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We present a new two-phase two-component slurry model of the F-layer at the base of Earth’s liquid outer core. 
Seismic observations indicate that the F-layer is stably stratified, which challenges conventional models of core 
dynamics that assume outer core convection and dynamo action are powered by heat and light element release 
at the inner core boundary (ICB). Previous work (Wong et al., 2021) has shown that an F-layer comprising a 
“snow” of solid iron particles falling through an iron-oxygen liquid can account for the inferred thickness, density 
and velocity anomaly of the F-layer; however, the model prescribed simplified fluid dynamical descriptions of 
the solid and liquid phases. Here we build on the work of Wong et al. (2021) by incorporating a self-consistent 
description of two-phase fluid dynamics. Analysing a suite of 1D time-independent solutions reveals that the solid 
fraction 𝜙𝑠 and liquid velocity 𝑢𝑙 decrease with increasing bulk oxygen concentration and buoyancy number 𝐵, 
while 𝜙𝑠 and 𝑢𝑙 increase with increasing ICB heat flux and solid/liquid viscosity ratio 𝜆𝜂 . Extrapolating to core 
conditions suggests that 𝜙𝑠, 𝑢𝑙 ≪ 1 while the solid velocity 𝑢𝑠 is comparable to velocities at the top of the liquid 
core inferred from geomagnetic secular variation. Our results suggest that stable stratification in the F-layer arises 
from compositional variations maintained by outward barodiffusion and flux of light element that balance the 
inward flux of solid.

1. Introduction

The F-layer is a 150-400 km- thick region at the base of Earth’s liq-

uid outer core that is characterised by a decrease in compressional wave 
velocity gradient compared to the Preliminary Reference Earth Model 
(PREM) (Dziewonski and Anderson, 1981; Souriau and Poupinet, 1991; 
Ohtaki and Kaneshima, 2015; Adam et al., 2018). The anomalous ve-

locity is usually attributed to an increase in density (e.g. Gubbins et al., 
2008), and since the PREM density follows an approximately adiabatic 
and chemically well-mixed profile the velocity observations indicate 
that the F-layer is stably stratified. Elucidating the origin and dynam-

ics of the F-layer has important implications for the geodynamo, which 
is thought to be powered (at present) by the release of latent heat and 
light elements at the inner core boundary (ICB) (e.g. Nimmo, 2015). 
Since both of these buoyancy sources are destabilising, the key issue is 
to establish how the heat and light material can pass through the F-layer 
without mixing away the stable stratification.

* Corresponding author.
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Various mechanisms have been proposed to explain the existence of 
the F-layer. Melting the solid core, driven either by a translational mode 
of inner core convection (Alboussiere et al., 2010) or by lateral vari-

ations in outer core convection originating from heterogeneous lower 
mantle heat flow (Gubbins et al., 2011), may produce a dense layer of 
iron-rich fluid surrounding the ICB though the thickness and seismic 
properties of such a layer are unclear. Moreover, mineralogical and dy-

namical studies suggest that conditions in the inner core are currently 
stable to thermal (Davies et al., 2015), compositional (Labrosse, 2014), 
and double-diffusive (Deguen et al., 2018) convection, while some sim-

ulations of rapidly rotating core convection suggest that mantle heat 
flow anomalies do not penetrate to the ICB (Davies and Mound, 2019). 
Other possibilities have invoked the presence of a solid phase. A pure 
iron slurry F-layer comprising a “snow” of iron particles predicts a low 
solid fraction (Zhang et al., 2019; Wilczyński et al., 2023) that does not 
match seismic observations (Gubbins et al., 2008). High solid fractions 
produce a mushy zone, a coherent solid matrix with residual fluid situ-

ated in pore spaces, though such a region would need to be configured 
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so as to not produce top-side reflections, impedance contrasts, or shear 
waves that would otherwise be detected by seismology. Moreover, a 
thick mush is expected to collapse under its own weight (Deguen et al., 
2007), resulting in an 𝑂(1) km-thick layer that is too thin to match the 
F-layer observations.

The model presented in this paper assumes that chemical variations 
are critical to explaining the anomalous F-layer. Gubbins et al. (2008) 
argued that the F-layer is a thermo-chemical boundary layer constrained 
to the liquidus temperature with a light element concentration that in-

creases with height above the ICB; however, their model did not explain 
the origin of the imposed compositional variation. Wong et al. (2018) 
and Wong et al. (2021) resolved this issue using a two-phase thermo-

chemical model in which the outward transport of light element was 
facilitated by the falling of iron snow particles under gravity through-

out the F-layer. Their model assumes phase equilibrium, i.e. that melting 
and freezing of solid is instantaneous, and assumes a snow of pure iron 
particles, which is consistent with a core composition in which oxygen 
(Alfè et al., 2002) or carbon (Li et al., 2019) is the primary element 
responsible for the observed density difference Δ𝜌 between solid and 
liquid cores. Wong et al. (2021) found stably stratified solutions that 
matched the observed F-layer thickness and Δ𝜌, and were compatible 
with estimates of the total CMB heat flux and inner core age (the in-

ner core forming both from direct freezing at the ICB and falling snow). 
However, their model focused on the thermodynamics of the layer and 
assumed relatively simple fluid dynamics: a quiescent liquid phase and 
solid particles falling at the Stokes velocity.

The present work builds on our recent self-consistent fluid dynamical 
model of a two-phase pure slurry F-layer (Wilczyński et al., 2023, here-

after WDJ). The model, described in greater detail below, assumes phase 
equilibrium and considers the non-rotating and non-magnetic flow of 
compressible solid and liquid phases represented as interpenetrating 
continua. WDJ considered 1D time-independent solutions representing 
motion along the vertical direction, which enabled a broad sampling 
of the parameter space and detailed comparison to theoretical predic-

tions and so we follow this approach here. Physically, we might expect 
that radial variations will dominate the signals obtained by seismology 
because the inferred density anomalies are many orders of magnitude 
larger than the thermo-chemical anomalies that drive core convection 
(Stevenson, 1987). These simple solutions serve as a natural starting 
point from which to build more detailed dynamical models of the F-

layer.

This paper presents two extensions to the model of WDJ that make it 
more representative of Earth’s F-layer. First, we generalise the boundary 
condition at the base of the model to account for a growing inner core. 
Second we add a light element to the pure iron system. Following Wong 
et al. (2021) we consider a binary alloy where the light element resides 
entirely in the liquid phase. As explained above, at least one element 
with this partitioning behaviour is required to explain the density con-

trast between inner and outer cores and so we regard this as an essential 
component of the model. This assumption neglects the small amount of 
light element that should enter the solid in order to explain the inner 
core density (Jephcoat and Olson, 1987); however, given the theoreti-

cal challenge of tracking the evolution of chemical composition in the 
solid we view this as a reasonable compromise. While acknowledging 
the recent body of work documenting the challenge of homogeneously 
nucleating solid near Earth’s centre (e.g. Huguet et al., 2018; Wilson 
et al., 2023) we retain the assumption that the layer is in phase equi-

librium (and hence remains on the liquidus) because lifting it would 
significantly increase the mathematical complexity of the problem and 
introduce a number of poorly determined input parameters.

The aim of this study is to present the general behaviour of the 1D 
steady solutions to the equations governing a two-phase two-component 
slurry in phase equilibrium. Given that key diagnostics of the F-layer 
(e.g. its solid fraction and phase velocities) are not currently observable, 
we take a general approach, treating the solid and liquid phases symmet-

rically in the governing equations (Bercovici et al., 2001) and varying 

the material properties of the slurry over broad ranges. The emergence 
of a thin lower boundary layer means that solution behaviour must be 
extrapolated to the physical conditions of Earth’s core. Solutions to the 
symmetric equations together with extrapolation allow us to suggest 
reasonable simplifications to the fully symmetric slurry equations.

This paper is organised as follows. Section 2 presents the governing 
dimensionless equations along with the necessary boundary conditions 
for the steady state 1D solutions. In section 3 we present and discuss 
solutions. Section 4 contains summary and conclusions.

2. Mathematical formulation

2.1. Governing equations

Our modelling approach is based on the continuum theory of two-

phase mixtures (see e.g. Drew, 1983; Roberts and Loper, 1987; Keller 
and Suckale, 2019; Wilczyński et al., 2023). The derivation of the con-

tinuum equations governing two-phase flow is lengthy and the method-

ology has been expounded in the aforementioned works, to which 
the reader is referred for more information. For completeness we pro-

vide in the Supplementary Material a derivation of the two-phase two-

component equations used in this study. Here we simply state the key 
results and approximations.

We model the F-layer as a two-phase continuum mixture composed 
of two phases: solid denoted by superscript 𝑠, and liquid denoted by 
superscript 𝑙. Each of the two phases is a continuum thermodynamic 
system, and the two thermodynamic continua are interpenetrating, and 
interact with each other via mass, momentum and energy exchanges. 
The relative amount of each phase at any point is measured by vol-

ume fraction 𝜙𝜀, where 𝜀 ∈ {𝑠, 𝑙}. At each point in the continuum the 
phases are characterised by their system-scale velocity 𝒖𝜀, pressure 𝑝, 
temperature 𝑇 etc. We assume that the solid phase is pure while the liq-

uid phase is composed of two chemical constituents (heavy and light -
iron and oxygen) with 𝜉𝑙 denoting the mass fraction of light chemical 
constituent in the liquid phase. We assume that the two phases are in 
phase equilibrium in that they share the same temperature, pressure, 
and Gibbs free energy and hence the system is on the liquidus.

