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A B S T R A C T

FastBlade is a research facility that tests large-scale composite and metal structures. To maximise its throughput
by uninterrupted running of experiments, unmanned operation of the site is desired. One of its key enablers
is anomaly detection, where microphones are used as a non-specific, affordable, and well-established sensing
method. The dataset collected during the operation of the system consists of both normal and anomalous
samples, which we need to classify. The problems associated with the dataset involve significant intraclass
variability of the normal operation samples, as well as the scarcity of anomalous data, increasing the complexity
of the classification problem. In this work, we evaluate the performance of several tools for time–frequency
signal analysis, which are used to extract features from the original high-dimensional signal. We choose to
apply the wavelet scattering transform (WST) due to its remarkable performance. Based on the findings from
the literature review, we first rely on the reconstruction error of the processed WST images to detect anomalous
samples. However, due to the nature of the dataset, both the convolutional autoencoder (CAE) and the principal
component analysis (PCA) transform turn out to be unsuccessful. We then investigate the hidden layers of the
CAE in search of features that can be used to separate normal and anomalous samples. Having identified
the most suitable candidates, we discover that applying the normalised cross-correlation (NCC) to measure the
similarity of the generic features generated and our dataset results in satisfactory separation. We train a number
of classifiers and test the method on unseen data. The model’s accuracy is 99.58%, with a recall of 100% and
92% on normal and anomalous operation samples, respectively. The model’s accuracy and low latency prove
the WST’s suitability for robust, real-time detection of different anomaly types. Therefore, the method can be
deployed in systems with limited information about the critical assets and can be easily extrapolated to other
setups.

1. Introduction

Anomaly detection (AD) aims to identify patterns in a particular
dataset that do not conform to the expected behaviour. By identify-
ing periods of abnormal operation in an industrial or experimental
process, relevant datasets can be analysed to examine the nature of
a fault. Alternatively, AD algorithms can run in real-time and give a
warning of a persistent anomaly, which might prompt a site operator
to halt the process. This paper focuses on the operation of FastBlade,
a research facility for testing large-scale composite and metal struc-
tures (Lopez Dubon et al., 2023d,c,b). While this paper investigates
a feasible method of determining anomalies in FastBlade’s operation,
it is seamlessly transferable to systems in experimental and industrial
settings.
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1.1. FastBlade – the test facility

FastBlade is a research facility at the University of Edinburgh, lo-
cated in Rosyth, Scotland. The goal of the facility is to test the structural
response of large slender structures (2–14 m) under either static or
fatigue loads (Lopez Dubon et al., 2023d,c,b), as shown in Fig. 1.
The facility’s primary focus is the examination of tidal turbine blades,
which, in turn, helps exploit the potential of the tidal energy sector in
the UK and worldwide. It is estimated that the UK alone has a tidal
energy potential of 50 TWh/year along its coastline (Burrows et al.,
2009), while a total tidal stream capacity of 101 GW is expected to be
installed by 2050 (Todeschini et al., 2022). To validate the design of
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Fig. 1. The test setup at FastBlade. A tidal turbine blade is mounted on the reaction
frame and supported by three actuators, which deform the blade during a test. The
speckle pattern and the sensors mounted on the blade are used to monitor its structural
performance.

a blade at FastBlade, the blade is loaded for many cycles, significantly
exceeding the number of tide changes it would experience during its
subsea deployment. By simulating the wear of a blade in such a way,
its properties can be examined at an accelerated pace, reducing the risk
associated with deploying tidal power technology.

1.2. Problem statement

For FastBlade and other testing facilities, the most time-efficient
way of operating the facility is by running the tests continuously
day and night until the target number of cycles (for fatigue tests) or
target deflection time (for static tests) is reached. Therefore, allowing
unmanned operation at FastBlade is crucial for ensuring its commercial
success. However, operating the facility with few or no members of staff
on-site is associated with multiple risks in the areas of:

• Safety - the system utilises high voltage and exerts high dynamic
and static loads, increasing the fire hazard and constituting a
danger for unauthorised interactions.
• Machinery Health - in addition to safety hazards, resuming oper-

ation with a failure of one of the system assets may accelerate its
wear, increasing servicing costs.
• Test Credibility - running the test with changed parameters or

with a data-logging fault does not meet the test criteria (crucial
for certification purposes), introducing irreversible wear into the
specimen.

These factors show the need for a versatile, anomaly-monitoring
tool to detect errors of multiple origins, such as system imbalance,
third-party interactions, or changing test parameters. Moreover, op-
erating in (quasi-) real-time must be computationally feasible for the
desired application.

1.3. Contributions and structure

The two main contributions of this work are:

• The development of a high-accuracy audio-based AD technique
using a dataset with significant intraclass variations among nor-
mal samples, and the scarcity of anomalous samples.
• The evaluation of the performance of the wavelet scattering trans-

form (WST) as a feature extraction tool in the detection of tran-
sient, non-periodic anomalies.

In this paper, we first describe the state-of-the-art solutions in the
area of audio-based AD, and analyse the methodology in light of the
particular features of our dataset, such as intraclass variability, and a
small number of anomalous samples. We compare some of the stan-
dard time–frequency signal processing tools against the WST, whose
mathematical properties should make it well-suited for the discussed
application. Our evaluation involves visual comparison, as well as
execution time benchmarking.

We subsequently develop an AD method based on the classification
of samples using the reconstruction error, which is the most commonly
found solution in the literature (Fiore et al., 2022). We then demon-
strate that neither our deep-learning model nor a principal component
analysis (PCA)-based model succeeds in providing sufficient separation
between normal and anomalous data. As a result, we investigate the
hidden layers of the deep-learning model in terms of feature maps
that can be used to reduce the variability of the normal samples
while providing good interclass separation. We evaluate the developed
methodology using standard benchmarking tools for classification and
discuss the model’s strengths and shortcomings.

2. Related work

Choosing the correct parameters to analyse in a condition monitor-
ing problem is an important decision for an engineer. The measure-
ments of a system need to provide enough insight into the operation of
an asset to make a confident decision about the state of its operation.
Simultaneously, collecting too much data should be avoided as it is
associated with higher data redundancy and computational challenges
resulting from increased data dimensionality. Other factors to consider
when choosing appropriate monitoring methods include the cost and
constraints of the communication system.

Audio and vibration signals are widely used for AD in a variety
of engineering systems. The records of forecast and diagnosis solu-
tions, which often incorporate the use of deep-learning techniques, can
be found in the monitoring of gearboxes (Zhao et al., 2023), bear-
ings (Zhao et al., 2022, 2024a; Zhu et al., 2024), compressors (Mobtahej
et al., 2021), and industrial machines, such as pumps, valves and
fans (Fiore et al., 2022; Muller et al., 2021). High sampling frequency
characterises both audio and vibration signals, and therefore, similar
processing tools are utilised for classification. Considering our research
goal, which is the detection of system-wide anomalies, it is decided
that microphones should be used in the investigation. Since audio data
is not specific to a given asset, it provides better coverage than using
a fusion of other sensor types, which is highlighted as a limitation of
AD-related methods (Zhao et al., 2024b). Moreover, unlike vision-based
techniques, audio signals are not impacted by varying illumination
levels and occlusion (de Carvalho et al., 2019).

The typical processing pipeline for classifying high-frequency sig-
nals includes three crucial stages, namely feature extraction, clustering,
and classification. Feature extraction aims to decrease the redundancy
of the collected information and derive the properties of the signal
that are important to the classification task. Clustering transforms the
data into a particular dimensional space, where the distances between
samples belonging to the same class, known as intraclass distances,
are small, while the interclass distances are large to allow for effective
classification.

In this section, we review the feature extraction and clustering
tools used by other researchers in anomaly detection problems utilising
audio data. Subsequently, we review works which incorporate the
wavelet scattering transform (WST) into the processing pipeline. Based
on its mathematical properties (described in detail in Section 3.3), WST
should provide a competitive solution to the existing feature-extraction
methods, and its application to audio-based anomaly detection prob-
lems has not yet been validated.
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2.1. The summary of related works

Table 1 presents the most relevant publications found in the area
of AD using audio signals. The table includes the application domain
and the main features of the processing pipeline, as well as comments,
providing a brief summary of each application and a comparison to
this study. In all presented publications, promising accuracy results
can be found, proving the suitability of using microphones to solve
AD tasks. It can also be noted that different processing methods have
been used, incorporating various feature extraction techniques, as well
as supervised and unsupervised learning techniques for clustering.

