
This is a repository copy of On MAX–SAT with cardinality constraint.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/221129/

Version: Accepted Version

Article:

Panolan, F. orcid.org/0000-0001-6213-8687 and Yaghoubizade, H. (2025) On MAX–SAT
with cardinality constraint. Theoretical Computer Science, 1025. 114971. ISSN 0304-3975

https://doi.org/10.1016/j.tcs.2024.114971

This is an author produced version of an article published in Theoretical Computer
Science, made available under the terms of the Creative Commons Attribution License
(CC-BY), which permits unrestricted use, distribution and reproduction in any medium,
provided the original work is properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

On MAX–SAT with Cardinality Constraint

Fahad Panolan1 and Hannane Yaghoubizade2

1School of Computing, University of Leeds, UK (f.panolan@leeds.ac.uk)
2Department of Mathematical Sciences, Sharif University of Technology, Iran

(hannayzade@gmail.com)

Abstract

We consider the weighted MAX–SAT problem with an additional constraint that at most k variables
can be set to true. We call this problem k–WMAX–SAT. This problem admits a (1− 1

e
)-factor approx-

imation algorithm in polynomial time [Sviridenko, Algorithmica 2001] and it is proved that there is no
(1− 1

e
+ ϵ)-factor approximation algorithm in f(k) ·no(k) time for Maximum Coverage, the unweighted

monotone version of k–WMAX–SAT [Manurangsi, SODA 2020]. Therefore, we study two restricted
versions of the problem in the realm of parameterized complexity.

1. When the input is an unweighted 2–CNF formula (the problem is called k–MAX–2SAT), we design
an efficient polynomial-size approximate kernelization scheme. That is, we design a polynomial-
time algorithm that given a 2–CNF formula ψ and ϵ > 0, compresses the input instance to a 2–CNF
formula ψ⋆ such that any c-approximate solution of ψ⋆ can be converted to a c(1− ϵ)-approximate
solution of ψ in polynomial time.

2. When the input is a planar CNF formula, i.e., the variable-clause incidence graph is a planar graph,
we show the following results:

• There is an FPT algorithm for k–WMAX–SAT on planar CNF formulas that runs in 2O(k)
·

(C + V) time.

• There is a polynomial-time approximation scheme for k–WMAX–SAT on planar CNF formulas

that runs in time 2O(1

ϵ
)
· k · (C + V).

The above-mentioned C and V are the number of clauses and variables of the input formula re-
spectively.

1

1 Introduction

In this paper, we study the well-studied MAX–SAT problem with cardinality constraint. The weighted
version of the problem is formally defined as follows.

Weighted MAX–SAT with Cardinality Constraint (k–WMAX–SAT)
Parameter: k
Input: A set of t clauses CF = {C1, C2, . . . , Ct} of a CNF formula F , a weight function w : CF → R

+

and a positive integer k.
Objective: Find a subset S of variables such that |S| ≤ k and setting variables of S to true and other
variables to false, maximizes the weight of the satisfied clauses.

k–MAX–SAT and its monotone version (a version in which negated literals are not allowed) Maximum
Coverage are well studied both in the realm of approximation algorithms and parameterized complexity.
The input of Maximum Coverage is a family F of subsets of a universe U and a positive integer k. The
goal is to find S1, S2, . . . , Sk ∈ F that maximizes |S1 ∪ S2 ∪ · · · ∪ Sk|.

Maximum Coverage, and hence k–MAX–SAT are known to be NP-complete and W[2]-hard because
Maximum Coverage is a more general case of the Dominating Set problem. A simple greedy approxima-
tion algorithm for Maximum Coverage outputs a (1− 1

e)-approximate solution, where e is the base of the
natural logarithm. This greedy approximation algorithm is essentially optimal for Maximum Coverage [7].
Sviridenko [18] obtained a (1− 1

e)-factor approximation in polynomial time for k–WMAX–SAT. Recently,

Manurangsi [14] showed that there is no f(k) · no(k) time algorithm that can approximate Maximum Cov-
erage within a factor of (1 − 1

e + ϵ) for any ϵ > 0 and any function f , assuming Gap Exponential Time
Hypothesis (Gap-ETH). Thus, to obtain tractable results for k–WMAX–SAT in the realm of parameterized
complexity and approximation algorithms, we need to restrict the input to different classes of formulas. We
study cardinality-constrained unweighted MAX–SAT when the number of literals in each clause is at most
2. This problem is called k–MAX–2SAT. The problem is formally defined below.

