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Abstract. A minimum sum vertex cover of an n-vertex graph G is a bi-
jection φ : V (G) → [n] that minimizes the cost

∑
{u,v}∈E(G) min{φ(u), φ(v)}.

Finding a minimum sum vertex cover of a graph (the MSVC problem)
is NP-hard. MSVC is studied well in the realm of approximation algo-
rithms. The best-known approximation factor in polynomial time for the
problem is 16/9 [Bansal, Batra, Farhadi, and Tetali, SODA 2021]. Re-
cently, Stankovic [APPROX/RANDOM 2022] proved that achieving an
approximation ratio better than 1.014 for MSVC is NP-hard, assuming
the Unique Games Conjecture. We study the MSVC problem from the
perspective of parameterized algorithms. The parameters we consider
are the size of a minimum vertex cover and the size of a minimum clique
modulator of the input graph. We obtain the following results.

– MSVC can be solved in 22
O(k)

nO(1) time,

where k is the size of a minimum vertex cover.

– MSVC can be solved in f(k) · nO(1) time for some computable func-
tion f , where k is the size of a minimum clique modulator.

Keywords: FPT · Vertex Cover · Integer Quadratic Programming

1 Introduction

A vertex cover in a graph is vertex subset such that each edge has at least one
endpoint in it. Finding a vertex cover of minimum size is NP-complete, and it
is among the renowned 21 NP-complete problems proved by Karp in 1972 [23].
Since then, it has been extensively studied in both the fields of approximation
algorithms and parameterized algorithms. The approximation ratio 2 of mini-
mum vertex cover is easily achievable using any maximal matching of the graph
and it is optimal assuming the Unique Games Conjecture [24].

The best-known FPT algorithm for the vertex cover problem has running
time O∗(1.25284k) (O∗ hides polynomial factors in the input size)[34], where k is
the minimum vertex cover size. In this paper, we study the well-knownMinimum

Sum Vertex Cover, defined below. For n ∈ N, [n] = {1, 2, . . . , n}.
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Fig. 1: Counter example

Definition 1. Let G be an n-vertex graph, and let ϕ : V (G) → [n] be a bi-
jection. The weight (or cover time or cost) of an edge e = {u, v} is w(e, ϕ) =
min{ϕ(u), ϕ(v)}. The cost of the ordering ϕ for the graph G is defined as,

µG(ϕ) =
∑

e∈E(G)

w(e, ϕ).

The objective of the Minimum Sum Vertex Cover (MSVC) problem is to
find an ordering ϕ that minimizes µG(ϕ) over all possible orderings. Minimum

Sum Vertex Cover came up in the context of designing efficient algorithms
for solving semidefinite programs [7]. It was first studied by Feige et al. [11],
though their main focus was on Minimum sum set cover (MSSC), which is a
generalization of the MSVC problem on hypergraphs.

As MSVC requires the sum of the weights of the edges to be minimized, it
is natural to think of prioritizing vertices based on their degree. But this isn’t
always an optimal approach. For instance, v1 is the vertex of the maximum
degree in the graph G1 as shown in Figure 1a. Consider an ordering ψ with v1
in the first position. For position 2 and onwards, any vertex from G1 − v1 can
cover at most two edges. So, the cost of such an ordering is at least 32. However,
if the vertices v2, v3, v4, v5 occupy the first four locations in an ordering, say ϕ,
then cost of ϕ is 30. Though greedy isn’t an optimal strategy, it is interesting to
find the graphs for which preferring a vertex of highest degree at each location
from the remaining graph yields an optimal solution for MSVC. Mohan et al.
gave a sufficiency condition for graphs on which the greedy strategy is optimal
[27]. Interestingly, the greedy approach performs no worse than 4 times the
optimum cost. However, certain bipartite graphs yield a solution from the greedy
algorithm that is precisely four times the optimal solution for MSVC [11]. The
greedy algorithm achieves a facto 4 approximation for MSSC on hypergraphs as
well [3].

Both the problems MSVC and MSSC are well-studied in the realm of approx-
imation algorithms. An improvement over the greedy algorithm is a 2-factor ap-
proximation for MSVC using linear programming [11]. The approximation ratio
for MSVC was further improved to 1.999946 [4]. The best approximation ratio
for MSVC is 16/9, which was achieved using a generalized version of MSSC,
called the generalized min-sum set cover (GMSSC) [2]. Input to GMSSC is a
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hypergraph H = (V,E) in which every hyperedge has a covering requirement
ke where ke ≤ |e|. The first location where ke number of vertices of an edge
e has appeared in the ordering is the cover time of e. The GMSSC problem is
the problem of finding an ordering of vertices that minimizes the sum of cover
time of all the hyperedges. For all hyperedges of H, when ke = 1, the problem
boils down to the MSSC problem. Bansal et al. provide a 4.642 approximation
algorithm for GMSSC, which is close to the approximation factor of 4 for MSSC
[2]. For every ϵ > 0, it is NP-hard to approximate MSSC within a ratio of 4− ϵ
[11].

We now state some results from the literature regarding the hardness of ap-
proximability of MSVC and MSSC. It is NP-hard to approximate MSVC within
a ratio better than 1 + ϵ for some ϵ > 0. For some ρ < 4/3 and every d, MSVC
can be approximated within a ratio of ρ on d-regular graphs, but such a result
doesn’t hold in the case of MSSC. For every ϵ > 0, there exists r, d such that it
is NP-hard to approximate MSSC within a ratio better than 2− ϵ on r-uniform
d-regular hypergraphs [11]. Recently, it was proved that under the assumption
of the Unique Games Conjecture, MSVC can not be approximated within 1.014
[31].