Throughout this paper we consider one-dimensional dynamics that 
depend on the vertical 𝑧-coordinate only, i.e. 𝒖𝜀 =

(
0, 0, 𝑢𝜀

𝑧
(𝑧, 𝑡)

)
. The 

gravity vector points in the negative 𝑧-direction. With the above as-

sumptions the system of one-dimensional, time-dependent governing 
equations can be written

𝜕(𝜙𝑠𝜌𝑠)
𝜕𝑡 

+ 𝜕

𝜕𝑧

(
𝜙𝑠𝜌𝑠𝑢𝑠

𝑧

)
= Γ𝑠

𝜌
, (2.1a)

𝜕(𝜙𝑙𝜌𝑙)
𝜕𝑡 

+ 𝜕

𝜕𝑧

(
𝜙𝑙𝜌𝑙𝑢𝑙

𝑧

)
= −Γ𝑠

𝜌
, (2.1b)

𝜕(𝜙𝑙𝜌𝑙𝜉𝑙)
𝜕𝑡 

+ 𝜕

𝜕𝑧

(
𝜙𝑙𝜌𝑙𝜉𝑙𝑢𝑙

𝑧
+ 𝐽 𝑙

𝜉

)
= 0, (2.1c)

𝑐𝑝�̄�

(
𝜕𝑇

𝜕𝑡 
+ �̄�𝑧

𝜕𝑇

𝜕𝑧 

)
− �̄�𝑇

(
𝜕𝑝

𝜕𝑡 
+ �̄�𝑧

𝜕𝑝 
𝜕𝑧

)
−𝐿Γ𝑠

𝜌
+ 𝐿 
𝑇

𝜙𝑠𝜌𝑠𝜙𝑙𝜌𝑙

�̄�
Δ𝑢𝑧

𝜕𝑇

𝜕𝑧 

= 𝜕

𝜕𝑧

(
�̄�
𝜕𝑇

𝜕𝑧 

)
+Ψ, (2.1d)

𝜙𝑠𝜌𝑠
(
𝜕𝑢𝑠

𝑧

𝜕𝑡 
+ 𝑢𝑠

𝑧

𝜕𝑢𝑠
𝑧

𝜕𝑧 

)
+ 1

2
Γ𝑠
𝜌
Δ𝑢𝑧

= −𝜙𝑠 𝜕𝑝 
𝜕𝑧

− 𝜙𝑠𝜌𝑠𝑔 − 𝑐𝐷
𝜙𝑠𝜌𝑠𝜙𝑙𝜌𝑙

�̄�
Δ𝑢𝑧 +

4
3
𝜂𝑠

𝜕

𝜕𝑧

(
𝜙𝑠

𝜕𝑢𝑠
𝑧

𝜕𝑧 

)
, (2.1e)

𝜙𝑙𝜌𝑙

(
𝜕𝑢𝑙

𝑧

𝜕𝑡 
+ 𝑢𝑙

𝑧

𝜕𝑢𝑙
𝑧

𝜕𝑧 

)
+ 1

2
Γ𝑠
𝜌
Δ𝑢𝑧

= −𝜙𝑙 𝜕𝑝 
𝜕𝑧

− 𝜙𝑙𝜌𝑙𝑔 + 𝑐𝐷
𝜙𝑠𝜌𝑠𝜙𝑙𝜌𝑙

�̄�
Δ𝑢𝑧 +

4
3
𝜂𝑙

𝜕

𝜕𝑧

(
𝜙𝑙

𝜕𝑢𝑙
𝑧

𝜕𝑧 

)
, (2.1f)(

1 
𝜌𝑙

− 1 
𝜌𝑠

−
𝛼𝑙
𝜉
𝜉𝑙

𝜌𝑙

)
d𝑃 = 𝐿 

𝑇
d𝑇 + 𝑇

𝑚𝑂

d𝜉𝑙, (2.1g)
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d𝜌𝑠 = 𝜌𝑠(𝛽𝑠d𝑃 − 𝛼𝑠d𝑇 ), (2.1h)

d𝜌𝑙 = 𝜌𝑙(𝛽𝑙d𝑃 − 𝛼𝑙d𝑇 − 𝛼𝑙
𝜉
d𝜉𝑙). (2.1i)

where

𝜙𝑙 = 1 − 𝜙𝑠, Δ𝑢𝑧 = 𝑢𝑠
𝑧
− 𝑢𝑙

𝑧
, �̄� = 𝜙𝑠𝜌𝑠 + 𝜙𝑙𝜌𝑙,

𝑐𝑝 =
(
𝜙𝑠𝑐𝑠

𝑝
𝜌𝑠 +𝜙𝑙𝑐𝑙

𝑝
𝜌𝑙
)
∕�̄�, �̄� = 𝜙𝑠𝛼𝑠 + 𝜙𝑙𝛼𝑙, �̄� = 𝜙𝑠𝑘𝑠 + 𝜙𝑙𝑘𝑙,

�̄�𝑧 =
(
𝜙𝑠𝜌𝑠𝑢𝑠

𝑧
+𝜙𝑙𝜌𝑙𝑢𝑙

𝑧

)
∕�̄�, 

𝐽 𝑙
𝜉
= −

𝜅𝑂𝑚𝑂𝜙
𝑙𝜌𝑙𝜉𝑙

𝑇

(
𝑇

𝑚𝑂𝜉
𝑙

𝜕𝜉𝑙

𝜕𝑧 
+
𝛼𝑙
𝜉

𝜌𝑙

𝜕𝑝 
𝜕𝑧

)
,

Ψ= 𝑐𝐷
𝜙𝑠𝜌𝑠𝜙𝑙𝜌𝑙

�̄�
(Δ𝑢𝑧)2 +

4
3
𝜂𝑠𝜙𝑠

(
𝜕𝑢𝑠

𝑧

𝜕𝑧 

)2

+ 4
3
𝜂𝑙𝜙𝑙

(
𝜕𝑢𝑙

𝑧

𝜕𝑧 

)2

+ 𝑇

𝜅𝑂𝑚𝑂𝜙
𝑙𝜌𝑙𝜉𝑙

|||𝐽 𝑙
𝜉

|||2 . (2.2)

The above system (2.1) comprises 9 equations for 9 variables: 𝜙𝑠 , 𝑢𝑠
𝑧
, 

𝑢𝑙
𝑧
, 𝑝, 𝑇 , Γ𝑠

𝜌
, 𝜌𝑠, 𝜌𝑙 , 𝜉𝑙 . Equations (2.1a) and (2.1b) describe conserva-

tion of mass of solid and liquid phases, where 𝜙𝑙 = 1 − 𝜙𝑠 is the liquid 
volume fraction and Γ𝑠

𝜌
is solid phase production rate. Equation (2.1c)

determines conservation of mass of the light element, where 𝐽 𝑙
𝜉

is the 
diffusive flux of light element. For further reference, a table of physical 
parameters and values is provided in Appendix A, Table A.1.

Equation (2.1d) is the heat equation for the mixture in which tem-

perature changes arise due to (from left to right) pressure heating, latent 
heat release (absorption) due to freezing (melting), transport of latent 
heat by phase separation (sometimes called the heat pipe term (Roberts 
and Loper, 1987)), thermal diffusion, and heating due to dissipative ef-

fects Ψ (viscous, frictional, and heat of reaction). Here, overbar indicates 
quantities, defined in (2.2), that pertain to the mixture as a whole: �̄� is 
the mixture density, �̄�𝑧 is the velocity of the mixture, 𝑐𝑝 is the heat capac-

ity of the mixture, �̄� is the thermal expansion coefficient of the mixture, 
�̄� is the thermal conductivity of the mixture (where 𝑐𝜀

𝑝
, 𝛼𝜀, 𝑘𝜀 are heat 

capacity, thermal expansion coefficient, thermal conductivity of phase 
𝜀). 𝐿 is the latent heat of fusion which we assume to be constant.

Equations (2.1e), (2.1f) describe conservation of momentum and re-

late inertia (left hand side) to the sum of forces: the pressure gradient 
force, gravitational force; the force due to momentum exchange between 
the phases (friction), where Δ𝑢𝑧 is the difference between the velocities 
of the two phases (2.2), 𝑐𝐷 = 𝜂𝑙∕(𝑘𝜙)𝜌𝑙𝑟 is a constant coefficient of inter-

phase friction with 𝑘𝜙 = 5×10−10 − 10−7 m2 the permeability constant; 
and the viscous force, where 𝜂𝜀 is dynamical viscosity of phase 𝜀.

Equation (2.1g) is the liquidus relation which follows from the as-

sumption that the system is in phase equilibrium. 𝛼𝑙
𝜉

is the compositional 
expansion coefficient of the liquid,  is the universal gas constant, and 
𝑚𝑂 is molar mass of oxygen.

Equations (2.1h), (2.1i) are equations of state that relate the specific 
density variations to variations of pressure, temperature and composi-

tion, where 𝛽𝜀 denotes the isothermal compressibility of phase 𝜀.

It is worth noting here that the formulation above differs from that 
of Wong et al. (2018, 2021) in several respects because they are derived 
from fundamentally different starting points: diffusive mixture theory 
in the case of Wong et al. (2018, 2021) and the ‘two fluid’ theory in 
the present study. Roberts and Loper (1987) have shown how the two-

fluid approach simplifies to the diffusive mixture treatment and indeed 
the governing equations (3)-(6) of Wong et al. (2021) can be recovered 
by omitting terms from the present theory. The differences lie in the 
assumptions that have been used. Wong et al. (2021) assume that the 
liquid velocity is negligibly small and neglect terms involving 𝑑𝜙𝑠∕𝑑𝑧, 
which allows to write an equation determining the evolution of the solid 
flux directly without knowledge of the solid fraction or solid velocity. 
The Stokes mobility model used by Wong et al. (2021) enables the solid 
fraction and solid velocity to be obtained from the calculated solid flux. 

However, the mobility model makes a number of assumptions that are 
unverifiable due to a lack of observations. Here the phase velocities and 
solid fraction are calculated directly from general conservation equa-

tions.

2.2. Boundary conditions

To complete the theory it is necessary to specify conditions on the 
bounding surfaces. In general the relevant conditions at both the top and 
bottom of the slurry are not known because they are not constrained by 
observations. There are a limited number of conditions that can be de-

duced from the governing equations, which need to be supplemented 
with additional assumptions and approximations based on physical in-

tuition or experimental insight where available.