MAX–2SAT with Cardinality Constraint (k–MAX–2SAT)
Parameter: k
Input: A set of t clauses CF = {C1, C2, . . . , Ct} of a 2–CNF formula F and a positive integer k.
Objective: Find a subset S of variables such that |S| ≤ k and setting variables of S to true and other
variables to false, maximizes the number of the satisfied clauses.

k–MAX–2SAT and its monotone version Max–k–Vertex Cover (shortly Max k–VC) are extensively
studied [3, 9, 10, 13, 16, 17]. The best-known polynomial-time approximation ratio for k–MAX–2SAT is
0.75 [9]. Raghavendra and Tan [17] designed an α-approximation algorithm for some α > 0.92 that runs in
time npoly(n/k), where n is the number of variables in the input formula [13]. That is, this algorithm runs
in polynomial time when k is a constant fraction of V . Assuming Unique Games Conjecture (UGC), it is
NP-hard to approximate k–MAX–2SAT with a factor better than 0.929 [1].

The monotone variant of the problem, Max k–VC gives an interesting connection between approximate
kernelization and approximation algorithms. Here, given a graph G, our objective is to find a vertex subset
S of size k such that the number of edges in G with at least one endpoint in S is maximized. Max k–VC
is W[1]-hard and Marx [15] designed the first FPT approximation scheme for the problem, where k is the
parameter. Lokshtanov et al. [12] showed that, indeed the steps of the algorithm by Marx can be converted
to get an efficient polynomial-size approximate kernelization scheme (EPSAKS). We refer to Section 2 for
the definition of approximate kernelization. Manurangsi [13] improved the kernel size to O(k/ϵ) and the
running time of FPT approximation scheme to (1/ϵ)O(k)nO(1) for Max k-VC. Manurangsi applied the
algorithm of Raghavendra and Tan [17] for k–MAX–2SAT on the linear size approximate kernel to obtain
an approximation factor of 0.92 for Max k–VC. Approximating Max k–VC with a factor better than 0.929
is also NP-hard assuming UGC [1]. We prove that k–MAX–2SAT admits an EPSAKS.

Theorem 1.1. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a 2–CNF formula F and a positive integer
k, there is an EPSAKS (efficient polynomial-size approximate kernelization scheme) for k–MAX–2SAT

such that the size of the output of the reduction algorithm is upper-bounded by O
(

k5

ϵ2

)

.

2

We also study k–WMAX–SAT when the input is a planar CNF formula, that is, the variable-clause
incidence graph is a planar graph. Restricting MAX–SAT to planar formulas has been already considered in
the realm of approximation algorithms [11] [4]. We prove the following result for k–WMAX–SAT on planar
CNF formulas.

Theorem 1.2. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF formula F , a weight
function w : CF → R

+ and a positive integer k, there is an FPT algorithm for k–WMAX–SAT that runs
in O(236k · k3 · |CF ∪ VF |) time.

Khanna and Motwani [11] already designed a PTAS for k–MAX–SAT (the unweighted version) on
planar formulas. Using a similar technique, we show that the weighted version k–WMAX–SAT also admits
a PTAS.

Theorem 1.3. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF formula F , a weight
function w : CF → R

+ and a positive integer k, there is a polynomial-time approximation scheme that runs
in O(1

ϵ2 · 2
36

ϵ · k · |CF ∪ VF |) time and finds S ⊆ VF such that |S| ≤ k and

k–WMAX–SAT(CF , w, k, S) ≥ (1− ϵ) ·OPT(CF , w, k)

Here, OPT(CF , w, k) is the maximum total weight of clauses in CF that can be satisfied by an assignment
where at most k variables are set to true.