2.1.1. Feature extraction
The work presented in Ahn and Yeo (2021) is the only of the

considered cases in which the audio signal recorded is not trans-
formed into the time–frequency domain, but is solely considered in the
time-domain. The authors still pre-process the signal before attempt-
ing clustering by down-sampling and combining multiple channels
into a 2D image. The most common feature extraction techniques
found in other works are short-time Fourier transform (STFT) and mel-
spectrograms. In fact, these algorithms are very similar, as computing
mel-spectrograms usually requires the computation of the STFT, which
is subsequently filtered with a Mel-frequency filter bank (Ustubioglu
et al., 2023). The use of mel-frequency cepstral coefficients (MFCC) is
found in two publications. MFCC also requires computing the Fourier
transform of the windowed signal, followed by the computation of
the discrete cosine transform (DCT) on the power spectrum of the
signal (Sahidullah and Saha, 2012), making it similar to the previously
mentioned mel-spectrograms.

The analysis of the related works makes it evident that features
relevant to AD can be obtained from an audio signal by analysing
it in the time–frequency domain. Another aspect which is important
for feature extraction is setting the duration of each of the samples
considered. While, for example, it is set to three seconds in Mobtahej
et al. (2021), and ten seconds in Fiore et al. (2022) and Muller et al.
(2021), it is believed that a window of 0.5 s should be used in order to
capture the transient nature of anomalies recorded at FastBlade (more
detailed explanation is given Section 4.2). Moreover, since there exist
other ways to analyse high-frequency signals in the time–frequency
domain, such as continuous wavelet transform (CWT) and discrete
wavelet transform (DWT) (Arts and van den Broek, 2022), in this work,
we would like to evaluate the performance of a number of algorithms
on the samples collected. Due to its interesting properties, we would
also like to focus on the wavelet scattering transform (WST), whose
common applications in feature extraction are described in Section 2.2.

2.1.2. Clustering
Considering the choice of correct clustering techniques, which serve

as a stepping stone to classification, one of the key considerations is
the ratio of normal and anomalous samples in the dataset. Since we
have recorded little anomalous data at FastBlade, the techniques such
as densely-connected or convolutional neural networks adopted in Kuo
et al. (2022), Ahn and Yeo (2021), or McLoughlin et al. (2017), where
extensive anomalous datasets are available, are not relevant to our
study. It is, therefore, observed that a successful clustering technique in
the study is more likely to rely on unsupervised rather than supervised
learning. It is also known that large intraclass variations characterise
the normal operation audio samples recorded at FastBlade. One of
the implications can be the fact that conventional machine learning
techniques, such as PCA and SVM applied in Mobtahej et al. (2021),
might not be sufficient to achieve satisfactory separation between the
varied normal and anomalous samples.

The authors in Fiore et al. (2022) present the application of audio-
based AD to industrial machines. The review of the related works found
in the publication states that all of the state-of-the-art AD approaches
rely on the use of an autoencoder (AE) in the clustering stage (AEs are

described in more detail in Section 3.5). The detection of anomalies is
possible when AEs are trained on normal data and reconstruct anoma-
lous samples with an increased reconstruction error. The recurrent
neural network (RNN)-based AE presented in Park and Yun (2018) is
characterised by a relatively small number of parameters and quick
training time. Similarly, the authors of Lo Scudo et al. (2023) utilise
both a densely-connected AE and a convolutional autoencoder (CAE) to
often outperform larger state-of-the-art models in the AD tasks. How-
ever, since the authors do not mention intraclass variations explicitly,
it is hypothesised that due to the small size of the models, they would
not be able to learn to reconstruct different normal operation patterns
with a satisfactory degree of accuracy, and would not result in a clear
separation between normal and anomalous samples. A CAE is used
in Oh and Yun (2018) to reconstruct samples collected during the
operation of an integrated-circuit assembly machine. While the authors
claim that a certain overlap between the reconstruction error of normal
and anomalous samples is allowed due to the nature of the machine,
it might prove to be too large for deployment at FastBlade, where
long-lasting anomalies might lead to a critical system failure.

Intraclass variability within the normal operation samples can be
seen in Muller et al. (2021), where the spectrograms of multiple normal
operation samples are presented. The fact that the authors have only
a small proportion of anomalous samples in the dataset is another
similarity with our work. It is recommended in the publication that
a pre-trained deep-learning feature extractor is used, such as a ResNet
convolutional neural network (CNN). On the other hand, the samples
considered in the work are significantly longer, and the AD accuracy,
evaluated using the area under curve (AUC) metric, varies between
61.9% and 99.6%, depending on the particular asset monitored.

Given the widespread use of CAEs in the area, it is decided that
the classification approach based on the analysis of the reconstruction
error should be attempted first. However, as it has also been noted, the
resulting separation might not always be satisfactory, particularly when
differences between normal signal samples are present across a wide
range of frequencies. In this case, a feature-extraction method using
deep-learning-based filters can be incorporated. However, instead of
experimenting with various pre-trained CNNs, the hidden layers of the
CAE trained on normal operation samples will be examined.

2.2. Applications of the wavelet scattering transform

As shown in Section 2.1.1, using STFT for AD using audio data is
widespread. The use of STFT attempts to address the problem of signals
changing in time, which is crucial for AD problems, as many machinery
faults are, in nature, nonperiodic (Pan and Sas, 1996). However, one of
the shortcomings of STFT is that it has a constant resolution across all
frequencies (Peng and Chu, 2004). Therefore, the application of wide
windows, which is desired for analysing low-frequencies of a signal,
results in poor resolution of its high-frequency components. Applying
narrow windows results in the opposite effect since they impede the
analysis of the low-frequency components. A way to mitigate this prob-
lem is to apply wavelet transform (WT), which incorporates filters of
varying frequency. A specific embodiment of WT, which has proven to
be computationally efficient and well-suited for classification problems,
is wavelet scattering transform (WST) (Bruna and Mallat, 2013). The
introduction of the transform and the reasons for its advantages over
conventional methods are presented in Section 3.3.

The literature review has found applications of the WST in AD
problems, including the classification of motor current (Toma et al.,
2022), electrocardiogram (ECG) (Liu et al., 2020; Sharaf, 2023), and
electroencephalogram (EEG) signals (Buriro et al., 2021; Ahmad et al.,
2017). There also exist works where WST has been applied in various
audio classification (Anden and Mallat, 2014) and texture discrimina-
tion tasks (Sifre and Mallat, 2013). However, no WST application in
industrial audio-based AD has been found.
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Table 1
The summary of the related works considered.

Application domain Feature extraction Clustering Ref. Comments

Industrial machines —
pumps, valves, slide rails,
and fans

Mel spectrograms Convolutional Autoencoder
(CAE); Long Short-Term
Memory (LSTM)
Autoencoder — both
supplemented with asset
IDs

Fiore et al. (2022) The proposed method improves upon the
commonly-adopted autoencoder-based AD
technique by incorporating the IDs of particular
assets into the training process. However, in
our work, sound is recorded collectively for all
system assets.

Surface-Mount Device
(SMD) Assembly Machine

Short-Time Fourier
Transform (STFT)

CAE Oh and Yun (2018) The publication presents a successful real-time
classification of chosen anomalies in the
machine’s operation dataset. However, the level
of separation between normal and anomalous
samples obtained by computing the residual
error might not be sufficient for our study.

SMD Assembly Machine STFT Two variations of
Recurrent Neural Network
(RNN) Encoder–Decoder;
CAE

Park and Yun (2018) The authors decide to apply STFT for feature
extraction, instead of Mel-frequency cepstral
coefficients (MFCC), to preserve more signal
information. A successful, compact RNN
Encoder–Decoder model is trained. The
variation between normal operating samples is
not presented. The model size might turn out
to be insufficient when considerable intraclass
variation is present in the dataset.

Compressor operation STFT, MFCC, ResNet50;
Spectral Centroid

Principal Component
Analysis (PCA) and
Support Vector Machine
(SVM)

Mobtahej et al. (2021) The study shows that the features extracted by
MFCC result in better accuracy than STFT. The
addition of information on spectral centroids
further improves the accuracy. However, the
details about the intraclass variation of the
signals are not given.

