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A R T I C L E I N F O A B S T R A C T 

Dataset link: https://github.com/athanor Local search is a common method for solving combinatorial optimisation problems. We focus 
on general-purpose local search solvers that accept as input a constraint model — a declarative 
description of a problem consisting of a set of decision variables under a set of constraints. Existing 
approaches typically take as input models written in solver-independent constraint modelling 
languages like MiniZinc. The Athanor solver we describe herein differs in that it begins from 
a specification of a problem in the abstract constraint specification language Essence, which 
allows problems to be described without commitment to low-level modelling decisions through 
its support for a rich set of abstract types. The advantage of proceeding from Essence is that the 
structure apparent in a concise, abstract specification of a problem can be exploited to generate 
high quality neighbourhoods automatically, avoiding the difficult task of identifying that structure 
in an equivalent constraint model. Based on the twin benefits of neighbourhoods derived from high 
level types and the scalability derived by searching directly over those types, our empirical results 
demonstrate strong performance in practice relative to existing solution methods.

1. Introduction

Local search [1] is a common method for solving combinatorial optimisation problems. Typically, it operates by generating 
an initial assignment to the decision variables in a problem and then iteratively modifies this assignment to improve an objective 
through a sequence of moves, selected from a neighbourhood of assignments reachable from the current assignment. This approach 
trades completeness for the ability to make rapid improvements to the objective, and often finds good solutions more quickly than 
systematic search procedures [2].

We focus herein on general-purpose local search solvers that accept as input a constraint model: a declarative problem description 
consisting of a set of decision variables under a set of constraints. This is a general, flexible approach in contrast to local search 
procedures specialised to individual problems (e.g., [2–4]).

Existing approaches typically accept models written in solver-independent constraint modelling languages like MiniZinc [5]. The 
recently-proposed Structured Neighbourhood Search (SNS) [6], and the Athanor solver we describe in this paper (which was first 
proposed in [7]), differ in that they begin from a problem specification in the abstract constraint specification language Essence [8–
10]. Essence allows problems to be described without commitment to low-level modelling decisions through its support for a rich set 
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1 $ P a r a m e t e r s t o t h e p r o b l e m : 
2 g i v e n n N o d e s , n R i n g s , c a p a c i t y : i n t ( 1 . . ) 
3 l e t t i n g N o d e s b e d o m a i n i n t ( 1 . . n N o d e s ) 
4 g i v e n d e m a n d : s e t o f s e t ( s i z e 2 ) o f N o d e s 
5 
6 $ D e c i s i o n v a r i a b l e f o r s e a r c h : 
7 f i n d n e t w o r k : s e t ( m a x S i z e n R i n g s ) o f 
8 s e t ( m i n S i z e 2 , m a x S i z e c a p a c i t y ) o f N o d e s 
9 $ T h e p r o b l e m o b j e c t i v e : 
10 m i n i m i s i n g s u m r i n g i n n e t w o r k . | r i n g | 
11 $ T h e p r o b l e m c o n s t r a i n t s : 
12 s u c h t h a t f o r A l l p a i r i n d e m a n d . 
13 e x i s t s r i n g i n n e t w o r k . 
14 p a i r s u b s e t E q r i n g 

Fig. 1. Synchronous Optical Networking in Essence. The main parameter of the problem is demand, a set of pairs of nodes to be connected to each other. A single
highly structured decision variable network (set of set of int) suffices to model the fibre-optic rings, each inner set of ints representing a set of 
connections from a ring to nodes. Rings have a limited number of connections that they can support, hence the maxSize attribute on the inner set. This is important 
as a pair of nodes in the demand are only connected to each other if they are both on the same ring. Nodes may connect to multiple rings to facilitate more connections, 
however the objective is to minimise the total number of connections. The specification can be summarised in mathematical notation as follows. 
given nNodes, nRings, capacity, demand

find network

𝐰𝐡𝐞𝐫𝐞 |network| ≤ nRings ∧ ∀𝑟 ∈ network. 2 ≤ |𝑟| ≤ capacity ∧ 𝑟 ⊆ {1…nNodes}

minimising
∑

ring∈network
|ring|

such that ∀pair ∈ demand. ∃ring ∈ network.pair ⊆ ring.

of abstract types, such as sets, multi-sets, sequences and relations, each of which can be nested arbitrarily (set of partition, multi 
-set of sequence of tuple, and so on). Fig. 1 presents an example Essence specification of the Synchronous Optical Networking 
Problem (SONET) [11], where a set of nodes must be connected via a set of fibre-optic rings.

Our approach is to proceed from Essence, where the structure apparent in a concise, abstract problem specification can be 
exploited to generate high quality neighbourhood structures [12] automatically, avoiding the challenging task of identifying that 
structure in an equivalent constraint model. A neighbourhood structure is a procedure that takes a current assignment to a variable 
in a specification and applies a random transformation to it, generating a new assignment to the variable from a neighbourhood.
Athanor has a set of neighbourhood templates, which express an abstract concept, such as adding values to a set, or moving a 
value from one set to another. Athanor takes an abstract problem specification and uses the neighbourhood templates to create 
neighbourhood structures. In the SONET specification the decision variable is a set of sets. Three illustrative neighbourhood structures 
produced for this structure by Athanor are:

• Select a set and remove an element: improves the objective, removes unnecessary connections to the rings.
• Select a set and add an element: helps with satisfying the constraints, if a demand is not currently met.
• Select two sets, move an element from one to the other: moves connections to where they may be better used, i.e. to connect to 
more nodes.

Given an Essence specification of a problem class and a set of neighbourhood structures, there are two options for solving. One 
option is SNS [6], which uses Conjure [13] to refine the original specification and neighbourhood structures into a constraint model 
and solves with an existing constraint solver. Alternatively, we can perform a local search directly on the augmented Essence specifi-
cation. This is the novel approach taken by Athanor, described in this paper. Specifically, Athanor supports the direct instantiation 
of abstract variable types such as set, sequence, partition, function, without decomposing the variables and constraints posted 
on them into low-level representations. For several problem classes, Athanor’s high-level representations allow the solver to scale 
far better than other solvers, solving instances that are infeasibly large for competing solvers. As explained in Section 7.3, this is 
because Athanor dynamically manages memory during the search to support high-level variable types whose cardinality can vary 
significantly depending on the value assigned. This is in contrast to low-level constraint solvers, which typically employ a more rigid, 
conservative approach that immediately requires a substantial memory commitment.

To illustrate, reconsider the single decision variable in the SONET example:

1 f i n d n e t w o r k : s e t ( m a x S i z e n R i n g s ) o f 
2 s e t ( m i n S i z e 2 , m a x S i z e c a p a c i t y ) o f N o d e s 

While maxSize capacity on the inner sets is enforcing a problem constraint (the capacity of each ring), maxSize nRings on the 
outer set is only required because otherwise the deduced maximum cardinality of the outer set network is:

capacity∑

𝑖=2 

(
𝑛

𝑖 

)
,
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Table 1
The Essence type constructors supported by Athanor, which may be annotated to impose further structure, such as a total function or maximum 
cardinality of a set. Essence supports common operators on these types, such as set intersection and union, and arbitrary nesting, such as set of sets 
of integers. Decision variables must have a finite domain.

Atomic Types
Boolean A simple Boolean type.
Integer Any subset of the integers, specified as a set of intervals.
Enumerated A type with a finite set of named values.
Unnamed A type with a finite set of unnamed values. The values of an unnamed type cannot be referenced in the specification.

Compound Types
Set Set of variable size (unless annotated otherwise) of any type 𝜏.
Multiset Similar to set but allows multiple occurrences of values.
Sequence A sequence of variable length (an upper bound must be provided) of any type 𝜏.
Relation A relation of arbitrary arity over any types 𝜏1, 𝜏2,…
Function A function from any type 𝜏1 to any other type 𝜏2. The function is partial by default but may be made total (or surjective, 

injective, etc.) with an annotation.
Partition A partition from any finite type 𝜏. A partition may be annotated to control the number and sizes of parts.
Matrix A matrix with any number of dimensions, containing any type 𝜏 and indexed by integer or enumerated types in each dimension.
Tuple A container with fields accessed by an integer index, each of which may be of any type.
Record A container with named fields, each of which may be of any type.

Where 𝑛 is the size of the domain Nodes. Hence, with a capacity of 32 and a Nodes domain of size 65, the maximum cardinality 
of network is 264 − 66. Existing low-level solvers require this abstract decision variable to be modelled as a constrained collection 
of more primitive variables, which must be done conservatively so as to be able to represent the largest cardinality value of the set 
of sets. Clearly, 264 is larger than is practically feasible, hence the artificial bound on the outer set. Athanor does not require this 
bound: it supports the instantiation of the set of sets directly, and is able to assign to it values of different cardinality efficiently 
(although the worst case still remains). Moreover, our experiments show that even when a maximum cardinality is given, Athanor
still scales better to larger instances.

Through the twin benefits of neighbourhood structures derived from high level types and the scalability derived by searching 
directly over those types, our empirical results demonstrate strong performance relative to existing solution methods.

Our major contributions are as follows:

• The automatic derivation of neighbourhood structures from the types of the abstract decision variables in Essence.
• Representations that scale with the size of the value rather than the upper bound of the domain of a variable.

To enable the above to be implemented in a practical solver, we also make the following contributions:

• Time and space-efficient incremental evaluation of expressions that quantify over values of variable size;
• Efficient generation of random values drawn from extremely large domains;
• Experimental evaluation of the proposed solver in comparison to other state-of-the-art methods, including local search and 
systematic solvers.

2. An overview of Essence and Athanor

This section provides an overview of the architecture and operation of the Athanor solver, before full details are given in 
subsequent sections. We also briefly describe the types and structure of the Essence language on which Athanor operates.

2.1. Background: Essence

We begin with a brief overview of the Essence abstract constraint specification language, from which the neighbourhood templates 
and neighbourhood structures employed by Athanor are derived (this derivation is discussed in Section 4). Essence was originally 
conceived as a means of capturing a formal description of a combinatorial problem without committing to a concrete model suitable for 
input to a particular solving formalism, such as constraint programming or SAT. Hence, the types supported by Essence (summarised 
in Table 1) are designed to allow a specification to be given in terms of the combinatorial structure of the problem. We distinguish 
between atomic types and compound types (as shown in Table 1). There is also a distinction in Essence between abstract types (set, 
multiset, sequence, relation, function, and partition) and concrete types (the atomic types, matrix, tuple, and record) [13].

An Essence specification (e.g. Fig. 1) comprises formal parameters (given), which may themselves be constrained (where); the 
combinatorial objects to be found (find); constraints the objects must satisfy (such that); identifiers declared (letting); and an 
optional objective function (min/maximising). The input to Athanor is an Essence specification of a problem class and values 
for its formal parameters to derive a particular problem instance to solve.
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Fig. 2. SONET Abstract Syntax Tree: Unevaluated. 

2.2. Overview of Athanor

Given an Essence specification, Athanor begins by constructing two abstract syntax trees (ASTs). The first tree encodes the 
constraints in a problem, the second encodes the objective, if present. Each node in the tree represents an Essence expression, with 
each leaf being a reference to a variable in the problem (or a constant) and their ancestors representing the operators. Subsequently,
Athanor generates a value at random for each of the decision variables according to some restrictions (described in Section 5). The 
operators (ancestor nodes) are then evaluated all the way up to the roots of the two trees, yielding a Boolean and an integer value 
for the constraint and objective trees respectively.

Furthermore, every Boolean expression is associated with an integer termed the constraint violation. When the expression evaluates 
to true, the constraint violation is 0, otherwise it takes a positive value. The constraint violation is a heuristic for the magnitude of 
the change necessary to the operand values of an expression such that the expression evaluates to true. In addition, each variable 
in the problem is associated with a variable violation, a heuristic measure of the likelihood of a variable being the cause of violated 
constraints in the problem. In the case of a structured type, such as a set of set of int, variable violations are associated with 
the top level structure (here the outermost set), each of its elements, and their elements and so on. This allows the solver to infer 
whether a whole or part of a structure is the cause of constraint violations, as described in Section 6.

Figs. 2 to 4 illustrate the initialisation of the constraint tree for the SONET specification (Fig. 1). The forAll quantifier is 
represented with an and function, applied to a list generated by a comprehension. Similarly, the exists quantifier becomes an
or function containing a comprehension. Fig. 2 presents the abstract syntax tree prior to the unrolling of the two comprehensions. 
Each comprehension has three children: the expression template (labelled expr template), the generator, and the unrolled list 
(initially empty). Comprehensions may also produce sets, but in this example both comprehensions produce lists. The generator 
supplies a sequence of values to substitute one by one into the expression template to create the elements of the unrolled list. For 
this simple example, we consider two demand pairs, {1,3} and {3,4}. Fig. 3 shows the constraint tree after the top comprehension 
has been unrolled with respect to these two pairs, forming a list with two elements. Finally, a random value for the network variable 
is generated, {{1,3,8},{2,3}}, and used to unroll the inner comprehension, as presented in Fig. 4. At this point, the AST can be 
evaluated, and it evaluates to false. The expression template (expr template) child of a comprehension is always retained in the 
AST so that the unrolled child can be updated in the event that the generator is changed.

Unrolling the syntax trees dynamically, as illustrated here, is vital for the scalability of Athanor: the sizes of the trees scale 
linearly with the actual sizes of the values of decision variables, not their largest possible sizes. The values themselves are also 
represented compactly, as described in Section 7.3.

After initialisation, the tree structures are used to track subsequent changes to the leaf nodes (Section 7). Athanor employs two 
ASTs for both flexibility and performance. Its search strategies benefit from being able to make decisions dependent on access to the 
root of each tree individually, such as permitting constraint violations while focusing on improving the objective value.

Before commencing the search, Athanor constructs all of the neighbourhood structures that will be used during the search 
process to generate new assignments within neighbourhoods. These neighbourhood structures are created by combining a set of 
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Fig. 3. SONET Abstract Syntax Tree: Outer comprehension (with variable pair) unrolled. 

neighbourhood templates, which represent high-level neighbourhoods. Examples of neighbourhood templates include adding a value 
to a set, or moving a value from one set to another.

Following initialisation, Athanor iteratively modifies the current assignment in an attempt both to reduce the constraint violation 
count and to improve the objective value. This is achieved by using the previously constructed neighbourhood structures, which 
select new values for some variables within a neighbourhood. The two ASTs are used to evaluate the impact of the changes made. 
Neighbourhood structures are derived directly from the Essence specification (as described in Section 4). Athanor makes use 
of several search procedures, as described in Section 8. The experimental evaluation of Athanor is presented in Section 9 and 
Section 10.

3. Related work

There are a number of existing approaches related to our work, which we summarise in this section.
Localizer [14] introduced a modelling language for the manual specification of a local search procedure. One of its key innova-

tions was the concept of an invariant (also known as one-way constraints in the iOpt toolkit [15]), an expression that describes how 
to compute the values of one set of variables from another. This allows the separation of the problem variables into those over which 
search is performed, and those whose values are updated incrementally and efficiently via the invariants. Comet [16,17] developed 
these ideas further, providing a full object-oriented programming language that supports declarative modelling followed by local 
search for solutions. Comet is able to synthesize local search procedures from a declarative constraint-based local search (CBLS) 
model [18] where constraints are annotated as hard (i.e. remains satisfied during search) or soft (may be violated during search) and 
a metaheuristic such as Tabu Search is specified by the user. Neighbourhood structures are synthesized from the constraint semantics 
(for example, a hard allDifferent constraint may lead to a neighbourhood structure that swaps the values of two variables in the 
allDifferent).

Several more CBLS solvers [16,17] have since been developed. The Kangaroo solver [19] employs a lazy approach, increasing effi-
ciency by propagating invariants only as necessary. OscaR-CBLS [20] is an open-source solver that adopts a similar partial propagation 
scheme, making neighbourhood selections based on the objective value only. Björdal et al. [21,22] provide an automated compilation 
method from the solver-independent constraint modelling language MiniZinc [5] to OscaR-CBLS in their solver fzn-oscar-cbls, per-
forming an analysis of the MiniZinc model to determine invariant structure and which constraints can be implicitly satisfied through 
neighbourhood structure, as well as synthesising a search strategy. This work was further developed to extend MiniZinc to support the 
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Fig. 4. SONET Abstract Syntax Tree: Inner comprehension (with variable ring) unrolled. 

declarative specification of neighbourhoods [23]. Yuck1 also implements a set of constraint-specific neighbourhoods to support the 
MiniZinc language and a search strategy based upon simulated annealing. iZplus2 is something of a hybrid, using systematic search 
to find the first solution to an optimisation problem and then local search to find better solutions. It implements CBLS for decision 
problems, either alone or in parallel with systematic search. LocalSolver [24] was the basis for the commercial Hexaly Optimizer.3 Its 
emphasis is on allowing the user to focus on modelling while treating the solving process as a black box. Structured Neighbourhood 
Search [6] (SNS) generates neighbourhood structures from Essence specifications, as Athanor does, then applies Conjure [13] 
and Savile Row [25] to refine them (alongside the model) into the input language of a backtracking constraint solver. SNS uses 
an adapted version of the Minion solver [26] that applies the neighbourhood structures in a similar way to Large Neighbourhood 
Search (described below). SNS contrasts with the work described in this paper as Athanor directly operates on abstract Essence
variables. This leads to a more scalable approach, especially due to the dynamic creation and deletion of values and constraints (as 
illustrated in Section 2.2).

Comet was extended to support graph variables with specialised neighbourhood structures to search over them [27]. Similarly, 
Ågren et al. [28] and Björdal [29] showed how to introduce set and string variables in a local search setting respectively. However, 
these cannot be composed with other abstract types such as those offered by Essence.