We consider a slurry layer of fixed depth 𝑑 bounded between 𝑧 =
𝑧𝐼𝐶𝐵 and 𝑧 = 𝑧𝐼𝐶𝐵 + 𝑑, where 𝑧𝐼𝐶𝐵 indicates the position of the ICB. 
As the inner core freezes, latent heat and light material are released at 
the ICB and the position of the ICB advances upwards (over geological 
timescales). The ICB velocity 𝑈𝐼𝐶𝐵 is much smaller than flow speeds 
in the slurry or outer core and can therefore be considered constant 
when modelling the F-layer. Since 𝑈𝐼𝐶𝐵 is poorly known we treat it as 
a prescribed constant using values from models of Earth’s core evolution 
(on the order of a few millimeters per year, Davies et al., 2015; Nimmo, 
2015). In this case, we may perform a Galilean transformation to change 
to a frame of reference that moves with the ICB (Gubbins et al., 2008). 
Thus, the time-dependence of a moving boundary is removed and we 
can consider steady (time-independent) solutions.

In general, it is possible to obtain continuity conditions that must 
hold on a moving boundary by integrating the governing equations over 
a pill-box volume that straddles the boundary and moves together with 
it. Applying this procedure on the ICB provides conditions determining 
continuity of mass flux for each of the two phases, light element flux, 
and internal energy flux. We assume that the inner core is completely 
solid and motionless and that the mean ICB position is determined by 
direct freezing. A complete development of the boundary conditions in 
the moving frame using these assumptions is given in the Supplementary 
Material. In the reference frame moving with 𝑈𝐼𝐶𝐵 , the conditions can 
be written

𝜌𝑠 = 𝜌𝑠
𝑟
, 𝜌𝑙 = 𝜌𝑙

𝑟
on 𝑧 = 0, (2.3a)

𝑢𝑠
𝑧
= 0, 𝜙𝑙𝜌𝑙𝑢𝑙

𝑧
= −𝜌𝑠𝑈𝐼𝐶𝐵 on 𝑧 = 0, (2.3b)

𝜌𝑙𝜙𝑙𝜉𝑙𝑢𝑙
𝑧
+ 𝐽 𝑙

𝜉
= 𝜌𝑙𝜙𝑙𝜉𝑙𝑈𝐼𝐶𝐵 on 𝑧 = 0, (2.3c)

�̄�
d𝑇
d𝑧 

= −𝑞 on 𝑧 = 0. (2.3d)

Equations (2.3b) state that the ICB is an impermeable boundary with 
𝑢𝑠
𝑧
= 0 and liquid is consumed by the direct freezing of the inner core 

at a rate proportional to the ICB speed 𝑈𝐼𝐶𝐵 . Equation (2.3c) states 
that the total flux of light element (advective and diffusive) at the ICB 
must balance the release of light elements due to direct freezing. Equa-

tion (2.3d) states that the heat flux into the slurry at the ICB is equal 
to the total heat flux 𝑞 coming out of the inner core, which comprises 
of latent heat release associated with inner core freezing (proportional 
to 𝑈𝐼𝐶𝐵), conductive heat flux, and a contribution due to the release of 
light elements associated with inner core freezing.

The top boundary represents the interface between the F-layer slurry 
and the rest of the outer core. Since the liquid core is vigorously con-

vecting, its composition and temperature do not change much over the 
timescales considered (Davies, 2015) and we may impose fixed oxygen 
concentration and fixed temperature at the top of the F-layer (Wong et 
al., 2021)

𝜉𝑙 = 𝜉𝑐𝑜𝑟𝑒, and 𝑇 = 𝑇𝑟 on 𝑧 = 𝑑, (2.4)

where 𝜉𝑐𝑜𝑟𝑒 and 𝑇𝑟 are, respectively, the reference light element con-

centration and the reference temperature of the bulk core. We further 
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assume that the top boundary is a stress-free surface where the normal 
stresses are set to zero (Wilczyński et al., 2023):

d𝑢𝑠
𝑧

d𝑧 
=

d𝑢𝑙
𝑧

d𝑧 
= 0 on 𝑧 = 𝑑. (2.5)

2.3. Nondimensionalisation

We study time-independent solutions of the governing equations 
(2.1). To nondimensionalise the equations the units of density (liquid 
and solid) and temperature are fixed to their boundary values 𝜌𝑙

𝑟
, 𝜌𝑠

𝑟

and 𝑇𝑟, respectively. We scale length with the depth of the layer 𝑑, ve-

locity with the gravitational free-fall velocity 
√
𝑔𝑑, pressure with 𝜌𝑙

𝑟
𝑔𝑑, 

and the mass production term Γ𝑠
𝜌

with 𝜌𝑙
𝑟

√
𝑔∕𝑑. Volume fractions 𝜙𝜀

and mass concentration 𝜉𝑙 are dimensionless and bounded between 0 
and 1, and thus do not require any scaling. Applying these scalings to 
the governing equations yields the following set of dimensionless equa-

tions

𝜆𝜌
d 
d𝑧

(
𝜙𝑠𝜌𝑠𝑢𝑠

𝑧

)
= Γ𝑠

𝜌
, (2.6a)

d 
d𝑧

(
𝜙𝑙𝜌𝑙𝑢𝑙

𝑧

)
= −Γ𝑠

𝜌
, (2.6b)

d 
d𝑧

(
𝜙𝑙𝜌𝑙𝜉𝑙𝑢𝑙

𝑧
+ 𝐽 𝑙

𝜉

)
= 0, (2.6c)(

𝑐𝑝�̄�
d𝑇
d𝑧 

− 𝛼∗𝐷�̄�𝑇
d𝑝 
d𝑧

)
�̄�𝑧 −

Γ𝑠
𝜌

𝑆𝑡
+
𝜆𝜌

𝑆𝑡

𝜙𝑠𝜌𝑠𝜙𝑙𝜌𝑙

�̄�
Δ𝑢𝑧

1 
𝑇

d𝑇
d𝑧 

= 1 
𝐵𝑃𝑟

d 
d𝑧

(
�̄�
d𝑇
d𝑧 

)
+Ψ, (2.6d)

𝜆𝜌𝜙
𝑠𝜌𝑠𝑢𝑠

𝑧

d𝑢𝑠
𝑧

d𝑧 
+ 1

2
Γ𝑠
𝜌
Δ𝑢𝑧

= −𝜙𝑠 d𝑝 
d𝑧

− 𝜆𝜌𝜙
𝑠𝜌𝑠 −𝐾

𝜙𝑠𝜌𝑠𝜙𝑙𝜌𝑙

�̄�
Δ𝑢𝑧 +

4
3
𝜆𝜂

𝐵

d 
d𝑧

(
𝜙𝑠

d𝑢𝑠
𝑧

d𝑧 

)
, (2.6e)

𝜙𝑙𝜌𝑙𝑢𝑙
𝑧

d𝑢𝑙
𝑧

d𝑧 
+ 1

2
Γ𝑠
𝜌
Δ𝑢𝑧

= −𝜙𝑙 d𝑝 
d𝑧

− 𝜙𝑙𝜌𝑙 +𝐾
𝜙𝑠𝜌𝑠𝜙𝑙𝜌𝑙

�̄�
Δ𝑢𝑧 +

4
3
1 
𝐵

d 
d𝑧

(
𝜙𝑙

d𝑢𝑙
𝑧

d𝑧 

)
, (2.6f)(

1 
𝜆𝜌𝜌

𝑠
− 1 
𝜌𝑙

+
𝛼𝑙
𝜉
𝜉𝑙

𝜌𝑙

)
d𝑝 
d𝑧

+ 1 
𝑆𝑡 𝐷

1 
𝑇

d𝑇
d𝑧 

+ 1 
𝐷𝜒

𝑇
d𝜉𝑙

d𝑧 
= 0, (2.6g)

d𝜌𝑠

d𝑧 
= 𝜌𝑠

(
𝜆𝛽𝛽

∗ d𝑝 
d𝑧

− 𝜆𝛼𝛼
∗ d𝑇
d𝑧 

)
, (2.6h)

d𝜌𝑙

d𝑧 
= 𝜌𝑙

(
𝛽∗

d𝑝 
d𝑧

− 𝛼∗
d𝑇
d𝑧 

− 𝛼𝑙
𝜉

d𝜉𝑙

d𝑧 

)
. (2.6i)

where

𝜙𝑙 = 1 − 𝜙𝑠, Δ𝑢𝑧 = 𝑢𝑠
𝑧
− 𝑢𝑙

𝑧
, �̄� = 𝜆𝜌𝜙

𝑠𝜌𝑠 + 𝜙𝑙𝜌𝑙,

𝑐𝑝 =
(
𝜆𝑐𝑝𝜆𝜌𝜙

𝑠𝜌𝑠 + 𝜙𝑙𝜌𝑙
)
∕�̄�, �̄� = 𝜆𝛼𝜙

𝑠 + 𝜙𝑙, �̄� = 𝜆𝑘𝜙
𝑠 + 𝜙𝑙,

�̄�𝑧 =
(
𝜆𝜌𝜙

𝑠𝜌𝑠𝑢𝑠
𝑧
+ 𝜙𝑙𝜌𝑙𝑢𝑙

𝑧

)
∕�̄�, 

𝐽 𝑙
𝜉
= −

𝜏𝜒

𝐵𝑃𝑟

𝜙𝑙𝜌𝑙𝜉𝑙

𝑇

(
1 
𝜒

𝑇

𝜉𝑙

d𝜉𝑙

d𝑧 
+ 𝛼𝑙

𝜉
𝐷

1 
𝜌𝑙

d𝑝 
d𝑧

)
, (2.7)

Ψ=𝐷𝐾
𝜙𝑠𝜌𝑠𝜙𝑙𝜌𝑙

�̄�
(Δ𝑢𝑧)2 +

4𝐷
3𝐵

⎧⎪⎨⎪⎩𝜆𝜂𝜙
𝑠

(d𝑢𝑠
𝑧

d𝑧 

)2
+ 𝜙𝑙

(
d𝑢𝑙

𝑧

d𝑧 

)2⎫⎪⎬⎪⎭
+ 𝐵𝑃𝑟

𝜏𝜒

𝑇

𝜙𝑙𝜌𝑙𝜉𝑙
|||𝐽 𝑙

𝜉

|||2 .
Boundary conditions (2.3)–(2.5), in dimensionless form, read:

𝜌𝑠 = 1, 𝜌𝑙 = 1 on 𝑧 = 0, (2.8a)

𝑢𝑠
𝑧
= 0, 𝜙𝑙𝑢𝑙

𝑧
= −𝜆𝜌 on 𝑧 = 0, (2.8b)

𝜙𝑙𝜌𝑙𝜉𝑙𝑢𝑙
𝑧
+ 𝐽 𝑙

𝜉
= 𝜙𝑙𝜌𝑙𝜉𝑙 on 𝑧 = 0, (2.8c)

d𝑇
d𝑧 

= −𝜃 on 𝑧 = 0, (2.8d)

𝑇 = 1, 𝜉𝑙 = 𝜉𝑐𝑜𝑟𝑒, 
d𝑢𝑠

𝑧

d𝑧 
=

d𝑢𝑙
𝑧

d𝑧 
= 0 on 𝑧 = 1. (2.9)

The dimensionless numbers are

𝐵 =

√√√√𝜌𝑙
𝑟

2
𝑔𝑑3

𝜂𝑙
2 , 𝑃𝑟 =

𝑐𝑙
𝑝
𝜂𝑙

𝑘𝑙
, 𝐷 = 𝑔𝑑

𝑐𝑙
𝑝
𝑇𝑟
, 

𝑆𝑡 =
𝑐𝑙
𝑝
𝑇𝑟

𝐿 
, 𝐾 =

𝑐𝐷𝜌
𝑠
𝑟

𝜌𝑙
𝑟

√
𝑔∕𝑑

,

 =
𝑈𝐼𝐶𝐵√
𝑔𝑑

, 𝜏 =
𝜌𝑙
𝑟
𝑐𝑙
𝑝
𝜅𝑂

𝑘𝑙
, 𝜒 =

𝑐𝑙
𝑝
𝑚𝑂

 
, 𝜃 = 𝑞𝑑

𝑘𝑙𝑇𝑟
, 

𝛼∗ = 𝛼𝑙𝑇𝑟, 𝛽∗ = 𝛽𝑙𝜌𝑙
𝑟
𝑔𝑑,

𝜆𝛼 =
𝛼𝑠

𝛼𝑙
, 𝜆𝛽 =

𝛽𝑠

𝛽𝑙
, 𝜆𝑐𝑝 =

𝑐𝑠
𝑝

𝑐𝑙
𝑝

, 𝜆𝜌 =
𝜌𝑠
𝑟

𝜌𝑙
𝑟

, 

𝜆𝑘 =
𝑘𝑠

𝑘𝑙
, 𝜆𝜂 =

𝜂𝑠

𝜂𝑙
. (2.10)

Parameter 𝐵 quantifies the strength of the gravitational force as mea-

sured against viscous forces (based on the properties of the liquid phase); 
the Prandtl number 𝑃𝑟 is the ratio of viscosity to thermal diffusivity; the 
dissipation number 𝐷 measures the influence of compressibility/strat-

ification; the Stefan number 𝑆𝑡 measures the ratio between sensible 
and latent heat; 𝐾 describes the effects of interphase drag/friction; 𝜃
is the dimensionless heat flux at the bottom boundary; 𝛼∗ and 𝛽∗ are 
nondimensionalised coefficients of thermal expansion and isothermal 
compression respectively; parameters 

{
𝜆𝛼, 𝜆𝛽 , 𝜆𝑐𝑝 , 𝜆𝜌, 𝜆𝑘, 𝜆𝜂

}
measure 

ratios of physical properties between solid and liquid phases.

Table 1 provides estimates of dimensionless parameters relevant for 
Earth’s core (based on estimates of the dimensional parameters included 
in Table A.1). A detailed discussion of geophysically relevant ranges 
for many of the parameters is given in Wong et al. (2021) (see also 
Wilczyński et al., 2023). In total, there are 17 dimensionless parameters 
(2.10) plus 𝛼𝑙

𝜉
and 𝜉𝑐𝑜𝑟𝑒 and so it is necessary to fix some of the values in 

order to focus on the effect of quantities that are most uncertain and/or 
computationally inaccessible. Thankfully many of the quantities are rea-

sonably well known (at least to within an order of magnitude) and are 
computationally accessible — these are stated in the upper portion of 
Table 1.

The parameters we vary are in the lower portion of Table 1. The ICB 
heat flux 𝜃 is dominated by the latent heat from direct freezing which is 
estimated to be 4 − 6 TW according to thermal evolution models (Gub-

bins et al., 2004; Davies, 2015), though lower estimates of 0.8–6 TW 
latent heat have also been proposed (Wu et al., 2024), which gives a 
range of 𝜃 ∼ 0.01 – 0.1. These values are computationally achievable 
and we vary 𝜃 within these limits. The value of 𝜉𝑐𝑜𝑟𝑒 is uncertain be-

cause the nature and abundance of the light elements in the core are 
still uncertain. Here we consider 𝜉𝑐𝑜𝑟𝑒 to represent the mass fraction 
of oxygen since O partitions entirely into liquid iron on freezing (Alfè 
et al., 2002). Davies et al. (2015) find a bulk core O concentration of 
2.6− 5.6 wt% depending on the value of the ICB density jump. Here we 
systematically vary 𝜉𝑐𝑜𝑟𝑒 from zero to the upper end of these estimates. 
The values of 𝐾 , 𝐵 and 𝜆𝜂 were discussed in Wilczyński et al. (2023). 𝐾
can be varied within the estimated bounds while 𝐵 and 𝜆𝜂 are numer-

ically unreachable. We therefore study the nature of solutions as those 
parameter values are increased towards their geophysical values in hope 
of unveiling systematic behaviour.

The dimensionless ICB velocity  is minute. Nevertheless, it has im-

plications for the heat flux boundary condition because, even though 
the ICB speed is small, the amount of latent heat released is large com-

pared with heat flux due to conduction (it is thought that latent heat 
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Table 1
Estimates of dimensionless numbers at core conditions (based on Table A.1), and 
values used in this study.

Dimensionless parameters 
Symbol Definition Estimate This study 
𝛼∗ Thermal expansion coefficient 0.05 0.05 
𝛼𝑙
𝜉

Compositional expansion coefficient 1.1 1.1 
𝛽∗ Isothermal compression coefficient 0.003 0.005 
𝐷 Compressibility parameter 0.2 0.1 
𝑃𝑟 Prandtl number 0.1 0.1 
𝑆𝑡 Stefan number 4 4 
𝜏 Oxygen-heat diffusivity ratio (0.8 — 1.8) × 10−3 10−3
𝜆𝜌 Density ratio 1.02 1.1 
𝜆𝛼 Thermal expansion ratio 0.49 — 0.94 1 
𝜆𝛽 Isothermal compression ratio 1.05 1 
𝜆𝑐𝑝 Specific heat capacity ratio 1.05 1 
𝜆𝑘 Thermal conductivity ratio 2.67 — 6.6 1 
𝜒 (𝑐𝑙

𝑝
𝑚𝑂∕) 1.38 1.38 

𝜃 Temperature gradient at 𝑧 = 0 0.01 — 0.1 0.04 — 0.05 
𝜉𝑐𝑜𝑟𝑒 Oxygen concentration in Earth’s core 0.01 — 0.05 0 — 0.05
𝐵 Buoyancy number 1014 10 — 104
𝐾 Interphase friction parameter 103 — 3 × 105 102 — 104
𝜆𝜂 Dynamic viscosity ratio 1013 — 1024 102 — 1010
 Dimensionless speed of ICB 10−14 0 — 10−6

is the dominant contribution to the heat flux at the ICB (Wong et al., 
2021)). On the other hand,  is much smaller than the expected typi-

cal phase velocities 𝑢𝜀
𝑧
, which are on the order (𝜆𝜌−1)∕𝐾 (Wilczyński et 

al., 2023). Thus,  ≪ 1 is not expected to have significant effect on the 
bulk properties of the solutions. Furthermore, since  ≪ 1, the associ-

ated sink of liquid mass in (2.8b) and source of light element in (2.8c)

are correspondingly small. We thus posit that  ≪ 1 constitutes only a 
slight perturbation on the  = 0 solutions. From now on we fix  = 0
which simplifies boundary conditions on liquid phase (2.8b) and light 
element flux (2.8c) to

𝑢𝑠
𝑧
= 𝑢𝑙

𝑧
= 0 on 𝑧 = 0, (2.11)

𝜙𝑙𝜌𝑙𝜉𝑙𝑢𝑙
𝑧
+ 𝐽 𝑙

𝜉
= 0 on 𝑧 = 0. (2.12)

Note these conditions imply 𝜙𝑙 is free to vary on 𝑧 = 0. We will return 
to evaluate the effects and limitations of this assumption is section 3.4

by solving the full  ≠ 0 problem.

2.4. Physical interpretation of the 1D equations

In a case of a single-phase fluid, the reference state is usually triv-

ial: the fluid layer is motionless, with pressure given by the hydrostatic 
balance and temperature (and heat flux) determined by thermal conduc-

tion. In the case of a two-phase liquid-solid slurry, the situation is more 
complex as the two-phases move relative to one another and other forces 
(particularly due to solid viscosity) perturb the hydrostatic balance. Fur-

thermore, the liquidus relation requires that the temperature follows the 
melting point of the alloy rather than a conduction solution. The heat 
equation then no longer serves to define the temperature, but instead 
defines the rate of phase change Γ𝑠

𝜌
. The latent heat of phase change 

provides a new mode of heat transport, while the rate of phase change 
influences the phase mass flux through mass conservation. Therefore, in 
a two-phase two-component slurry, even the time-independent 1D state 
is a complicated nonlinear problem. The characteristics of a pure slurry 
have been described in Wilczyński et al. (2023) where mathematical de-

tails can be found. Here we declare some of the key ideas and consider 
what new constraints arise from the presence of a light impurity in the 
liquid phase.