Industrial machines —
pumps, valves, slide rails
and fans

Mel-spectrogram and a
pre-trained CNN

CAE; one class SVM;
kernel density estimation;
Isolation Forest; Gaussian
Mixture Model; Bayesian
Gaussian Mixture Model

Muller et al. (2021) The problem presented bears similarities to our
research problem: the anomalous samples are
scarce, and there is significant variation
between samples in the normal operation class.
The paper, therefore, incorporates the use of
pre-trained CNNs for feature extraction. The
results of the best-performing models show
some variation depending on the monitored
asset, with the area under curve metric varying
between 61.9% and 99.6%.

Industrial machines —
pumps, valves, slide rails,
and fans; toy trains and
cars, harmonic drives

Wavelet-denoising,
Mel-spectrogram

Pre-trained convolutional
neural network (CNN)

Kuo et al. (2022) The successful implementation of AD using
audio is presented. It features wavelet-based
denoising and a CNN architecture for clustering
and classification. However, the share of
anomalous samples in the dataset exceeds what
is available in our real-life application.

Car operation Segmentation of the
signal and
down-sampling in the
time domain,
combining multiple
channels into 2D
images

SVM; K-means; K-nearest
neighbours (KNN); CNN

Ahn and Yeo (2021) The research shows the supremacy of the CNN
over the other three techniques used to classify
anomalous sounds. However, the share of the
anomalous training data (more than 50% of
the samples) far exceeds the proportion of the
dataset considered in our research.

Various sound recordings
mixed with different
background noise levels.

Spectrogram image
features

Deep neural network
(DNN); CNN

McLoughlin et al. (2017) The method uses an efficient feature extraction
technique and successfully assigns anomalous
samples to their respective class. However, in
the case of supervised learning, the outcomes
can be difficult to reproduce when little
anomalous data is available.

Sounds from different
acoustic scenes. Rare
sound events.

Mel spectrograms; Dense autoencoder (AE);
Asymmetric CAE

Lo Scudo et al. (2023) The paper presents three different clustering
techniques, and the AE reconstruction error is
used for classification. The authors use a
dataset of manually induced anomalies, which
might make the results hard to replicate when
dealing with a small number of anomalous
samples collected during actual system
operation.

The work presented in Toma et al. (2022) uses WST in an indus-
trial setting to perform AD in the operation of an induction motor,
applying the transform to the measured current. The accuracy of the
proposed framework, utilising 0th and 1st-order scattering coefficients,
exceeds 99%. Moreover, Liu et al. (2020) shows how WST can be

applied to classify different heart conditions based on ECG readings.

The WST is used as a feature extractor in combination with different

classifiers, namely Neural Network (NN), K-Nearest Neighbours (KNN),

and a probabilistic neural network (PNN), which results in a minimum
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disease classification accuracy of 97.2%, 98.5% and 98.6%, respec-
tively. WST can also be used in ECG-signal analysis to classify sleep
apnea (Sharaf, 2023). The cited work shows that, in conjunction with
a random forest classifier (RFC), the algorithm has a minimum accuracy
of 90.35%

The work presented in Buriro et al. (2021) showcases the applica-
tion of WST to predict a patient’s alcoholism based on EEG readings.
The transform was used as a feature extractor for 256-Hz signals and
resulted in 100% accuracy in classifying data from twenty healthy
subjects and twenty subjects with alcoholism. Another successful imple-
mentation of WST in analysing EEG signals is evidenced in Ahmad et al.
(2017), where 180 out of 197 cases of seizures have been classified
correctly.

3. Method

The analysis of the AD task considered in this work reveals the
complexity of the arising classification problem. On the one hand, some
anomalies in the operation of FastBlade, such as asynchronous load
operation, can result in signals similar to normal operation recordings.
Similarly, test parameters can slowly deviate from the desired values,
with the sound difference being inaudible to humans. Further, practical
requirements for the AD algorithm include its low latency and compu-
tational efficiency. This section aims to introduce the most common
signal processing tools described in Section 2 and introduce the WST
as the optimal time–frequency filter for classification.

3.1. Short time Fourier transform

The STFT relies on using the Fast Fourier Transform (FFT) algorithm
applied over a pre-defined window (Kehtarnavaz, 2008), segmenting
the time-domain signal to retrieve signal information in the time–
frequency domain. The application of the STFT in the continuous
domain is given by (Krishnan, 2021):

𝑆 𝑇 𝐹 𝑇 {𝑥(𝑡)} = 𝑋(𝜏 , 𝑤) = ∫
∞

−∞

𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑗 𝑤𝑡𝑑 𝑡 (1)

where 𝑥(𝑡) is the analysed signal and 𝑤(𝑛) is the chosen analysis
window. Therefore, the discrete version of the STFT can be expressed
as (Krishnan, 2021):

𝑋(𝑛, 𝑤) =
∞∑

𝑚=−∞

𝑥(𝑚)𝑤(𝑛 − 𝑚)𝑒−𝑗 𝑤𝑚 (2)

where:

𝑋(𝑛, 𝑘) = 𝑋(𝑛, 𝑤)|
𝑤=

2𝜋

𝑁
𝑘

(3)

𝑋(𝑛, 𝑘) =
∞∑

𝑚=−∞

𝑥(𝑚)𝑤(𝑛 − 𝑚)𝑒
−𝑗

2𝜋

𝑁
𝑘𝑚 (4)

where 𝑤(𝑛) is the STFT window, which is zero outside of the [0, 𝑁 − 1]
interval.

3.2. Wavelet transform

As mentioned in Section 2.2, STFT requires a trade-off between
time and frequency resolution due to a fixed size of the window. This
problem is mitigated by incorporating filters of varying lengths in the
WT. The equation for the representation of the CWT is given by (Layer
and Tomczyk, 2015):

𝐶 𝑊 𝑇 {𝑥(𝑡)} = 𝑊𝑓 (𝑎, 𝜏) = ∫
∞

0

𝑥(𝑡)𝛹𝑎,𝜏 (𝑡)𝑑 𝑡 (5)

in which 𝑥(𝑡) is the analysed signal, 𝑎 is a scaling factor, 𝜏 is a shift
factor and 𝛹𝑎,𝜏 (𝑡) is given by:

𝛹𝑎,𝜏 (𝑡) =
1
√
𝑎
𝜓

(
𝑡 − 𝜏

𝑎

)
(6)

Fig. 2. The visual representation of a DWT computational block. The discrete signal
input, 𝑥𝑛, is subject to low-pass and high-pass filtering as given in Eqs. (7) and (8),
respectively, followed by decimation. This results in signals ℎ𝑛 and 𝑔𝑛 as outlined in
Eqs. (9) and (10). The process is cascaded 𝑚 times by passing subsequent low-pass
responses, 𝑎(𝑚+1)𝑛 to 𝑎2𝑛 , through the same convolution block (Layer and Tomczyk,
2015).

where 𝜓 is the mother wavelet function. The changes in 𝑎 alter the
frequency of the filter, while the sweep of 𝜏 moves the kernel across
the signal. However, the process is computationally expensive, and a
discrete version of the process is preferred for real-time applications.
The discrete wavelet transform embodiment is obtained by using finite
input response (FIR) filters in a chosen digital filter bank. The outputs
of the low-pass filter are given by (Layer and Tomczyk, 2015):

𝑦ℎ𝑛
=

𝐿−1∑

𝑙=0

𝑥𝑙ℎ𝑛−𝑙 (7)

while the high-pass filter is represented as:

𝑦𝑔𝑛
=

𝐿−1∑

𝑙=0

𝑥𝑙𝑔𝑛−𝑙 , 𝑛 = 0, 1,… , 𝐿 − 1. (8)

The number of coefficients computed, 𝑦ℎ𝑛 and 𝑦𝑔𝑛
, is twice the

number of samples of the original signal. Therefore, decimation by a
factor of two is practised to yield the expressions for low-pass and
high-pass filter outputs:

𝑎𝑛 = 𝑥2𝑛 =

𝐿−1∑

𝑙=0

𝑥𝑛ℎ2𝑛−𝑙 (9)

and

𝑑𝑛 = 𝑥2𝑛 =

𝐿−1∑

𝑙=0

𝑥𝑛𝑔2𝑛−𝑙 . (10)

Eqs. (9) and (10) can be used to compute the DWT coefficients for
the original discrete signal 𝑥𝑛 as presented in Fig. 2.