2 Preliminaries

Definition 2.1 (Conjunctive Normal Form (CNF)). A formula is said to be in Conjunctive Normal
Form (CNF) if it looks like C1 ∧C2 ∧ · · · ∧Ct where each Ci = (l1 ∨ l2 ∨ · · · ∨ lti) is called a clause and each
li is called a literal. A literal is either a variable, called positive literal, or the negation of a variable, called
negative literal.

A formula is said to be in 2–Conjunctive Normal Form (2–CNF) if it is in CNF and all of its clauses
contain 2 literals.

We assume, without loss of generality, that for each variable v, at most one of the v and ¬v is contained
in a clause, no literal is repeated in a clause and all clauses are distinct.

For a CNF formula F , the set of clauses and the set of variables appeared in F are denoted by CF =
{C1, C2, . . . , Ct} and VF = {v1, v2, . . . , vn}, respectively.

2.1 Parameterized Complexity

For a parameterized maximization problem Π and a solution s to the instance (I, k) of Π, we denote the
value of s by Π(I, k, s), and the task is to find a solution with the maximum possible value. We state the
following definitions slightly modified from the Kernelization book [8].

Definition 2.2 (FPT optimization problem). A parameterized optimization problem Π is fixed-parameter
tractable (FPT) if there is an algorithm (called FPT algorithm) that solves Π, such that the running time
of the algorithm on instances of size n with parameter k is upper-bounded by f(k) · nO(1) for a computable
function f .

Definition 2.3 (α-approximate polynomial-time preprocessing algorithm). Let 0 < α ≤ 1 be a real
number and Π be a parameterized maximization problem. An α-approximate polynomial-time preprocessing
algorithm A for Π is a pair of polynomial-time algorithms. The first one is called the reduction algorithm

RA, and given an instance (I, k) of Π, it outputs another instance (I ′, k′) = RA(I, k). The second algorithm
is called the solution-lifting algorithm. This algorithm takes an instance (I, k) of Π, the output instance
(I ′, k′) of the reduction algorithm, and a solution s′ to the instance (I ′, k′). The solution-lifting algorithm
works in time polynomial in |I|, k, |I ′|, k′ and |s′|, and outputs a solution s to (I, k) such that

Π(I, k, s)

OPT (I, k)
≥ α ·

Π(I ′, k′, s′)

OPT (I ′, k′)

3

Definition 2.4 (α-approximate kernelization). An α-approximate kernelization (α-approximate ker-
nel) is an α-approximate polynomial-time preprocessing algorithm A such that sizeA is upper-bounded by a
computable function g : N → N where sizeA is defined as follows:

sizeA(k) = sup{|I ′|+ k′ : (I ′, k′)

= RA(I, k) for any instance (I, k) of the problem}

If the upper-bound g(·) is a polynomial function of k, we say A is an α-approximate polynomial kernel.

Definition 2.5 (polynomial-size approximate kernelization scheme (PSAKS)). A polynomial-size
approximate kernelization scheme (PSAKS) for a parameterized maximization problem Π, is a family of
(1− ϵ)-approximate polynomial kernels for every 0 < ϵ < 1.

Definition 2.6 (Efficient PSAKS). An efficient PSAKS (EPSAKS) is a PSAKS such that for every
(1− ϵ)-approximate polynomial kernel A in that, sizeA(k) is upper-bounded by f(1ϵ) ·k

c for a function f and
a constant c independent of I, k and ϵ.

2.2 Tree Decomposition and Tree-width

We state the following definitions and lemmas from the Parameterized Algorithms book [5].

Definition 2.7 (Tree decomposition). A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T)),
where T is a tree whose every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the
following three conditions hold:

- Vertex coverage:
⋃

t∈V (T) Xt = V (G), i.e., every vertex of G is in at least one bag.

- Edge coverage: For every uv ∈ E(G), there exists a node t of T such that bag Xt contains both u
and v.

- Coherence: For every u ∈ V (G), the set Tu = {t ∈ V (T) : u ∈ Xt}, i.e., the set of nodes whose
corresponding bags contain u, induces a connected subtree of T .