Large neighbourhood search (LNS) [30] is a general framework for solving constrained optimisation problems which is built on a 
systematic solver. Systematic search is typically used to find an initial feasible solution. In each subsequent iteration, a subset of the 
decision variables is selected to be unassigned (relaxed) and searched once more by the systematic solver for an assignment with an 
improved objective value. The ability to exhaustively search parts of the search space allows these solvers to perform well on highly 
constrained and highly structured problems. In the context of LNS, a neighbourhood structure is responsible for selecting a set of 
variables to relax. Highly effective specialised LNS neighbourhood structures have been proposed for many problem classes (such as 

1 https://github.com/informarte/yuck.
2 https://www.minizinc.org/challenge2014/description_izplus.txt.
3 https://www.hexaly.com.
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Table 2
A complete list of atomic neighbourhood templates in Athanor.

bool
boolReassign Reassign the variable to the other value in its domain.

enum
enumAssignRandom Randomly reassign the variable to a different value in its domain.

int
intAssignRandom Randomly reassign the variable to a different value in its domain.
intAssignRandomFromViolation Assign a value uniformly at random in the range 𝑖± 𝑣, 𝑖 is the current value 

of the integer, 𝑣 is a violation attributed to that variable.

vehicle routing [30]); however, developing such neighbourhood structures requires time and in-depth understanding of the problem, 
motivating research into general-purpose LNS neighbourhood structures.

Propagation-guided large neighbourhood search (LNS-PG) [31] is a general-purpose LNS method that exploits the propagation 
process of a CP solver to inform its choice of variables to relax. The rationale behind LNS-PG is that the selected variables should form 
a closely linked sub-part of the problem instance, where the strength of a link between two variables is measured by assigning one of 
the variables and recording the effect of propagation on the other variable. Explanation-based large neighbourhood search (LNS-EB) 
[32] uses the explanation mechanism of a learning CP solver to find sets of variables that are linked to improving the objective. Two 
methods of LNS-EB were proposed with promising results. LNS-PG and LNS-EB are both able to derive neighbourhoods automatically 
for any problem class, in common with Athanor and SNS, however they do not have access to the high-level structure of Essence.

4. Neighbourhoods

A neighbourhood structure [12] is a procedure that takes an assignment to a decision variable and applies a transformation to it, 
such as randomly reassigning an integer, adding a value to a set, or moving elements between parts of a partition. Athanor has a set 
of neighbourhood templates, which are the building blocks from which neighbourhood structures are created. A neighbourhood is the set 
of assignments reachable from the current assignment to a decision variable by applying a neighbourhood structure. At each iteration 
of the search, a neighbourhood structure is selected, and the structure is used to generate a move from within a neighbourhood of 
the current assignment. The sampling process is described in Section 4.1.

Neighbourhoods must respect the types of variables, for example given the value {1,3,5} for a variable of type set (size 3)of

int(1..6), we can change 1 to 2, 4 or 6, but not to 3 or 5, nor can we add or remove values from the set, as the set is fixed size. 
More complex types allow for more interesting neighbourhoods. For example, given a value {{1,2},{2,3,4}} for a variable of type 
set of set of int(1..5), we could change one of the values inside one of the inner sets, create or remove an entire set, or move 
values between sets – as long as we never create an invalid value for our type.

In the next sub-section, we describe the set of neighbourhood templates and how they are combined into neighbourhood structures.

4.1. Neighbourhood templates

Athanor’s neighbourhood templates are inspired by neighbourhood generation in Structured Neighbourhood Search [6]. Since 
each neighbourhood is directly linked to a variable type and domain, Athanor’s neighbourhoods are not allowed to violate type 
invariants, such as the uniqueness of elements in a set. As Athanor’s neighbourhoods cannot violate type invariants, we reduce the 
time spent finding assignments to highly structured variables (e.g. set of partition (regular , numParts 3)) and can instead 
focus on satisfying problem constraints or improving the objective.

Where neighbourhood structures can very cheaply check if they would violate a type invariant, for example adding a value to a 
set which is already maximum size, they do so. However, given the large number of type invariants in Essence we do not require 
all neighbourhood structures maintain all type invariants. Instead, neighbourhood structures generate a neighbourhood move, which 
is reverted if any type invariant is violated. If a neighbourhood structure fails to generate a valid neighbourhood move after a fixed 
number of attempts (currently set to 50), the neighbourhood structure is abandoned and another neighbourhood structure is chosen.

Neighbourhood templates are divided into four categories. We will discuss these categories in turn, using the neighbourhood 
structures generated for the SONET problem as examples.

4.1.1. Atomic neighbourhood templates
The first type of neighbourhood templates are atomic neighbourhood templates, presented in Table 2. These apply only to a 

single value of one of the primitive types. For example, intAssignRandom reassigns a variable of type int to another value in 
its domain. None of these apply to the SONET problem, as the SONET problem contains no variables of type bool, enum, or int. 
However, these will be used as building blocks for neighbourhood structures used in the SONET problem later. Integers have a direct 
neighbourhood template that restricts the magnitude of the change to be no greater than the violation attributed to that variable 
(intAssignRandomFromViolation). No other type currently has a neighbourhood template that makes use of the violation. We do 
not provide a general assignRandom for any higher-level types, instead considering neighbourhoods that make smaller, structured 
changes.
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Table 3
A complete list of direct neighbourhood templates in Athanor.

set, multiset
Remove Remove a random element.
Add Add a random element.

sequence
Remove Remove a random element from the sequence.
Add Add a random element to the sequence at a randomly chosen position.
ReverseSub Reverse a contiguous subsequence of a random size.
PositionsSwap Swap the position of a random element with another.
ReassignSub Randomly reassign a contiguous subsequence.

function
Remove Remove a random mapping from the function.
Add Add a random mapping to the function.
UnifyImages Randomly choose two points in the function with distinct images, assign the image of one point to 

the image of the other.
SplitImages Randomly choose two mappings with equal images, randomly reassign one of the images.
Swap Swap the images of two randomly chosen mappings in the function.
SwapAlongAxis Special case of Swap: with functions that map from a tuple to any type, swap the images of two 

tuples 𝜏1 and 𝜏2 where 𝜏1 and 𝜏2 differ in exactly one place.
partition
MoveParts Randomly select two parts 𝑝1 and 𝑝2 and an element 𝑒1 ∈ 𝑝1 and move 𝑒1 into 𝑝2.
SwapParts Randomly select two parts 𝑝1 and 𝑝2 and elements 𝑒1 ∈ 𝑝1 and 𝑒2 ∈ 𝑝2 and swap the elements such 

that 𝑒1 ∈ 𝑝2 and 𝑒2 ∈ 𝑝1.
MergeParts Merge two randomly-selected parts into one.
SplitPart Selects one part 𝑝1 at random, creates a new part 𝑝2 and distributes the elements of 𝑝1 between the 

two at random, while respecting part size attributes.

Table 4
A complete list of higher-order neighbourhood templates, parameterised with a neighbourhood template 𝑡. For LiftMulti-
ple, 𝑡 must be a synchronised neighbourhood template. The LiftMultiple neighbourhood template selects as many elements 
as required by 𝑡. At present, this is always two elements.

LiftSingle Randomly select an item from the structure and apply 𝑡, keeping all other elements the same. 
LiftMultiple Randomly select multiple items from the structure and apply 𝑡, keeping all other elements the same. 

4.1.2. Direct neighbourhood templates
The second type of neighbourhood templates are direct templates, presented in Table 3. These are only dependent on the outermost 

part of a type. For example, the setAdd4 neighbourhood template (Table 3) can only be applied to a set, but can be instantiated for 
sets of any type. The Add templates use the existing infrastructure for creating random values, discussed in Section 5. The relation
type in Essence is equivalent to a set of tuple, so variables of type relation use the set neighbourhoods.

The attributes of variable domains are considered during the creation of neighbourhood structures. For example, neighbourhood 
templates that alter a set’s cardinality are not used to create neighbourhood structures on a set variable whose domain has a fixed 
size attribute. Similarly, if a sequence variable has a domain with the injective attribute (meaning all values in the sequence are 
distinct), the neighbourhood structures created for that variable are limited to those that retain injectivity.

In SONET, the set Add and Remove neighbourhood templates are used to add and remove elements from network. These added 
and removed values are of type set (minSize 2, maxSize capacity).

4.1.3. Higher-order neighbourhood templates
The third type of neighbourhood template is higher-order, as listed in Table 4. These take another neighbourhood template and 

apply it to one or more elements of a container, such as a set or sequence. LiftSingle applies a neighbourhood template on a type 
𝑇 to a single element of a collection of 𝑇 s. For example, in SONET, we can lift SetAdd to create SetLiftSingle_SetAdd, which 
adds an element to a set contained in network. We can lift multiple times, so we can lift intAssignRandom twice, thus creating a 
neighbourhood structure that can modify any integer contained in a set that is in network.

Neighbourhoods can be lifted for sets, multisets, sequences, and the defined set and the range of a function. Neighbourhoods are 
not currently lifted for partitions, because none of our currently implemented neighbourhood templates would lift to useful, valid 
neighbourhood structures on partitions. Neighbourhood structures generated by lifting a set illustrate how difficult it is to ensure 
neighbourhood structures satisfy all type invariants. For example, changing one value in a set to be equal to another value in the 
same set, where the set has fixed size, would violate the type invariant of the set. Rather than require every neighbourhood handle 
this problem, Athanor runs the neighbourhood structure, then as a final step checks if the set’s type invariants are violated – if so 
the move is rejected and an alternative move is generated.

4 For clarity, the template name in the text is formed from the name given in Table 2 or 3, prefixed with the type on which it is instantiated.
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Table 5
A complete list of synchronised neighbourhood templates in Athanor. These are used in conjunction with higher-order 
templates to operate on multiple parts of an abstract structure simultaneously.

set
Move Move a random element from one set to another.
Crossover Swap randomly chosen elements between two sets.

sequence
Move Move a random element from one sequence to a random position in another sequence.
Crossover Exchange elements between two sequences that are at the same randomly chosen index.

function
Crossover Given two functions, select a mapping at random from each one such that they have the same preimage. 

Exchange the images of these two mappings.

4.1.4. Synchronised neighbourhood templates
The fourth and final kind of neighbourhood templates operate on multiple members of a container at once. These are known as 

Synchronised neighbourhood templates and are presented in Table 5. For example, the setMove neighbourhood template moves an 
element from one set to another. Because these neighbourhood templates require two values to operate, they only work when lifted.
liftMultiple takes a synchronised neighbourhood and lifts it to any of the container types in Athanor.

In SONET, we generate two synchronised lifted neighbourhoods, 
SetLiftMultiple_SetMove, which takes two sets in network and moves an item from one set to another, and SetLiftMulti-
ple_SetCrossover, which takes two sets in network and exchanges two elements from the two sets.

4.2. Neighbourhood structure creation

Neighbourhood structures are created once at the beginning of search, and neighbourhood structures are created independently 
for each variable in the Essence specification. Parameters do not affect neighbourhood structure generation.

For each variable, we start at the top of the type and attempt to instantiate each type of neighbourhood template appropriate for 
the outer-most type. For each lifted neighbourhood template that applies to the outer-most type, we remove the outer-most type, 
recursively create all neighbourhood structures for the inner type, and combine these with the lifted neighbourhood template.

This process of generating all neighbourhood structures is very quick, as it only has to operate on the types and domains of each 
variable in the Essence specification.

Bringing together the neighbourhood templates discussed in this section, we present the full generation of neighbourhood struc-
tures for SONET. In SONET there is only a single decision variable, network, which (removing minSize and maxSize annotations) 
has type set of set of Nodes.

Athanor begins by applying direct neighbourhood templates, which generate SetAdd and SetRemove neighbour structures 
on network. Next, the lifted neighbourhood templates are considered. These check which templates can be applied to the inner 
set of Nodes type. Those applicable are SetAdd, SetRemove, SetMove, and SetCrossover, which are all lifted to operate on 
members of network to create neighbourhood structures.

Finally, Athanor applies the lifted neighbourhood templates to set of Nodes, which requires the neighbourhood templates on 
Nodes, intAssignRandom and intAssignRandomFromViolation. These are both lifted twice, to create template structures that 
modify a single element in a single element of network.

5. Generating random values

Athanor requires a method to generate a value that belongs to a given domain, both for generating initial variable assignments 
at the start of search and for generating new elements of a container type (for example, in the setAdd neighbourhood template).

Values are not generated uniformly at random, instead smaller values (i.e. values of smaller cardinality) are preferred for two 
reasons. Firstly, Essence domains can contain values so large that they would not typically fit in memory. Types can be arbitrarily 
nested, and several types describe variable-sized containers (such as set and sequence). In Section 1 we gave an example where a 
small instance of SONET led to a domain containing values with cardinality 264 − 66.

Secondly, the unrolling and evaluation of constraints can be computationally expensive when a value has high cardinality.
Athanor consistently aims to make small incremental changes that are computationally cheap to evaluate, and may be quickly 
undone if the new state is not accepted by the search strategy. Generating high cardinality random values is inconsistent with this 
general aim. When a large value is a necessary part of the solution, it may be reached by adding elements to a container over several 
iterations of search.

The method for generating random values in Athanor includes a mechanism for limiting the number of steps in the generation 
process, and therefore limiting the size of the generated values as well as the resources needed to generate a value. The resource 
limit is an essential part of the method. Without the resource limit, when generating a value of a variable-sized compound type, each 
possible cardinality would be generated with equal probability. The resource limit applies to every part of a nested domain and is 
described in detail below.
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5.1. Generating random values under resource limits

Algorithm 1 generateRandomMSet procedure with resource limit.
1: Input: a multiset domain 𝑑, an integer quantity of resource 𝑟in
2: if 𝑟in ≤ 0 then
3: return fail,0 ⊳ no value created, no resource consumed
4: Let 𝑑inner be the inner domain ⊳ domain of the elements of the multiset
5: 𝑐 ← {} ⊳ create 𝑐, an empty container from the domain 𝑑
6: 𝑟← 1

7: Let 𝑛min and 𝑛max be min and max cardinalities of 𝑐, as defined by 𝑑
8: 𝑛← value chosen uniformly at random from {𝑛min…𝑛max}

9: while |𝑐| < 𝑛 do
10: ⊳ Calculate reserved resource that cannot be used by recursive call
11: 𝑟res ←max(0, 𝑛min − |𝑐|− 1) × calcMinResource(𝑑inner )
12: 𝑒, 𝑟𝑒 ← generateRandom(𝑑inner , 𝑟in − 𝑟res − 𝑟)
13: ⊳ 𝑟𝑒 is the resource consumed by the recursive call
14: 𝑟← 𝑟+ 𝑟𝑒
15: if 𝑒 = fail then
16: if |𝑐| < 𝑛min then
17: return fail, 𝑟

18: else
19: return 𝑐, 𝑟

20: Add 𝑒 to 𝑐
21: return 𝑐, 𝑟

In this section, we describe the algorithm generateRandom. We use the multiset (mset) domain as an example because it demon-
strates the general method by which random values are produced for variable-sized container types. Other types, such as set, are 
very similar but require that other constraints (type invariants) are satisfied when generating a value. The procedure generateRan-
domMSet(𝑑, 𝑟in) is shown in Algorithm 1. generateRandom (for any type) has two parameters: 𝑑, which is the domain from which 
a random value is to be generated; and 𝑟in , an integer representing the amount of resource (a proxy for computation time) that may 
be consumed in the attempt to generate a random value. If the generateRandom procedure determines that there is insufficient 
resource, the algorithm has the option of failing. In this case, no value is produced, only the amount of resource consumed in the 
attempt is returned.

generateRandom is a recursive procedure. After initialising an empty container (for example, a multiset of 𝜏), the procedure 
may add elements to the container by invoking generateRandom with the inner domain 𝜏 (as in Algorithm 1). However, it is 
necessary to share the amount of resource given to the generateRandom procedure between the initial invocation and any recur-
sive invocations. This is because the elements of a container may also be variable-sized and each may therefore consume different 
amounts of resource when generated. For example, consider applying this procedure to the domain mset (maxSize 1000) of 
mset (maxSize 1000) of int(...). Not only will the outer multiset have a variable size, but so will each of its elements. In 
this case, controlling the size of the outer multiset alone is not an effective control of computational cost as we may spend time 
producing few but very large inner multisets.

Generating an atomic type (such as int or bool) has a cost of 1. Four variable-sized compound types (set, multiset, sequence, 
and relation) have a cost of 1 to initialise the container, while the other compound types (function, partition, matrix, tuple, record) 
do not. The cost of generating any compound type includes the cost of all attempts to generate an element (regardless of whether the 
element was successfully added to the container).

In generateRandomMSet (Algorithm 1), 𝑟 represents the resource used so far. It is initialised to 1, and each time an element is 
added to the multiset 𝑟 is increased by the amount of resource used to generate the element. Note that the generation of each element 
of the multiset (by recursive call to generateRandom) must also have a resource limit. A simple resource limit for generating 
one element would be 𝑟in − 𝑟, however it may be necessary to generate several elements to reach the lower cardinality bound 𝑛min. 
Supposing we have |𝑐| elements in the multiset, and also that the current iteration of the main loop of Algorithm 1 will add one 
element, then 𝑛min − |𝑐| − 1 more elements will be needed to meet the lower cardinality bound. The procedure reserves an amount 
of resource 𝑟res that is an estimate of the minimum amount required to generate 𝑛min − |𝑐| − 1 elements. calcMinResource takes 
a domain and returns an estimate of the minimum resource required to make an element of the domain. The resource limit for the 
recursive call is then calculated as 𝑟in − 𝑟res − 𝑟. If the recursive call to generateRandom fails, then generateRandomMSet either 
returns the current multiset, or (if an insufficient number of elements have been generated) it fails and returns 𝑟.