3.3. Wavelet scattering transform

WST is a tool used for translation-invariant filtering, which is sta-
ble to deformations, such as additive perturbations of the initial sig-
nal (Bruna and Mallat, 2013; Anden and Mallat, 2014). The wavelet
scattering operation is based on the computation of the DWT of the
signal, followed by averaging the coefficients over a selected window
length. The resolution of the STFT, DWT and WST is schematically
shown in Fig. 3.

Fig. 3 reveals the significant differences between the time–frequency
analysis tools described previously. The STFT graph confirms that the
use of a wide filter window at high frequencies results in poor temporal
accuracy and excessive frequency resolution. As a result, STFT lacks
stability as the representation of similar signals diverges for high fre-
quencies, which is undesirable for classification problems. The DWT’s
time and frequency resolution changes according to the parameters of
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Fig. 3. The visual comparison of the underlying time–frequency resolution for (a) STFT; (b) DWT; (c) WST (Kehtarnavaz, 2008; Mallat, 2012).

Fig. 4. The structure of a WST network, where 𝑥 is the input signal, ⋆𝜓𝜆𝑛 represents the WT operation, and ⋆𝜙 indicates averaging (Anden and Mallat, 2014). Black dots mark
the network output, which is present at each layer.

the examined signal, solving the resolution issue of the STFT. How-
ever, due to very high temporal resolution for high frequencies, the
output of the DWT is localised in time and, therefore, not translation
invariant, which should also be avoided in a classification problem.
The resolution representation of the WST is obtained by averaging the
DWT coefficients so that the representation of the signal is less time-
dependent. Therefore, the WST representation benefits from being both
highly stable and invariant under translation.

However, the averaging process described results in a significant
loss of information. Therefore, an iterative approach has been described
in Bruna and Mallat (2013), where the averaged coefficients constitute
the output of the network, while the high-resolution information is
recovered by computing the WT again before the signal is averaged.
This way, further features are extracted from the signal. Furthermore,
the modulus operator is used before the signal is averaged to prevent
coefficients of periodic signals from vanishing (Sifre and Mallat, 2013).
This way, an invariant scattering convolution network is built, as
demonstrated in Fig. 4.

While the process presented in Fig. 4 can be repeated for a growing
number of layers, it must be noted that the signal’s energy dissipates as
it propagates down the network, and the significance of the coefficients
decreases. The model’s authors also observe that the averaging operator
resembles kernels, such as pooling commonly used in CNNs. In contrast,
the modulus operator is non-linear, similar to activation functions
found in various deep neural networks (Li and Bonner, 2022).

Due to WST’s applicability to classification problems and the WST
network’s documented success in feature extraction problems, the
model will be incorporated into the processing pipeline.

3.4. Classification framework

The framework followed in this work is presented using the basic
signal processing stages outlined in Fig. 5. The first block represents
the high-dimensional data coming from a sensor, which, in the case
of this work, is a digital microphone. Using a kernel reduces data

dimensionality, which has the benefit of decreased data redundancy
and improved computational efficiency. By means of unsupervised
learning, data samples can be clustered together based on the similarity
of extracted features, simultaneously reducing the variability among a
single class (Mallat, 2012). In this work’s context, this stage’s purpose
is to group normal and abnormal operation samples into separate sets,
irrespective of the differences between various fault types. Applying su-
pervised learning, which determines a condition for assigning incoming
data to specific clusters, results in the final sample classification.

3.5. Autoencoders

Autoencoders are machine learning (ML) models whose distinguish-
able feature is the ability to learn from unlabelled data. An AE consists
of two networks, namely an encoder and a decoder, whose goal is to
produce an output identical to its input. The encoder takes an input
which can be multi-dimensional and compresses it into a latent code,
which is then reconstructed by the decoder. The decoder structure is
usually a mirror reflection of the encoder (Lopez Pinaya et al., 2020).

While AEs can consist of solely fully connected layers, they can also
incorporate convolutions to increase their efficiency in working with
image-like data (Lopez Pinaya et al., 2020). Due to a smaller number
of parameters than a conventional AE, Convolutinonal auteoncoders
(CAEs) also benefit from a reduced learning time (Chen et al., 2018).
A sample structure of a CAE is presented in Fig. 6.

3.5.1. Sample classification based on the reconstruction error
AEs can classify anomalies based on the latent code (Lopez Dubon

et al., 2023a) or based on the reconstruction error (Torabi et al.,
2023; Givnan et al., 2022). By training the model on normal operation
data, it learns the patterns which are predominant in normal operation
and minimises the reconstruction error of the output. However, if
anomalous data is passed, it is expected to contain features which
the model will not be able to reconstruct with equally good accuracy.
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Fig. 5. The steps in the signal processing framework for classification. The high-dimensional data undergoes filtering via a kernel, which feeds into an unsupervised learning
model. Supervised learning constitutes the basis for classifying the resulting clusters of data.

Fig. 6. The structure of a simple CAE, where the shape of the cuboids represents the
changing dimensions of data as it propagates through the network. The encoder, latent
code and decoder regions of the CAE are marked.

Therefore, each sample can be classified by setting a threshold in the
reconstruction error in the following manner (Chen et al., 2018):

𝑐𝐶 𝐴𝐸 (𝑥𝑖) →
{

normal, 𝜖𝑖 < 𝜃
anomalous, 𝜖𝑖 ≥ 𝜃

(11)

where 𝑥𝑖 is a sample considered, 𝑐𝐶 𝐴𝐸 denotes the encoding and de-
coding process of the CAE, 𝜖𝑖 is the corresponding reconstruction error
and 𝜃 is the set threshold. Setting the reconstruction error threshold
corresponds to the supervised learning process presented in Fig. 5.

3.5.2. Sample classification based on extracted feature maps
In cases when the sample classification based on the reconstruction

error does not bring satisfactory results, e.g. due to significant intraclass
variability in the normal dataset, the intermediate feature maps of the
CAE can be investigated. Since the CAE is trained to compress the input
image during encoding, the encoder will be equipped with filters that
extract the most relevant features of the input signal. The investigation
of these feature maps should identify particular signal properties that
are common to all normal samples and cannot be observed among
anomalous samples. Therefore, the feature maps present at a given
layer of an encoder can be averaged for all training samples, creating
a dataset of generic features typical of all normal operation samples.
Similarity factors can be computed between these features and both,
normal and anomalous data. When sufficient separation between the
similarity values is reached through a combination of a particular
feature map and the type of computed error, the framework can be
used to classify new samples.

3.6. Processing pipeline

In this work, we first verify if a CAE and a PCA transform trained
on normal operation data can successfully classify abnormal operation
samples. We subsequently present the solution which utilises chosen
feature maps from the deep layers of the CAE. The associated processing
pipeline consists of three stages: dataset creation; training; and testing.
These are presented in Figs. 7–9 respectively.

4. Experimental results

4.1. Instrumentation and data collection

The data was collected during a fatigue test of a composite tidal
turbine blade. The blade is 5.25 m long and weighs 1588.59 kg.
Its natural frequency is approximately 18 Hz, and the NACA 63-4XX
aerofoil defines its cross-section (McLoughlin et al., 2023). During the
test, the blade was actuated by a series of three actuators, and the
exerted loads followed a sinusoidal waveform. The loading frequency
was 0.75 Hz, while the actuators’ minimum and maximum loads were
20 kN and 60 kN, respectively.

The audio was recorded for a total of 5 h 30 min. The audio
capture device used was a micro-electromechanical system (MEMS)
microphone, IMP34DT05, by STMicroelectronics (STMicroelectronics,
2021). It was purchased on a coupon board (STEVAL-MIC003V1) and
connected through a development board (X-NUCLEO-CCA02M1) to a
laptop to log audio using Audacity software (Audacity, 2021). It ran
in the single-channel mode, and its operating frequency was 48.0 kHz.
The microphone was mounted in the test hall approximately five metres
away from the reaction frame, with the specimen and the pumping
machinery (electric motors, pumps and oil hoses) located in the pit
below. The experimental setup is presented in Fig. 10. The dataset used
to train, validate, and test the model developed in this work can be
downloaded from https://doi.org/10.5281/zenodo.14298279 Munko
et al. (2024).

4.2. Dataset parameters

The audio data was recorded and stored at a resolution of 48.0 kHz.
The abnormal operation periods were first determined by analysing the
process parameters recorded during the test, including actuator load,
pump pressure and motor speed. The example of a fault detected in the
operation of the loading actuators is presented in Fig. 11. The figure
shows the case of the system loads acting out of phase, which is the
immediate cause of the increased load amplitude. The uncontrolled
behaviour of the system might not only affect the reliability of the test
but might also lead to the system losing stability.