In general the governing equations do not admit a static solution 
unless the two phases have equal density; the steady state flow velocities 
have to be non-zero (𝑢𝑠

𝑧
≠ 0, 𝑢𝑙

𝑧
≠ 0). On the other hand, the total mass 

conservation law obtained by summing equations (2.6a) and (2.6b) can 

be readily integrated subject to the impenetrable boundary condition 
(2.11) to give

𝜌𝑢𝑧 ≡ 𝜆𝜌𝜙
𝑠𝜌𝑠𝑢𝑠

𝑧
+ 𝜙𝑙𝜌𝑙𝑢𝑙

𝑧
= 0, (2.13)

and hence the mean vertical velocity of the mixture �̄�𝑧 = 0. Since 𝜙𝜀 and 
𝜌𝜀 are positive definite, this implies that the velocities of solid and liquid 
phases are of opposite sign. Physically, we expect solutions where dense 
(solid) phase falls (𝑢𝑠

𝑧
< 0) and the light (liquid) phase rises (𝑢𝑙

𝑧
> 0).

To maintain a steady state distribution of solid volume fraction 
throughout the 1D layer the downward flux of solid must be balanced 
by melting. The integral of the solid mass conservation equation (2.6a)

states that the total melting (freezing) within the layer must balance 
with the solid mass flux 𝜆𝜌𝜙𝑠𝜌𝑠𝑢𝑠

𝑧
entering (leaving) the layer at the top 

boundary, 𝑧 = 1. (Note that the solid flux on 𝑧 = 1 is not imposed, but 
is determined as part of the solution). For downward solid flux (𝑢𝑠

𝑧
< 0), 

the integral of Γ𝑠
𝜌

is negative; latent heat is consumed for melting and 
reduces the amount of heat conducted out of the layer at 𝑧 = 1. Natu-

rally, total mass conservation means that a downward solid flux must 
be balanced by an upward liquid mass flux for all 𝑧.

Equation (2.6c) dictates that the advective flux of light element is 
balanced by the diffusive flux. The diffusive flux is comprised of bar-

odiffusion, the tendency of light elements to migrate down a pressure 
gradient, and chemical diffusion down the concentration gradient. Re-

sults from previous thermo-chemical models of the F-layer, which are 
confirmed by detailed calculations in section 3 below, suggest that sta-

bilising density distributions require a stabilising distribution of light 
element i.e., increasing with height d𝜉𝑙∕d𝑧 > 0 (Gubbins et al., 2008; 
Wong et al., 2021), and so chemical diffusion is expected to transport 
light elements downwards. On the other hand, the pressure increases 
downwards (d𝑝∕d𝑧 < 0) and thus barodiffusion will act to transport the 
light elements upwards (Gubbins and Davies, 2013).

Equation (2.6c) readily integrates, subject to boundary condition 
(2.12) to give

𝜌𝑙𝜙𝑙

(
𝜉𝑙𝑢𝑙

𝑧
− 𝜏

𝐵 𝑃 𝑟

(
d𝜉𝑙

d𝑧 
+ 𝛼𝑙

𝜉
𝜒𝐷

1 
𝜌𝑙

𝜉𝑙

𝑇

d𝑝 
d𝑧

))
= 0. (2.14)

Equation (2.14) is a first order ODE with a much simpler form than 
(2.6c), and is the equation we use in numerical calculations. Equation 
(2.14) necessitates that, if the advective flux is upward (𝜉𝑙𝑢𝑙

𝑧
> 0) and 

the pressure is increasing with depth (d𝑝∕d𝑧 < 0), the gradient of light 
element concentration must be positive d𝜉𝑙∕d𝑧 > 0 — light element con-

centration must be increasing with height.
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Fig. 1. Profiles of (a) concentration 𝜉𝑙 ; (b) solid volume fraction 𝜙𝑠; (c) solid phase velocity 𝑢𝑠
𝑧
; (d) liquid phase velocity 𝑢𝑙

𝑧
; (e) solid mass production Γ𝑠

𝜌
; (f) 

temperature gradient in excess of the conductive gradient: d�̂�∕d𝑧 = d𝑇 ∕d𝑧+ 𝜃; (g) total density �̄�; (h) light element flux 𝐽 𝑙
𝜉

for increasing values of the core oxygen 
concentration 𝜉𝑐𝑜𝑟𝑒; other parameters are fixed at 𝐵 = 3 × 103, 𝐾 = 103 , 𝜆𝜂 = 104. Note that 𝜙𝑠 , 𝑢𝑙

𝑧
and d�̂� ∕d𝑧 are plotted on logarithmic axis.

In our previous paper (Wilczyński et al., 2023) we were able to char-

acterise the nature of pure slurry solutions and establish scaling laws 
for the variation of solid fraction, solid phase velocity and liquid phase 
velocity over the range of parameters relevant to the slurry F-layer. 
Considering, separately, the variation in the nature of the solutions as 
𝐵→∞, or 𝜆𝜂 →∞, revealed two distinct regimes of limiting behaviour. 
In the limit of 𝐵→∞ the solutions are characterised by small values of 
solid fraction and liquid phase velocity 𝜙𝑠 ∼ 𝑢𝑙

𝑧
∼ 𝐵−1, while the solid 

phase velocity tends to the Darcy-Stokes velocity 𝑢𝑠
𝑧
∼ −(𝜆𝜌 − 1)∕𝐾 (or 

𝑢𝑠
𝑧
∼ 𝑘𝜙(𝜌𝑠 − 𝜌𝑙)𝑔∕(𝜆𝜌𝜂𝑙) in dimensional units). On the other hand, in 

the limit of 𝜆𝜂 →∞, the solutions are characterised by small values of 
liquid fraction and solid phase velocity 𝜙𝑙 ∼ 𝑢𝑠

𝑧
∼ 𝜆−1

𝜂
, while the liquid 

phase velocity tends to the Darcy-Stokes velocity 𝑢𝑙
𝑧
∼ (𝜆𝜌 − 1)∕𝐾 . We 

expect that these scalings will not be altered in the presence of compo-

sition since the momentum equations from which they were derived are 
not changed in the presence of composition and this is verified below.

3. Solutions and analysis

3.1. Effect of light element concentration 𝜉𝑐𝑜𝑟𝑒

Fig. 1 shows solution profiles at increasing values of the core light 
element concentration 𝜉𝑐𝑜𝑟𝑒 at fixed 𝐾 = 1000, 𝐵 = 3000, 𝜆𝜂 = 104. The 
general picture based on the physical interpretation of the 1D steady 
equations in section 2.4 is as follows. Solid material falls through the 
layer, 𝑢𝑠

𝑧
< 0 (Fig. 1c), and converges near the bottom boundary (𝜙𝑠 → 1

as 𝑧→ 0, Fig. 1b). The downward flux of solid mass is balanced by an 
upward flow of liquid, 𝑢𝑙

𝑧
> 0 (Fig. 1d), which in turn allows for an 

upward advective flux of light element, 𝜙𝑙𝜌𝑙𝜉𝑙𝑢𝑙
𝑧

(Fig. 1h). Downward 
flow of solid and its convergence near the ICB necessitates melting in 
the layer, Γ𝑠

𝜌
< 0 (Fig. 1e), which consumes latent heat and reduces the 

heat flux conducted through the layer.

As 𝜉𝑐𝑜𝑟𝑒 is increased, light element concentration increases through-

out the layer and we observe a dramatic decrease in both the liquid 
velocity 𝑢𝑙

𝑧
and solid volume fraction 𝜙𝑠 throughout the layer. On the 

other hand, the solid velocity 𝑢𝑠
𝑧

increases in magnitude. This behaviour 
can be explained as follows. Increasing 𝜉𝑐𝑜𝑟𝑒 decreases the density of the 
liquid phase and increases the density contrast between the solid and liq-

uid phases. Thus, the downward negative buoyancy of the solid phase is 
enhanced and 𝑢𝑠

𝑧
increases in magnitude. Since 𝜉𝑙 increases with height, 

the liquid phase density 𝜌𝑙 is more bottom-heavy (stably stratified) than 
in the absence of the light element (see Fig. 1g). With enhanced den-

sity stratification, 𝑢𝑙
𝑧

is reduced as there is a greater energetic penalty 
to lift dense liquid parcels upward into less dense surroundings. From 
mass conservation, a natural consequence of a concurrent decrease in 
𝑢𝑙
𝑧

and increase in −𝑢𝑠
𝑧

is a reduction of 𝜙𝑠.

As 𝜉𝑐𝑜𝑟𝑒 is increased there is less downward flux of solid and conse-

quently less melting, which in turn reduces the amount of latent heat 
consumed. We define a temperature perturbation �̂� away from the con-

duction profile as follows

�̂� = 𝑇 − 𝑇𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛, where 𝑇𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 1 + 𝜃(1 − 𝑧). (3.1)
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A positive gradient of the perturbation d�̂� ∕d𝑧 indicates a reduction in 
the upward heat flux on account of latent heat consumption. At large 
𝜉𝑐𝑜𝑟𝑒, 𝑇 ≈ 𝑇𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 and the temperature gradient thus tends to that 
imposed on the bottom boundary, 𝑑𝑇 ∕𝑑𝑧→ −𝜃 (see Fig. 1f).