The width of tree decomposition T = (T, {Xt}t∈V (T)) equals maxt∈V (T) |Xt| − 1.

Definition 2.8 (Tree-width). The tree-width of a graph G is the minimum possible width of a tree decom-
position of G.

Definition 2.9 (Nice tree decomposition). A tree decomposition T = (T, {Xt}t∈V (T)), rooted from
r ∈ V (T), is called nice if the following conditions are satisfied:

• Xr = ∅ and Xl = ∅ for every leaf l of T .

• Every non-leaf node of T is of one of the following three types:

– Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪ {v} for some vertex
v /∈ Xt′ . We say that v is introduced at t.

– Forget node: a node t with exactly one child t′ such that Xt = Xt′ \{w} for some vertex w ∈ Xt′ .
We say that w is forgotten at t.

– Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

Lemma 2.1. If a graph G admits a tree decomposition of width at most d, then it also admits a nice tree
decomposition of width at most d. Moreover, given a tree decomposition T = (T, {Xt}t∈V (T)) of G of width
at most d, one can in time O(d2 ·max(|V (T)|, |V (G)|)) compute a nice tree decomposition of G of width at
most d that has O(d · |V (G)|) nodes.

4

3 EPSAKS for k–MAX–2SAT with Cardinality Constraint

In this section, we show that k–MAX–2SAT admits an EPSAKS. That is we prove Theorem 1.1.
There are two main observations used in the algorithm. First, since one can satisfy all clauses containing

at least one negative literal by setting all the variables to false, the optimal value is not less than the number
of clauses containing negative literals. Second, if a variable v appears positively in many clauses, then one
can satisfy all those clauses by setting v true and all the other variables false.

Let F be a 2–CNF formula with clause set CF and variable set VF . For a variable v ∈ VF , we denote the
number of clauses in the form of (v ∨ u), (v ∨¬u), (¬v ∨ u) and (¬v ∨¬u) by d++(v), d

−
+(v), d

+
−(v) and d−−(v)

respectively. For V ⊆ VF we denote the set of negation of variables in V with ¬V , i.e., ¬V = {¬s | s ∈ V }.
Let PF = {p1, p2, . . . , pl} be the set of variables that appear only in clauses containing two positive literals,
i.e., in the form of (v ∨ u), and NF = VF \ PF . We suppose, without loss of generality, d++(p1) ≥ d++(p2) ≥
· · · ≥ d++(pl).

We now describe a (1− ϵ)-approximate polynomial-time preprocessing algorithm Aϵ for an arbitrary ϵ.

Reduction Algorithm Rϵ: Rϵ takes the set of clauses CF = {C1, C2, . . . , Ct} of a 2–CNF formula F and a

parameter k as input. Set λ to be equal to
4·(k2)

ϵ . Recall that PF = {p1, p2, . . . , pl} is the set of variables that

appear only in clauses containing two positive literals. Let P̃F = {p1, p2, . . . , pl̃} where l̃ = min(l, k + kλ)

and C̃F ⊆ CF be the set of clauses whose both variables are in PF \ P̃F . If both of the following requirements
are satisfied, Rϵ outputs (CF \ C̃F , k), otherwise it outputs ({C1}, k + 1).

(R1) There are < λ clauses with at least one negative literal.

(R2) d++(v) < λ for every variable v ∈ VF .

Solution-Lifting Algorithm Lϵ: The algorithm takes (CF , k), the output of the reduction algorithm
(C′

F ′ , k′) and a set S′ of at most k′ variables appeared in F ′. If k′ = k, Lϵ outputs S = S′. Otherwise, let
VF = {v1, v2, . . . , vn} and without loss of generality suppose

d++(v1)− d+−(v1) ≥ d++(v2)− d+−(v2) ≥ · · · ≥ d++(vn)− d+−(vn)

Then the algorithm outputs

S = {v ∈ {v1, v2, . . . , vk} | d++(v)− d+−(v) > 0}

We next show that Aϵ is a (1 − ϵ)-approximate polynomial-time preprocessing algorithm. To do so, we
need to prove the following lemmas.