Equally, the period when the system is winding up and down
simulates power loss, which would be abnormal if it occurred during
a test. Any third-party interactions resulting from, e.g. periodic noise
in the hall made by the operation of an elevating work platform, are
also classified as undesirable during unmanned operation. Once an
abnormal operation was identified, the corresponding audio track was
extracted and labelled as anomalous.

All data in the dataset was divided into 0.5-second-long samples,
each overlapping by 0.1 s with the previous sample. The interval length
was chosen based on the duration of a transient fault identified in
the asynchronous operation of the system loads. However, we also
considered the duration of a single sample to be long enough not to
capture solely normal behaviour in the case of periodic noises. It was
decided that the samples should overlap to avoid omitting any unusual
behaviour occurring at the sample’s boundary and to avoid any poten-
tial information loss due to the cone of influence (CoI) effect (Chen
et al., 2023). The list of identified anomalies and the resulting number
of samples obtained for each one of them is presented in Table 2.

The microphone has a 16-bit output, which, for signed integers, can
be decoded to into the effective range of values between −215 and 215.
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Fig. 7. The dataset creation stage.

Fig. 8. The training pipeline followed in the work.

Fig. 9. The testing pipeline followed in the work.

Fig. 10. Left: The connection between the microphone and the logging laptop in the FastBlade test hall. Right: The sensing setup’s location relative to the facility’s reaction frame.
1, 3: Microphone on the development board; 2: Laptop running Audacity (Audacity, 2021); 4: The specimen mounted on the reaction frame.
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Fig. 11. Left: The load traces for each actuator used in the test. The transient anomaly occurring in the test is characterised by the increased frequency and loading amplitude
relative to normal system operation. Right: The magnification of loading traces for a shorter time interval. The loss of synchronism becomes apparent on the new time scale, with
the third actuator acting out of phase.

Fig. 12. Normalised audio data of the facility operation recorded for (a) normal operation, (b) random noise coming from a 3rd party interaction, (c) asynchronous operation of
the actuators, (d) system operating at reduced power (during the start-up process).

Table 2
Anomalous and normal operation samples constituting the dataset used in the
research.

Type Duration (s) No. of samples

Asynchronous actuator operation 1 0.95 2
Asynchronous actuator operation 2 1.56 3
System winding down 26.92 67
System winding up 5.55 13
Random noise 1 18.41 45
Random noise 2 7.74 19
Random noise 3 1.29 2
Periodic noise 3.58 8

Combined anomalous dataset 1 40.00 80
Combined anomalous dataset 2 39.50 79

Normal operation dataset 1 540.00 1347
Normal operation dataset 2 540.00 1347
Normal operation dataset 3 540.00 1347

Therefore, the raw microphone data was divided by 215, which results
in a normalised waveform between −1 and 1, a common representation
for audio signals. No further pre-processing was performed on the
signal before applying the time–frequency analysis tools. This way,
reliance on the inherent noise-reduction properties of the algorithms
ensures that no meaningful signal features are lost. The signal was first
examined in the time domain. Selected audio samples are presented in
Fig. 12. The investigation of time-domain signals highlights the need
for a specific feature extraction technique to differentiate between most
normal and anomalous samples.

4.3. Signal processing

In this section, the time–frequency analysis tools introduced in
Section 3, namely the WST, CWT, DWT, and STFT, will be evaluated
on the collected samples. The algorithms are applied to two sam-
ples collected during three distinct periods of normal operation, and
two anomalous samples. The comparison of all extracted features is
presented in Fig. 13.

The values in each signal presented in Fig. 13 are normalised
between zero and one. Since the performance of different feature
extraction methods greatly depends on the particular choice of their
tunable parameters, it is difficult to compare them directly. Therefore,
the parameters of the presented images are chosen to be as simi-
lar to one another as possible. Where possible, the frequency range
covered extends to 24,000 Hz, which is determined by the Nyquist
frequency (McLean et al., 2005) as the maximum examinable frequency
for a signal with a sampling rate of 48,000 Hz.

The WST is computed using the Kymatio Python library (Andreux
et al., 2018). The 𝐽 and 𝑄 parameters, corresponding to the maximum
log scale of the transform (equal to 2J) and the number of wavelets
per octave respectively, need to be determined. The use of 𝐽 and 𝑄

parameters, such that 𝐽 , 𝑄 ∈ {6, 8, 10, 12, 14, 16}, is examined. The
number of wavelets per octave for the 2nd-order scattering is fixed
at 𝑄 = 1. For a sample consisting of 24,000 data points, the choice
of 𝐽 = 6 and 𝑄 = 16 results in the most significant number of
output parameters. These 𝐽 and 𝑄 values are used in the research to
maximise the amount of information retrieved from the original signal.
The Kyamtio’s default wavelet is used, which is the Morlet wavelet.
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Fig. 13. The comparison of the time–frequency analysis tools discussed in the work, applied to two normal and two anomalous samples collected at FastBlade. The outputs are
computed with: (a) 1st-Order WST; (b) 2nd-Order WST; (c) CWT; (d) DWT; (e) STFT. To allow for direct comparison, the transforms analyse the signal in the range of up to
24,000 Hz, which is half of the sampling frequency. The only exception is the 2nd-order WST, which investigates lower frequencies than the 1st-order transform. Each of the
𝑦-axis labels of the DWT graph corresponds to a discrete frequency band investigated.

Therefore, the CWT also utilises the Morlet wavelet, and frequencies
down to 750 Hz are examined, which is derived from the signal’s
sampling frequency, 48,000 Hz, and the scale of the transform equal
to 26 (i.e., 2J). The filter chosen from the DWT’s filter bank is db20,
one of the Daubechies family’s wavelets, matching the Morlet wavelet’s
characteristics. To match the examined frequency range with the STFT,
the length of each segment required to compute the STFT is set to 64,
since 48,000 Hz

64
= 750 Hz, which is the lowest examined frequency.

The comparison of the outputs of the time–frequency tools pre-
sented in Fig. 13 suggests that the differences between normal and
anomalous samples are best observed in the WST outputs. The area
with increased energy distribution in the middle of Anomaly 1, and the
sharp vertical edges visible in Anomaly 2 make the samples different
from the normal operation data. However, the normal samples also
differ. Relative to Normal 1, the energy distribution for Normal 2 is
dimmer in the 1st-order scattering output, while there is also more
activity across all frequencies in the 2nd-order output. While the DWT
output for Anomaly 1 might suggest some non-conforming patterns, no
change is visible for Anomaly 2. With the chosen parameter settings,
the outputs for the CWT and the STFT show no significant patterns.
Further investigation leads to discovering patterns in the CWT and STFT

outputs as presented in Fig. 14, derived through radical capping of
maximum values displayed to 0.01. However, changing the range of
values displayed requires prior knowledge of the signal and increases
noise levels, and is therefore not advisable.

Another aspect of great importance for our case study is the process-
ing time associated with the techniques, as the application is expected
to run in real-time. Therefore, the execution time of each of the
techniques is benchmarked by averaging it over 1000 computations.
The results presented in Table 3 are obtained on 11th Gen Intel(R)
Core(TM) i7-1185G7, with four physical cores, unless otherwise stated.

The benchmarking results show that the WST is the most computa-
tionally expensive of the processing tools considered. The discrepancy
between the 1st-order, 2nd-order, and concatenated outputs is small
and likely results from random variations observable on the CPU.
However, the WST operation can also be easily parallelised, and the
Kymatio library used provides GPU support. Therefore, by benchmark-
ing the WST on the GPU available at FastBlade, on which the developed
application is to be deployed, the execution time decreased drastically,
mitigating the impact of the higher computational burden. Therefore,
the WST output can be used in further study. Moreover, the 1st-order
and 2nd-order outputs are concatenated to ensure that all necessary
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Fig. 14. The comparison of the time–frequency plots for (a) CWT; (b) STFT, with the effective value range set between 0.00 and 0.01.

Fig. 15. Concatenated and normalised output for 1st and 2nd-order wavelet scattering; (a) normal operation, (b) random noise coming from a 3rd party interaction, (c) asynchronous
operation of the actuators, (d) system operating at reduced power (during the start-up process). The red lines mark the edge where 1st and 2nd-order scattering coefficients are
concatenated.