Although MSVC is NP-hard, there are some classes of graphs for which it
is polynomial time solvable. Gera et al. provide the optimal cost of the MSVC
problem for complete bipartite graphs, biregular bipartite graphs, multi-stars,
hypercubes, prisms, etc. [18]. They also provide upper and lower bounds for the
cost of MSVC in terms of independence number, the girth of a graph, and vertex
cover number. MSVC is polynomial-time solvable for split graphs and caterpil-
lars [30]. Interestingly, determining whether MSVC for trees is polynomial-time
solvable or NP-hard has been open for a long time [30].

MSSC is studied in the realm of online algorithms, too. A constructive deter-
ministic upper bound of O(r3/2 ·n), where r is an upper bound for the cardinality
of subsets, for online MSSC was given by Fotakis [14]. This bound was then im-
proved to O(r4) by Bienkowski and Mucha [6]. Though this bound removed the
dependency on n, this was existential. Basiak et al. gave a constructive and
improved bound of O(r2) [5].

Our Methods and Results. We study MSVC from the perspective of parame-
terized complexity. A natural parameter to consider for the FPT algorithm is
the solution size. But, for any connected graph G on n vertices, and an optimal
ordering ϕ, µG(ϕ) ≥ n − 1. Hence, MSVC parameterized by the solution size
is trivially in FPT. Many NP-hard problems are generally tractable when pa-
rameterized by treewidth. However, vertex ordering problems are an exception
to that. For MSVC, it is even harder to consider the treewidth as a parameter
because we do not know if MSVC on trees is polynomial-time solvable or not.

The vertex cover number is a parameter used to prove the tractability of
many vertex ordering problems. As MSVC aims to minimize the sum of the
cover time of all the edges, it is natural to consider the vertex cover number as
the parameter. For a vertex cover S of size k, we define a relation on I = V \ S
such that two vertices of I are related to each other if their neighborhood is the



4 S. Aute and F. Panolan

same. This is an equivalence relation that partitions I into equivalence classes.
Interestingly, we prove that all vertices in the same equivalence class appear
consecutively in an optimal ordering. So, we guess the relative ordering of vertices
in S and then guess the locations of equivalence classes. This gives an FPT
algorithm for MSVC parameterized by vertex cover.

MSVC is polynomial-time solvable for a few classes of graphs, with complete
graphs being one of them. In fact, any ordering of vertices of Kn is an optimal
ordering. A set M ⊂ V (G) is called a clique modulator of the graph G, if the
graph induced on V (G) \M is a clique. Finding an optimal solution for MSVC
is non-trivial if G has a clique modulator of size k. Hence, we consider the size
of a clique modulator as another parameter for MSVC. Vertex cover and clique
modulator are complementary parameters. If a graph G has a vertex cover of
size k, then the same set of vertices is a clique modulator for the complement
of graph G. Hence, these two parameters fit well together in understanding the
complete picture of tractability. Although clique modulator size is a complemen-
tary parameter for vertex cover number, finding an optimal solution of MSVC
with clique modulator is more challenging than that of vertex cover. We use a
similar approach by defining the same neighborhood relation on clique vertices.
Unfortunately, all the vertices of an equivalence class need not be consecutive
here in any optimal ordering. But, we prove that there is an optimal ordering σ
with the following property. Let ℓ1, . . . , ℓk be the location of the vertices from
the modulator. Then, for any i ∈ [k−1] and any equivalence class A, the vertices
from A in the locations ℓi + 1, . . . , ℓi+1 − 1 are consecutive in σ. Also, for any
equivalence class A, the vertices from A in the locations 1, . . . , ℓ1 − 1 as well as
in the locations ℓk−1, . . . , n are consecutive. We formulate an Integer Quadratic
Programming instance for finding the number of vertices from each equivalence
class present between two modulator vertices and provide an FPT algorithm.
We summarize our results as follows:

– MSVC can be solved in [k!(k + 1)2
k

+ (1.25284)k]nO(1) time,
where k is the size of a minimum vertex cover.

– MSVC can be solved in f(k) · nO(1) time for some computable function f ,
where k is the size of a minimum clique modulator.

Other Related Works. Given a graph G(V,E) on n vertices and a bijection
ϕ : V (G) → [n], let a cost(G,ϕ) be defined on the vertex ordering ϕ of G. Vertex
ordering problems are to minimize the cost(G) over all possible orderings ϕ.
Based on the definition of the cost function, there are various vertex ordering
problems studied in the literature.

The bandwidth of a graph G is the smallest integer b, such that there exists a
vertex ordering ϕ, with every edge uv ∈ E(G), |ϕ(u)− ϕ(v)| ≤ b. Given a graph
G, the Bandwidth problem is to find such an optimal ordering. It has been
extensively studied since 1960 and has applications in speeding up many matrix
computations of symmetric matrices. It is NP-complete [29], even for many re-
stricted classes of graphs [15, 28]. Approximating Bandwidth with a constant
factor is NP-hard even for trees [10], but it has an FPT approximation algorithm
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[9]. It is W[1]-hard parameterized by cluster vertex deletion number [19]. Though
Bandwidth parameterized by solution size is in XP [20], it is fixed-parameter
tractable parameterized by vertex cover number [12], and neighborhood diversity
[1].