Mass conservation requires that the upward flux of liquid phase 
𝜌𝑙𝜙𝑙𝑢𝑙

𝑧
decreases in concert with the downwards flux of solid. Despite 

that, we observe that the light element flux 𝜌𝑙𝜙𝑙𝜉𝑙𝑢𝑙
𝑧

increases and ap-

pears to approach a limiting state as 𝜉𝑐𝑜𝑟𝑒 is increased (see Fig. 1h). To 
understand this behaviour we must consider the nature of the diffusive 
flux 𝐽 𝑙

𝜉
, which is equal and opposite to the advective flux according to 

eqn. (2.14). Using the liquidus relation (2.6g), the expression for 𝐽 𝑙
𝜉

(2.8)

can be rewritten in terms of pressure and temperature only (eliminating 
the dependence on 𝜉𝑙):

𝐽 𝑙
𝜉
=

𝜏𝜒

𝐵𝑃𝑟

𝜙𝑙𝜌𝑙

𝑇

(
1 
𝑆𝑡

1 
𝑇

d𝑇
d𝑧 

+
(

1 
𝜆𝜌𝜌

𝑠
− 1 
𝜌𝑙

)
𝐷
d𝑝 
d𝑧

)
. (3.2)

Since increasing 𝜉𝑐𝑜𝑟𝑒 leads to a decrease in liquid phase velocity, iner-

tial and viscous terms in the liquid momentum equation (2.6f) become 
negligible. Furthermore, since 𝜙𝑠 also decreases with 𝜉𝑐𝑜𝑟𝑒, the friction 
term similarly diminishes and becomes negligible. Thus, the main bal-

ance in the liquid momentum equation is between the pressure gradient 
and the buoyancy, i.e. (for “large” 𝜉𝑐𝑜𝑟𝑒)

𝜙𝑙 d𝑝 
d𝑧

≈ −𝜙𝑙𝜌𝑙. (3.3)

Since both the temperature gradient and the pressure gradient tend to 
limiting states, so must the diffusive flux 𝐽 𝑙

𝜉
(3.2).

Fig. 2(a,b,c) show the variation of solid fraction, liquid phase ve-

locity at the top of the slurry layer (top values are representative of the 
bulk), and average solid phase velocity as a function of 𝜉𝑐𝑜𝑟𝑒 for different 
values of 𝜃, 𝐾 and 𝐵 (note that we define an average of any quantity 𝑓
as ⟨𝑓⟩ = ∫ 1

0 𝑓 d𝑧). The liquid phase velocity and solid fraction decrease 
with 𝜉𝑐𝑜𝑟𝑒 and exhibit 𝜙𝑠 ∼ 𝑢𝑙

𝑧
∼ 𝜉−1

𝑐𝑜𝑟𝑒
scaling for sufficiently large 𝜉𝑐𝑜𝑟𝑒. 

Solid phase velocity on average increases with 𝜉𝑐𝑜𝑟𝑒 and appears to tend 
to a limiting value.

The scaling of 𝑢𝑙
𝑧

with 𝜉𝑐𝑜𝑟𝑒 follows from the constraint placed on 
the liquid velocity by the conservation of light element concentration 
equation (2.14), which requires balance between advective and diffu-

sive fluxes of light element, 𝜙𝑙𝜌𝑙𝜉𝑙𝑢𝑙
𝑧
= −𝐽 𝑙

𝜉
. As described above, when 

𝜉𝑐𝑜𝑟𝑒 is increased the temperature and pressure gradients and the liquid 
fraction tend to limiting states, and therefore so does 𝐽 𝑙

𝜉
in eqn. (3.2). 

Thus, in the limit of “large” 𝜉𝑐𝑜𝑟𝑒, the average diffusive flux 𝐽 𝑙
𝜉

tends to 
a limiting value that is independent of 𝜉𝑐𝑜𝑟𝑒 (note that, in this case, the 
regime of “large” 𝜉𝑐𝑜𝑟𝑒 is accessed at values of 𝜉𝑐𝑜𝑟𝑒 that are smaller than 
the expected core light element concentration). Since 

⟨
𝐽 𝑙
𝜉

⟩
tends to a 

constant value as 𝜉𝑐𝑜𝑟𝑒 is increased, it follows that 𝜙𝑙𝜌𝑙𝜉𝑙𝑢𝑙
𝑧

must also 
tend to an equal and opposite limiting value. It therefore follows that 
the velocity of the liquid phase should scale as 𝑢𝑙

𝑧
∼ 𝜉−1

𝑐𝑜𝑟𝑒
.

Fig. 2(e) shows the density contrast between top and bottom of the 
slurry 𝑅𝜌 = �̄�(𝑧 = 1)∕�̄�(𝑧 = 0); increasing 𝜉𝑐𝑜𝑟𝑒 leads to a greater den-

sity contrast across the layer. The slurry model can produce a density 
contrast that is consistent with estimates of the density contrast in the 
F-layer, 𝑅𝜌 = 0.94 – 0.95 (Wong et al., 2021).

Fig. 2(f) shows the maximal value of the total density gradient as 
a function of 𝜉𝑐𝑜𝑟𝑒. For 𝜉𝑐𝑜𝑟𝑒 close to zero and sufficiently large 𝐾 and 
𝐵−1 there exist unstable solutions for which the density increases with 
height. Unstable solutions were also found in the pure slurry results of 
Wilczyński et al. (2023) for certain values of 𝐵, 𝐾 and 𝜆𝜂 . However, as 
described above, increasing 𝜉𝑐𝑜𝑟𝑒 makes the distribution of solid fraction 
and the liquid density more bottom heavy with lower 𝜙𝑠 at the top 
compared to the bottom. Similarly, at a fixed 𝜉𝑐𝑜𝑟𝑒 the total gradient can 
be stabilised by increasing 𝐵. Thus, for realistic values of 𝜉𝑐𝑜𝑟𝑒 and 𝐵
we expect the solutions relevant for the F-layer to have a stable density 
stratification.

3.2. Role of the ICB heat flux 𝜃

Fig. 3 shows solution profiles at increasing values of 𝜃 and fixed 
𝐾 = 100, 𝐵 = 3000, 𝜆𝜂 = 104. Broadly speaking, increasing 𝜃 increases 
𝑢𝑙 and 𝜙𝑠 and reduces |𝑢𝑠|. Increasing 𝜃 increases the pressure gradi-

ent force (through the liquidus) which acts in the direction opposite 
to gravity, making heavy phase fall slower, and light phase rise faster. 
Additionally, this increase in the pressure gradient force enhances the 
effects of barodiffusion and thus results in increases diffusive flux of 𝜉𝑙
(see Fig. 2d). As 𝜃 is increased, the velocity of the liquid phase increases 
substantially (particularly close to the bottom boundary), increasing liq-

uid advection and effectively expelling light element from the bottom 
portion of the domain. Between the increase of 𝑢𝑙 and decrease of |𝑢𝑠|, 
mass conservation requires that the solid volume fraction increases. No-

tably, increasing 𝜃 does not unsettle the stable stratification within the 
layer. Light element concentration increases with height and solid frac-

tion is decreasing with height (see Figs. 1a,b) and thus the stratification 
must be stable.

3.3. Towards a planetary slurry: 𝐵≫ 1, 𝜆𝜂 ≫ 1

The physical conditions of Earth’s core are characterised by values of 
𝐵 = 1014 and 𝜆𝜂 = 1013 – 1024 that are numerically unreachable. As ex-

plained in section 2.4 the slurry system exhibits distinct behaviour in the 
separate limits 𝐵→∞ and 𝜆𝜂 →∞, so it is important to establish which 
(if either) of these limits emerges as geophysically relevant conditions 
are approached. To this end we note that in the governing equations, 𝜆𝜂
always appears in conjunction with 𝐵, i.e. as 𝜆𝜂∕𝐵. This quantity is re-

lated to the inverse of the buoyancy number based on the properties of 
the solid phase, 𝐵𝑠 = 𝜌𝑠

𝑟

(
𝑔𝑑3

)1∕2 ∕𝜂𝑠, through 𝜆𝜂∕𝐵 = 𝜆𝜌∕𝐵𝑠. The ratio 
𝜆𝜂∕𝐵 takes values in the range between 0.1 – 1010 and is therefore par-

tially reachable numerically, so it is useful to consider the variation in 
solutions for increasingly large values of 𝐵 at fixed values of 𝜆𝜂∕𝐵 (as 
opposed to considering variation of 𝐵 at fixed 𝜆𝜂).

Fig. 4 shows the variation of the solution properties as a function of 
𝐵 for different values of 𝜉𝑐𝑜𝑟𝑒, and 𝜆𝜂∕𝐵, at fixed 𝜃 = 0.04 and 𝐾 = 103. 
With the exception of 𝐵, which is numerically unreachable, the pa-

rameter sweep presented in Fig. 4 uses geophysically plausible values 
of dimensionless parameters 𝜉𝑐𝑜𝑟𝑒, 𝜃, 𝜆𝜂∕𝐵 and 𝐾 . In Wilczyński et 
al. (2023) we have deduced that in the limit of large 𝐵, at fixed 𝜆𝜂 , 
the solid fraction scales like 𝜙𝑠 ∼ 𝐵−1 (note that the scalings obtained 
in Wilczyński et al. (2023) were given in terms of a parameter 𝑅, as 
𝜙𝑠 ∼ 𝑅−1∕2, which is related to 𝐵 via 𝐵 =

√
𝑅∕𝑃𝑟). However, there 

is no reason to expect the same scaling to be obeyed as 𝐵 and 𝜆𝜂 are 
increased concurrently (to maintain fixed 𝜆𝜂∕𝐵). Remarkably, Fig. 4a 
shows that for some values of 𝜆𝜂∕𝐵 this trend is observed — when 𝐵
is increased the bulk solid fraction decreases as 𝜙𝑠 ∼ 𝐵−1. Similarly, 
the average liquid phase velocity decreases at the rate inversely propor-

tional to 𝐵, i.e. 𝑢𝑙
𝑧
∼ 𝐵−1 (Fig. 4b). Consequently, both the downward 

solid flux and the upward light element flux decrease as 𝐵 is increased 
towards geophysical values (see Figs. 4d,e).