Table 3
Execution time for the feature extraction tools considered.

Processing tool Execution time (s)
1st Order WST 0.5780
2nd Order WST 0.6654

Concatenated 1st and 2nd Order WST
0.6214
0.0902a

CWT 0.3492
DWT 0.0038
STFT 0.0006

a Run on the graphics processing unit (GPU), model: NVIDIA RTX A6000.

features are extracted from the audio signal. The 1st and 2nd-order
outputs are first normalised, and then concatenated as presented in
Fig. 15.

4.4. Classification based on reconstruction error

4.4.1. Convolutional autoencoder implementation
A CAE is used to learn the features of normal operation data and

subsequently classify samples as either normal or anomalous. The
network architecture is presented in Table 4. The ZeroPadding2D and
Cropping2D layers are used to ensure that the dimensions of the input
and output of the model match. The number of layers of the encoder

Table 4
List of layers in the autoencoder trained. The number of downsampling layers matches
the number of upsampling layers. The input and output layers adjust the shape of the
image.

Layer/combination of layers Quantity

ZeroPadding2D 1
Conv2D, MaxPoooling2D 5
Conv2D 1
Flatten, Reshape 1
Conv2DTranspose, UpSampling2D 5
Conv2DTranspose 1
Cropping2D 1

network matches the number of layers of the decoder. The latent
code of the network consists of twenty-four dimensions. The detailed
structure of the model is presented in Table 7 in Appendix.

The model is trained based on the mean absolute error (MAE)
metric, which computes and averages the absolute difference between
all corresponding pixels in the input and output images. To enhance
the understanding of the model’s operation, chosen feature maps are
extracted for four representative samples, and presented in Fig. 16.
While the outputs extracted from the first convolutional layer present
features easily identifiable by a human, such as sharp horizontal and
vertical lines, the features in the outputs of the third convolutional layer
become harder to interpret. The presentation of the latent code shows
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Fig. 16. Four CAE inputs representing two normal and two anomalous samples, together with their feature maps extracted from the model. (a) Original inputs; (b) Feature maps
output by the first convolutional layer; (c) Feature maps output by the third convolutional layer; (d) Signal representation in the latent code.

the extent to which the encoder compresses the signal by learning to
represent the most important features in a greatly reduced dimensional
space.

4.4.2. Principle component analysis implementation
To compare the performance of a deep-learning technique with the

implementation of a conventional dimensionality-reduction method,
alongside the training of the CAE, PCA is used to compress and recon-
struct the WST data. PCA is an operation used to reduce the dimen-
sionality of the original data while maintaining much of its original
variance. A reverse operation also exists in which the low-dimensional
signal can be used to reconstruct the approximation of the original
signal (Vaish and Kumar, 2014). In this work, the PCA is obtained with
twenty-four principal components, matching the number of dimensions
in the CAE’s latent code, and with 1347 dimensions, which matches
the number of samples in the normal training dataset, resulting in the
transform preserving a significant amount of the original variance. This
method also has a much shorter training time than the CAE.

4.4.3. Achieved accuracy
The model is validated on both normal and anomalous data. The

normal operation dataset is distinct from the dataset on which the
model was trained, and all anomalous samples used in this investigation
are used to validate the model’s performance. The reconstructions using
both PCA transforms, as well as the CAE, are presented in Fig. 17 for
the previously shown normal and anomalous samples.

The success of the reconstruction method can be investigated by
evaluating the level of separation attained between the reconstruction
error computed for normal and anomalous datasets. Four of the com-
monly used error types are used to compute the error between the
input and the reconstructed samples, namely: mean absolute error,
mean squared error (MSE), peak signal-to-noise ratio (PSNR), and
normalised cross-correlation (NCC). They are given by the following set
of equations, where 𝑥𝑖 is the input sample, 𝐶(𝑥𝑖) is the reconstructed
sample, and 𝑛 is the number of pixels in an image:

𝑀 𝐴𝐸 =
1

𝑛

𝑛∑

𝑖=1

|𝑥𝑖 − 𝐶(𝑥𝑖)| (12)

as found in (Hodson, 2022);

𝑀 𝑆 𝐸 =
1

𝑛

𝑛∑

𝑖=1

(𝑥𝑖 − 𝐶(𝑥𝑖))
2 (13)

as found in (Hodson et al., 2021);

𝑃 𝑆 𝑁 𝑅 = 10 ⋅ log
(
𝑀 𝐴𝑋2

𝑖

𝑀 𝑆 𝐸

)
(14)

where 𝑀 𝐴𝑋𝑖 is the signal’s maximum value (Horé and Ziou, 2013);
and

𝑁 𝐶 𝐶 =

∑𝑛

𝑖=1
(𝑥𝑖 − �̄�)(𝐶(𝑥𝑖) − �̄�)

√∑𝑛

𝑖=1
(𝑥𝑖 − �̄�)

2
∑𝑛

𝑖=1
(𝐶(𝑥𝑖) − �̄�)2

(15)

where �̄� and �̄� are the mean values of the original and reconstructed
signal (Yoo and Han, 2009).

The distribution of the reconstruction error for normal and anoma-
lous samples is presented as histograms, shown in Figs. 18–20 for the
24-dimensional PCA, 1347-dimensional PCA, and the CAE respectively.
Each of the plotted datasets is distributed over 200 bins. The visual
inspection of the figures makes it evident that the separation between
normal and anomalous data is insufficient to allow for effective classi-
fication, as the two distributions overlap significantly for each of the
computed error types. This can be explained either by the fact that
each model can also reconstruct anomalous samples with high fidelity
or by the intraclass variations among normal operation samples, as
noted previously. The investigation of the NCC results for all three cases
shows interesting behaviour of the distribution for normal samples,
where two distinct peaks are visible, suggesting that there are indeed
samples within the normal dataset whose reconstruction is much closer
to the original images relative to the anomalous samples. Therefore, the
latter of the given explanations is more likely to be true; namely that
the complexity of the patterns in some of the normal operation samples
makes the models fail to reconstruct them, resulting in increased recon-
struction error. This can be further supported by the example given in
Fig. 17(b), where none of the models reconstructs the normal operation
sample with sufficient detail. Therefore, this part of the study can be
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Fig. 17. The visualisation of the original input data and the associated reconstruction using two PCA transforms and a CAE for (a) Normal Operation Sample 1; (b) Normal
Operation Sample 2; (c) Anomalous Operation Sample 1; (d) Anomalous Operation Sample 2.

Fig. 18. The error distribution for normal and anomalous samples reconstructed with 24-dimensional PCA. Presented error types are: (a) MAE; (b) MSE; (c) PSNR; (d) NCC. The
𝑦-axis is in logarithmic scale to aid visibility.

concluded by stating that the methods based on the reconstruction error
have failed to provide an AD method with satisfactory performance.
Possible improvements to the method will be discussed in Section 5.

4.5. Feature map-based anomaly detection

4.5.1. Anomaly detection model development
Since the method based on the reconstruction of the entire sample

computed with the WST did not result in a satisfactory separation
between normal and anomalous data, the feature maps of the CAE’s
hidden layers are investigated. The rationale for this investigation
is the search for features that are common to all normal operation
samples but cannot be observed in the case of anomalous operation.
The hidden layers of the CAE’s encoder extract features representative
of the input signal, even if they cannot be interpreted by a human. The
examples of the outputs of the first and third convolutional layers are
presented in Fig. 16(b) and (c) respectively. Since one convolutional
layer might not be sufficient to extract the underlying patterns in the
data, we investigate the feature maps which are the output of the

second convolutional layer. The second layer has 64 feature maps,
which is twice as many as the third convolutional layer.

We compute all 64 feature maps for each of the samples in the
training dataset. Subsequently, looking for generic features common to
all normal operation data, we compute the average for each feature
map across all samples. As a result, we obtain 64 averaged feature
maps, which we expect to contain universal features.

To verify if the features derived are indeed common to normal oper-
ation samples, and do not exist in the anomalous data simultaneously,
we compute the MSE, PSNR, and NCC errors between the averaged
maps and the validation dataset. The validation dataset consists of
another batch of normal operation data and half of the anomalous
samples, with the other half used for testing the model. As in the
method applied to the PCA transform and the CAE, we use histograms
to determine the separation between normal and anomalous data dis-
tributions. To determine how well the data is separated for each
feature map and each error metric, we quantify the overlap between
the histograms by counting the number of samples common to both
distributions. The results of this process are presented in Fig. 21, where
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Fig. 19. The error distribution for normal and anomalous samples reconstructed with 1347-dimensional PCA. Presented error types are: (a) MAE; (b) MSE; (c) PSNR; (d) NCC.
The 𝑦-axis is in logarithmic scale to aid visibility.