Cutwidth of a graph G, often referred to as the Min-Cut Linear Ar-

rangement problem in the literature, is NP-complete [17], even when restricted
to graphs with maximum degree 3 [26]. However, it is polynomial-time solvable
on trees [33]. For a given k, there is a linear time algorithm that outputs the cut
if the Cutwidth of G is at most k, else outputs that the graph has Cutwidth

more than k [32]. Cutwidth is FPT parameterized by vertex cover [12].
The optimal linear arrangements (OLA) problem came up in the con-

text of minimization of error-correcting codes and was first studied on n-dimensional
cubes [22]. It is NP-complete [16], but polynomial-time solvable for trees [8]. OLA
parameterized above-guaranteed value (guaranteed value: |E(G)|) [13, 21], and
vertex cover number [25] is in FPT.

These vertex ordering problems are studied in the fields of parameterized
algorithms and approximation algorithms. MSVC is well-explored in the realm
of approximation algorithms. But to the best of our knowledge, it is not studied
in the realm of parameterized complexity.

2 Preliminaries and Notations

Let G be a graph with V (G) as the set of vertices and E(G) as the set of edges.
Let σ be an ordering of V (G) and X ⊆ V (G). The ordering σ restricted on X
is denoted by σ|X . It represents the relative ordering between the vertices of X.
A bijection σ|X : X → {1, 2, . . . , |X|} is defined such that for all u, v ∈ X,

σ(u) < σ(v) if and only if σ|X (u) < σ|X (v).

For an ordering ϕ, we represent ϕ(u) < ϕ(v) as u ≺ϕ v as well. We omit the
subscript ϕ when the ordering is clear. Let X and Y be disjoint subsets of V (G),
such that in an ordering ϕ, u ≺ v, for all u ∈ X, v ∈ Y . If the vertices of X are
consecutive in ϕ; likewise, the vertices of Y are also consecutive, though there
could be vertices between X and Y , we represent this as ϕ(X) ≺ ϕ(Y ).

Definition 2. The right degree of a vertex v in an ordering ϕ is defined as
rdϕ(v) = |{u ∈ NG(v) : ϕ(u) > ϕ(v)}|.

Lemma 1. In an optimal ordering ϕ, the sequence of right degrees of vertices
is non-increasing.

Proof. For the sake of contradiction, assume the sequence of right degrees of ver-
tices in an optimal ordering ϕ is not non-increasing. Then there are consecutive
locations, i and i+1, with ϕ(u) = i, and ϕ(v) = i+1 such that rdϕ(u) < rdϕ(v).
Then, u contributes i · rdϕ(u), and v contributes (i+ 1) · rdϕ(v) in µG(ϕ). Swap
the location of u and v to get another ordering ϕ∗.
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Case (i): u is adjacent to v.
rdϕ∗(u) = rdϕ(u)− 1, and rdϕ∗(v) = rdϕ(v) + 1. Then, v contributes i · rdϕ∗(v),
and u contributes (i+ 1) · rdϕ∗(u) in µG(ϕ

∗).

µG(ϕ
∗)− µG(ϕ) = (i+ 1) · (rdϕ(u)− 1) + (i) · (rdϕ(v) + 1)

− (i) · rdϕ(u)− (i+ 1) · rdϕ(v)

= rdϕ(u)− rdϕ(v)− 1

< 0 (since rdϕ(u) < rdϕ(v))

Case (ii): u is not adjacent to v.
rdϕ∗(u) = rdϕ(u), and rdϕ∗(v) = rdϕ(v). Then, v contributes i · rdϕ∗(v), and u
contributes (i+ 1) · rdϕ∗(u) in µG(ϕ

∗).

µG(ϕ
∗)− µG(ϕ) = (i+ 1) · rdϕ(u) + (i) · rdϕ(v)

− (i) · rdϕ(u)− (i+ 1) · rdϕ(v)

= rdϕ(u)− rdϕ(v)

< 0 (since rdϕ(u) < rdϕ(v))

In both cases, we found that µG(ϕ
∗) < µG(ϕ); which is a contradiction to

the assumption that ϕ is an optimal ordering. Hence, the right degree sequence
in any optimal ordering is non-increasing. ⊓⊔

Lemma 2. In an ordering ϕ of a graph G, locations of two consecutive non-
adjacent vertices of equal right degrees can be swapped to get a new ordering
with the same cost.

Proof. Let u and v be two vertices at location i and i + 1 in ϕ with d as their
right degree. As u and v are non-adjacent, the d neighbors of both u and v are
after i + 1 in ϕ. The vertex u contributes i · d and v contributes (i + 1) · d in
µG(ϕ). If the locations of u and v are swapped, the total contribution by both
the vertices is still d · (2i + 1). Hence, the cost of the new ordering is the same
as µG(ϕ). ⊓⊔

The input to the Integer Quadratic Programming (IQP) problem is an
n×n integer matrix Q, an m×n integer matrix A, and an m-dimensional integer
vector b. The task is to find a vector x ∈ Z

+ such that xTQx is minimized subject
to the constraints Ax ≤ b. Let L be the total number of bits required to encode
the input IQP.