Vertical profiles at fixed 𝜆𝜂∕𝐵 = 103 show that solutions with in-

creasing 𝐵 tend to a state where the bulk of the layer has sparse solid 
fraction and small liquid velocity, while there is a thin boundary layer 
near the ICB where the solid fraction is substantial (Fig. 5). The re-

duction in 𝜙𝑠 together with the decrease in 𝑑𝑢𝑠
𝑧
∕𝑑𝑧 as 𝐵 increases 

shows that the total stress 𝜎 = 𝜙𝑙𝜎𝑙 + 𝜙𝑠𝜎𝑠 becomes dominated by the 
liquid contribution, as expected given the diminishing solid fraction. 
Since the solid fraction decreases with increasing 𝐵, so does the solid 
mass flux even though solid phase velocities tend to limiting values (see 
Fig. 4a,c,d). The light element flux is also small (Fig. 4e), though in this 
case the liquid fraction tends towards unity with increasing 𝐵 while the 
liquid phase velocity decreases. Nonetheless, this movement of phases 
is critical in maintaining stable density stratification while allowing for 
light element advection upwards. Thus, on the whole, the F-layer can 
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Fig. 2. Variation of (a) the solid volume fraction at top of the layer (𝑧= 1), (b) the liquid velocity (at 𝑧= 1), (c) the average solid velocity, (d) diffusive flux of light 
element concentration, (e) density contrast between top and bottom of the slurry layer 𝑅𝜌 = �̄�(𝑧 = 1)∕�̄�(𝑧 = 0), (f) maximum gradient of the total density (𝑑𝜌∕𝑑𝑧 > 0
- unstable stratification), with respect to 𝜉𝑐𝑜𝑟𝑒 (𝜆𝜂 = 104).

Fig. 3. Profiles of light element concentration 𝜉𝑙 , solid volume fraction 𝜙𝑠, solid phase velocity 𝑢𝑠
𝑧
, liquid phase velocity 𝑢𝑙

𝑧
, for increasing values of the ICB heat flux 

𝜃; other parameters are fixed at 𝐵 = 3000, 𝐾 = 100, 𝜆𝜂 = 104, 𝜉𝑐𝑜𝑟𝑒 = 10−3.
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Fig. 4. Variation of (a) solid volume fraction at the top of the slurry layer (𝑧 = 1); (b) average liquid phase velocity; (c) average solid phase velocity; (d) average 
solid flux; (e) average light element flux; (f) density ratio between the top and the bottom of the slurry layer, with respect to 𝐵 at fixed 𝜆𝜂∕𝐵. Other parameters 
fixed: 𝐾 = 1000, 𝜃 = 0.04.

be thought of as quiescent in comparison to the convective outer core 
(where the average mass flux is much greater).

The density ratio 𝑅𝜌 for solutions as a function of 𝐵 and different val-

ues of 𝜉𝑐𝑜𝑟𝑒, and 𝜆𝜂∕𝐵, at fixed 𝜃 = 0.04 and 𝐾 = 103 is shown in Fig. 4f. 
In general we have not identified a combination of dimensionless input 
quantities that delineate the transition from top-heavy (unstable den-

sity profile) to bottom-heavy (stable density profile) solutions. However, 
stable solutions are always obtained as 𝐵 is increased towards geophys-

ically relevant values, with the density ratio tending to a constant value 
at modest values of 𝐵. We therefore infer that density stratified solutions 
should be obtained at realistic values of the control parameters.

3.4. Effect of ICB speed,  ≠ 0

Up to this point we have considered solutions with  = 0 which 
allowed us to use simplified boundary conditions (2.11), (2.12). The 
rationale was that since the movement of the ICB is so slow,  ≪ 1, 
the associated amount of liquid phase consumed and the source of light 
element are correspondingly negligible. In this section we return to eval-

uate the consequences of this assumption by considering the solutions 
subject to the true boundary conditions on liquid phase (2.8b) and light 
element flux (2.8c).

With finite  ≪ 1, the physical picture presented in section 2.4

changes slightly. With boundary condition (2.8b), the total mass flux 
in the layer (2.13) is now

𝜌𝑢𝑧 ≡ 𝜆𝜌𝜙
𝑠𝜌𝑠𝑢𝑠

𝑧
+ 𝜙𝑙𝜌𝑙𝑢𝑙

𝑧
= −𝜆𝜌 . (3.4)

Thus, there is downward mass flux on average. Similarly, with boundary 
condition (2.8c), the light element flux equation (2.14) is now

𝜌𝑙𝜙𝑙

(
𝜉𝑙𝑢𝑙

𝑧
− 𝜏

𝐵 𝑃 𝑟

(
d𝜉𝑙

d𝑧 
+ 𝛼𝑙

𝜉
𝜒𝐷

1 
𝜌𝑙

𝜉𝑙

𝑇

d𝑝 
d𝑧

))
= 𝜌𝑙(0)𝜙𝑙(0)𝜉𝑙(0) . (3.5)

Thus, the total flux (advective and diffusive) of light element concentra-

tion is upwards at a constant rate equal to the light element released at 
the ICB — i.e. 𝜌𝑙(0)𝜙𝑙(0)𝜉𝑙(0) , where 𝜉𝑙(0) is the value of 𝜉𝑙 at 𝑧 = 0
(similarly for 𝜌𝑙 and 𝜙𝑙).
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Fig. 5. Profiles of phase change term Γ𝑠
𝜌
, solid volume fraction 𝜙𝑠, solid phase velocity 𝑢𝑠

𝑧
, liquid phase velocity 𝑢𝑙

𝑧
for increasing values of the buoyancy number 𝐵; 

other parameters are fixed at 𝜆𝜂∕𝐵 = 103 , 𝐾 = 103, 𝜉𝑐𝑜𝑟𝑒 = 0.01, 𝜃 = 0.04. Note that 𝜙𝑠 and 𝑢𝑙
𝑧

are plotted on logarithmic axis.

Fig. 6. Absolute difference between solutions with  ≠ 0 and that with  = 0 for increasing values of  . Panels show difference in (a) concentration 𝜉𝑙 ; (b) solid 
volume fraction 𝜙𝑠; (c) solid phase velocity 𝑢𝑠

𝑧
; (d) liquid phase velocity 𝑢𝑙

𝑧
. Here, 𝜃 = 0.04, 𝜉𝑐𝑜𝑟𝑒 = 0.01, 𝐵 = 103 , 𝐾 = 103 , 𝜆𝜂∕𝐵 = 103.

We define absolute (𝛿) and relative (𝛿∗) differences between any 
quantity 𝑓 pertaining to the “true” solution ( ≠ 0) and the “simplified” 
solution ( = 0), 𝑓0, as

𝛿𝑓 = 𝑓 − 𝑓0, 𝛿∗𝑓 = ||(𝑓 − 𝑓0)∕𝑓0|| . (3.6)

Fig. 6 shows absolute differences between the solution profiles of the 
two systems for increasing values of  . The difference between the two 
sets of solutions is very small, with the biggest contrast being localised 
predominantly to the thin region directly atop the ICB. Fig. 7 shows 
the relative differences between the average properties of the solutions 
with  ≠ 0 and that with  = 0 for increasing values of  . Clearly, 
the difference between the two sets of solutions is very small, at most 
0.01%, and appears to scale with  . Thus, even for values of  much 
larger than geophysical plausible, non-zero  has negligible effect on 
the mean properties of solutions.

Caution needs to be taken when extrapolating conclusions to the 
geophysical scenario, where 𝐵 ≫ 1. Recall that as 𝐵 → ∞, both solid 
fraction 𝜙𝑠 and liquid velocity 𝑢𝑙

𝑧
decrease as 𝐵−1, and by extension, 

so do the solid and liquid mass fluxes. Thus, for sufficiently large 𝐵

(𝐵 ≫  −1), solid and liquid fluxes on the left hand side of (3.4) may 
be comparable in magnitude with the  -term on the right hand side. 
Clearly, in that case,  may not formally be considered a slight per-

turbation. Nevertheless, our results with inflated values of  indicate 
that the difference between the two sets of solutions is localised to the 
bottom boundary region, with the bulk properties of the solutions being 
largely unaffected.

In conclusion, the assumption of  = 0 in boundary conditions 
(2.11), (2.12) adequately captures the behaviour of the system, and fi-

nite  ≪ 1 constitutes only a small perturbation on the “simplified” 
picture.

4. Discussion and conclusions

We have presented the first self-consistent fluid dynamical model 
of the two-phase two-component slurry F-layer. This formulation gen-

eralises the work of Wilczyński et al. (2023) by including a light con-

stituent in the liquid phase and accounting for growth of the solid inner 
core. The model also improves on the work of Wong et al. (2018, 2021) 
by directly calculating the solid and liquid velocities, 𝑢𝑠

𝑧
and 𝑢𝑙

𝑧
, and the 
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Fig. 7. Relative difference between average properties of the solutions with  ≠ 0 and that with  = 0 for increasing values of  . Panels show difference in (a) the 
average solid volume fraction, (b) the average liquid velocity, (c) the average solid velocity. Here, 𝜃 = 0.04, 𝐾 = 103, 𝜆𝜂∕𝐵 = 103 .

solid fraction 𝜙𝑠 from momentum and mass conservation respectively. 
In contrast, Wong et al. (2018, 2021) assumed 𝑢𝑙

𝑧
to be negligible and 

obtained 𝑢𝑠
𝑧

and 𝜙𝑠 from the solid flux using a mobility model of Stokes 
flow. This distinction is important because 𝑢𝑠

𝑧
, 𝑢𝑙

𝑧
, and 𝜙𝑠 are not geo-

physically observable and are hence effectively unknown. Hence it is 
crucial to have a general model of the slurry F-layer where 𝑢𝑠

𝑧
, 𝑢𝑙

𝑧
, and 

𝜙𝑠 are determined self-consistently as a function of the material param-

eters.