Other types are generated similarly. For sets, lines 12-20 of Algorithm 1 are iterated until a value is generated that is not already 
in 𝑐. Sequences are generated identically to multisets, except that adding an element to the container (line 20) appends the element 
to the end of the sequence (when doing so would not break an attribute such as injective). Relations are treated as sets of tuples. 
The algorithms for generating the fixed-size types (matrix, tuple, record) are the same as for a multiset of fixed size (i.e. with the
size attribute), except that with tuples and records the inner domains may differ. Values of the atomic types such as int are chosen 
uniformly at random.

Functions divide into two cases. The first are total functions where the preimage is straightforwardly enumerable (i.e. it is of 
type int, enum, bool, or tuple of straightforwardly enumerable types). In this case, a fixed number of output values are required, 
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and they are randomly generated in the same way that a fixed-length sequence would be. Otherwise, the process is very similar to 
generating a set of pairs. For each pair, first the preimage is generated (as in lines 12-14 of Algorithm 1) and this process is iterated 
until a unique preimage has been generated. Then, the image is generated, and (if successful) the mapping is added to the function. 
Resources are handled exactly as if generating a set of pairs.

Partitions are generated in two passes. One pass generates a random sequence of distinct elements using the same method used 
for injective sequences. The other pass (which does not consume any resource) assigns each element in the sequence to a cell in the 
partition. If the partition is regular, the number of cells is chosen uniformly at random (satisfying any relevant attributes) and the 
elements are divided equally among the cells uniformly at random. Otherwise, the minimum number of cells are created (according 
to a minNumParts or numParts attribute, if present) and the minimum required number of elements are placed in each. Then, 
if there are elements remaining, one element 𝑒 is chosen and an attempt is made to place 𝑒 in an existing cell at random, or build 
a new cell containing 𝑒 with the minimum required number of other elements. This step may fail by exceeding a cell’s maximum 
cardinality, exceeding the partition’s maximum number of cells, or having insufficient elements remaining to create a new cell. This 
step is iterated until there are no elements left from the sequence.

5.2. Resource limits

The generateRandom procedure is used to generate random values for the initial state and for some neighbourhood structures. 
In both cases, small values are preferable (as outlined above) and so generateRandom should be given a small value of 𝑟in initially. 
However, it may run out of resource and fail to generate a value, requiring it to be called again with a larger value of 𝑟in . We define 
two constants: 𝑟mul = 1.1 and 𝑟min = 500. For the first call, we set 𝑟in ← 𝑟mul × calcMinResource(𝑑) + 𝑟min. If the first call fails, then 
we set 𝑟in ← 𝑟mul × 𝑟in and call generateRandom again, repeating until a value is returned.

In summary, the effect of the resource limit is to introduce a strong bias towards values with low cardinality (for every part of a 
nested domain) while still allowing some freedom to generate values that are not of the minimal cardinality.

6. Violation counts

In constraint-based local search solvers, each constraint is often associated with a constraint violation value (or violation degree) [16, 
33], which heuristically measures the number of necessary changes in the current assignment to satisfy the constraint, where the 
violation is 0 when the constraint is satisfied. There can be more than one way of calculating a violation for a constraint, and the 
violation value does not have a single definition across all constraints. For example, the constraint violation 𝑣 for the constraint 𝑥 = 𝑦

can be defined as 𝑣 = |𝑥− 𝑦|. One method of measuring violation for the allDiff constraint counts the number of repeated values used 
by its variables. The violation of an arbitrary constraint is calculated inductively based on its structure. For example, the violation 
of a disjunction 𝑐1 ∨ 𝑐2 is the minimum of the violations of 𝑐1 and 𝑐2. We refer to Michel and Van Hentenryck [33] for a full list of 
violation calculation rules for different types of constraints, on which Athanor’s constraint violation rules are based.

Another key concept in constraint-based local search solvers is variable violation, which indicates how much each variable con-
tributes to the violation of a constraint. Unlike constraint violations, which are only assigned to booleans, variables of all types can 
have a variable violation attached to them. In previous works [16,33], the violation of a variable 𝑥 within a constraint 𝑐 is defined as 
the largest possible decrease in the constraint violation of 𝑐 over all possible values in the domain of 𝑥. However, such calculations 
can be computationally expensive, especially in Athanor where arbitrarily nested variable types are allowed. Furthermore, in a 
high-level description of a problem, there are cases where only a single high-level decision variable exists in a constraint model. 
Attaching a violation to only such variable is too coarse. A useful additional feature would be to attach violations to parts of vari-
ables, such as the members of a set or sequence. Therefore, we propose a modified version of variable violation calculation, which 
heuristically decides which variables, and parts of variables, are most likely the cause of current constraint violation.

The variable violation calculation in Athanor is done in a top-down manner. The violation of each constraint is assigned to 
the top operator of the constraint, and then the violation is recursively forwarded to the operands of each operator. Violations can 
optionally have an explanation label, which is also passed down. At present, the only two explanations are too_small and too_large, 
which can only be applied to expressions of type int. The default behaviour is that the violation count and label are passed unchanged 
to all operands of an operator, but some operators have a specialised implementation which better assigns the violations to operands. 
We demonstrate the process with the following example:

1 g i v e n n , y : i n t 
2 f i n d x : i n t ( 1 . . 1 0 ) 
3 s u c h t h a t x > = y 
4 f i n d s : s e t ( s i z e 5 ) o f i n t ( 1 . . n ) 
5 s u c h t h a t 1 = s u m i i n s . t o I n t ( i % 2 = 0 ) 

Assume y = 5 and that the current assignment is x = 1, s = {1 ,2 ,3 ,4 ,6}. Consider the first constraint: x >= y. Athanor will 
calculate the constraint violation v, which can include an explanation. In the case of the >= operator, v = max(y -x ,0)= 4 (see, e.g., 
[33], for more details). The violation and an explanation are then forwarded to the constraint’s operands. For the >= operator, the 
left hand side (x) is assigned the violation of 4 and the explanation label too_small, while the right hand side (y) is also assigned 
the violation of 4 and the explanation label too_large. This leads to x being assigned a violation of 4 and too_small. The violation 
on y is dropped, as only variables can have violations, not parameters.
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We now consider the second constraint: 1 = sum i in s. toInt(i%2 = 0). As the right hand side is evaluated to 3, the left 
hand side receives a violation of v = abs(1 -3)= 2 and an explanation too_small, although this violation is ignored as it applies to a 
constant. The same violation, 2, and the explanation too_large is assigned to the right hand side, and this violation and explanation 
are subsequently passed to each operand of the sum operator, toInt(i%2 = 0). The violation count is assigned to every member of 
the quantification, rather than split, under the expectation that usually a single step of local search will tend to change one, or a few, 
members of the quantification, rather than all members equally.

Rather than pass on the violation count to its operand unchanged, the toInt operator has a more optimised implementation. The 
toInt operator can only take one of two possible values (0 or 1), so we can infer information about the largest possible decrease 
in violation that can occur. More concretely, if the operand is evaluated to false, then the toInt operator is already at its smallest 
possible value (0), and so cannot take a smaller value. Therefore, any violation labelled as too_large is ignored. In our example, 
the violation is dropped when i ∈ {1 ,3}. toInt is the main operator where violation counts are useful, where they avoid marking 
expressions as violating when changing their value would not actually reduce the overall violation count.

On the other hand, when i ∈ {2 ,4 ,6}, the toInt operand is true, which means it can become smaller. Therefore, in this case 
a violation of 1 (as the value of the toInt operator can change by at most 1) and an explanation too_large are passed down to the 
= operator and subsequently to the operator’s non-constant operand: i % 2. The operator %, on the other hand, simply passes down 
the violation to its non-constant operand, variable i, which is an element of s. For implementation simplicity, not every operator in
Athanor generates an explanation. In this case, the operator % does not assign any explanation to its operands.

With the presence of nested types, in Athanor the variable violation on any containing structure s is the sum of the variable 
violation directly associated with s and the variable violation associated with all elements of s. In our previous example, the violation 
of s is defined as the sum of variable violations of elements 2, 4, and 6 (there was no variable violation associated with elements 1 
and 3 in this example).

Essence, and therefore Athanor, operate on relational semantics [34]. This means Booleans can be true, false, or undefined. 
Since undefined values can have such a large impact, with one operand potentially causing the entire expression tree to become 
undefined, Athanor assigns undefined a very large violation count (232). An investigation into other methods of assigning violation 
to undefined values is left for future work.

Information about constraint violation and variable violation is used frequently during the search in Athanor. As described 
in Section 8, the total constraint violation is used for measuring the magnitude of infeasibility of an assignment (the smaller the 
better). Variable violation, on the other hand, is used for biasing towards variables with higher contributions to the violation of the 
current assignment during the application of a neighbourhood structure, i.e., elements with higher variable violations will have a 
higher probability of being selected.

7. Incremental evaluation

During search, whenever a variable is reassigned we must calculate new values and new violation counts for the constraints. 
Rather than reevaluating the entire AST, which can be computationally expensive, Athanor only reevaluates the nodes on the paths 
from the changed variable (leaf node) to the root. The reevaluation is done incrementally and is optimised for efficiency via three 
mechanisms: caching, triggering, and incremental hashing. Athanor also uses invariants in some cases, as described below.

7.1. Caching

Every node in the AST can be queried for a value. In the case of a leaf node, this is the value assigned to the variable represented 
by the leaf. For a non-leaf node, this is the value produced by evaluating the operator encoded by the node. In most cases, operators 
cache their values after evaluation and simply return the cached values when queried. In addition, the operators also cache the values 
of their operands when needed. For example, a sum operator will cache the current sum of all its child nodes and the value of each 
element in the sum. Some operators do not cache their values, but instead forward the request for a value to a descendant node. For 
example, the sequence index operator, which accepts a sequence 𝑠 and an integer index 𝑖, and evaluates to the member 𝑚 of 𝑠 whose 
position matches 𝑖. Unless 𝑖 is out of bounds (see below for a discussion of undefinedness) instead of storing its own value, when 
queried the sequence index operator simply forwards the query to 𝑚.

The cached values are used for incremental evaluation whenever possible. This is particularly useful when there are nodes in 
the AST that have a very large number of children. Consider, for example, summing a list of length 1000. As an example, when 
changing the value of c from 𝑐1 to 𝑐2 in the expression s = sum({a ,b ,c ,d ,e}), the new value of the sum can be calculated as 
s ’ = s - 𝑐1 + 𝑐2. This allows the sum operator to be reevaluated without querying the values of a, b, d, and e.

7.2. Triggering

During incremental evaluation, operators must check if they have to update their current values. Each operator makes use of two 
pieces of information to update its value during the incremental evaluation: its current cached values and the changes made by its 
child nodes. Changes in child nodes are communicated to their parents through triggers - functions that describe in detail the changes 
in the child nodes’ values. All data types share a common set of three basic trigger functions:

• valueChanged() notifies that the value of the node has changed.
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• hasBecomeUndefined() notifies that the value of the node has become undefined (for example, dividing by 0, or indexing a 
sequence by an out-of-bounds value, such as −1).

• hasBecomeDefined() notifies that the value of a node has changed from undefined to defined.

While these three triggers are sufficient to implement incremental evaluation, many abstract types extend the basic set of trigger 
functions in order to give a more detailed description of the change in the value of a node. This allows a more efficient implementation 
of incremental evaluation in many cases. Consider, as an example, the set type. Notifying a set operator that the value of one of its 
operands (of type set) has changed gives very limited information to the operator. Only one member of the set may have changed, 
or the entire set might have been replaced with a different one. The basic valueChanged() trigger function will always need a full 
reevaluation of the operator. To improve performance, Athanor defines additional trigger functions for the set type, including:

• valueAdded(index): a new element is added to the set at index.
• valueRemoved(index): an element is removed from the set at index.
• memberValueChanged(index): an element in the set is changed at index.

In addition, some compound types share two additional trigger functions: memberHasBecomeDefined(index) and memberHas
BecomeUndefined(index), which indicate that some element has become defined or undefined, respectively. These are useful for 
operators such as 𝑓 (𝑦), which evaluates to the image of 𝑦 w.r.t. the function 𝑓 , and which only becomes undefined if the image of 𝑦
becomes undefined.

Note that while types such as sets are unordered in Essence, we treat abstract types as ordered internally, so any particular value 
remains at the same index where possible.

Each operator makes use of the information provided by the triggers to update its current cached value and violation count (if 
it is Boolean). Consider the constraint a subsetEq b. This expression is true or false. Athanor also stores the violation count, 
which is the number of members of a not contained in b. The expression is true when the violation count is 0. Assume the violation 
of the expression, denoted as v, has been evaluated previously. The following demonstrates how changes to the value of a change the 
violation count v.

a->valueAdded(index) If a[index] ∉ b then v ← v + 1

a->valueRemoved(index) If a[index] ∉ b then v ← v - 1

a->memberValueChanged(index) Let 𝑥 be the old value at index index, and 𝑦 be the new value. Then run valueRemoved(x)
followed by valueAdded(y).

a->valueChanged() Set has changed in an unknown way, perform a full re-evaluation of v.
a->hasBecomeUndefined() assign the violation count 232 to v (as discussed in Section 6).
a->hasBecomeDefined() If b is defined, perform a full re-evaluation of v.

A similar procedure is followed for trigger notifications from b. Another example of triggers and incremental evaluation for the 
sum operator and the sequence type can be found in Appendix A.

7.3. Value representation and incremental hashing

It is important for scalability that values are represented compactly, particularly for types where the size is variable. Athanor
uses representations that scale approximately linearly with the actual size of the value, not its upper-bound size. For example, values 
of type set of int are represented with an extensible array of references to the elements, combined with a hash set (i.e. a hash 
table containing only keys) of the elements, both of which scale approximately linearly with the number of elements. Each type has 
a hash function that is incrementally updated to reflect changes made to a value of that type. The incremental hash functions are 
important for efficiency because hash values are extensively used to compare values for equality or disequality. Appendix B describes 
the value representations and incremental hash functions for each type. In very rare cases a hash collision can affect the behaviour 
of Athanor, and we also discuss this issue in Appendix B.

7.4. Invariants and partial one-way propagation

Invariants, also known as one-way constraints, are a common feature of constraint-based local search solvers (as discussed in 
Section 3). An invariant defines one set of variables in terms of another set. For example, given 𝑥 = 𝑦 + 2, we can allow the search 
process to change 𝑦, and calculate the value of 𝑥 from 𝑦 when required.

Athanor implements invariants for integer variables. When an integer variable 𝑎 is contained in an equality constraint 𝑎 = 𝑒

(with any expression 𝑒), all other occurrences of 𝑎 are replaced with 𝑒 throughout the specification and the variable 𝑎 is deleted. To 
ensure that 𝑒 takes a value within the domain of 𝑎, the constraint 𝑎 = 𝑒 is replaced with 𝑒 ∈𝐷(𝑎), where 𝐷(𝑎) is the domain of 𝑎, 
unless this constraint is trivially true in which case it is replaced with True.

Integer elements of compound types are a more difficult case. Consider an equality involving a member of a compound type, for 
example 𝑀[2] = 𝑦+2, for a sequence 𝑀 and integer 𝑦. In this case we cannot remove 𝑀[2] because the sequence 𝑀 as a whole may 

Artiϧcial Intelligence 340 (2025) 104277 

13 



S. Attieh, N. Dang, C. Jefferson et al. 

appear in other constraints and will have neighbourhood structures. However, we would still like to use this constraint to update 
𝑀[2] when 𝑦 changes.

To handle such cases, we introduce a weaker technique which we call partial one-way propagation. Given a constraint 𝑏 = 𝑒 where 
𝑏 is an integer element of a compound type, partial one-way propagation can assign 𝑏 the value of 𝑒 whenever 𝑒 changes, without 
deleting 𝑏 or deleting the constraint 𝑏 = 𝑒. We implement partial one-way propagation for constraints 𝑏 = 𝑒 when: 𝑏 is an integer 
element of a compound type; the value of 𝑒 must always be in the domain of 𝑏; and the domain of the decision variable 𝑥 containing 
𝑏 places no restrictions on the value of 𝑏 other than the domain of 𝑏 itself.

The final requirement is to ensure that updating 𝑏 will not violate the type of 𝑥. For example, if 𝑥 is an injective sequence, 
updating 𝑏 could break injectivity. Similarly, sets and partitions disallow duplicate values so their elements also cannot be updated 
by partial one-way propagation. Restrictions on an integer element can arise from any layer of the type of 𝑥; for example, while 
the integers in a sequence (maxSize 5) of int can be updated by partial one-way propagation, the integers in a set of 
sequence (maxSize 5) of int cannot, because the set cannot contain duplicate sequences.

Athanor keeps track of all constraints of the form 𝑏 = 𝑒 that satisfy the conditions given above. For each such constraint, whenever 
the value of 𝑒 is changed during incremental evaluation the value of 𝑏 is updated automatically. To prevent cycles, each element of 
a compound type may be updated at most once during each pass of incremental evaluation. The constraint 𝑏= 𝑒 is not removed, and 
may be violated when the cycle detection prevents updating 𝑏.

An example can be seen in the Minimum Energy Broadcast problem (Fig. 9): for a total function named depths, we have the 
following constraint:

1 d e p t h s ( c h i l d ) = d e p t h s ( p a r e n t ) + 1 

The element depths(child) is updated when the value of the right-hand side changes.
The CBLS systems described in Section 3 have various sophisticated ways of identifying invariants and processing them efficiently. 

There is clear potential for improvement to Athanor in this area.

8. Search procedures

In Athanor, as is usual for local search-based metaheuristics, the generated neighbourhood structures are treated as black boxes 
– procedures which may improve or worsen the violation count or the objective. A single iteration of search consists of the selection 
of one variable and its reassignment via a neighbourhood structure. Built around these iterations is the traditional metaheuristic 
design; the metaheuristic decides after each iteration of search whether the new solution should be accepted or the change should 
be reversed. The metaheuristic used in Athanor follows the well-known Iterated Local Search (ILS) algorithm [35] where a hill 
climbing phase (for improving the current solution) and an exploration phase (for escaping local optima) are interleaved. During the 
hill climbing phase, neighbourhood structures are selected dynamically to ensure the most effective ones are chosen depending on 
the current stage of the search.