Proposition 1 (Lokshtanov [25]). There exists an algorithm that, given an
instance of Integer Quadratic Programming, runs in time f(n, α)LO(1), and de-
termines whether the instance is infeasible, feasible and unbounded, or feasible
and bounded. If the instance is feasible and bounded, the algorithm outputs an
optimal solution. Here α is the largest absolute value of an entry of Q and A.
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3 MSVC Parameterized by Vertex Cover

Let G be a graph whose minimum vertex cover has size at most k, where k
is a positive integer. Placing the vertices of a minimum vertex cover first in
the ordering appears to be an appealing approach to optimally solve MSVC.
However, graph G2 in Figure 1b shows this isn’t always optimal. The red-colored
vertices form the minimum vertex cover of G2. Consider an ordering ψ with the
first eight locations having these vertices. The order among these vertices doesn’t
matter, as each vertex covers exactly two unique edges (each edge is covered by
exactly one vertex of the vertex cover). And the remaining vertices of the graph
are located at the 9th location and onwards, in any order. The cost of such an
ordering is 72. Consider an ordering ϕ, such that ϕ(v1) = 1, and v1 is followed by
v6, v9, v12, v15, v7, v10, v13, v16 respectively. The remaining vertices are ordered in
any way after v16. The cost of ϕ is 62. So, positioning the vertices of a minimum
vertex cover of size k, in the first k locations, doesn’t always yield an optimal
solution. Hence, a careful analysis is required for designing an FPT algorithm.

Let S = {v1, v2, . . . , vk} be a minimum vertex cover of graph G. Then, I =
V (G) \ S is an independent set. And NS(u) = {v ∈ S|{u, v} ∈ E(G)}. There
is a total of k! relative orderings of vertices of S. Consider one such ordering,
vi1 ≺ vi2 ≺ · · · ≺ vik , where i1, i2, . . . ik is a permutation of [k]. The set of
vertices of I that appear before vi1 is represented by Block 1. The set of vertices
between vij and vij+1

is represented as Block j+1, for j ∈ [k−1]. And the set of
vertices after vik is called Block k+1. This depiction is shown in Figure 2. In an

Block 1 Block 2 Block 3 Block k+1

Fig. 2: k + 1 blocks in an ordering of V (G)

optimal ordering, a vertex from I can be in any one of the k+1 blocks. Consider
the relation R on I as follows: uRw if NS(u) = NS(w). This equivalence relation
R partitions I into at most 2k equivalence classes.

Lemma 3. There is an optimal ordering ϕ such that, in every block, all the
vertices from the same equivalence class are consecutive.

Proof. Consider an optimal solution σ. It satisfies Lemma 1. Consider a block in
which vertices from an equivalence class A are not consecutive. Let the vertices
be at locations up to i and after j. All the vertices in the block are independent.
Let d be the right degree of vertices from A. Then, for all the vertices between the
locations i and j, the right degree is d, by Lemma 1. The vertices can be shifted
to make them consecutive without affecting the cost by repeated application of
Lemma 2. This process can be applied for each equivalence class in each block
to get another optimal ordering ϕ with the required property. ⊓⊔
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U X W
i+1 i+t+l+ri+t+l+1 i+t+1

Fig. 3: Vertices of equivalence class A distributed in different blocks

U XW
 i+1 i+t+r+l i+t+1   i+t+r+1

(a) Ordering ψ1

UX W
 i+1 i+l+t+r i+l+1   i+l+t+1

(b) Ordering ψ2

Fig. 4: Cases of Lemma 4

Lemma 4. Let S be a minimum vertex cover of G. There is an optimal ordering
such that for every equivalence class A, all the vertices from A are consecutive.

Proof. To prove the lemma, it is enough to show that there is an optimal ordering
σ such that the following conditions are satisfied:

(i) Each equivalence class is contained in exactly one block.
(ii) For every block, all the vertices from the same equivalence class are con-

secutive.

Given an ordering ϕ, let fϕ be a function defined on the equivalence classes as

fϕ(A): the number of blocks that contain vertices from equivalence class A.

Notice that fϕ(A) ≥ 1, for all A. Let Q(ϕ) =
∑
A fϕ(A).

Any optimal ordering can be modified to satisfy (ii) by Lemma 3, with the
cost being unaffected. Let α be the number of equivalence classes formed by the
relation R on I = V (G) \ S. We only need to prove that there is an optimal
ordering σ, satisfying (ii), with Q(σ) = α. For contradiction, assume that in
every optimal solution satisfying (ii), there is at least one equivalence class whose
vertices are not entirely contained in a single block. Consider one with the least
value of Q, say ϕ, among all the optimal orderings, satisfying (ii). At least one
equivalence class A exists whose vertices are not in one block.

Let U = {u1, u2, . . . , ut} be a subset of A, with ϕ(u1) = i + 1, ϕ(u2) =
i + 2, . . . , ϕ(ut) = i + t, where t ≥ 1 and i ≥ 0. And ϕ−1(i + t + 1) /∈ A.
Let X = {ϕ−1(i + t + 1), . . . , ϕ−1(i + t + ℓ)} be such that X ∩ S ̸= ∅. Let us
denote these vertices in X as x1, x2, . . . , xℓ. Let W = {w1, w2, . . . , wr} be the
first appearance of vertices from A after U , with ϕ(w1) = i+ t+ ℓ+ 1, ϕ(w2) =
i+ t+ ℓ+ 2, . . . , ϕ(wt) = i+ t+ ℓ+ r, with r ≥ 1, as shown in Figure 3.

Let v1, v2, . . . , vp be the vertices from S, adjacent to A, such that ϕ(v1) =
i1, ϕ(v2) = i2, . . . , ϕ(vp) = ip, where i+ t < i1 < i2 < · · · < ip ≤ i+ t+ ℓ. There
can be more vertices from S in X that are not adjacent to A, but we do not
care about their location. Let the vertices in W have the right degree d. Then
the vertices in U have the right degree d+ p.
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We claim that p ≥ 1. If p = 0, then the right degree of vertices in U and W
is d. And by Lemma 1, all the vertices between U and W have the right degree
d. Hence, by repeated application of Lemma 2, U can be shifted to W or W to
U without affecting the cost and minimizing the value of Q(ϕ), a contradiction.