Fig. 20. The error distribution for normal and anomalous samples reconstructed with the CAE. Presented error types are: (a) MAE; (b) MSE; (c) PSNR; (d) NCC. The 𝑦-axis is in
logarithmic scale to aid visibility.

each of the 64 feature maps has three associated overlap scores. The
smallest overlap, and therefore the greatest separation between the
normal and anomalous samples, is obtained when the averaged feature
maps with IDs 18 and 19 are used together with the NCC.

The associated histograms for which the smallest overlap scores
are derived are presented in Figs. 22 and 23 for averaged feature
maps number 18 and 19 respectively. The separation visible in the
graphs is better than the one presented in Figs. 18, 19, or 20 computed
using the error for complete reconstructions. The overlap between the
distributions will be further discussed in Section 5, where the reasons
for these occurrences will be analysed.

The averaged feature maps discussed are plotted in Fig. 24, along-
side the corresponding feature maps obtained when the CAE inference
is run on two normal samples, characterised by significant intraclass
variations, and an anomalous sample. The average feature maps, pre-
sented in the third column from the left, clearly show that they extract
horizontal patterns from the data. According to our findings, these
patterns have a higher NCC score for the two normal samples presented
than for the anomalous sample, which results in a poorer correlation.

Substantial noise can be observed in the anomalous sample, which
occurs to a lesser extent in the normal operation samples.

Having achieved a seemingly satisfactory separation between nor-
mal and anomalous data, the same dataset is used to train classifiers,
whose performance will be validated on the test dataset. Numerous
classifiers are trained, and their performance will be evaluated using
relevant metrics. The chosen models, namely k-nearest neighbours
(KNN), logistic regression (LR), support vector machine (SVM), and
decision tree (DT), are commonly applied in classification tasks. Two
KNN variants are trained, with 𝑘 equal to three and five, and two SVM
variants are also trained, one with a linear kernel and the other with
a radial basis function (RBF) kernel. They are implemented using the
Scikit-Learn library in Python (Pedregosa et al., 2011) and trained on:

• one-dimensional data computed for the averaged feature map
with ID 18 (resulting in better separation than the feature map
with ID 19);
• two-dimensional data computed for the averaged feature maps

with IDs 18 and 19.
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Fig. 21. The number of overlapping samples between the normal and anomalous distributions computed for each of the 64 averaged feature maps derived from the CAE. The
error metrics used are MSE, PSNR, and NCC.

Fig. 22. The distribution of the NCC values computed between the averaged feature map with ID 18 and the samples in the validation dataset. Both distributions are plotted for
200 bins.

Fig. 23. The distribution of the NCC values computed between the averaged feature map with ID 19 and samples in the validation dataset. Both distributions are plotted for 200
bins.

4.5.2. Testing the anomaly detection model

The test dataset used to evaluate the performance of the developed

classifier consists of another batch of normal operation data and the

other half of the anomalous samples considered in this work. The

error distributions computed for the one-dimensional and the two-

dimensional cases are presented in Figs. 25 and 26 respectively. In

both cases, the test data distribution results in a slightly lower NCC

score than the data on which the classifiers were trained. However,
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Fig. 24. Feature maps for two normal operation samples, averaged feature maps, and feature maps for an anomalous sample. Feature map ID is (a) 18; (b) 19.

Fig. 25. The distribution of NCC values for validation and test data, when the feature map with ID 18 is considered.

Fig. 26. The distribution of NCC values for validation and test data, when the feature maps with IDs 18 and 19 are considered.

the separation between normal and anomalous data is certainly still
evident.

The performance of each classifier is quantified using overall accu-
racy, which is the ratio of correct predictions to the total number of
predictions, as well as:

• precision, given by 𝑇 𝑃
𝑇 𝑃+𝐹 𝑃 , where 𝑇 𝑃 and 𝐹 𝑃 are the number of

true and false positives respectively;
• recall, given by 𝑇 𝑃

𝑇 𝑃+𝐹 𝑁 , where 𝐹 𝑁 is the number of false nega-
tives;
• 1 score, which is evaluated as 2 × 𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐 𝑎𝑙 𝑙

𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐 𝑎𝑙 𝑙 .

While the classifier’s accuracy provides a single-value measure of
the model’s performance, examining the other scores is particularly
important when the number of samples in the classes is unbalanced.
The results of running the classifiers on the test dataset are presented
in Tables 5 and 6 for one-dimensional and two-dimensional data,
respectively.

It is discovered that the trained classifiers achieve similar per-
formance for both one-dimensional and two-dimensional data. The
accuracy gain when moving into two-dimensional data is either moder-
ate or as in the case of both SVM classifiers, no gain is observed. While
the accuracy of all presented classifiers might suggest their suitability
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Table 5
The evaluation of the classifiers for one-dimensional data. In all cases, the number
of samples, known as support, is 1347 for normal samples, and 79 for anomalous
samples.

Classifier Accuracy Class Precision Recall F1 Score

KNN, k = 3 0.9923
Normal 1.00 1.00 1.00
Anomalous 0.94 0.92 0.93

KNN, k = 5 0.9944
Normal 0.99 1.00 1.00
Anomalous 0.99 0.91 0.95

LR 0.9516
Normal 0.95 1.00 0.98
Anomalous 1.00 0.13 0.22

SVM, linear 0.9867
Normal 0.99 1.00 0.99
Anomalous 1.00 0.76 0.86

SVM, RBF 0.9951
Normal 0.99 1.00 1.00
Anomalous 1.00 0.91 0.95

DT 0.9867
Normal 1.00 0.99 0.99
Anomalous 0.85 0.92 0.88

for the application, it is impacted by the fact that normal samples
greatly outnumber the anomalous ones in the test dataset. Examining
the recall and the F1 score shows the performance of the LR is certainly
unacceptable due to a high number of false negatives in the anomalous
class. The presence of false negatives in the anomalous class means
that the model is more likely to classify anomalous samples as normal
operation samples, which is unacceptable in the actual operation of
the facility. The best-performing classifier for one-dimensional data
is the SVM with the RBF kernel, and the best-performing model for
two-dimensional data is the KNN with 𝑘 = 5.

The choice between using one-dimensional or two-dimensional data
will depend on the benchmarked computational time, as the application
is intended to detect anomalies in the system’s operation in real-time.
The processing required entails running inference on the CAE to pro-
duce the necessary feature maps, computing its NCC with the averaged
feature map (two feature maps in the case of the two-dimensional
data), and running the prediction on the classier. The functionality is
benchmarked on the computer available at FastBlade, with the NVIDIA
RTX A6000 GPU. The classifier used for benchmarking both cases is
the SVM with a linear kernel. The execution time average for 1000
iterations is 0.1041 s and 0.1053 s for the one-dimensional and the two-
dimensional case respectively. The computational increase is deemed to
be negligible and implies that the main processing burden remains the
inference of the CAE. It is therefore decided that two-dimensional data
can be used in the final processing pipeline, although it is noted that
the performance increase resulting from it is marginal.

4.5.3. Misclassification analysis
In this subsection, we aim to identify the reasons for the misclas-

sification of samples. The learning outcomes can be used to evaluate
the quality of the dataset and steer the future direction of research.
Figs. 27(a) and 28(a) show the correctly-classified normal and anoma-
lous samples respectively, while samples in (b) in both figures have
been misclassified.

The normal operation sample, which is classified incorrectly, cer-
tainly has energy distributed across a wider spectrum of frequencies
than the other sample presented, which is also visible in the feature
map. However, it must be stressed that some of the classifiers have
succeeded in assigning the correct class to it. Therefore, this example
can be used to stress the significant intraclass variability observed for
normal operation samples. Considering the anomalous case, which is
one of the few failures of the classifiers, the feature map and the WST
output in Fig. 28(a) both exhibit a wider high-energy band in the
bottom part of the spectrum, which likely leads to a lower NCC metric
when compared to the averaged feature map. On the other hand, the
samples in (b), are characterised by a dimmer, yet equally-wide high-
energy band in the same portion of the spectrum. This might point to

the shortcoming of the method, where a truly anomalous sample was
not classified correctly. On the other hand, the anomaly label associated
with this sample is periodic noise, which means there is a chance that
in between anomalous sounds, a normal sample was recorded.