In this section, we first explain the overall search procedure of Athanor (Section 8.1). The exploration phase is then described 
in Section 8.2, followed by details of the hill climbing phase (Section 8.3 and Section 8.4). Finally, the dynamic neighbourhood 
structure selection mechanism is explained in Section 8.5.

8.1. Search architecture

The overall search procedure of Athanor is presented in Algorithm 2.5 The search starts by randomly assigning values to all 
variables (line 1), initialising the two best solutions so far (line 2) and the random walk’s length for the exploration phase (line 3). 
The two best solutions saved during the search include: (i) 𝑠𝑏𝑒𝑠𝑡 , the current global best during the entire search; and (ii) 𝑠

∗ , the local 
best solution obtained before the random walk’s length reaches its limit.

For constrained problems, it is possible that the current solution does not satisfy all constraints. Therefore, in the main loop,
Athanor first tries to repair any violations via a hill climbing search (line 6, procedure hillClimberToZeroViolation) before 
starting to alternate between two phases: (i) a hill climbing phase (line 7, procedure hillClimber), which focuses on improving the 
objective function value; and (ii) an exploration phase (line 14, procedure randomWalk), which makes a number of random changes 
to the current solution 𝑠 obtained from the hill-climbing if 𝑠 is not better than the local best 𝑠∗. The comparator strictlyBetter(𝑠, 
𝑠∗) (line 8) is defined as follows:

procedure strictlyBetter(𝑠, 𝑠∗)
return violation(𝑠) < violation(𝑠∗) ∨

( violation(𝑠) = 0 ∧ violation(𝑠∗) = 0 ∧
objective(𝑠) < objective(𝑠∗) )

where violation(𝑠) and objective(𝑠) correspond to the total number of constraint violations (as described in Section 6) and the 
objective function value of a solution 𝑠.

5 All constant values used in Athanor’s search procedure were chosen based on manual tuning on some example instances taken from CSPLib [36]. A systematic 
investigation of the influence of those parameters on solver performance and how to select the best values is left for future work.
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Algorithm 2 Overall search procedure of Athanor.
1: 𝑠← random initial assignment ⊳ current solution
2: 𝑠𝑏𝑒𝑠𝑡 ← 𝑠, 𝑠∗ ← 𝑠 ⊳ global and local best solutions so far
3: 𝑛𝑟 ← 10 ⊳ random walk length
4: while time limit not reached do
5: if violation(𝑠) > 0 then
6: 𝑠← hillClimberToZeroViolation(𝑠) ⊳ repair violations
7: 𝑠← hillClimber(𝑠) ⊳ improve objective function
8: if strictlyBetter(𝑠, 𝑠∗) then
9: 𝑠∗ ← 𝑠 , 𝑛𝑟 ← 10 ⊳ update local best & reset random walk length
10: if strictlyBetter(𝑠, 𝑠𝑏𝑒𝑠𝑡) then
11: 𝑠𝑏𝑒𝑠𝑡 ← 𝑠 ⊳ update global best
12: else ⊳ exploration phase to avoid local optima
13: 𝑛𝑟 ← 𝑛𝑟 × 1.3 ⊳ increase random walk length
14: 𝑠← randomWalk(𝑠, 𝑛𝑟) ⊳ random walk for 𝑛𝑟 steps
15: if 𝑛𝑟 > 500 then ⊳ exploration phase reaches its limit
16: 𝑛𝑟 ← 10, 𝑠∗ ← 𝑠 ⊳ reset random walk length and local best

return 𝑠𝑏𝑒𝑠𝑡

The idea of alternating between the two phases (exploration and hill climbing) is that if the hill climbing fails to find a better 
solution, this is an indication that Athanor has become stuck in a local optimum. The exploration phase aims to force Athanor
into a different area of the search space by making random changes to the current solution. The number of changes is limited by 𝑛𝑟 . 
If hill climbing still fails to improve on the local best solution after the perturbation, random walk is applied again with an increased 
value of 𝑛𝑟 (lines 13−14). Once 𝑛𝑟 reaches a certain limit, Athanor redefines the local best as the current solution after exploration 
and resets 𝑛𝑟 (line 16). This can be considered as a random restart when the current exploration is no longer effective.

In this work, when a neighbourhood structure is applied on a current assignment, we simply sample a random assignment from 
the neighbourhood and replace the current assignment with the new one. There are several alternatives used in the literature, such as 
exploring a random subset of the neighbourhood and choosing the best assignment from the subset, or exploring the neighbourhood 
until the first improved assignment is found. An investigation of those alternatives is left for future work.

8.2. Exploration

Algorithm 3 Exploration phase in Athanor (randomWalk).
1: Input: current solution 𝑠, random walk length 𝑛𝑟
2: 𝑣𝑚𝑎𝑥 ← violation(𝑠) + 𝑛𝑟 ⊳ cap on violation of current assignment
3: 𝑖← 0

4: while 𝑖 ≤ 𝑛𝑟 do
5: 𝑠′ ← apply a random neighbourhood structure on 𝑠
6: if violation(𝑠′) ≤ 𝑣𝑚𝑎𝑥 then
7: 𝑠← 𝑠′ , 𝑖← 𝑖+ 1
return 𝑠

The exploration phase is detailed in Algorithm 3. This phase aims to escape local optima by making a number of unguided 
random moves. Each move is performed by randomly selecting a neighbourhood structure and applying it to the current assignment. 
However, we found that simply allowing Athanor to make unrestricted changes to the assignment was unproductive because some 
neighbourhood structures make much more dramatic changes than others. For example, given a nested structure such as a set of

set of int, one neighbourhood structure deletes a single integer from an inner set, while another neighbourhood structure deletes 
a set of integers. An important area of future work is to investigate different strategies to control the magnitude of the changes made 
by each neighbourhood structure. In this paper, we adopt a simple strategy where we set a limit on the increase in the violation 
allowed during the current exploration phase (set by 𝑛𝑟). A tight restriction on violation increase tends to cause Athanor to make 
small changes to the assignment, if the specification includes some constraints. The same parameter 𝑛𝑟 also determines the number 
of random moves made during the exploration phase. Therefore, increasing 𝑛𝑟 allows individual moves to make larger changes to the 
assignment, and also increases the number of random moves. While Algorithm 3 could hypothetically enter an infinite loop if applying 
random neighbour structures failed to find any assignments that satisfy the violation requirements, we have never observed this. If 
it did, the algorithm could be modified to terminate after a specified number of failed attempts to apply a random neighbourhood 
structure.

8.3. Hill climbing for repairing violations

The hillClimberToZeroViolation procedure (called on line 6, Algorithm 2) is described in Algorithm 4. This procedure solely 
focuses on repairing any violations in the current assignment. At each iteration, a neighbourhood structure is dynamically selected 
(details on how neighbourhood structures are selected are described in Section 8.5) and applied to the current solution 𝑠 (line 4). The 
new solution is assigned to 𝑠 if it has a smaller number of violations (line 6). To avoid getting stuck in local optima, we restart the 
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Algorithm 4 Procedure hillClimberToZeroViolation.
1: Input: current solution 𝑠
2: 𝑖← 0

3: while violation(𝑠) > 0 do
4: 𝑠′ ← applyNeighbourhoodStructure(𝑠)
5: if violation(𝑠′) < violation(𝑠) then
6: 𝑠← 𝑠′ , 𝑖← 0

7: else
8: 𝑖← 𝑖+ 1

9: if 𝑖 = 5000 then
10: 𝑠← random assignment, 𝑖← 0

11: return 𝑠

whole search with a random assignment if there is no improvement in terms of violations across 5000 consecutive iterations (lines 
9 − 10).

8.4. Hill climbing for improving objective function value

The hillClimber procedure (called on line 7, Algorithm 2) assumes that the input solution is feasible and focuses on improving the 
objective value. This procedure is comprised of two different versions of hill climbing. The first one, namely hillClimberStandard, 
is a simple and standard hill climbing algorithm where only strictly better solutions are accepted, while the second one, namely
hillClimberWithViolations, is more sophisticated and temporarily allows assignments with constraint violations. The latter one 
was introduced to address the issue where heavily constrained variables exist and the search must temporarily violate constraints to 
improve the objective.

Each version of hill climbing is given a fixed budget of 5000 solution evaluations during each iteration of the overall search 
procedure of Athanor. We first describe the sophisticated hill climbing version (Section 8.4.1), followed by the dynamic selection 
mechanism to choose between hillClimberStandard and hillClimberWithViolations (Section 8.4.2).

8.4.1. Hill climbing with temporary violations

Algorithm 5 Procedure hillClimberWithViolations.
1: Input: current solution 𝑠, budget 𝑏
2: 𝑖← 0 ⊳ number of evaluations used by the whole procedure
3: 𝑛𝑣𝑖𝑜 ← 20 ⊳ current violation limit
4: 𝑠′ ← 𝑠 ⊳ current best solution
5: 𝑜← objective(𝑠) ⊳ current best objective value (without violation)
6: repeat
7: ⊳ We first attempt to improve the objective while allowing violations
8: 𝑘1 ← 0 ⊳ number of evaluations used by the first loop
9: while objective(𝑠′) ≥ 𝑜 and 𝑘1 ≤min(𝑏− 𝑖,500) do
10: 𝑠′′ ← applyNeighbourhoodStructure(𝑠′)
11: 𝑘1 ← 𝑘1 + 1

12: if violation(𝑠′′) ≤ 𝑛𝑣𝑖𝑜 and objective(𝑠
′′) ≤ 𝑜 then

13: 𝑠′ ← 𝑠′′

14: 𝑖← 𝑖+ 𝑘1
15: ⊳ Now attempt to repair violations
16: 𝑘2 ← 0 ⊳ number of evaluations used by the second loop
17: while violation(𝑠′) > 0 and 𝑘2 ≤min(𝑏− 𝑖,500) do
18: 𝑠′′ ← applyNeighbourhoodStructure(𝑠′)
19: 𝑘2 ← 𝑘2 + 1

20: if violation(𝑠′′) ≤ violation(𝑠′) and objective(𝑠′′) < 𝑜 then
21: 𝑠′ ← 𝑠′′

22: 𝑖← 𝑖+ 𝑘2
23: if (violation(𝑠′) = 0 and objective(𝑠′) < 𝑜) or 𝑛𝑣𝑖𝑜 ≥ 20 × 1.210 then
24: 𝑛𝑣𝑖𝑜 ← 20

25: 𝑜← objective(𝑠′)
26: else
27: 𝑛𝑣𝑖𝑜 ← 𝑛𝑣𝑖𝑜 × 1.2

28: until 𝑖 ≥ 𝑏 return 𝑠′

The hillClimberWithViolations procedure is shown in Algorithm 5. Starting from a current solution 𝑠 and an initial limit 𝑛𝑣𝑖𝑜
for temporary violations (lines 3 − 4), the main loop includes two stages. First, Athanor searches for an assignment with a better 
objective value while allowing violations up to the limit of 𝑛𝑣𝑖𝑜 (lines 8 − 13). The second stage attempts to repair the introduced 
violations while maintaining the improved objective value (lines 16 − 21). Following the second stage, if the search found a feasible 
solution with improved objective value then we reset 𝑛𝑣𝑖𝑜 and the target objective, essentially re-starting the procedure from the 
improved assignment 𝑠′ (lines 23 − 25). Also, when the violation limit reaches a certain value (line 23), the search is reset but with 
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an assignment 𝑠′ that could be worse than the original assignment 𝑠. Otherwise, we increase the violation limit 𝑛𝑣𝑖𝑜 and continue to 
the next iteration (line 27).

8.4.2. Dynamic selection of hill climbing procedure
Each time hillClimber is called from Algorithm 2, a choice is made between hillClimberStandard and hillClimberWith-

Violations. It is not known a priori which one is most suitable at a given stage of the search, so the choice is made dynamically. 
The choice is treated as a Multi-Armed Bandit (MAB) problem [37]. The MAB problem considers a bandit with multiple independent 
arms, each of which when pulled returns a random reward. The reward distribution of each arm is unknown, and the aim is to choose 
which arms to pull such that the total reward is maximised. The most important point when solving a MAB problem is to have a bal-
ance between exploitation (pulling the best-so-far arm) and exploration (trying a new or less frequently selected arm to gather more 
information). One of the most common strategies for achieving a balanced exploitation-exploration trade-off is the Upper Confidence 
Bound (UCB) algorithm [38], where the selected arm 𝑎∗ for a time step 𝑡 is defined as:

𝑎∗ = argmax
𝑎∈𝐴 

(
𝑅𝑡(𝑎)

𝑛𝑡(𝑎) 
+ 𝑐 ×

√
ln 𝑡 
𝑛𝑡(𝑎)

)
(1)

where 𝐴 is the set of arms, 𝑛𝑡(𝑎) is the number of times arm 𝑎 has been pulled until time 𝑡, and 𝑅𝑡(𝑎) is the current total reward 
received by pulling arm 𝑎. The formula offers a balance between exploitation (the first term) and exploration (the second term), and 
𝑐 is a parameter of the algorithm.6

In our context, each version of hill climbing is an arm. The individual reward received at each time step (i.e., when an arm is 
pulled) is defined as the number of times that the objective value is improved during the hill climbing call without introducing 
constraint violations.

8.5. Dynamic neighbourhood structure selection

In this section, we describe in detail how neighbourhood structures are selected during each hill climbing variant (i.e., the ap-
plyNeighbourhoodStructure procedure in Algorithm 4 and Algorithm 5).

A typical Essence specification with high-level nested types usually leads to the instantiation of several neighbourhood structures. 
Some neighbourhood structures may be better at improving the objective, while others may be better at reducing violations when 
looking for a feasible solution. Of course there may be some that are not favourable for either. The aim of dynamic neighbourhood 
structure selection is to quickly classify these neighbourhood structures and bias the search towards the neighbourhoods appropriate 
to the current search stage.

Consider, for example, the SONET problem and its objective, the minimisation of the sum of the inner sets’ cardinalities. One of the 
matching neighbourhood structures, setRemove, as the name suggests, closely fits the objective by explicitly focusing on reducing 
the sizes of the inner sets. The inverse, setAdd, is not useful with regards to the objective as it always leads to a worse solution, but 
can aid with satisfying the constraints of the problem.

Similar to the dynamic selection of hill climbing procedures, we make use of the UCB algorithm to select neighbourhood structures 
during the search, i.e., each neighbourhood structure is an arm. There are three UCB controllers for neighbourhood structure selection, 
each of which targets a different stage of the search and therefore has a different definition for the reward function. The first controller 
assigns an individual reward of one to a neighbourhood structure when the total constraint violation is reduced. This controller is used 
when the main focus is on repairing the violations (line 4 of Algorithm 4 and line 18 of Algorithm 5). The second controller focuses 
on improving the objective value. It gives each neighbourhood structure an individual reward of one when the objective value is 
improved, irrespective of changes in constraint violations. This controller is used in line 10 of Algorithm 5. The third controller gives 
each neighbourhood structure an individual reward of one only when the objective value is improved without introducing constraint 
violations. This last one is used in the hillClimberStandard procedure described at the beginning of Section 8.4.

The cost to execute and evaluate a neighbourhood structures can vary significantly, some neighbourhood structures can be much 
more computationally expensive than others. The original UCB formula (Equation (1)) simply counts the number of times each 
neighbourhood structure is selected by a UCB controller, neglecting the computational cost of applying the neighbourhood structure. 
Here, we use an approximation of the total amount of computational resources consumed by the application of the neighbourhood, 
cost(𝑎). This includes the total resources of all the inner loops executed during the neighbourhood structure application. If an iteration 
of an inner loop involves generating new random values for a variable within the current assignment, the resources are calculated 
as detailed in Section 5.1. For all other cases, the resource for each iteration is simply counted as 1 because the implementation 
involves simpler operations (e.g., reassigning a pointer). Each time a neighbourhood structure is selected by a UCB controller, 𝑛𝑡(𝑎)
is increased by cost(𝑎) + 1.

9. Experimental evaluation

In this section we evaluate the performance of Athanor in comparison with a collection of other solvers. We compare with 
constraint-based local search solvers that are able to generate neighbourhoods automatically (since Athanor generates neighbour-

6 𝑐 is set as 1 in all experiments in this paper.
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hood structures automatically), and with systematic constraint solvers that have performed well in recent competitions. We have two 
hypotheses: first, that the structure available in a high-level problem specification can be exploited to generate effective local search 
neighbourhoods; and second, that Athanor’s use of variable-sized data structures (for both values and expressions) will allow it to 
scale gracefully to large problem instances.

In the first experiment we compare Athanor with local search and systematic solvers on a collection of benchmark problems, 
ranging from simple to complex in structure. The results show that Athanor performs well overall but comparatively better for 
problem classes with nested structure (such as a set of partitions). Our results broadly confirm the first hypothesis.

In the second experiment, we use new sets of large instances of four problem classes (for example, new knapsack instances with 
80,000 objects) to explore how Athanor scales compared with the other solvers. The results demonstrate Athanor’s ability to 
scale gracefully to large instances (through its support for variable-sized data structures) on three of the four problem classes, largely 
confirming the second hypothesis.

All models and instances used for the experiments and the instance generators we created, together with experimental results 
are all available in the repository https://github.com/athanor/athanor-experiments/. The source code of Athanor is available at 
https://github.com/athanor/athanor. The constraint modelling tool Conjure [13]7 is used by Athanor to parse Essence.