Case(i): Consider a new ordering ψ1, where the entire set W is shifted
next to U . The weight for all the edges incident on vertices up to U and after
W , from ϕ will remain unchanged. The weight changes for edges incident on X
and W . The set W shifts to the left by ℓ locations, and the set X shifts to the
right by r locations, as shown in Figure 4a.

We analyze the change in the cost because of the shift. Consider a vertex
w ∈ W , with right degree d and location a in ϕ. So, w contributes a · d in the
cost of ϕ. Because of the shift, vertex w is shifted by exactly ℓ locations towards
the left. It now contributes (a − ℓ) · d in the cost of ψ. The change in the cost
because of w is −ℓ · d. This holds true for each vertex in W . As there are r
vertices, each with the right degree d, the total cost change is −ℓdr.

The degrees of all the vertices of X, which are not adjacent to W , remain
unchanged by this shift. Let xi be one such vertex at location b. It contributes
b · rdϕ(xi) in ϕ. Because of the shift of the r locations, it now contributes (b +
r) · rdϕ(xi) in ψ. Hence, the change in the cost is r · rdϕ(xi). The increased cost
due to all such vertices is

[
∑

i∈[ℓ]\{i1,i2,...ip}

rdϕ(xi)

]
· r.

A modulator vertex vp is adjacent to all the vertices ofW . But w ≺ψ1
vp. So, the

right degree of vp decreases by |W | = r. And its location shifts by r locations.
As it is the same for all the vertices v1, . . . , vp, the change in the cost due to
these vertices is

[
∑

i∈{i1,...ip}

(rdϕ(xi)− r)

]
· r

The weight of an edge e = {v1, w1} is i1 in ϕ. But, w1 ≺ψ1
v1, and e’s weight

now is the location of w1 in ψ1, i. e. i + t + 1. Hence, the change in the weight
is (i + t + 1 − i1). Similarly, for the edge {v1, wj}, for j ∈ [r], the change in its
weight is (i + t + j − i1). In the same manner, the change in the weight of the
edges {v2, wj} becomes (i + t + j − i2), for j ∈ [r]. A similar pattern holds for
edges incident on v3, . . . , vp as well. The weight of the rest of the edges remains
unaffected. Hence, the total change in the cost is: µG(ψ1)− µG(ϕ) =
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− ℓdr +

[
ℓ∑

i/∈{i1,i2,...ip},i=1

rdϕ(xi)

]
· r +

[
∑

i∈{i1,...ip}

(rdϕ(xi)− r)

]
· r

+

r∑

j=1

(i+ t+ j − i1) +

r∑

j=1

(i+ t+ j − i2) + · · ·+
r∑

j=1

(i+ t+ j − ip)

= −ℓdr + r ·
ℓ∑

i=1

rdϕ(xi)− pr2 − r(i1 + . . . ip) + p[(i+ t+ 1) + . . . (i+ t+ r)]

= −ℓdr + r ·
ℓ∑

i=1

rdϕ(xi)− pr2 − r(i1 + · · ·+ ip) + pir + ptr + pr(r + 1)/2

= r ·
l∑

i=1

rdϕ(xi)− r · y − pr2/2 (where, y = ℓd+ (i1 + . . . ip)− pi− pt− p/2)

So, we have, µG(ψ1)− µG(ϕ) = r ·

[
∑l
i=1 rdϕ(xi)− y − pr/2

]
.

As r > 0, if

l∑

i=1

rdϕ(xi) < y + pr/2, then µG(ψ1)− µG(ϕ) < 0. (1)

Case(ii): Let ψ2 be a new ordering obtained by swapping the positions
of U and X. The case is illustrated in Figure 4b. Weights of the edges {uj , v1},
j ∈ [t], change from i+j to i1−t. Similarly, weights of the edges {uj , vq}, j ∈ [t],
q ∈ [p], change from i + j to iq − t. For the remaining d edges incident on U ,
their weight increases by ℓ. As there are t vertices in U each of degree d, the
total increase in the cost is ℓdt. And for the remaining edges of X, their weights
are reduced by the factor t. The total change in the cost function is as follows:
µG(ψ2)− µG(ϕ) =

ℓdt−
[ ℓ∑

i=1

rdϕ(xi)
]
· t+

t∑

j=1

[i1 − t− (i+ j)]

+

t∑

j=1

[i2 − t− (i+ j)] + · · ·+
t∑

j=1

[ip − t− (i+ j)]

= ℓdt− t

l∑

i=1

rdϕ(xi)− pt2 + t(i1 + · · ·+ ip)− p[(i+ 1) + (i+ 2) + · · ·+ (i+ t)]

= −t ·
l∑

i=1

rdϕ(xi) + ty − pt2/2 (as, y = ℓd+ (i1 + · · ·+ ip)− pi− pt− p/2)

We have µG(ψ2)− µG(ϕ) = t ·
[
−
∑ℓ
i=1 rdϕ(xi) + y − pt/2

]
.