The two-phase two-component slurry model in its most general form 
is extremely complex and so we have employed several approximations 
in our numerical solutions (see Wilczyński et al., 2023, for a detailed 
discussion pertaining to the single component system). The steady, non-

rotating and non-magnetic setup enables the governing equations to be 
solved in 1D, which allows us to explore a wide range of control parame-

ters at conditions far closer to those of the F-layer than would be possible 
with 2D or 3D solutions. Since the F-layer in most seismic studies is seen 
as a dominantly 1D structure (Souriau and Poupinet, 1991; Kennett et 
al., 1995; Zou et al., 2008; Cormier et al., 2011) and is thought to be 
stably stratified (and therefore not convecting or generating large-scale 
magnetic field), perturbations to the 1D states we have found may be 
relatively less important for explaining the available observations. On 
the other hand, variations in P-wave velocity in the F-layer under Aus-

tralia and northwestern Pacific suggested by Ohtaki et al. (2018) would 
require accounting for lateral variations in slurry dynamics. In any case, 
solving the model system we have derived in 2D or 3D together with the 
added effects of rotation and magnetism is a daunting computational 
task that certainly lies outside the scope of this study.

Our solutions assume phase equilibrium and therefore ignore the 
undercooling that must be present in order to homogeneously nucle-

ate solid phase (e.g. Wilson et al., 2021; Huguet et al., 2023). Classical 
Nucleation Theory predicts undercooling of 600 − 1000 K to nucleate 
solids in a range of plausible analogue iron alloys, which is too high to 
be compatible with the inferred cooling history and present-day thermal 
structure of the core (Huguet et al., 2018; Davies et al., 2019; Wilson 
et al., 2023). This so-called “nucleation paradox” demonstrates a funda-

mental gap in our understanding of how solids form in planetary cores 
and applies to inner core growth just as it does to the slurry F-layer. 
Given that the inner core certainly exists, it seems that a resolution to 
the nucleation paradox will be found and this resolution may help to un-

derstand the conditions under which solids can form in the F-layer. On 
a more practical level, implementing non-equilibrium thermodynamics 
in the two-phase two-component slurry adds even greater complexity 

to the equations and requires macroscopic parameterisations for the 
microscopic processes of solid nucleation and growth that are poorly 
understood at present. The assumption of phase equilibrium therefore 
seems a reasonable one at the present time.

The main result of this work is that stably stratified two-phase two-

component slurry solutions can be obtained for a wide range of parame-

ters that span plausible values for Earth’s F-layer. These solutions predict 
that the solid fraction in the F-layer is very small, 𝜙𝑠 ≪ 1, and therefore 
unlikely to be detected by seismic observations. This implies that sedi-

mentation of solid makes a negligible contribution to inner core growth, 
which arises almost entirely by direct freezing as in classical models 
that omit the F-layer (e.g. Labrosse, 2015; Davies, 2015; Nimmo, 2015). 
We furthermore find that the latent heat transfer within the layer is 
very small (heat entering the layer at the ICB ∼ heat leaving the F-

layer), and hence the solutions are consistent with current estimates of 
the core’s heat budget (e.g. Davies et al., 2015; Nimmo, 2015; Frost et 
al., 2022). Therefore, notwithstanding the caveats discussed above, we 
conclude that our slurry model is consistent with theoretical predictions 
and available observations of the F-layer region.

The basic physical picture of the F-layer suggested by our model 
essentially refines the picture of Wong et al. (2021) and Gubbins et al. 
(2008). Thermal conditions are always destabilising in our solutions; 
the stable stratification is of compositional origin with a reduced light 
element concentration near the ICB compared to the top of the F-layer. 
This compositional anomaly is maintained by barodiffusion and outward 
advection of light material in the liquid. Outward advection is required 
by mass conservation between falling solid and rising liquid.

Our model predicts the mean velocities of liquid and solid phases, 
which are not accessible to observation. The liquid velocity is predicted 
to be very small at core conditions, which is consistent with the assump-

tion of Wong et al. (2021). However, while small, the liquid velocity can-

not be neglected as it provides a flux of light material away from the ICB 
that is crucial for balancing the inward diffusive compositional flux. An 
estimate for the order of magnitude of solid velocity is given by the ra-

tio of the relative buoyancy between the two phases against the strength 
of interphase friction, i.e. max ||𝑢𝑠𝑧|| ∼ (𝜌𝑠 − 𝜌𝑙)𝑔∕(𝜌𝑠𝑐𝐷) (Wilczyński et 
al., 2023, section 4.3). This gives an estimate for maximum solid veloc-

ity on the order of ∼ 5 × 10−5 − 10−2 m s−1. Estimated solid velocities 
in the F-layer are therefore comparable to or smaller than typical core 
surface flow speeds inferred from geomagnetic secular variation (e.g. 
Holme et al., 2015; Finlay et al., 2023). Despite such “large” solid phase 
velocity, the overall solid mass flux 𝜙𝑠𝜌𝑠𝑢𝑠

𝑧
is small because the solid 
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fraction itself is small. Under geophysically relevant conditions where 
𝐵 ≫ 1, the solid fraction scales as 𝜙𝑠 ∼ 𝐵−1, and thus solid mass flux 
also diminishes, 𝜙𝑠𝜌𝑠𝑢𝑠

𝑧
∼ 𝐵−1, when 𝐵 is increased up to its geophys-

ical value, 𝐵 ≈ 1014. Thus, for the F-layer, the overall downward solid 
flux, and consequent upward flow of liquid phase and light elements, are 
expected to be very small. Nonetheless, these fluxes are crucial in main-

taining stable stratification in the layer whilst also allowing passage of 
light elements through the layer.

The results of this study suggest that an Earth-like F-layer would be 
mostly liquid in the bulk, with a narrow “mushy” zone directly above 
the ICB where solid fractions can be close to unity. The characteristic 
velocity of the liquid phase in the F-layer is extremely small, and thus 
the corresponding dynamical time is long compared to the convective 
overturn time in the liquid outer core. This timescale separation could 
be exploited in global core dynamo models to study the effect of the 
expected thermal and compositional anomalies within the F-layer on 
outer core dynamics and dynamo action without the need to model their 
two-phase origin.

We believe that the two-phase two-component slurry model devel-

oped here is sufficiently general to describe the formation and evolution 
of the snow layers that have been hypothesised to emerge in a vari-

ety of planetary cores including Ganymede (Rückriemen et al., 2015), 
Mercury (Dumberry and Rivoldini, 2015), and Mars (Davies and Pom-

mier, 2018), as well as Earth’s core. The model predicts a wide range 
of behaviour, from solid-poor to solid-rich layers, and permits both 
symmetric and asymmetric phase dynamics depending on the control 
parameters. Evolving the 1D state in time requires coupling to the evo-

lution of the bulk core, which will add more parameters to an already 
complex model and would require generalisation of the boundary con-

ditions if the upper and lower boundaries of the slurry both move at 
different speeds. However, the 1D model could potentially be simpli-

fied by exploiting the limiting behaviour of the 1D steady state we have 
elucidated in this study.
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Appendix A. Table of parameters

Table A.1

Estimates of physical parameters characterising Inner Core Boundary conditions.

Dimensional parameters 
Symbol Definition Estimate Units Source 
𝑑 depth of the F-layer 1.5 × 105 m 𝑎

𝑟𝑖 inner core radius 1.22 × 106 m 𝑏

𝑔 gravitational acceleration 4.4 m s−2 𝑏

𝑇𝑟 reference outer core temperature 5000 K 𝑐

𝜌𝑙
𝑟

density of liquid iron 12.52 × 103 kg m−3 𝑑

𝜌𝑠
𝑟

density of solid iron 12.76 × 103 kg m−3 𝑑

𝛼𝑙 thermal expansion coefficient (liquid) (1.02 – 1.95) × 10−5 K−1 𝑑

𝛼𝑙
𝜉

compositional expansion coefficient 1.1 𝑑

𝛼𝑠 thermal expansion coefficient (solid) 0.96 × 10−5 K−1 𝑒

𝛽𝑙 isothermal compressibility (liquid) 7.55 × 10−13 Pa−1 𝑓

𝛽𝑠 isothermal compressibility (solid) 7.97 × 10−13 Pa−1 𝑔

𝑐𝑙
𝑝

specific heat capacity (liquid) 715 J kg−1 K−1 𝑑

𝑐𝑠
𝑝

specific heat capacity (solid) 750 J kg−1 K−1 ℎ

𝑘𝑙 thermal conductivity (liquid) 50 — 107 W m−1 K−1 𝑖

𝑘𝑠 thermal conductivity (solid) 286 — 330 W m−1 K−1 𝑗

𝜂𝑙 dynamic viscosity (liquid) 10−2 Pa s 𝑘

𝜂𝑠 dynamic viscosity (solid) 1011 – 1022 Pa s ℎ

𝐿 latent heat of fusion 0.75 × 106 J kg−1 𝑑

𝑄𝑖 ICB heat flux (0.8 – 6) × 1012 W 𝑚

𝑞 =𝑄𝑖∕(4𝜋𝑟2𝑖 ) ICB heat flux per unit area 0.04 – 0.32 Wm−2

𝑐𝐷 inter-phase friction coefficient 8 – 1600 s−1 𝑜

𝜉𝑐𝑜𝑟𝑒 reference oxygen concentration 1 – 5 wt% 𝑛

 universal gas constant 8.3145 J K−1 mol−1

𝑚𝑂 oxygen molar mass 0.016 kgmol−1

𝜅𝑂 oxygen self-diffusion coefficient 10−8 m2 s−1 𝑘

𝑈𝐼𝐶𝐵 ICB velocity 10−11 m s−1 𝑖

𝑎 Souriau and Poupinet (1991); 𝑏 Dziewonski and Anderson (1981); 𝑐 Nimmo (2015); 𝑑 Gubbins et 
al. (2004); 𝑒 Vočadlo et al. (1999); 𝑓 Gubbins et al. (2008); 𝑔 Alfè, private communication; ℎ Lasbleis 
and Deguen (2015); 𝑖 Davies et al. (2015); 𝑗 Pozzo et al. (2014); 𝑘 Pozzo et al. (2013); 𝑚 Wu et al. 
(2024); 𝑛 Hirose et al. (2013); 𝑜 Wilczyński et al. (2023).
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Appendix B. Supplementary material

Supplementary material related to this article can be found online at 
https://doi.org/10.1016/j.epsl.2024.119196. 

Data availability

All solutions presented in this paper were calculated using open-

source Dedalus software.
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