9.1. Solvers

We compare Athanor with six other solvers in seven configurations, together with a simplified version of itself, as follows:

LNS-PG: propagation-guided large neighbourhood search [31] as implemented in Choco [39] version 4.10.10. Details are provided 
below.

LNS-EB: explanation-based large neighbourhood search [32] as implemented in Choco version 4.0.9. At the time of performing the 
experiments, 4.0.9 was the most recent version of Choco to support explanation-based LNS.

Yuck: a constraint-based local search solver.8

fzn-oscar-cbls: a constraint-based local search solver [21,22] based on OscaR-CBLS [20].9

Chuffed: a systematic CP solver with conflict learning [40], version 0.10.4 with the free search option enabled.
OR-Tools: a systematic CP solver with conflict learning,10 version 9.4.1874 with the free search option enabled.
SNS: structured neighbourhood search [6], a local search solver for Essence.
Athanor-Reduced: a simplified version of Athanor itself where the more complex neighbourhood templates are removed. This is 

to validate the impact of high-level neighbourhoods on the solver’s performance.

The other solvers and configurations were chosen to include: both prominent approaches to automatically generating neighbour-
hoods for LNS (propagation-guided and explanation-based); open-source CBLS solvers that were entered in the Local Search track of 
the MiniZinc Challenge Series (Yuck and fzn-oscar-cbls); two systematic CP solvers, including OR-Tools (the overall winner of sev-
eral recent MiniZinc Challenges) and Chuffed (a solver with competitive performance to OR-Tools); and Structured Neighbourhood 
Search, the only solver other than Athanor that uses the structure available in Essence.

LNS-PG and LNS-EB were both implemented using the API of Choco. The initial search for a feasible solution uses a binary depth-
first search with the dom/wdeg variable ordering heuristic and random value ordering. The search restarts when a backtrack limit 
is reached, initially restarting after 50 backtracks; the backtrack limit is increased by a multiple of 1.5 at each restart. The search 
used within LNS is also a binary depth-first search with dom/wdeg variable ordering. The value ordering is minimum value first, and 
search is limited to 50 backtracks.

Yuck, fzn-oscar-cbls, Chuffed, and OR-Tools are called via MiniZinc [5]11 2.6.4. The version of Athanor used in the experiments 
is release 0.9.9.12

Athanor makes use of high-level structure in two ways: variables are represented internally in a compact form, rather than 
flattened to a lower-level representation; and neighbourhood structures are automatically created from neighbourhood templates 
and high-level types of decision variables. To investigate these two ideas separately, Athanor-Reduced is a version of Athanor
with many high-level neighbourhood templates removed. Athanor-Reduced contains only the atomic neighbourhood templates, 
neighbourhood templates to add or remove a value for variable-sized containers, and LiftSingle, so atomic templates can be 
applied to members of higher-order types. It also contains all the partition templates, except SwapParts.

7 https://github.com/conjure-cp/conjure.
8 https://github.com/informarte/yuck (the release dated November 1st, 2022).
9 Downloaded from http://user.it.uu.se/~gusbj192/fzn-oscar-cbls/latest/oscar-cbls-flatzinc.zip, version dated August 22nd, 2021, which is the latest release as of 

8th June 2023.
10 https://github.com/google/or-tools.
11 https://www.minizinc.org/.
12 https://github.com/athanor/athanor/releases/tag/release_v0.9.9.
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1 g i v e n i t e m s n e w t y p e e n u m 
2 g i v e n w e i g h t s : f u n c t i o n ( t o t a l ) i t e m s --> i n t 
3 g i v e n b i n S i z e : i n t 
4 f i n d p a c k i n g : p a r t i t i o n f r o m i t e m s 
5 m i n i m i s i n g | p a r t s ( p a c k i n g ) | 
6 s u c h t h a t f o r A l l p i n p a r t s ( p a c k i n g ) . 
7 b i n S i z e > = s u m i i n p . w e i g h t s ( i ) 

Fig. 5. Essence specification of the bin packing problem. 

9.2. Essence specifications and constraint models

Each problem class used in the experiments has an Essence specification (used by Athanor and SNS) and two constraint models: 
a MiniZinc model (used by Yuck, fzn-oscar-cbls, Chuffed, and OR-Tools); and a Choco model (for LNS-PG and LNS-EB, written in Java 
using the Choco API). To ensure (as far as possible) a fair comparison of all solvers, we have chosen or written constraint models 
that correspond closely to the Essence specifications. In each case, we describe how the abstract decision variables in the Essence
specification are represented in the MiniZinc and Choco models. We also ensure that the MiniZinc and Choco models are as close as 
possible given the differences between the two systems.

In some cases the representation of an abstract decision variable introduces symmetry (such as representing a set of 𝜏 as a matrix 
of 𝜏 , for any Essence type 𝜏). For each problem where this occurs, we have two versions of the MiniZinc and Choco models: one 
with symmetry-breaking constraints and the other without. All experiments are conducted with both versions of the model, because 
we do not know in advance whether symmetry-breaking constraints will help or hinder a given solver.

The MiniZinc and Choco models use common global constraints such as allDifferent and element. In this set of experiments, we do 
not utilise specialised global constraints that encapsulate an entire problem or a key part of it (such as knapsack [41] and bin pack-
ing [42] constraints). The propagators for global constraints such as knapsack and bin packing are essentially special-purpose solvers 
for a problem class, and our aim is to compare the general-purpose solver Athanor to other general-purpose solvers. In Section 10, 
we conduct a separate set of experiments where those specialised global constraints are employed.

Both MiniZinc and Choco support set variables (representing a set of integers). We use set variables in MiniZinc for any Essence
variable with type set of int. However, in the Choco models we represent set of int with an array of Boolean variables 
(representing the characteristic function of the set). Decomposing set variables gives the LNS methods the ability to search parts of 
the set representation while freezing the rest, and also avoids having a single variable in the model of the Knapsack problem.

All MiniZinc and Choco models minimise or maximise an integer variable optVar, the value of which is a function of the values 
of primary decision variables. Choco requires a single variable to optimise and we follow the same convention in MiniZinc for 
consistency.

9.3. Benchmark problems

We benchmark Athanor against other solvers on seven problem classes. As detailed in the subsequent sections, we make use 
of standard benchmark instance sets whenever they are available. For problems where there are only a small number of instances 
available, or the existing instances are trivially solved by the solvers considered in our experiments, we create new benchmark instance 
generators and randomly generate new instances for the evaluation. All models, generators and instances used in our experiments 
are provided in the accompanying repository.

9.3.1. Bin packing
The specification of the classic bin packing problem is shown in Fig. 5. Each item must be allocated to exactly one bin, so we 

are able to use the partition type to capture the entire problem in a single decision variable. The optimisation function (to be 
minimised) is the number of parts (cells) in the partition. The constraints state that the weight limit of each bin is respected.

We use a 0/1 model by Håkan Kjellerstrand13 for the Choco and MiniZinc solvers. The model extends the basic model of Régin 
and Rezgui [43]. For each item and bin, the model has a 0/1 variable indicating whether the item is placed in the bin. Also, for each 
bin, we have a load variable that is the sum of weights of items in the bin. The upper bound of each load variable is the weight 
limit of the bins. Constraints ensure that each item is packed exactly once, and an implied constraint states that the sum of the load 
variables is equal to the total weight of items. Symmetry breaking constraints place the load variables in non-increasing order. The 
optimisation function (to minimise) is the number of load variables that are greater than 0.

We use 80 instances from a set of 160 generated by Falkenauer [44] and available from the OR-Library [45].14 Falkenauer 
generated 8 sets of 20 instances; from each set we took the 10 even-numbered instances. The number of items in this instance set 
range from 60 to 1000.

13 https://github.com/hakank/hakank/blob/master/minizinc/bin_packing_me.mzn.
14 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html.
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1 g i v e n n C i t i e s : i n t 
2 g i v e n d i s t a n c e s : f u n c t i o n ( t o t a l ) 
3 t u p l e ( i n t ( 1 . . n C i t i e s ) , i n t ( 1 . . n C i t i e s ) ) --> i n t 
4 l e t t i n g m a x D i s t a n c e b e m a x ( [ i | ( ( _ , _ ) , i ) < - d i s t a n c e s ] ) 
5 f i n d t o u r : s e q u e n c e ( s i z e n C i t i e s , i n j e c t i v e ) 
6 o f i n t ( 1 . . n C i t i e s ) 
7 m i n i m i s i n g s u m i : i n t ( 2 . . n C i t i e s ) . 
8 d i s t a n c e s ( ( t o u r ( i -1 ) , t o u r ( i ) ) ) 
9 + d i s t a n c e s ( ( t o u r ( n C i t i e s ) , t o u r ( 1 ) ) ) 

Fig. 6. Essence specification of the Travelling Salesperson Problem. 

1 g i v e n n : i n t ( 1 . . ) $ n u m b e r o f l o c a t i o n s 
2 l e t t i n g L 0 b e d o m a i n i n t ( 0 . . n ) $ 0 i s t h e d e p o t 
3 l e t t i n g L 1 b e d o m a i n i n t ( 1 . . n ) 
4 g i v e n w e i g h t s : f u n c t i o n ( t o t a l ) L 1 --> i n t ( 1 . . ) 
5 g i v e n c o s t s : f u n c t i o n ( t o t a l ) t u p l e ( L 0 , L 0 ) --> i n t ( 0 . . ) 
6 g i v e n c a p : i n t ( 1 . . ) $ v e h i c l e c a p a c i t y 
7 l e t t i n g t o t a l W b e s u m ( [ w e i g h t | ( _ , w e i g h t ) < - w e i g h t s ] ) 
8 l e t t i n g m V b e t o t a l W / c a p + t o I n t ( t o t a l W % c a p ! = 0 ) $ l o w e r b o u n d 
9 f i n d p l a n : s e t ( m i n S i z e m V , m a x S i z e n ) o f 
10 s e q u e n c e ( m a x S i z e n , i n j e c t i v e , m i n S i z e 1 ) o f L 1 
11 m i n i m i s i n g s u m r i n p l a n . 
12 ( s u m ( [ c o s t s ( t u p l e ( r ( i -1 ) , r ( i ) ) ) | i : i n t ( 2 . . n ) , i < = | r | ] ) 
13 + c o s t s ( ( 0 , r ( 1 ) ) ) + c o s t s ( ( r ( | r | ) , 0 ) ) ) 
14 s u c h t h a t f o r A l l r o u t e i n p l a n . $ v e h i c l e c a p a c i t y 
15 ( s u m ( _ , o r d e r ) i n r o u t e . w e i g h t s ( o r d e r ) ) < = c a p , 
16 $ a l l o r d e r s d e l i v e r e d o n c e 
17 a l l D i f f ( [ l o c | r o u t e < - p l a n , ( _ , l o c ) < - r o u t e ] ) , 
18 ( s u m p i n p l a n . | p | ) = n 

Fig. 7. Essence specification of the Capacitated Vehicle Routing Problem. 

9.3.2. Travelling salesperson problem
In the classic Travelling Salesperson Problem (TSP) [46] we are given a set of 𝑛 cities, and the cost of travelling between each 

pair of cities. The objective is to find the lowest-cost cycle that visits all cities exactly once. The Essence specification is given in 
Fig. 6. The cycle is represented using a single decision variable with a sequence domain of fixed length. Notice that no constraints 
are needed because the injective attribute on the sequence requires all elements to be distinct, capturing the main constraint of the 
TSP. The objective function is simply the sum of the costs of each journey between two cities within the tour.

For Choco and MiniZinc solvers we use a model that matches the Essence specification as closely as possible. The model has 
an array of integer decision variables to represent the sequence, and an allDifferent constraint to ensure each city is visited exactly 
once. In MiniZinc the objective remains the same as in Fig. 6 (except that an optimisation variable is introduced as described in 
Section 9.2). In Choco each two-dimensional matrix lookup is translated to a one-dimensional lookup using an element constraint 
with additional index and result variables.

In our experiments we use a subset of the TSPLIB set of symmetric instances [47]. We extract instances with 1000 or fewer cites 
(68 instances in total), as instances of larger sizes could not go through MiniZinc within the time and memory limit (more details 
in Section 9.4).

9.3.3. Capacitated vehicle routing problem
The Vehicle Routing Problem (VRP) without capacities [48] is a variation of TSP with multiple tours (performed by a set of 

vehicles) that all include one depot location. Each location must be visited exactly once, with the exception of the depot. Capacitated 
vehicle routing (CVRP) adds a weight to each location, and a capacity that applies to each vehicle separately. For each vehicle, the 
sum of weights of its visited locations must not exceed the capacity. The Essence specification of CVRP is shown in Fig. 7. The 
decision variable is a set of sequences, where each sequence contains locations (and the depot is implicitly the first and last location). 
Constraints ensure that vehicles do not exceed their capacities, and that all locations are visited by one vehicle.

The models used by Choco and MiniZinc solvers are derived from the Essence specification in Fig. 7. The outer type of the plan
variable is a set with maximum size 𝑛 (the number of locations). The set is represented by a matrix named planMat with rows 
indexed 1…𝑛, where some rows may be unused in any given solution. The inner type of plan is a sequence of maximum length 𝑛, 
and each row of planMat directly represents one sequence. A row is indexed 0…𝑛 + 1, and the first and last variables are fixed to 
zero (representing the depot). For each row, an additional variable is declared for the length of the sequence. Variables in the inactive 
part of each row in planMat are fixed to zero, and unused rows are fixed to zero. An alldifferent_except_0 global constraint 
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1 g i v e n i t e m s n e w t y p e e n u m 
2 g i v e n g a i n : f u n c t i o n ( t o t a l ) i t e m s --> i n t 
3 g i v e n w e i g h t : f u n c t i o n ( t o t a l ) i t e m s --> i n t 
4 g i v e n c a p a c i t y : i n t 
5 f i n d p i c k e d : s e t o f i t e m s 
6 m a x i m i s i n g s u m i i n p i c k e d . g a i n ( i ) 
7 s u c h t h a t ( s u m i i n p i c k e d . w e i g h t ( i ) ) < = c a p a c i t y 

Fig. 8. Essence specification of the knapsack problem. 

1 g i v e n n : i n t ( 1 . . ) 
2 g i v e n i n i t N o d e : i n t ( 1 . . n ) 
3 l e t t i n g d N o d e s b e d o m a i n i n t ( 1 . . n ) 
4 g i v e n l i n k C o s t s : 
5 f u n c t i o n ( t o t a l ) ( d N o d e s , d N o d e s ) --> i n t ( 0 . . ) 
6 f i n d p a r e n t s : f u n c t i o n ( t o t a l ) d N o d e s --> d N o d e s 
7 f i n d d e p t h s : f u n c t i o n ( t o t a l ) d N o d e s --> i n t ( 1 . . n ) 
8 m i n i m i s i n g s u m p a r e n t : d N o d e s . 
9 m a x ( [ l i n k C o s t s ( ( p a r e n t , c h i l d ) ) * t o I n t ( p a r e n t I = p a r e n t ) 
10 | ( c h i l d , p a r e n t I ) < - p a r e n t s ] ) 
11 s u c h t h a t 
12 p a r e n t s ( i n i t N o d e ) = i n i t N o d e , 
13 f o r A l l ( c h i l d , p a r e n t ) i n p a r e n t s . 
14 ( c h i l d ! = i n i t N o d e ) -> 
15 ( p a r e n t ! = c h i l d / \ l i n k C o s t s ( ( p a r e n t , c h i l d ) ) ! = 0 ) , 
16 f o r A l l ( c h i l d , p a r e n t ) i n p a r e n t s . 
17 ( c h i l d ! = i n i t N o d e ) -> d e p t h s ( c h i l d ) = d e p t h s ( p a r e n t ) + 1 

Fig. 9. Essence specification of the Minimum Energy Broadcast problem. 

is applied to planMat, and the sequence lengths are constrained to ensure each location is visited exactly once. Symmetry-breaking 
constraints order the first elements of the sequences.

We use 88 instances of CVRP available from VRP-REP [49] that have size 𝑛 ≤ 100.15,16

9.3.4. Knapsack problem
The classic knapsack problem is straightforward to state in Essence (Fig. 8). The single decision variable is the set of items in 

the knapsack, and the constraint enforces the weight capacity of the knapsack. The optimisation function is to maximise the sum of 
the values of items in the knapsack. The MiniZinc model has one decision variable of type set of int and closely follows Fig. 8
except that a second variable is introduced representing the optimisation value. The Choco model represents the set with an array of 
Boolean variables, one per item.

We sampled 54 instances from a benchmark set generated by Pisinger [50].17 The full benchmark set has subsets of 100 instances 
for each one of 54 generator configurations. We took instance number 50 from each subset. The number of items in our selected 
instances ranges from 20 to 10,000.

9.3.5. Minimum energy broadcast
The Minimum Energy Broadcast (MEB) problem [51,52] is to connect a set of wireless devices (nodes) to form a broadcast network 

while minimising the energy required to broadcast a message. The structure of the network is a tree where each non-leaf node is 
responsible for broadcasting messages to its set of children, thus a message broadcast by the root will eventually reach all nodes. 
The root node is given as a parameter, and each pair of nodes has a given link cost. The objective is to minimise the total energy to 
broadcast a message, where the energy used by a node is the maximum of the set of link costs between the node and its children.

The Essence specification of MEB is shown in Fig. 9. The specification has a total function representing the parent relationship 
of the tree, and it ensures acyclicity using a second total function representing the depth of nodes in the tree. Constraints connect 
the depth of each non-root node to the depth of its parent. The MiniZinc and Choco models closely follow the Essence specification. 
The total functions are represented straightforwardly using arrays (indexed by the function domain) of integer decision variables. 