As t > 0, we have, if

ℓ∑

i=1

rdϕ(xi) > y − pt/2, then µG(ψ2)− µG(ϕ) < 0 (2)
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Notice that p, t, r > 0, this implies
∑l
i=1 rdϕ(xi) > y−pt/2 or

∑l
i=1 rdϕ(xi) <

y+ pr/2 (or both). Hence, corresponding to the sum of the right degrees of ver-
tices in X, shifting U towards W or vice versa gives an ordering with a cost less
than the optimal value, a contradiction. Hence, our assumption that Q is greater
than the number of equivalence classes in every optimal ordering is wrong. ⊓⊔

Let S = {σ1, σ2, . . . σk!} be the set of all permutations of vertices in S, and
A1, A2, . . . , Aq be all the equivalence classes. By Lemma 4, each equivalence
class is contained in exactly one block, and vertices from each equivalence class
are consecutive. With k + 1 blocks and q equivalence classes, there are (k + 1)q

possible choices. We denote a choice as cj for j ∈ {1, 2, . . . , (k + 1)q}. Let E
denote the set of all possible choices. A configuration (σi, cj) corresponds to
the permutation σi of S, and choice cj of E for the equivalence classes, where
i ∈ [k!], j ∈ [(k + 1)q]. An equivalence class, once fixed in one of the k + 1
blocks, in a configuration, (σi, cj), its right degree can be easily calculated, as
it is adjacent to only vertices from the vertex cover. In a configuration (σi, cj),
the relative order between the equivalence classes in any block is decided by
their right degrees by Lemma 1. The equivalence classes are arranged such that
their right degrees are non-increasing. A configuration with minimum cost is an
optimal ordering for MSVC.

It takes (1.25284)knO(1) time to find a vertex cover of size at most k. Hence,

the FPT running time of the algorithm is [k!(k + 1)2
k

+ (1.25284)k]nO(1). Cor-
rectness follows from Lemma 4.

4 MSVC Parameterized by Clique Modulator

In this section, we prove that the MSVC parameterized by the clique modulator
is fixed-parameter tractable.

Definition 3. A set M ⊂ V (G) is called a clique modulator of the graph G, if
the graph induced on V (G) \M is a clique.

The input of the problem is a positive integer k, and graph G with the size
of a minimum clique modulator at most k. The question is to find an optimal
ordering for the vertices of G. We use Integer Quadratic Programming (IQP) to
construct the solution for MSVC parameterized by the size of the clique modu-
lator. IQP can be solved in time f(t, α)nO(1) time, where f is some computable
function, and t is the number of variables in IQP, and α is an upper bound for
the coefficients of variables in the instance of IQP [25].

Let M = {v1, v2, . . . , vk} be a clique modulator of the graph G. Then, Q =
V (G) \M is a clique. Consider the relation R on Q as follows: a vertex u is
related to w if NM (u) = NM (w). It is an equivalence relation, partitioning Q
into equivalence classes A1, A2, . . . , Aℓ, where ℓ ≤ 2k.

In any optimal ordering, each equivalence class doesn’t need to be entirely
contained within one block, unlike when the parameter is a vertex cover number.
Figure 5 is one such example, where Q is a clique. The set A = {e, f, g} forms
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Fig. 5: Graph G3

an equivalence class. For any optimal ordering, σ, σM (2) = 1. And the set A
gets split into the blocks B1 and B2. Either two vertices of A go into B1, and
the remaining vertex in B2. Or one vertex in B1 and two vertices in B2. In both
cases, the solution has a cost of 111. If A is completely in block B1 or completely
in block B2, then the solution cost is at least 112. It shows that the vertices from
each equivalence class could be distributed in more than one block.

But, in an optimal solution, vertices from each equivalence class can be
arranged consecutively within each block, with the cost being unaffected (see
Lemma 6). Once the relative ordering of modulator vertices is guessed, Lemma
1 enables us to determine the ordering of equivalence classes in each block. The
distinguishing factor to get this ordering is their neighbors inM . For a given rel-
ative ordering σM of M , for each block Bi, i ∈ [k+1], we define right modulator
degree for a vertex u ∈ Bi as

rmσM
(u, i) = |{v ∈ NM (u) : σM (v) ≥ i}|.

For any two vertices u and v in an equivalence class A, rmσM
(u, i) = rmσM

(v, i).
We call this the right modulator degree of equivalence class A, rmσM

(A, i) in Bi.
First, we prove that for any ordering σ of V (G), if we sort the equivalence

classes based on their right modulator degree in each block, then the cost of this
new ordering is at most the cost of σ. Let σM = σ|M .

Lemma 5. Let σM be a permutation of M . Let g1 : [ℓ] → {A1, A2, . . . Aℓ} be a
bijection such that rmσM

(g1(1), 1) ≥ rmσM
(g1(2), 1) ≥ · · · ≥ rmσM

(g1(ℓ), 1). For
any ordering σ of V (G), with σ|M = σM , let σ̂ be an ordering of V (G) such that

σ̂(Y ∩ g1(1)) ≺ σ̂(Y ∩ g1(2)) ≺ · · · ≺ σ̂(Y ∩ g1(ℓ)) ≺ σ>|Y |

where the set of vertices of the clique (V (G) \M) in block 1 of σ is denoted by
Y , and σ>|Y | denotes the ordering of vertices after the first |Y | locations. Then,
µG(σ̂) ≤ µG(σ).
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Proof. Recall the ordering σ̂. Here, we have

σ̂(Y ∩ g1(1)) ≺ σ̂(Y ∩ g1(2)) ≺ · · · ≺ σ̂(Y ∩ g1(l)) ≺ σ>|Y |.

