition algebras and Schur--Weyl duality
	5.1 Symmetric groups and partition algebras
	5.2 Wreath product groups and ramified partition algebras

	6 The ramified Schur functor
	7 Stability phenomena when the inner partition is trivial
	8 Restricting our attention to a layer of fixed depth
	8.1 The action of the partition algebra by restriction
	8.2 The depth quotient

	9 General formula for ramified branching coefficients
	9.1 Types of diagrams
	9.2 Elementary diagrams
	9.3 The direct sum decomposition of the depth quotient
	9.4 Proofs of Theorems A and D

	10 Examples and applications
	10.1 Examples of Theorems A, C and D
	10.2 IndInfRes
	10.3 Marked partitions and plethysm coefficients when β has one row and α=∅
	10.4 Symmetric functions
	10.5 Applications of Proposition 10.11
	The case β=(1b)
	The case κ=(b)
	Cases where |κ|≤|β|+2


	11 The bounds in Theorems A and D when α=∅ cannot be weakened
	References