15 Instances of larger sizes either could not go through MiniZinc within the time and memory limits, or result in a memory exception for several solvers called via 
MiniZinc.
16 The instances are from Augerat 1995 – Sets A, B, and P, Christofides and Eilon 1969 – Set E., Fisher-1994-Set-F, Christofides-et-al.-1979, Christofides-et-al.-1979-
Set-M.
17 Available from www.diku.dk/~pisinger/hardinstances_pisinger.tgz.
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1 g i v e n n B o a t s , n P e r i o d s : i n t ( 1 . . ) 
2 l e t t i n g B o a t b e d o m a i n i n t ( 1 . . n B o a t s ) 
3 g i v e n c a p a c i t y , c r e w : f u n c t i o n ( t o t a l ) B o a t --> i n t ( 1 . . ) 
4 f i n d h o s t s : s e t ( m i n S i z e 1 ) o f B o a t 
5 f i n d s c h e d : s e t ( s i z e n P e r i o d s ) o f p a r t i t i o n f r o m B o a t 
6 m i n i m i s i n g | h o s t s | 
7 $ H o s t s s t a y o n t h e i r o w n b o a t 
8 s u c h t h a t f o r A l l p i n s c h e d . | p a r t s ( p ) | = | h o s t s | / \ 
9 f o r A l l p a r t i n p a r t s ( p ) . | p a r t i n t e r s e c t h o s t s | = 1 , 
10 $ H o s t b o a t s h a v e s u f f i c i e n t c a p a c i t y 
11 f o r A l l p i n s c h e d . f o r A l l h i n h o s t s . 
12 ( s u m b i n p a r t y ( h , p ) . c r e w ( b ) ) < = c a p a c i t y ( h ) , 
13 $ P a i r s o f c r e w s t h a t m e e t i n t h e s c h e d u l e a r e a l l d i s t i n c t 
14 a l l D i f f ( [ ( i , j ) | p < - s c h e d , p a r t < - p , i , j < - p a r t , i < j ] ) 

Fig. 10. Essence specification for the Progressive Party Problem. 

Although the Essence specification is similar to the MiniZinc and Choco models, MEB allows us to evaluate whether neighbourhoods 
designed specifically for functions can outperform generic neighbourhoods applied to arrays of integer variables.

We use a set of 56 instances from previous work [7]. 50 of the instances were created with a random instance generator that has 4 
parameters: the length of the square area where the devices are placed, the number of devices, the maximum power each device can 
broadcast at, and the rate at which the radio signal attenuates. The generator is parameterised according to the description provided 
in [51,52]. The maximum power determines whether two devices can communicate with each other, while the link cost between each 
pair of devices is determined by the Euclidean distance between them and the attenuation rate. The parameters of the generator were 
tuned with the automatic algorithm configuration tool irace [53] to find instances of appropriate difficulty. The random instances 
have between 73 and 297 nodes (within the range 70 to 300 imposed on the generation process). The remaining 6 instances were 
sampled at random from an existing set provided in [6], those instances were of smaller sizes, where the number of devices is in the 
range 20 to 60. All instances and the instance generator are provided in the experimental repository.

9.3.6. Progressive party problem
The Progressive Party Problem (PPP) [54,55] is to arrange a social event involving boat crews. Given a set of boats (each with a 

capacity and crew size) and a number of periods, a set of host boats are chosen and a schedule is designed where the crews of non-host 
boats visit the host boats over several periods. In each period, every non-host boat will visit one of the host boats. The capacity of 
the host boats must be respected, and no pair of boat crews are allowed to meet more than once.

The Essence specification for Athanor is shown in Fig. 10. The key decision variable is sched, which is a set of partitions of 
the boats, with one partition for each time period. Within each partition, each part contains exactly one host boat. For each period 
and each host, the total number of crew members on-board the host boat is bounded by the capacity of the host. The final constraint 
states that every ordered pair (i,j) of crews that meet is distinct throughout the schedule. Unfortunately we cannot use the same 
specification for SNS because it does not support enough of the current Essence language. For SNS we use a less compact specification 
(available in the experimental repository) where the allDiff constraint is decomposed.

For MiniZinc and Choco we use a standard model from the literature [56,54]. In MiniZinc the main decision variables are the set 
of hosts (exactly as in Fig. 10) and an array named visit, indexed by boat 𝑏 (row) and time period 𝑡 (column), representing the host 
boat visited by the crew of 𝑏 at time 𝑡. Hosts always visit themselves, and other boats are required to visit hosts. For each pair of 
crews, they meet at most once (i.e. are assigned the same host at most once) so we have a sum ≤ 1 constraint. Symmetry breaking 
constraints order the columns of visit. The Choco model is very similar but explicitly adds Boolean variables for each pair of boats 
𝑏1, 𝑏2 and time period 𝑡 indicating whether 𝑣𝑖𝑠𝑖𝑡[𝑏1, 𝑡] = 𝑏2, required for the capacity constraints. In Choco the hosts variable is 
represented with an array of Boolean variables indicating whether each boat is in the set.

There are a small number of existing benchmark instances available for this problem. Therefore, we created a new instance 
generator based on the problem description. We set the number of boats, number of periods, and maximum boat capacity (maxC) to 
be within the ranges [10,80], [5,30], and [10,100], respectively (each chosen at random with uniform distribution). The capacity and 
crew size of each boat are generated at random with uniform distribution in the range [0.3 ×𝑚𝑎𝑥𝐶 , 0.8 ×𝑚𝑎𝑥𝐶]. We generated 500
random instances with the given parameter ranges and used the OR-Tools solver to identify unsatisfiable instances. The remaining 
instances (including the ones that were not solved by OR-Tools within the time and memory limits given in Section 9.4) were taken 
and 54 instances were randomly sampled from the set. We also sampled 6 instances at random from an existing benchmark set used 
elsewhere [6]. The total number of instances used for this experiment is 60.

9.3.7. Synchronous optical networking
The Synchronous Optical Networking (SONET) problem [11,57] is to design a fibre-optic network comprised of multiple rings, 

where two network nodes are connected if there exists a ring that both nodes are connected to. Each instance has a set of demand 
pairs (𝑖, 𝑗) where node 𝑖must be connected to node 𝑗 on at least one ring. The objective is to minimise the total number of node to ring 
connections. We use the simplest variation of the problem, where each ring has an upper bound on the number of nodes connected 
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to it, but there is no upper bound on the amount of network traffic carried by a ring. The Essence specification of SONET is shown 
in Fig. 1. The decision variable network is a set of sets of nodes, where each inner set represents a ring. The constraint ensures that 
each demand pair is a subset of at least one of the rings. The capacity constraint on the rings is expressed as a domain attribute of
network (namely maxSize capacity).

The MiniZinc model uses an array of decision variables of type set of int to represent the rings. The demand constraint 
for each demand pair (𝑖, 𝑗) states that there exists a ring that is a superset of {𝑖, 𝑗}. The capacity constraints and the objective are 
straightforwardly stated using the cardinality of sets. Symmetry-breaking constraints order the sets in the array. The Choco model is 
similar to the MIP model of Sherali et al. [58]. It represents each ring with an array of Boolean variables (indicating whether each 
node is in the ring), and also introduces variables for the cardinality of each ring. Demand constraints are represented with Boolean 
logic, while the capacity constraints and objective are stated on the cardinality variables.

There are a number of SONET instances available in CSPLib [57]. However, those instances are of very small sizes (7 to 13 nodes) 
and are mostly trivially solvable by the solvers considered in our experiments. Therefore, we generated 50 random instances with 
number of nodes nNodes ∈ {30,40,… ,120}, between 15 and 90 rings, and with the capacity ranging from 15 to 90. For each unordered 
pair of nodes, the pair is chosen to be a demand pair with probability 0.5. We also include 8 existing instances [6] (the parameters 
of those instances are within similar ranges to the newly generated ones). In total, there are 58 instances for the first experiment.

9.4. Experimental details

For each solver, model, and problem instance, we ran the solver 10 times with 10 distinct random seeds, and with a time limit 
of 10 minutes for each run. The elapsed time and objective value were recorded whenever a solver found a new best solution. All 
experiments were run on the compute nodes of the Cirrus High Performance Computing cluster.18 Each node has two 2.1 GHz, 18-core 
Intel Xeon E5-2695 processors. Each solver is given a memory limit of 7 GB, imposed using the runsolver tool [59].19

The MiniZinc Challenge incomplete scoring method20 was used to compute a performance score for each problem class and solver 
(aggregating instances and runs of each instance). The scoring method is based on the quality of solutions found and the time taken 
to find them, but takes no account of proof of optimality by a systematic solver.

The MiniZinc Challenge incomplete score is computed from the quality 𝑞(𝑥, 𝑖, 𝑗) of the best solution found (within the time limit) 
by solver 𝑥 on instance 𝑖 and run 𝑗, and the time 𝑡(𝑥, 𝑖, 𝑗) taken by solver 𝑥 on instance 𝑖 and run 𝑗 to find the best solution. Given a 
problem class, each pair of solvers 𝑠 and 𝑠′ are scored on every problem instance 𝑖 and run 𝑗. Solver 𝑠 is awarded 1 if 𝑞(𝑠, 𝑖, 𝑗) is better 
than 𝑞(𝑠′, 𝑖, 𝑗); 0 if 𝑞(𝑠, 𝑖, 𝑗) is worse than 𝑞(𝑠′, 𝑖, 𝑗); or in the case that 𝑞(𝑠, 𝑖, 𝑗) = 𝑞(𝑠′, 𝑖, 𝑗), 𝑡(𝑠′ ,𝑖,𝑗) 

𝑡(𝑠′ ,𝑖,𝑗)+𝑡(𝑠,𝑖,𝑗)
. If 𝑠 failed to find a solution 

then 𝑠 is awarded 0 points, regardless of whether 𝑠′ found a solution. For each solver 𝑠, its total score is the sum of its scores relative 
to every other solver 𝑠′ for every problem instance and run.

Note that the score depends critically on the time limit. To show how the relative performance of solvers evolves over time, we 
calculated the score for every integer time limit in the range {1…600}. The score of a solver 𝑠 can either increase or decrease over 
time based on its progress relative to the other solvers.

9.5. Experiment 1: evaluation of Athanor neighbourhoods

The first experiment compares Athanor to the other eight solver configurations (described in Section 9.1) using all seven bench-
mark problems. In this experiment we are testing the first hypothesis: that Athanor will generate effective neighbourhoods and 
neighbourhood structures from the high-level structure available in the Essence specifications. If the hypothesis is true, we expect 
to see Athanor performing well compared to the other solvers in general, but particularly when the Essence specification contains 
nested structures such as a set of set that allow powerful neighbourhood structures to be constructed.

9.5.1. Symmetry breaking
First we determined whether to include symmetry-breaking constraints for the four problem classes where they are available (Bin 

Packing, CVRP, PPP, and SONET), and when using a solver other than Athanor or SNS (i.e. any solver using a MiniZinc or Choco 
model). The symmetry-breaking constraints are described in the relevant subsections of Section 9.3. For each solver and problem 
class we computed the score with a time limit of 600 seconds, with and without the symmetry-breaking constraints. Table 6 shows 
the outcome for each of the four problem classes and each relevant solver.

For all subsequent experiments, we show results only for the version with the better score as reported in Table 6. However, 
both versions (with symmetry-breaking constraints and without) are included in each competition and therefore both versions affect 
the scores of other solvers. For example, when comparing Athanor to systematic solvers (OR-Tools and Chuffed) on the PPP, the 
scores are calculated from all five solver and model combinations and the results are reported for three: Athanor, Chuffed without 
symmetry-breaking, and OR-Tools with symmetry-breaking.

18 https://www.cirrus.ac.uk/.
19 https://www.cril.univ-artois.fr/~roussel/runsolver/runsolver-3.4.1.tar.bz2.
20 https://www.minizinc.org/challenge/2020/rules/.
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Table 6
Whether symmetry-breaking constraints are valuable, for each problem class where they are 
available and for each solver that uses a MiniZinc or Choco model. Sym indicates that the 
model with symmetry-breaking constraints outperforms the model without them.

Chuffed LNS-EB LNS-PG OR-Tools fzn-oscar-cbls Yuck 

Bin Packing Sym — — Sym — — 
CVRP Sym Sym — Sym — — 
PPP — Sym Sym Sym — — 
SONET — — — — — — 

Fig. 11. Performance of Athanor compared to other local search solvers using the scoring system described in Section 9.4. Symmetry is broken for some combinations 
of problem class and solver (as described in Section 9.5.1). Higher scores indicate better relative performance.

9.5.2. Local search solvers
In Fig. 11 we compare the performance of Athanor to the local search solvers SNS, Yuck, fzn-oscar-cbls, LNS-EB, LNS-PG, and

Athanor-Reduced (as described in Section 9.1). Also, Fig. 12 plots the time taken to find the first feasible solution (regardless of 
quality) for each solver and each problem class as a cumulative curve. Fig. 13 plots the status of solver runs (i.e. whether a feasible 
solution was found, and if not how the solver failed) for each problem class and each solver. We will discuss the problems with 
simpler (non-nested) Essence types first.

The Knapsack model uses one of the simplest types in Essence: a set of integers. Even so, Athanor is able to perform well 
compared to other solvers. Both Athanor and LNS-EB achieve the best overall performance on this problem, which indicates the 
effectiveness of the local search algorithm adopted by Athanor (independent of the neighbourhood derivation contribution). The 
LNS-EB version of Choco LNS also performed very well, and slightly outperformed Athanor at the end of the 10 minutes. Surprisingly, 
the CBLS solvers Yuck and fzn-oscar-cbls are less strong, despite supporting sets of integers natively. All solvers except SNS find a first 
feasible solution rapidly (Fig. 12). SNS is hindered by the overhead of representing neighbourhood structures as part of the constraint 
model, and for some runs the translation process (instantiating the model and neighbourhood structures) timed out at 600 s (Fig. 13). 
Due to the simplicity of this problem, Athanor and Athanor-Reduced have an identical set of neighbourhoods and therefore their 
performance is the same (with very marginal difference due to fluctuation in time measurement).

The MEB specification consists of two total functions that are tightly constrained together. As with Knapsack, Athanor finds good 
solutions quickly and performs comparatively well over the 10 minute timespan. Compared with Knapsack, MEB has a more complex 
type (i.e., function) and Athanor is able to outperform Athanor-Reduced on this problem, showcasing the effectiveness of 
the derived high-level neighbourhoods. Athanor’s performance is closely followed by the LNS solvers, which are able to edit both 
functions together. The CBLS solvers are relatively weak, possibly because they cannot use neighbourhoods designed specifically for 
functions. Both fzn-oscar-cbls and Yuck fail to find a feasible solution for the vast majority of runs (Fig. 12) due to either timeout or 
exceeding the memory limit (Fig. 13). SNS was more successful but in some cases the translation process timed out.
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Fig. 12. Cumulative plots of the number of runs for which a feasible solution (of any quality) has been found, for each solver and each problem class. 

The TSP is represented as a fixed-length sequence of integers, and Athanor is able to use neighbourhood structures generated from 
the direct neighbourhood templates for sequences. For example, the well-known 2-opt move [60] (where a contiguous subsequence 
is reversed) is used by Athanor and SNS, but (to our knowledge) is not available in the other solvers. In particular, OscaR-CBLS 
(the CBLS library used by fzn-oscar-cbls) has specialised sequence neighbourhoods including 2-opt [61], but (to the best of our 
knowledge) these are not available in fzn-oscar-cbls because the sequence is represented as an array of integers in MiniZinc. The 
effective neighbourhood derivation results in Athanor’s winning performance compared with all other local search solvers, including
Athanor-Reduced. Yuck and fzn-oscar-cbls have a large number of cases where the memory limit is exceeded. In addition, Yuck 
has a number of cases where the solver times out, while many SNS runs time out in the translation stage.

The Essence model of Bin Packing is not nested, however it makes use of the partition type which could otherwise be expressed 
as a set of sets. Athanor will maintain the partition structure at all times, and is able to use neighbourhood structures generated 
from the direct neighbourhood templates for partition. As a result, Athanor performs well on Bin Packing, followed by the LNS 
solvers then fzn-oscar-cbls (which finds a feasible solution for over 60% of runs). Yuck times out or exceeds the memory limit for 
almost all runs, while SNS fails by translation timeout for the majority. Compared with Athanor, Athanor-Reduced is lacking only 
the SwapParts neighbourhood template, which results in its reduced performance. Nevertheless, Athanor-Reduced still performs 
relatively well compared with other local search solvers, demonstrating the effectiveness of the derived neighbourhood structures for 
partition.

The SONET problem is represented in Essence using a set of sets of integers. Athanor’s higher-order and synchronised neigh-
bourhood templates allow moves such as moving an element from one inner set to another, or swapping elements between two of the 
inner sets (in addition to moves involving only one of the inner sets). The effectiveness of these high-level neighbourhoods is validated 
via the significant performance difference between Athanor and Athanor-Reduced. Athanor also significantly outperforms the 
other local search solvers. There are a number of cases where each of the other local search solvers do not find a feasible solution 
within the time limit. Yuck is also out of memory for a large number of runs, while a small proportion of SNS runs timed out during 
translation.

CVRP is represented in Essence as a set of sequences of integers (representing locations), allowing Athanor to make higher-
order moves (by combining higher-order and synchronised neighbourhood templates) such as moving a location from one sequence 
to another, in addition to moves involving only one sequence (such as reversing a contiguous subsequence). Similar to SONET, The 
performance of Athanor is well ahead of all other solvers, including Athanor-Reduced, with LNS being the only competitive 
alternative. Fig. 12 shows that Athanor and Athanor-Reduced are able to find a feasible solution quickly, followed by the two 
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Fig. 13. Status of solver runs for each problem class and each solver. Note that solution-found indicates that a solver finds a feasible solution within the time limit 
and that it does not exceed the memory limit during the run.

LNS solvers. SNS and fzn-oscar-cbls are not able to find feasible solutions due to exceeding solver time or memory limits, or timeout 
during the translation (SNS).