We prove that µG(σ̂) ≤ µG(σ). If σ̂ = σ, then we are done. Otherwise, let i be
the first location at which the vertices of σ and σ̂ do not match. Let vertex u
and w be at location i in σ̂ and σ, respectively. That is, σ̂(u) = i and σ(w) = i.
Let the location of u in σ be i+ t. That is, σ(u) = i+ t. Let the right degree of
vertex w and u be d and d′ in σ, i.e. rdσ(w) = d, rdσ(u) = d′.

Let σ1 be the ordering obtained from σ by swapping u and w. If rmσM
(u, 1) =

rmσM
(w, 1), then µG(σ1) = µG(σ) and σ1 matches with σ̂ up to location i.

Now consider the case when rmσM
(u) ̸= rmσM

(w). By the definition of σ̂,
rmσM

(u, 1) > rmσM
(w, 1). We prove that µG(σ1) < µG(σ).

µG(σ1)− µG(σ) = i · (d+ rmσM
(u)− rmσM

(w))+

(i+ t) · (d′ − rmσM
(u) + rmσM

(w))− i · d− (i+ t)d′

= t (rmσM
(w)− rmσM

(u)) < 0

Hence µG(σ1) < µG(σ), and σ1 matches up to ith location of σ̂. Keep repeat-
ing the process to get to the ordering σ̂, and by the above analysis, the Lemma
5 holds true. This completes the proof of the lemma. ⊓⊔

Now, we extend this analysis to the remaining blocks.

Lemma 6. Let σM , a permutation ofM , be given. Let gi : [ℓ] → {A1, A2, . . . Aℓ}
be a bijection such that rmσM

(gi(1), i) ≥ rmσM
(gi(2), i) ≥ · · · ≥ rmσM

(gi(ℓ), i),
for all i ∈ [k + 1]. For any ordering σ of V (G), with σ|M = σM , let σ̂ be an
ordering of V (G) such that

σ̂ = σ̂1(Y1) ≺ σ−1
M (1) ≺ σ̂2(Y2) ≺ · · · ≺ σ−1

M (k) ≺ σ̂k+1(Yk+1).

where the set of vertices of the clique (V (G)\M) in block i of σ is denoted by Yi
and for each i ∈ [k + 1], σ̂i(Yi) = (Yi ∩ gi(1)) ≺ (Yi ∩ gi(2)) ≺ · · · ≺ (Yi ∩ gi(ℓ)).
Then, µG(σ̂) ≤ µG(σ).

Proof. Repeatedly apply the technique of Lemma 5 for each block i ∈ [k+1], to
get the ordering σ̂. The proof follows from Lemma 5. ⊓⊔

We call a permutation of the form σ̂ in Lemma 6, a nice permutation.

4.1 Integer Quadratic Programming

Let G be the input graph and M be a clique modulator of size k. Let Q =
V (G) \M be a clique of size n − k. Let A1, . . . , Aℓ be the set of equivalence
classes that partition Q.

As a first step, we guess the ordering σM ofM such that there is an optimum
ordering σ with σ|M = σM . Lemma 6 implies that we know the ordering of
vertices within each block irrespective of the number of vertices from equivalence
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classes in each block. We use IQP to determine the number of vertices from each
equivalence class that will be present in different blocks. Thus, for each i ∈ [ℓ]
and j ∈ [k+1], we use a variable xij that represents the number of vertices from
Ai in the block j.

Recall that Q is a clique of size n − k. Consider an arbitrary ordering of
vertices of Q. Its cost, denoted by µ(Q) is

µ(Q) = 1 · (n− k − 1) + 2 · (n− k − 2) + · · ·+ (n− k − 1)(1).

This cost remains consistent for any ordering of Q.
For any ordering ϕ of V (G), µG(ϕ) ≥ µ(Q). And µ(Q) can be found before-

hand. We treat µ(Q) as the base cost for G. We need to minimize the cost after
introducing the modulator vertices. Let the first modulator vertex v1 be intro-
duced in an ordering of Q. Assume, there are n1 vertices of Q after v1. Then,
the weight of each edge having both endpoints after v1 increases by 1. There
are

(
n1

2

)
such clique edges. Hence, the total increase in the cost with respect

to the clique edges is
(
n1

2

)
. A modulator vertex vi is introduced after vi−1 and

vi−1 ≺ vi, for all i ∈ {2, . . . , k}. Let ni be the number of clique vertices after vi
in the ordering. Hence, inclusion of vi causes the cost to increase by

(
ni

2

)
. The

total increase in the weights of clique edges after including all the modulator
vertices is

∑k
i=1

(
ni

2

)
.

Thus, in the IQP instance, we also use variables n1, n2, . . . , nk. To minimize
the cost, we need to find the ordering of modulator vertices to be introduced and
their locations. Since σM is fixed, we know the relative ordering of equivalence
classes in each block using Lemma 6. Recall that we have a variable xij for each
equivalence class Ai and block Bj . The variable ni represents the number of
vertices from Q after vi in the hypothetical optimum solution σ. This implies
that in the corresponding IQP instance, we need to satisfy the constraints of the
following form.

np =

k+1∑

j=p+1

ℓ∑

i=1

xij for all p ∈ [k]

|Ai| =
k+1∑

j=1

xij for all i ∈ [ℓ]

We explained that after introducing the modulator vertices, the increase in
cost due to edges in the clique is given by the expression

∑k
i=1

(
ni

2

)
. Next, we need

an expression regarding the increase in cost due to edges incident on modulator
vertices. Towards that, we introduce a variable yp for each p to indicate the
location of the modulator vertex vp in the hypothetical optimal ordering σ.
Clearly, we should satisfy the following constraints.