5. Discussion

The study of the related work has shown that microphones are
widely used sensors to tackle AD problems in an industrial setting. It
has been implemented in this work primarily due to its non-specificity,
low cost, and successful implementation in various AD problems which
are documented in the studied literature. The use of the microphone
has helped successfully detect anomalies of multiple natures, which
would be difficult to replicate using a different sensor. While actuators’
asynchronous operation could potentially be seen by looking at load
or pressure traces, other anomalies occurring in the test hall would
probably need to rely on an image-based method. Using cameras would
undoubtedly be more costly and computationally demanding.

The theory behind the development of the WST network indicated
that it could be a superior classification solution to other commonly
used feature extraction tools, like STFT or DWT. Its processing time
is significantly reduced due to the possible parallelisation of its com-
putation on the GPU. The execution time is important for a real-time
application and is measured to be approximately 0.09 s. Therefore,
since the time needed to extract the feature map, compute the NCC,
and run the classifier is estimated at 0.11 s, the total time of running
inference for a 0.5-second-long sample is approximately 0.2 s. This
means the method meets the time limit, set to 0.4 s, as the samples
overlap by 0.1 s. However, deploying the method on a CPU would be
too time-consuming. This problem could be mitigated by resorting to a
more computationally feasible feature extraction tool, even if it results
in poorer performance.

In the method developed, NCC can be computed with one or two
of the averaged feature maps for every incoming sample. The most
important metric presented is the recall for anomalous samples, which
determines the number of anomalous samples classified as normal.
The best performance is observed when two-dimensional data is used
together with a KNN with 𝑘 set to 5, reaching an accuracy of 99.6% and
a recall of 92%. Considering the size of the dataset, this means that 6
out of 79 anomalous samples were wrongly classified as normal. For
reference, the SVM with the RBF kernel deployed on one-dimensional
data misclassified 7 out of 79 samples. However, since their computa-
tional times are very similar, the approach that uses two dimensions
can be used.

Considering the classification attempt based solely on the recon-
struction error of the input sample, increasing the size of the CAE, could
be a solution to its unsatisfactory performance. By having a bigger
number of trainable parameters, the model could learn to reconstruct
even the more complex patterns of normal operation samples. This
approach could be further investigated due to the ease of collecting
normal operation data. The major limitations of this method would be
the CAE’s inference time, which has a hard limit set by the sample
duration, and the learning time, which would need to remain feasible
given that a test at FastBlade can last a few days.

The greatest limitation of our model is that contrary to classification
based on the reconstruction error, it no longer relies solely on unsuper-
vised learning. The anomalous data labelled as validation had to be used
to determine which feature maps resulted in the greatest separation
between normal and anomalous samples. Moreover, they were used to
train the classifier, which was then evaluated on the unseen normal and
anomalous data labelled as test. In light of the scarcity of anomalous
samples, data augmentation techniques can be used to create them
artificially.

Engineering Applications of Artiϧcial Intelligence 142 (2025) 109889 

17 



M.J. Munko et al.

Table 6
The evaluation of the classifiers for two-dimensional data. In all cases, the number of samples, known as
support, is 1347 for normal samples, and 79 for anomalous samples.

Classifier Accuracy Class Precision Recall F1 Score

KNN, k = 3 0.9951
Normal 1.00 1.00 1.00
Anomalous 0.99 0.92 0.95

KNN, k = 5 0.9958
Normal 1.00 1.00 1.00
Anomalous 1.00 0.92 0.96

LR 0.9691
Normal 0.97 1.00 0.98
Anomalous 1.00 0.44 0.61

SVM, linear 0.9867
Normal 0.99 1.00 0.99
Anomalous 1.00 0.76 0.86

SVM, RBF 0.9951
Normal 0.99 1.00 1.00
Anomalous 1.00 0.91 0.95

DT 0.9895
Normal 1.00 0.99 0.99
Anomalous 0.89 0.92 0.91

Fig. 27. (a) Correctly classified feature map (left) and the original WST output (right) for a normal operation sample; (b) Incorrectly classified feature map (left) and the original
WST output (right) for a normal operation sample.

Fig. 28. (a) Correctly classified feature map (left) and the original WST output (right) for an anomalous operation sample; (b) Incorrectly classified feature map (left) and the
original WST output (right) for an anomalous operation sample.

6. Conclusions and further work

The work shows a successful implementation of the WST network
in an audio-based AD problem. It takes advantage of the computational
efficiency and stability of the DWT, as well as the invariance of the sug-
gested WST network in the feature extraction process, allowing it to run

in quasi-real-time. A CAE trained on normal samples in an unsupervised

way fails to reconstruct the more complex of the normal samples to a
satisfactory degree, caused by significant intraclass variability among

normal operation samples. Therefore, the reconstruction error, which is
widely used in existing works to identify anomalous operation samples,
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Table 7
The detailed structure of the CAE architecture proposed.

Layer ID Layer Number Size/Kernel size Strides Padding/Interpolation Pool size

1 ZeroPadding2D Padding = [17, 18], [4, 5]
2 Conv2D 128 [7, 7] [1, 1] Same –
3 MaxPooling2D – – [2, 2] Same [2, 2]
4 Conv2D 64 [5, 5] [1, 1] Same –
5 MaxPooling2D – – [2, 2] Same [2, 2]
6 Conv2D 64 [3, 3] [2, 2] Same –
7 MaxPooling2D – – [2, 2] Same [2, 2]
8 Conv2D 32 [2, 2] [1, 1] Same –
9 MaxPooling2D – – [2, 2] Same [2, 2]
10 Conv2D 16 [2, 2] [1, 1] Same –
11 MaxPooling2D – – [2, 2] Same [2, 2]
12 Conv2D 1 [2, 2] [1, 1] Same –
13 Conv2DTranspose 16 [2, 2] [1, 1] Same –
14 UpSampling2D – [2, 2] – Nearest –
15 Conv2DTranspose 32 [2, 2] [1, 1] Same –
16 UpSampling2D – [2, 2] – Nearest –
17 Conv2DTranspose 64 [2, 2] [1, 1] Same –
18 UpSampling2D – [2, 2] – Nearest –
19 Conv2DTranspose 64 [3, 3] [2, 2] Same –
20 UpSampling2D – [2, 2] – Nearest –
21 Conv2DTranspose 128 [5, 5] [1, 1] Same –
22 UpSampling2D – [2, 2] – Nearest –
23 Conv2DTranspose 1 [7, 7] [1, 1] Same –
24 Cropping2D Cropping = [17, 18], [4, 5]

cannot be applied to our use case. Further, reconstructing WST outputs
using PCA does not bring satisfactory results.

The final processing pipeline takes advantage of the feature maps
extracted by the CAE’s hidden layers to identify features that could
be used to separate normal and anomalous samples. NCC turns out
to be the best-suited error metric for this task. Each incoming sample
can have its NCC computed with one or two of the identified maps.
Therefore, the classifier can be trained on either one-dimensional or
two-dimensional data. Using two maps to train the classifier results
in marginally better accuracy with virtually no extra processing time
required. The study shows that an SVM with an RBF kernel is the
best classifier considering one-dimensional data, and a KNN with 𝑘 set
to 5 performs the best on one-dimensional data. The suggested data-
processing pipeline has proven to detect faults of different natures.
This is crucial for enabling the uncrewed operation of FastBlade, the
experimental site considered in this work. Compared to using one-
dimensional data, the use of two-dimensional data has resulted in one
more correct anomalous sample classification.

The solution is characterised by low system specificity, as it circum-
vents the need for detailed knowledge of system assets and their failure
modes, making the method easy to extrapolate to other systems in both
experimental and industrial domains. Therefore, we have developed
a model with satisfactory performance despite the variability of the
normal operation samples, and in light of restricted anomalous oper-
ation data. Moreover, we demonstrated that WST can be successfully
implemented for related AD problems. The major limitations of the
method are the need for an anomalous dataset, which is required to
train the classifier and identify the most suitable feature maps, as
well as the WST’s processing time in case GPU support is unavailable.
The particular benefits of the method include short development time,
which is largely independent of the complexity of the system, and low
cost of the AD hardware.
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