PPP also has nested structure in the form of a set of partitions. However, there are no synchronised neighbourhood templates 
for partition so only the direct neighbourhood templates (operating on one partition) are available for this type in Athanor. Nev-
ertheless, Athanor has access to six direct neighbourhood templates for partition, and it convincingly outperforms the other local 
search solvers. Interestingly, Athanor-Reduced performs slightly (but consistently after 180 seconds) better than Athanor on 
this problem. Athanor-Reduced lacks only the SwapParts neighbourhood template. The reason could be that this neighbourhood 
template is not useful for PPP, and it takes time for the UCB neighbourhood selectors to eliminate it from the search of Athanor. 
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Fig. 14. Performance of Athanor compared to systematic solvers using the scoring system described in Section 9.4. Symmetry is broken for some combinations of 
problem class and solver (as described in Section 9.5.1). Higher scores indicate better relative performance.

For the other local search approaches, a majority of runs fail due to either timeout (LNS-EB, LNS-PG and fzn-oscar-cbls), exceeding 
the memory limit (Yuck), or timeout during the translation (SNS).

In summary, Athanor is the clear winner for all three classes with a nested type (CVRP, PPP and SONET) and also for TSP and 
Bin Packing where powerful direct neighbourhood templates are available. Athanor also performed well on MEB and Knapsack 
despite a relative lack of structure. The results firmly confirm our hypothesis that Athanor is able to exploit the structure available 
in high-level problem specifications to generate effective neighbourhoods.

9.5.3. Systematic solvers
In Fig. 14 we compare Athanor and Athanor-Reduced with Chuffed and OR-Tools (as described in Section 9.1), both of which 

are systematic solvers with conflict learning and activity-based heuristics. The two systematic solvers have quite different behaviour 
on the 7 problem classes, with Chuffed performing better on CVRP, PPP and TSP, while OR-Tools dominates on Knapsack, MEB and 
SONET. The two solvers are competitive on Bin Packing, where OR-Tools performs slightly better towards the end of the time limit.

Knapsack has a very simple type without any nested structure. Therefore, it is not surprising that Athanor is not competitive on 
this problem. All solvers are able to find a feasible solution very quickly for all runs (Fig. 12). They are then competing on solution 
quality, and OR-Tools quickly takes the lead and retains it.

For MEB and TSP, we found that Athanor performed strongly in comparison to the systematic solvers. Athanor is able to 
quickly find a first feasible solution for all runs on all instances of MEB and TSP, while Chuffed and OR-Tools do not scale as well. 
For the MEB problem, Chuffed and OR-Tools timed out for a large proportion of runs, while Chuffed ran out of memory for some 
runs. For TSP, we found that both Chuffed and OR-Tools ran out of memory for a significant proportion of the runs, and also Chuffed 
timed out for some runs (see Fig. 13). Finding a feasible solution for TSP would ordinarily be trivial but the size of the instances (up 
to 1000 cities) poses a challenge for both systematic solvers.

For Bin Packing, Athanor and Athanor-Reduced were the only solvers that were able to find feasible solutions for all runs of 
all instances. However, Chuffed and OR-Tools are able to compete in terms of solution quality (when they find a solution), reducing 
the scores of Athanor and Athanor-Reduced over time. OR-Tools is able to find a feasible solution for 50% of the runs and 
Chuffed for somewhat less than 50% (as shown in Fig. 13).

On the SONET problem Athanor and Athanor-Reduced quickly find a feasible solution for all runs on all instances, while the 
other two solvers are slower to do so. OR-Tools is able to compete with Athanor on solution quality, and Athanor’s score declines 
slightly over time, however after 600 seconds Athanor still has a clear lead in terms of solution quality. As noted above, there is 
a clear difference between Athanor and Athanor-Reduced caused by the use of higher-order and synchronised neighbourhood 
templates in Athanor. For both OR-Tools and Chuffed, the sets of integers in the MiniZinc model are represented with Boolean 
variables, producing a model where most variables and constraints are Boolean and which should be well-suited to conflict learning 
solvers.

Athanor is the clear winner for CVRP, it is able to find feasible solutions quickly for all runs and produce the highest quality 
solutions at every time step. OR-Tools and Chuffed do not scale as well. Both solvers run out of memory for many runs and Chuffed 
also times out for some runs, as shown in Fig. 13.
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Finally, PPP challenges all four solvers in different ways. Chuffed is able to quickly find feasible solutions for all runs, but its 
score declines over time as the other solvers produce better quality solutions. Athanor finds feasible solutions for just over 70% 
of runs, and Athanor-Reduced for just over 80%. OR-Tools finds feasible solutions on approximately 60% of runs, timing out for 
the rest. Athanor tends to find higher quality solutions than Chuffed and Athanor-Reduced, and as a consequence has a slightly 
higher score at 600 seconds. This is in contrast to Fig. 11, where Athanor-Reduced has a better score than Athanor because
Athanor-Reduced is able to find feasible solutions for more runs, and thus gain points from other local search solvers that struggle 
to find feasible solutions. For all instances, a solution exists where all boats are in the hosts set (and every boat crew stays on their 
own boat throughout the schedule), however this solution is difficult for Athanor to find. The reasons for this are explored below 
where we report experiments with larger instances of PPP.

9.6. Experiment 2: scalability

The second experiment focuses on scalability of solvers when given very large instances. The hypothesis here is that Athanor’s 
use of variable-sized data structures for both values and expressions (described in Sections 7.3 and 2.2 respectively) will allow it to 
scale gracefully and therefore outperform the other solvers for sufficiently large instances of a given problem class.

We focus on four problem classes in this experiment: Bin Packing, Knapsack, PPP, and SONET. For the Knapsack problem, other 
solvers outperformed Athanor in the first experiment. For PPP the results were inconclusive. For the Bin Packing problem we found 
that other solvers are able to compete with Athanor in terms of solution quality, despite the Essence specification using a partition 
domain for the decision variable. The SONET problem is the only other one with a nested type where another solver (OR-Tools) is 
able to compete with Athanor on solution quality.

9.6.1. Benchmark instances
We generated new large instances for each of the four problem classes as follows.

Bin Packing: we made use of the Bin Packing generator proposed in [62]. The generator (BPPGen) was written in Fortran and can 
be downloaded from the Bin Packing library BPPLib [63]. The problem size parameter is the number of objects. For each problem 
size in {1000,1500,2000} we generated 50 instances using the default parameters provided in the original generator, i.e., the lower 
bound and upper bound for the relative weight of items (as a fraction of the bin capacity) are set to 0.2 and 0.7, respectively. The bin 
capacity is set to 10000.
Knapsack: we use Pisinger’s hard instance generator [50] to generate 20 instances for each problem size (i.e., the number of items) 
in the set {10000,20000,30000,40000,50000,60000,70000,80000} (160 instances in total). The parameters of the generator are set 
to their default values (range of coefficients: 1000, instance type: uncorrelated spanner instances of type 11, number of tests in series: 
1000).
Progressive Party Problem (PPP): we make use of the new generator described in Section 9.3.6 and generate 20 random instances 
for each problem size (expressed as ⟨number of boats,number of periods⟩) of ⟨80,20⟩, ⟨120,30⟩, ⟨160,40⟩, and ⟨200,50⟩ (80 instances 
in total). The capacity is kept in the range {10…100}.
SONET: we make use of the new generator described in Section 9.3.7 and generate 20 random instances for each of the following 
problem sizes (written as ⟨number of nodes,number of rings⟩): ⟨160,80⟩, ⟨180,90⟩, and ⟨200,100⟩.

9.6.2. Results
Results for the Bin Packing problem are plotted in Fig. 15, showing a clear progression as the instance size increases from 1000 to 

2000 objects. Athanor quickly finds feasible solutions for all instances of all three sizes, whereas other solvers either cannot find a 
feasible solution within the time limit or take significantly longer to do so. LNS-PG and LNS-EB are able to find feasible solutions in 
some cases, and all other solvers are unable to solve any instance. In summary, Athanor clearly scales better than any of the other 
solvers on this problem class.

Fig. 16 summarises the reasons for failure of each solver on the largest Bin Packing instances. All the MiniZinc solvers and SNS 
ran out of memory or time during translation, while the LNS solvers were able to start searching but in most cases they timed out 
before finding a feasible solution. Only LNS-PG finds any feasible solutions for the size 2000 instances.

For the Knapsack problem, we found that Athanor is able to find feasible solutions quickly and outperform the other solvers for 
all 8 sizes, as shown in Fig. 17. OR-Tools performs well up to size 60,000, but does not scale to the larger sizes. For the size 80,000 
instances, Athanor, LNS-EB, and LNS-PG are able to find an initial feasible solution for all runs of all instances. Athanor has a 
higher score based on solution quality. The Knapsack problem contains a single decision variable with type set of enum, and so can 
benefit from Athanor’s compact representation of sets, as well as dynamic unrolling of expressions for the objective and constraint 
(all of which scale with the actual size of the set, rather than its maximum possible size). Fig. 16 shows that Chuffed and Yuck are 
limited by their memory use, while OR-Tools and fzn-oscar-cbls time out before finding a feasible solution. SNS times out during 
translation for the majority of the instances of size 80,000.

The results for large PPP instances are shown in Fig. 18. Only Chuffed, Athanor, and Athanor-Reduced were able to find 
feasible solutions for any of the four sizes. On the size 160 instances, the solvers other than Chuffed failed in several different ways 
(as shown in Fig. 16). All solvers fail on instance size 200, indicating the scalability challenge of this problem. As discussed in 
Section 9.5, Athanor is hindered by the partition SwapParts neighbourhood structure and Athanor-Reduced is more effective. 
Most constraints of the PPP are easy to solve if we have a large set of hosts (for example, adding a host increases the total host 
boat capacity so capacity constraints become easier to solve). However, the solutions with large host sets are not easily reachable for
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Fig. 15. Comparing all solvers on large instances of the Bin Packing problem (with 1000, 1500, or 2000 objects), using the scoring system described in Section 9.4. 
Symmetry is broken for some combinations of problem class and solver (as described in Section 9.5.1). Higher scores indicate better relative performance.

Fig. 16. Status of solver runs for Bin Packing (size 2000), Knapsack (size 80,000), PPP (size 160), and SONET (size 200), for each solver in the scalability experiment. 
Note that solution-found indicates that a solver finds a feasible solution within the time limit and that it does not exceed the memory limit during the run.

Athanor. The second constraint in particular (Fig. 10 lines 11-12) is quantified with forAll h in hosts, therefore its violation 
may be reduced by taking an element out of hosts. As a consequence, the second constraint will discourage Athanor from exploring 
areas with large sets of hosts. By examining the UCB neighbourhood selector’s statistics across PPP instances we found that in general 
the most frequently used neighbourhood templates all make changes to partitions within the schedule (using the LiftSingle

higher-order neighbourhood template to lift a partition from sched), while changes to the set of hosts are less frequent. Removing 
an element from hosts is more frequent than adding an element to it, and other neighbourhood structures do not change the size 
of hosts. Also, if the final constraint (Fig. 10 line 14, pairs of crews meet at most once) is removed, we found that Athanor finds 
a feasible solution for 53 of 200 runs on the 20 instances of size 200. Removing a very significant constraint on the schedule does 
make the problem easier but not to the extent that Athanor can straightforwardly solve the largest instances. Taken together, these 
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Fig. 17. Comparing all solvers on large instances of the Knapsack problem (with 10,000 to 80,000 objects), using the scoring system described in Section 9.4. Higher 
scores indicate better relative performance.

Fig. 18. Comparing all solvers on large instances of PPP (with 80 to 200 boats), using the scoring system described in Section 9.4. Symmetry is broken for some 
combinations of problem class and solver (as described in Section 9.5.1). Higher scores indicate better relative performance.

observations suggest that Athanor is changing the set of hosts relatively infrequently and spending most of its time attempting to 
satisfy constraints on the schedule for a fixed set of hosts.

Diversifying the search to include large sets of hosts could potentially help a future version of Athanor to find feasible solutions 
to PPP. It is worth noting that each neighbourhood structure is treated as an independent action by UCB, and there is no mechanism 
for UCB to learn useful sequences of actions. To reduce the violation of the capacity constraints, Athanor would need to first add 
a new host and then redistribute the guest crews among the hosts. However, Athanor does not have any incentive to apply the 
first action alone. Adding a host does not improve the violation of the capacity constraints, might break the first constraint (that
|parts(p)| = |hosts| for all partitions in the schedule), and increases the objective value.
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Fig. 19. Comparing all solvers on large instances of the SONET problem (with 160 to 200 nodes), using the scoring system described in Section 9.4. Symmetry is 
broken for some combinations of problem class and solver (as described in Section 9.5.1). Higher scores indicate better relative performance.

For the SONET problem (Fig. 19) we found that Athanor can quickly produce high-quality solutions for all three sizes of instances 
(including all runs of all instances of size 200). LNS-PG is also able to find feasible solutions up to size 180 but it is not competitive 
with Athanor with respect to solution quality. Other solvers are failing for a variety of reasons, as shown in Fig. 16.

In summary, our hypothesis that Athanor will scale better than the other solvers is largely supported by the results. The exception 
is the Progressive Party Problem where Athanor was unable to find feasible solutions for large instances. For sufficiently large 
instances of Bin Packing, Knapsack, and SONET, Athanor performs substantially better than the other solvers.

10. Experiments with specialised global constraints

Some of our benchmark problems can be modelled using global constraints that represent the entire problem or a substantial 
part of it (such as the knapsack constraint). We refer to these global constraints as specialised to distinguish them from others (such 
as allDifferent and element) that are widely used across otherwise entirely distinct problem classes. Implementations of specialised 
global constraints can include sophisticated reasoning that is specific to a problem class (for example, Shaw’s propagator for the 
bin packing constraint [42]), therefore we consider them to be similar to problem-class-specific solvers and excluded them from the 
experiments reported in Section 9. In this section we compare Athanor to seven other solvers (as in Section 9) on four problem 
classes with specialised global constraints. The MiniZinc and Choco models for the four problems are briefly described here, and are 
available in the experimental repository.

• The Knapsack problem is entirely captured with a knapsack global constraint [64] stated on 0/1 variables.
• Bin Packing is modelled with a bin packing global constraint that includes load variables for each bin [42]. The load variables 
are used in the objective (to minimise the number of non-empty bins).

• TSP is modelled with a global circuit constraint [65] stated on a successor representation of the sequence. The objective is 
modelled using element constraints to look up the distances between adjacent locations.

• CVRP is converted to a single sequence of locations using multiple dummy locations to mark the start and end of the delivery 
routes.21 The successor representation is used with a circuit constraint, combined with a redundant predecessor representation 
with a second circuit constraint. Other decision variables represent load and arrival time for each location (accumulated as a 
vehicle traverses a delivery route), enabling the capacity constraint and the objective (minimise total travel time) to be stated 
straightforwardly. The MiniZinc model includes a custom search order that branches on the successor variables first.

We use the same benchmark instances as in Section 9. For Bin Packing, some larger instances have been generated for the 
scalability experiment. Table 7 shows which of the solvers implement the specialised global constraints. Athanor and SNS use the 
same Essence specification as in Section 9.

Among the four problems, Bin Packing is the only one where symmetry breaking is available (with both MiniZinc and Choco 
models). We evaluated the two Choco LNS solvers, Yuck, OR-Tools, Chuffed, and fzn-oscar-cbls both with and without symmetry 
breaking. Experimental results indicate that the version without symmetry breaking outperforms the one with symmetry breaking for 

21 The model used here is very closely based on the MiniZinc benchmark: https://github.com/MiniZinc/minizinc-benchmarks/.
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Table 7
Implementation of specialised global constraints by each solver. A tick indicates that 
the solver implements the constraint natively (and, for MiniZinc solvers, that the 
native implementation is used by MiniZinc). Otherwise the global constraint is de-
composed before reaching the solver.

Problem Chuffed OR-Tools fzn-oscar-cbls Yuck Choco LNS 

Knapsack ✓

Bin Packing ✓ ✓

TSP, CVRP ✓ ✓ ✓ ✓

Fig. 20. Performance of Athanor compared to other local search solvers with specialised global constraints using the scoring system described in Section 9.4. 
Higher scores indicate better relative performance.

all solvers on this problem except Chuffed. In all plots shown in this section, we present results for Chuffed with symmetry-breaking 
constraints and the rest without those constraints.

10.1. Experiment 1: evaluation of athanor neighbourhoods

As in Section 9.5, the first experiment compares Athanor with the other seven solver configurations using all four problem 
classes for which we have a specialised global constraint model. We are testing the first hypothesis: that Athanor will generate 
effective neighbourhood structures from the high-level structure available in the Essence specifications. If the hypothesis is true, we 
expect Athanor to be competitive with the specialised global constraint models.

Athanor is compared with other local search solvers in Fig. 20. For the Bin Packing problem, Athanor remains the leading 
solver but by a smaller margin than in Section 9, and the relative performance of Yuck in particular is much improved by using the 
specialised global constraint. For CVRP, once again it is the LNS solvers that are the closest challengers. Athanor remains the best-
performing solver but by a smaller margin. On the Knapsack problem, the two LNS solvers and Yuck perform better than Athanor, 
with all three showing a big improvement when using the specialised global constraint model.22 Finally, for TSP the LNS solvers and 
Yuck are substantially improved by using the specialised global constraint model, and Athanor is not the best-performing solver for 
this problem class.

Athanor is compared to the systematic solvers in Fig. 21. For Bin Packing and CVRP, the results are qualitatively similar to those 
in Section 9 but Athanor is leading by a smaller margin. On the Knapsack problem, the results are very similar to those without the 
specialised global constraint. Finally, for TSP the performance of OR-Tools is far better with the specialised global constraint, and in 
this experiment it outperforms Athanor.