Lemma 3.1. Suppose d++(v) < λ for every v ∈ VF . Let S∗ be an optimal solution for (CF , k) such that

S∗ ∩ PF is lexicographically smallest with respect to p1, p2, . . . , pl. Then (S∗ ∩ PF) ⊆ P̃F = {p1, p2, . . . , pl̃}.

Proof. If l̃ = l, we have P̃F = PF . So (S∗ ∩ PF) ⊆ PF = P̃F and we are done.
So suppose l̃ = k + kλ and for the sake of contradiction, suppose there is p ∈ (S∗ ∩ PF) such that p /∈ P̃F .
Define the set A as the following:

A = S∗ ∪ {v ∈ VF | ∃(v ∨ u) ∈ CF : u ∈ S∗}

Since |S∗| ≤ k and ∀v ∈ VF : d++(v) < λ, we have |A| < k + kλ. Therefore, there is a variable q ∈

{p1, p2, . . . , pk+kλ} which is not in A, i.e., q ∈ P̃F \A.
Note that since p, q ∈ PF , p and q appear only in clauses with two positive literals, So we have

k–MAX–2SAT(CF , k, S
∗ \ {p} ∪ {q})

≥ k–MAX–2SAT(CF , k, S
∗)− d++(p) + d++(q) (since p ∈ PF and q /∈ A)

≥ k–MAX–2SAT(CF , k, S
∗) (since p /∈ P̃F and q ∈ P̃F)

= OPT(CF , k)

Therefore, S∗ \ {p} ∪ {q} is an optimal solution and since p /∈ P̃F but q ∈ P̃F , (S
∗ \ {p} ∪ {q}) ∩ PF is

lexicographically smaller than S∗ ∩ PF , which implies a contradiction.

5

Lemma 3.2. If d++(v) < λ for every v ∈ VF , then OPT(CF , k) = OPT(CF \ C̃F , k).

Proof. Since (CF \ C̃F) ⊆ CF , we have OPT(CF , k) ≥ OPT(CF \ C̃F , k). For the other direction, let S∗ be
the optimal solution of (CF , k) described in the Lemma 3.1. By Lemma 3.1 we know S∗ ∩ (PF \ P̃F) = ∅
and therefore, by setting only variables of S∗ true, none of the clauses with both literals from PF \ P̃F , i.e.,
clauses in C̃F , gets satisfied. This implies

k–MAX–2SAT(CF , k, S
∗)

︸ ︷︷ ︸

=OPT(CF ,k)

= k–MAX–2SAT(CF \ C̃F , k, S
∗)

︸ ︷︷ ︸

≤OPT(CF\C̃F ,k)

which proves the lemma.

Lemma 3.3. Aϵ is a (1− ϵ)-approximate polynomial-time preprocessing algorithm.

Proof. Clearly, both Rϵ and Lϵ are polynomial algorithms. In the solution-lifting algorithm, note that
C′
F ′ ⊆ CF and thus S′ ⊆ VF . This implies that the output of Lϵ is a subset of VF with size ≤ k and therefore

a solution to instance (CF , k) of k–MAX–2SAT.
We now show that

k–MAX–2SAT(CF , k, S)

OPT(CF , k)
≥ (1− ϵ) ·

k–MAX–2SAT(C′
F ′ , k′, S′)

OPT(C′
F ′ , k′)

We consider two cases:

1. The aforementioned requirements, (R1) and (R2) are satisfied.

In this case, Rϵ outputs (C′
F ′ , k′) = (CF \ C̃F , k) and since k = k′, Lϵ would output S = S′. Since

CF \ C̃F ⊆ CF , we have

k–MAX–2SAT(CF , k, S
′) ≥ k–MAX–2SAT(CF \ C̃F , k, S

′)

And by Lemma 3.2 we get

k–MAX–2SAT(CF , k, S
′)

OPT(CF , k)
≥

k–MAX–2SAT(CF \ C̃F , k, S
′)

OPT(CF \ C̃F , k)

≥ (1− ϵ) ·
k–MAX–2SAT(CF \ C̃F , k, S

′)

OPT(CF \ C̃F , k)

Which completes the proof for the first case.