yp = n− (np + k − p) for all p ∈ [k]

There are np vertices from Q after vp and k − p vertices from M after vp in the
hypothetical optimum ordering σ. Now we explain how to get the increase in
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the cost due to edges incident on the modulator vertex vp. We know its position
is yp. We need to find its right degree. We use a variable dp to denote the right
degree of p. Let rmp = |{v ∈ NM (vp) : σM (v) > σM (vp)}|. That is, rmp is the
number of edges between the modulator vertices with one endpoint vp and the
other in {vp+1, . . . , vk}. Let Ip ⊆ [ℓ] such that i ∈ Ip if and only if vp is adjacent
to the vertices in Ai. Then, the number of neighbors of vp in the clique Q that

appear to the right of vp in the hypothetical solution is
∑k+1
j=p+1

∑
i∈Ip

xij . This
implies that we have the following constraints.

dp = rmp +

k+1∑

j=p+1

∑

i∈Ip

xij for all p ∈ [k]

The increase in cost due to edges incident on modulator vertices such that
the endpoints of those edges in the modulator appear before the other endpoints
is

∑k
p=1 dp · yp. Now, we need to consider the cost of edges between the clique

vertices and the modulator vertices such that clique vertices appear before the
modulator vertex. We use rij to denote the right modulator degree of vertices in
the equivalence class Ai from the jth block. It is defined as follows. Let u ∈ Ai
be a fixed vertex. Then, rij = |{v ∈ NM (u) : σM (v) ≥ j}|. Notice that rij is a
constant, less than or equal to k. Let yij denote the location of the first vertex
from the equivalence class Ai in block j in the hypothetical solution σ. Then,
we should have the following constraint. Here, we use Lemma 6 and recall the
bijection gj . Let Ji,j ⊆ [ℓ] be such that q ∈ Ji,j if and only if g−1

j (Aq) < g−1
j (Ai).

yij = yj−1 +
∑

q∈Ji,j

xqj .

Here, we set y0 = 0. The cost due to edges from Ai in block j to modulator
vertices to its right in the ordering is

rij [yij + (yij + 1) + . . .+ (yij + xij − 1)] = rij

(
xij · yij +

(
xij
2

))
.

Thus, we summarize our IQP instance as follows.

Minimize
∑k
p=1 dp · yp +

∑k
i=1

(
ni

2

)
+
∑ℓ
i=1

∑k+1
j=1 rij

(
xij · yij +

(
xij

2

))

Subject to
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np =

k+1∑

j=p+1

ℓ∑

i=1

xij for all p ∈ [k]

|Ai| =
k+1∑

j=1

xij for all i ∈ [ℓ]

yp = n− (np + k − p) for all p ∈ [k]

dp = rmp +

k+1∑

j=p+1

∑

i∈Ip

xij for all p ∈ [k]

yij = yj−1 +
∑

q∈Ji,j

xqj for all i ∈ [ℓ] and j ∈ [k + 1]

Here, n, k, rij and rmp are constants. Also, rij , rmp ≤ k for all i, j and p. This
completes the construction of an IQP instance for a fixed permutation σM ofM .

Notice that, there are at most 2k(k+1) variables xij and 2k(k+1) variables
yij . And there are k variables for each of yp and np. Hence, the total number of
variables in the above IQP formulation is at most 2k+1 · (k + 1) + 2k.

Next, we prove that the coefficients in the objective functions and the con-
straints are upper bounded by a function of k. The coefficient of yp ·dp is at most
1 in the objective function. The coefficients of ni and n

2 are also upper bounded
by a constant. As rij ≤ k, the coefficients of (xij)

2, xij · yij , and xij are all
at most k. Similarly, coefficients are bounded above by O(k) in the constraints.
Thus, by Proposition 1, we can solve the above IQP instance in time f(k)nO(1)

time for a computable function f .

Lemma 7. Let σM be an ordering of M such that there is an optimum ordering
σ with σ|M = σM . An optimal solution to the IQP defined above is an optimal
solution to MSVC, and vice versa.

Proof. Let I be an optimal solution for IQP. One can construct an ordering σ
of V (G) from I such that σ is a nice permutation, and cost(I) = µG(σ).

Let ϕ be an optimal ordering for MSVC such that it is a nice permutation
(See Lemma 6).

Let Ni,j be the number of vertices of Ai in the jth block of solution ϕ.
Construct a solution Iϕ for IQP by setting xij = Ni,j and yp is the location of
vp in the ordering ϕ for all p ∈ [k]. Values of other variables can be obtained
from values of xijs and yps. The explanation for the construction of the IQP
instance implies that µG(ϕ) = cost(Iϕ). Since Iϕ is a feasible solution for IQP,
cost(I) ≤ cost(Iϕ). We also know that cost(I) = µG(σ). This implies that

µG(σ) = cost(I) ≤ cost(Iϕ) = µG(ϕ).

But, ϕ is an optimal ordering for MSVC. Hence, µG(σ) = µG(ϕ). This implies
that

µG(σ) = cost(I) = cost(Iϕ) = µG(ϕ).
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This completes the proof of the lemma. ⊓⊔

For each ordering σM ofM , we construct an IQP instance as described above
and solve it in f(k) · nO(1) time for some computable function f . Finally, we
consider the best solution among those that are found and construct an ordering
from it according to the explanation given for the IQP formulation. Correctness
of the algorithm follows from Lemma 7.
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