10.2. Experiment 2: scalability

As in Section 9.6, the second experiment focuses on scalability of solvers when given very large instances. The hypothesis is 
that Athanor’s use of variable-sized data structures for both values and expressions will allow it to scale gracefully and therefore 
outperform the other solvers for sufficiently large instances of a given problem class. For Bin Packing we found that other solvers 
were able to compete with Athanor and reduce its score over time in the first experiment (although Athanor still has the highest 
score at 600 seconds). For the Knapsack problem, several other solvers were able to outperform Athanor on instances with 20 to 
10,000 objects (Figs. 20 and 21). We perform scalability experiments for Bin Packing and Knapsack, and we also discuss TSP below.

22 The knapsack global constraint is decomposed for Yuck. The MiniZinc model of Knapsack used in Section 9 has a set variable, while in this section we use an 
array of 0/1 variables as required for the global constraint. Yuck exhibits better performance on the 0/1 model.
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Fig. 21. Performance of Athanor compared to systematic solvers with specialised global constraints using the scoring system described in Section 9.4. Higher 
scores indicate better relative performance.

Fig. 22. Comparing all solvers with the bin packing global constraint model (except Athanor and SNS) on large instances of the Bin Packing problem (with 1000, 
1500, 2000, 5000, 10,000, or 20,000 objects), using the scoring system described in Section 9.4. Higher scores indicate better relative performance.

Fig. 22 shows the relative performance of the solvers on the Bin Packing problem as instance size is scaled up to 20,000 objects. We 
use the same instances as in Section 9.6 up to size 2000, and the larger ones were generated with the same generator and parameters. 
The LNS solvers and Yuck scale better when using the specialised global constraint, but ultimately the outcome is the same as in 
Section 9: Athanor scales to larger instances than any of the other solvers.
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Fig. 23. Comparing all solvers with the knapsack global constraint model (except Athanor and SNS) on large instances of the Knapsack problem (with 10,000 to 
80,000 objects), using the scoring system described in Section 9.4. Higher scores indicate better relative performance.

The results on the smallest instances in this experiment are quite different from those presented in Fig. 20 and Fig. 21. This 
is caused by differences in the instance distribution (other than their size). Here the instances of size 1000 are drawn from one 
distribution (i.e. generated with one generator using one set of parameters). The normal size instances of Bin Packing are drawn from 
multiple distributions and have 60 to 1000 objects.

Knapsack is represented as a set of integers in Essence, so Athanor can take advantage of the variable-sized compound type 
and corresponding variable-sized expressions in the constraint and the objective function. As we scale up the number of objects to 
80,000, Athanor scales better than all other solvers from size 60,000 upwards, as shown in Fig. 23.

The knapsack global constraint enables the LNS solvers to perform very well at size 10,000, much better (relative to other solvers) 
than in Section 9. However as the size is increased the LNS solvers struggle to find a feasible solution. For instances of size 80,000, 
all solvers other than Athanor and SNS have a score of 0 after 600 seconds have elapsed. In contrast, in Section 9 we reported that 
the LNS solvers perform well, even up to size 80,000. It seems the overhead of propagating the knapsack constraint is not worthwhile 
for the largest instances.

Finally, several other solvers outperformed Athanor on the TSP when using the circuit constraint. There is no fundamental reason 
to expect Athanor to scale better than the other solvers. The Essence specification for TSP (Fig. 6) does not contain any decision 
variables with variable-sized compound types: the only decision variable is a fixed-length sequence. Also, it does not contain any 
expressions that unroll dynamically (either in a constraint or the objective function). Therefore we have not performed a scalability 
experiment for TSP. The success of Yuck on the TSP suggests there may be neighbourhood structures or local search techniques that 
could be added to Athanor to improve its performance on the TSP and related problems.

10.3. Summary

Athanor compares well to both systematic and local search solvers, even when the other solvers are using specialised global 
constraints (which we define as global constraints that encapsulate all or a very substantial part of the problem). This is a remarkable 
result, given that the implementation of a specialised global constraint can include arbitrary problem-class-specific reasoning.

The most acute examples are the Knapsack and Bin Packing problems. The knapsack global constraint encapsulates the entire 
Knapsack problem, while the bin packing constraint includes almost the entire problem. They both have sophisticated propagators 
for systematic CP solvers [64,42]. Even so, Athanor scales well and outperforms all other solvers on the largest instances of Knapsack 
and Bin Packing. On the TSP, Athanor is competitive but is not the leading solver, however for CVRP (another tour problem that 
uses the circuit global constraint) Athanor outperforms all other solvers.

Artiϧcial Intelligence 340 (2025) 104277 

34 



S. Attieh, N. Dang, C. Jefferson et al. 

11. Conclusions

In this work, we have proposed Athanor, a general-purpose constraint-based local search solver. Compared to existing constraint 
solvers, Athanor’s novelty lies in its ability to search directly on the high-level description of a problem written in the Essence
constraint modelling language. This key idea offers two unique advantages. Firstly, it allows the solver to effectively exploit the 
(high-level) structure of a given problem and automatically derive a rich set of neighbourhood structures for the search. Secondly, by 
working directly with variable-sized data structures and the use of dynamic memory allocation, Athanor is able to scale gracefully 
with the size of the given problem. The twin benefits of the proposed approach result in an effective and highly scalable solver, as 
demonstrated in our experiments across seven combinatorial optimisation problems. We compared Athanor with general purpose 
local search solvers (Choco LNS, fzn-oscar-cbls, Yuck, and SNS) and with systematic solvers that have conflict learning (Chuffed and 
OR-Tools). The experimental results are complex, but in summary Athanor shows a clear advantage for five of the seven problem 
classes. The two exceptions are the Travelling Salesperson Problem (TSP) and the Progressive Party Problem (PPP). The Essence
specification of TSP does not have favourable characteristics for Athanor (such as a nested domain, or a domain with a variable-
sized compound type). In this case, Athanor is outperformed by solvers using a specialised global constraint. The limitation in 
performance on PPP can be attributed to the simplicity of the neighbourhood structure selection mechanism inside the solver, which 
does not allow the search to recognise effective combinations of neighbourhood structures that need to be applied in sequence.

There are several directions to expand on this work. The design of Athanor provides the opportunity to investigate other ways 
of designing neighbourhoods and neighbourhood structures, taking advantage of both the high-level structure and recursive nature of 
variables. Our experiments show that our current domains can already compete with other state of the art solvers, but we believe this 
area of research could lead to significant improvements over our current system. Firstly, as described above, the employment of more 
sophisticated neighbourhood structure selection mechanisms can potentially help the solver to overcome the limitation in performance 
found in our experiments on PPP or similar problems, where the effectiveness of a neighbourhood structure can only be observed if 
it is used in combination with others. This topic has been intensively studied by the hyper-heuristic community (see, e.g. [66,67]). 
In addition to learning to select the best neighbourhood combinations on-the-fly, a recently emerging family of techniques is to learn 
selection strategies in a data-driven fashion via the use of deep reinforcement learning [68]. Similar approaches have shown promising 
results in different areas, such as heuristic selection in planning solvers [69]. A second direction for future research is on expanding 
on the neighbourhood templates. By investigating the effectiveness of various problem-specific neighbourhood templates commonly 
used in the metaheuristics community (e.g., [12]) and integrating them into the neighbourhood template library of Athanor, we 
can potentially enhance the solver’s ability in exploiting the inherent structure present in combinatorial optimisation problems. This 
may lead to significant improvement in the solver’s performance. However, it is important to note that such expansion will also make 
the neighbourhood structure selection problem much more challenging, which will likely require developing more effective learning 
techniques. Finally, there are several design choices in Athanor that are currently set in an ad-hoc manner. A thorough investigation 
of those choices and their impact on the solver’s performance, together with the development of effective algorithm configuration 
techniques [70–72] to automate such design choices are other important avenues for future work.
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Appendix A. Example of triggers and incremental evaluation with the sum operator

The sum operator in Athanor has one operand, which must be a sequence of the integer nodes which are to be added together. 
Like the set type, the sequence type makes use of an extended set of trigger notifications:

• valueAdded(index , x): x has been added to the sequence at position index, moving all later elements up one index.
• valueRemoved(index ,x): x, which was at position index, has been removed, moving all later elements down one index.
• subsequenceChanged(startIndex ,endIndex): One or more of the elements in the sequence between positions startIndex
(inclusive) and endIndex (exclusive) have a new value.

• positionsSwapped(index1 ,index2): elements at positions index1 and index2 have swapped positions.
• memberHasBecomeUndefined(index): The value of the element at position index has become undefined.
• memberHasBecomeDefined(index): The value of the element at position index has become defined.

The following example shows how the sum operator is incrementally updated using the sequence notifications. We assume that 
the sum operator has already been fully evaluated. The sum operator is represented by the following state:

• value: The result of summing the integers in the sequence.
• cmv (cached member values): a copy of the values in the sequence. Values currently undefined are stored as 0.
• undefined: The number of undefined values in the sequence.

The sum is then incrementally updated as changes arrive. The sum implementation accepts the valueAdded, valueRemoved, 
subsequenceChanged and positionsSwapped triggers, and incrementally updates both the value and cmv. When 
memberHasBecomeUndefined is received, the value is still kept up to date (except for the undefined value, which is treated as 0), and 
undefined is incremented. While undefined > 0, the sum node returns undefined as its value. memberHasBecomeDefined decrements 
undefined, and when it reaches 0 the sum node returns value.

The only time a full re-evaluation of value, cmv, and undefined are performed is when valueChanged, hasBecomeUndefined or 
hasBecomeDefined are triggered, as these do not provide any incremental information.

Appendix B. Value representation and incremental hashing

In this section we describe the internal representation and the hash function of each type supported by Athanor. A hash function 
is a function that takes a string of arbitrary length and maps it to a hash – a fixed length string. In Athanor, hash functions are used to 
quickly compare data structures by comparing their hashes rather than by recursively comparing the entire data structure. Comparing 
by hash can improve performance by orders of magnitude. However, hash functions have the limitation that multiple input values 
can have the same hash value – this is termed a hash collision. In general the utility of a hash function depends on the extent to which 
it satisfies multiple properties [73], but here we are only concerned with collision resistance. Collision resistance is the difficulty of 
finding two strings 𝑋 and 𝑌 such that 𝑋 ≠ 𝑌 and hash (𝑋) = hash (𝑌 ). We need strong collision resistance in Athanor because hash 
values are used to compare values for equality: to maintain type correctness (with sets, injective functions, and partitions among 
others); and in several constraint types (allDifferent and subset among others). In this section we define a hash function for the 
types supported by Athanor, describe how it can be computed incrementally (i.e. updated efficiently when a change is made to a 
data structure), and discuss the consequences of a hash collision.

In the following subsections we define a hash function hash (𝑣), where 𝑣 is an expression of any supported Essence type, and show 
how the hash function is updated incrementally following a change 𝛿. The hash function produces a 64-bit value. We make use of an 
existing hash function named mix, which has the property that two similar input strings have (with high probability) widely different 
hashes. MurmurHash3 [74] (128-bit) is used for the mix function, and its output is reduced to 64 bits with XOR. The concrete types 
are dealt with simply. When 𝑣 is an integer, hash (𝑣) = 𝑣 and when 𝑣 is Boolean, hash (𝑣) = 𝑡𝑜𝐼𝑛𝑡(𝑣) (i.e. 0 or 1). Enumerated types 
are represented internally with integers and the integer hash function is used.

B.1. Sets and multisets

Sets are represented internally using an extensible array of references to the elements (in no particular order), and a hash set (i.e. 
a hash table containing only keys rather than key-value pairs) of the elements to enable fast membership tests. Insertion and deletion 
occur at the end of the array; an element to be deleted must be swapped with the last element prior to deletion. For a multiset, the 
hash set is replaced with a hash table mapping each element to the number of occurrences of that element.

We take the approach of hashing each element of the set or multiset, then combining the hashes of the elements into a hash for 
the container. The hashes are combined with a commutative function because sets and multisets are unordered containers and may 
be stored in any order. We use an associative and commutative binary operator 𝜇 to combine the hashes of the elements. This also 
allows for incremental updates to a hash. When adding an element 𝑖 to the set 𝑠 that has a cached hash value ℎ, the new hash ℎ′ can 
be calculated as ℎ′ ← 𝜇 (ℎ,hash (𝑖)). If an element 𝑖1 is removed, the new hash ℎ′ is calculated as ℎ′ ← 𝜇

(
ℎ, (hash(𝑖1))

−1
)
, where 𝑥−1

is defined such that it will “cancel out” 𝑥 in the hash. The choice of the combining operator 𝜇 is important. Consider a simple choice 
of addition:
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hash (𝑠) = hash
(
𝑠1
)
+ hash

(
𝑠2
)
+…+ hash

(
𝑠𝑛
)

Addition produces a hash function with a high probability of hash collisions. As Athanor hashes the integer 𝑖 to 𝑖, the sets {2,8}, 
{4,6} and {1,2,3,4} would all hash to 10. Our solution to this problem is based on Clarke et al. [75]: the hash of each element is 
hashed again with a function called mix, so that similar elements no longer have similar hashes. Therefore, hash (𝑠) where 𝑠 is a set 
of elements 𝑠1, 𝑠2,… , 𝑠𝑛 is defined as:

hash (𝑠) = mix
(
hash

(
𝑠1
))

+mix
(
hash

(
𝑠2
))

+…+mix
(
hash

(
𝑠𝑛
))

The hash function for multisets is identical to the one for sets. Note that compared to a set, a multi-set allows multiple occurrences 
of the same element. As the hashes are added (after mixing), this can reduce the strength of the hash – as we use 64-bit hashes, then 
all multi-sets which contain 264 identical values will hash to 0. However, memory constraints make this practically infeasible – even 
if a multiset had 232 occurrences of the same value, the hash value would still be able to encode 264−32 = 232 distinct values.

B.2. Sequences and tuples

Sequences are represented with an extensible array of references to elements. In this case the order is preserved when adding 
or deleting elements at any index of the array. Sequence hashing reuses the method for incrementally hashing sets by treating the 
sequence as a set of tuples (𝑖, 𝑗), where 𝑗 is a member in the sequence and 𝑖 is its index (position) in the sequence. Assuming we have 
a method for hashing tuples (see below), we can calculate a new hash ℎ′ from an existing hash ℎ for the following operations:

• Element 𝑒 added to end of sequence with index 𝑖: ℎ′ ← ℎ+mix (hash ((𝑖, 𝑒)))

• Element 𝑒 removed from end of sequence, its index was 𝑖: ℎ′ ← ℎ−mix (hash ((𝑖, 𝑒)))

• Element 𝑒 with index 𝑖 changed for element 𝑒′: ℎ′ ← ℎ−mix (hash ((𝑖, 𝑒))) +mix
(
hash

(
(𝑖, 𝑒′)

))

The hashing method for tuples is very simple and does not allow for incremental updates. The hashes of the members of the tuple 
are concatenated into a sequence, and the sequence is then hashed with MurmurHash3 (used as in the mix function). We have found 
that tuples in Essence are usually short, and the lack of incremental updates does not cause a performance problem in practice. If 
necessary, the method of incrementally hashing sequences can also be applied to tuples.

B.3. Functions

A function consists of a defined set, a range set, and a mapping from elements of the first to elements of the second. The range 
is stored as an extensible array of references to elements. If the function is total and the defined set is a contiguous set of integers 
(or tuples of integers, each drawn from a contiguous set), then the defined set is not stored; instead indexes into the range array are 
calculated directly from the defined values. Otherwise, the defined set is stored in an extensible array and a hash table stores the 
mapping from defined values to the index of their image in the range array. Functions are treated as a set of tuples (preimage, image) 
for the purpose of hashing. As a consequence, functions use the method for incrementally hashing sets.

B.4. Partitions

Given a partition with 𝑛 elements, the partition representation maintains an array of partition elements 𝑒 and an array of integers 
𝑝 used to map each element 𝑒[𝑖] to a label 𝑝[𝑖]. Those with the same integer label are in the same part (cell) of the partition. For 
incremental hashing, a partition is treated as a set of sets. In order to maintain the hash of each of the parts (each of the inner sets in 
our set of sets), we use a third array ℎ𝑝 of hashes:

∀𝑖 ∈ 𝐼. ℎ𝑝[𝑖] =
∑

𝑗∈𝐼,𝑝[𝑗]=𝑖

mix (hash (𝑒[𝑗]))

Since we are treating each part of a partition as an individual set, we hash the part in the same way as a set. We then define the 
hash of the entire partition similarly, treating the partition as a set of sets. Since in the previous step we have defined the hash of 
each part (or each inner set of our set of sets) we can apply the same mix/sum operations to combine the hashes, as follows.

hash (partition) =
∑

𝑖∈𝐼

mix
(
ℎ𝑝[𝑖]

)

When an element is moved from one part to another, the hash of the partition is updated incrementally by removing the hashes of 
both parts (𝑝1 and 𝑝2) from the hash of the partition, incrementally updating the hashes of both 𝑝1 and 𝑝2, then restoring the updated 
hashes back into the partition hash. The update is performed in constant time assuming that the hash and mix functions are constant 
time.

B.5. Hash collisions

The path taken through the search space by Athanor can, in extremely rare cases, be affected by a hash collision. This can cause 
incorrect solutions, so all solutions must be verified before they are returned to the user. Athanor includes a function to verify that 
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solutions are correct. This function has only ever found incorrect solutions when we purposefully reduce the size of the hash to 8 
bits, to check it behaves correctly. The problem arises when a constraint requires that two elements of a compound type are equal, 
or (in a negated context) that two elements of a compound type are different. The elements are checked for equality or disequality 
by comparing their hashes – this greatly improves performance, but can lead to incorrect solutions if a hash collision occurs.

Data availability

All source code and data are publicily available via github at: https://github.com/athanor.
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