

This is a repository copy of From insulator to oxide-ion conductor by a synergistic effect from defect chemistry and microstructure: acceptor-doped Bi-excess sodium bismuth titanate Na0.5Bi0.51TiO3.015.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/221155/</u>

Version: Supplemental Material

Article:

Yang, F. orcid.org/0000-0002-6428-7755, Dean, J.S. orcid.org/0000-0001-7234-1822, Hu, Q. orcid.org/0000-0001-7639-9239 et al. (4 more authors) (2020) From insulator to oxideion conductor by a synergistic effect from defect chemistry and microstructure: acceptordoped Bi-excess sodium bismuth titanate Na0.5Bi0.51TiO3.015. Journal of Materials Chemistry A, 8 (47). pp. 25120-25130. ISSN 2050-7488

https://doi.org/10.1039/d0ta10071d

© The Royal Society of Chemistry 2020. This is an author-produced version of a paper subsequently published in Journal of Materials Chemistry A: materials for energy and sustainability. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplementary information

From insulator to oxide-ion conductor by a synergistic effect from defect chemistry and microstructure: acceptor-doped Bi-excess sodium bismuth titanate Na_{0.5}Bi_{0.51}TiO_{3.015}

Fan Yang^{1,*}, Julian S. Dean², Qiaodan Hu³, Patrick Wu², Emilio Pradal-Velázquez², Linhao Li² and Derek C Sinclair^{2,*}

¹ Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China.

² Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK.

³ School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China

*Corresponding authors. <u>fanyang_0123@sjtu.edu.cn</u>; <u>d.c.sinclair@sheffield.ac.uk</u>.

1. XRD patterns of other acceptor-doped NB0.51T ceramics

XRD patterns of Na_{0.5}Bi_{0.51}Ti_{1-y}N_yO_{3.015-0.5y} (N = Sc, Al and Ga) ceramics are shown in Figs. S1-S3. Sc-doped NB_{0.51}T ceramics are phase pure within the composition range investigated ($y \le 0.05$). For Al- and Ga-doped NB_{0.51}T, peaks from secondary phases can be observed for y = 0.05 and 0.07, respectively.

Fig.S1 XRD patterns of $Na_{0.5}Bi_{0.51}Ti_{1-y}Sc_yO_{3.015-0.5y}$ (y = 0, 0.005, 0.0075, 0.01, 0.015, 0.02, 0.03, 0.04 and 0.05) ceramics.

Fig.S2 XRD patterns of Na_{0.5}Bi_{0.51}Ti_{1-y}Al_yO_{3.015-0.5y} (y = 0.005, 0.01, 0.03 and 0.05) ceramics. The star symbol indicates the presence of a secondary phase(s) for y = 0.05.

Fig.S3 XRD patterns of Na_{0.5}Bi_{0.51}Ti_{1-y}Ga_yO_{3.015-0.5y} (y = 0.005, 0.01, 0.03, 0.05 and 0.07) ceramics. The star symbol indicates the presence of a secondary phase for y = 0.07.

2. Microstructure of NB0.51T and grain size distribution in Mg-doped NB0.51T ceramics

Undoped NB_{0.51}T ceramics have uniform, small grains with an average grain size of ~ 1-2 μ m (Fig. S4(a)). To make sure the thermal-etched surface morphology can represent the bulk, the grain structure is also observed from the cross-sectional, fracture surface (Fig.S4(b)). It also shows uniform, small grains and therefore confirms the surface grain structure is representative. In this work, statistics of grain size is based on the thermal-etched surface for easy comparison

with those reported in literature. For Mg-doped $NB_{0.51}T$ ceramics the grain size shows an increasingly broad distribution with increasing doping level (*x*), as well as an increase in the average value (Fig. S5).

Fig.S4 SEM images of an NB_{0.51}T ceramic: (a) thermal-etched surface and (b) fracture surface.

Fig. S5 Grain size distribution in Na_{0.5}Bi_{0.51}Ti_{1-x}Mg_xO_{3.015-x} ceramics. (a) x = 0.001, (b) x = 0.0025, (c) x = 0.005, (d) x = 0.01, (e) x = 0.015 and (f) x = 0.02. Average grain size and its associated error is indicated in each figure.

3. Microstructure of other acceptor-doped NB_{0.51}T ceramics

 $NB_{0.51}T$ ceramics doped with other B-site acceptor-dopants show similar inhomogeneous distributions of large grains embedding in small grains at low doping levels, as shown in Fig.S6 for Zn and Fig.S7 for Sc. With increasing doping level *y*, the grain size of Sc-doped $NB_{0.51}T$ ceramics increases.

Fig. S6 SEM image of a thermally-etched surface of $Na_{0.5}Bi_{0.51}Ti_{1-x}Zn_xO_{3.015-x}$ (*x* = 0.005).

Fig.S7 SEM micrographs of thermally-etched surfaces of $Na_{0.5}Bi_{0.51}Ti_{1-y}Sc_yO_{3.015-0.05y}$ (y = 0.005, 0.0075, 0.01, 0.015, 0.02 and 0.03).

4. Compositional analysis of a thermally-etched Zn-doped NB_{0.51}T (x = 0.005) ceramic

Table S1 Relative atomic percentage of cations in $x = 0.005 \text{ Na}_{0.5}\text{Bi}_{0.51}\text{Ti}_{1-x}\text{Zn}_x\text{O}_{3.015-x}$ ceramics measured by EDS.

Position	Na	Bi	Ti	Zn
1	23.29	26.76	49.80	0.15
2	26.18	26.35	47.77	-0.30
3	25.12	26.46	47.97	0.45
4	23.45	26.91	49.08	0.55
5	24.74	26.26	48.90	0.10
6	25.37	26.17	47.86	0.60
7	22.04	27.21	50.75	0
8	24.12	26.80	49.34	-0.25
Average	24.29 ± 1.30	26.62 ± 0.36	48.93 ± 1.04	0.16 ± 0.35
Nominal	24.88	25.37	49.50	0.25

5. Bulk conductivity of Zn, Sc, Al and Ga-doped NB0.51T ceramics

Fig.S8 Arrhenius plot of bulk conductivity, σ_b , for Na_{0.5}Bi_{0.51}Ti_{1-x}Zn_xO_{3.015-x} (x = 0, 0.005, 0.01, 0.02 and 0.03) ceramics measured in air. Numbers in eV are the activation energies associated with σ_b .

Fig.S9 Arrhenius plot of bulk conductivity, σ_b , for Na_{0.5}Bi_{0.51}Ti_{1-y}Sc_yO_{3.015-0.5y} (y = 0, 0.005, 0.0075, 0.01, 0.015, 0.02, 0.03 and 0.04) ceramics measured in air. Numbers in eV are the activation energies associated with σ_b .

Fig.S10 Arrhenius plot of bulk conductivity, σ_b , for Na_{0.5}Bi_{0.51}Ti_{1-y}Al_yO_{3.015-0.5y} (y = 0, 0.005, 0.01, 0.03 and 0.05) ceramics measured in air. Numbers in eV are the activation energies associated with σ_b .

Fig.S11 Arrhenius plot of bulk conductivity, σ_b , for Na_{0.5}Bi_{0.51}Ti_{1-y}Ga_yO_{3.015-0.5y} (y = 0, 0.005, 0.01, 0.03 and 0.05) ceramics measured in air. Numbers in eV are the activation energies associated with σ_b .

4. Dielectric properties of Zn, Sc, Al and Ga-doped NB_{0.51}T ceramics

Fig.S12 Dielectric spectroscopy for Na_{0.5}Bi_{0.51}Ti_{1-x}Zn_xO_{3.015-x} (x = 0, 0.005, 0.01, 0.02 and 0.03) ceramics: (a) permittivity at 1 MHz versus temperature and (b) dielectric loss, tan δ , (1 MHz) versus temperature.

Fig.S13 Dielectric spectroscopy for Na_{0.5}Bi_{0.51}Ti_{1-y}Sc_yO_{3.015-0.5y} (y = 0, 0.005, 0.0075, 0.01, 0.015, 0.02, 0.03, 0.04 and 0.05) ceramics: (a) permittivity at 1 MHz versus temperature and (b) dielectric loss, tan δ , (1 MHz) versus temperature.

Fig.S14 Dielectric spectroscopy for Na_{0.5}Bi_{0.51}Ti_{1-y}Al_yO_{3.015-0.5y} (y = 0, 0.005, 0.01, 0.03 and 0.05) ceramics: (a) permittivity at 1 MHz versus temperature and (b) dielectric loss, tan δ , (1 MHz) versus temperature.

Fig.S15 Dielectric spectroscopy for Na_{0.5}Bi_{0.51}Ti_{1-y}Ga_yO_{3.015-0.5y} (y = 0, 0.005, 0.01, 0.03, 0.05 and 0.07) ceramics: (a) permittivity at 1 MHz versus temperature and (b) dielectric loss, tan δ , (1 MHz) versus temperature.