2. At least one of the requirements, (R1) and (R2) is not satisfied.

If (R1) is not satisfied we have k–MAX–2SAT(CF , k, ∅) ≥ λ. If (R2) is not satisfied, there is a
variable v ∈ VF such that d++(v) ≥ λ, thus k–MAX–2SAT(CF , k, {v}) ≥ λ. Therefore, in this case
OPT(CF , k) ≥ λ. Note that for any solution S:

k–MAX–2SAT(CF , k, S) =
∑

v∈VF

d+−(v)− |{(¬v ∨ u) | v ∈ S, u ∈ VF \ S}|

+

∑

v∈VF
d−−(v)

2
− |{(¬v ∨ ¬u) | v, u ∈ S}|

+
∑

v∈S

d++(v)− |{(v ∨ u) | v, u ∈ S}|

And also:

|{(¬v ∨ u) | v ∈ S, u ∈ VF \ S}| =

(
∑

v∈S

d+−(v)− |{(¬v ∨ u) | v, u ∈ S}|

)

6

Which implies:

k–MAX–2SAT(CF , k, S) =
∑

v∈VF

d+−(v)−

(
∑

v∈S

d+−(v)− |{(¬v ∨ u) | v, u ∈ S}|

)

+

∑

v∈VF
d−−(v)

2
− |{(¬v ∨ ¬u) | v, u ∈ S}|

+
∑

v∈S

d++(v)− |{(v ∨ u) | v, u ∈ S}| (1)

And since |S| ≤ k and all clauses are distinct, we have:

|{(¬v ∨ ¬u)|v, u ∈ S}| , |{(v ∨ u)|v, u ∈ S}| ≤

(
k

2

)

Therefore, considering equation (1) we have:

k–MAX–2SAT(CF , k, S) ≥
∑

v∈VF

d+−(v)−

(
∑

v∈S

d+−(v)− |{(¬v ∨ u) | v, u ∈ S}|

)

+

∑

v∈VF
d−−(v)

2
−

(
k

2

)

+
∑

v∈S

d++(v)−

(
k

2

)

=
∑

v∈VF

d+−(v) + |{(¬v ∨ u) | v, u ∈ S}|

+

∑

v∈VF
d−−(v)

2
+

(
∑

v∈S

d++(v)−
∑

v∈S

d+−(v)

)

− 2 ·

(
k

2

)

(2)

Note that in this case Rϵ outputs (C′
F ′ , k′) = ({C1}, k + 1) and since k ̸= k′, Lϵ outputs S = {v ∈

{v1, v2, . . . , vk}|d
+
+(v)− d+−(v) > 0}. Let S∗ ⊆ VF be an optimal solution to (CF , k). Then we have:

∑

v∈S

d++(v)− d+−(v) ≥
∑

v∈S∗

d++(v)− d+−(v)

And considering inequality (2):

k–MAX–2SAT(CF , k, S)

≥
∑

v∈VF

d+−(v) + |{(¬v ∨ u)|v, u ∈ S}|

+

∑

v∈VF
d−−(v)

2
+

(
∑

v∈S∗

d++(v)−
∑

v∈S∗

d+−(v)

)

− 2 ·

(
k

2

)

=
∑

v∈VF

d+−(v)−

(
∑

v∈S∗

d+−(v)− |{(¬v ∨ u)|v, u ∈ S∗}|

)

+(|{(¬v ∨ u)|v, u ∈ S}| − |{(¬v ∨ u)|v, u ∈ S∗}|)

+

∑

v∈VF
d−−(v)

2
+
∑

v∈S∗

d++(v)− 2 ·

(
k

2

)

≥ k–MAX–2SAT(CF , k, S
∗) + |{(¬v ∨ u)|v, u ∈ S}|

− |{(¬v ∨ u)|v, u ∈ S∗}| − 2 ·

(
k

2

)

(By equation 1)

7

Plugging |{(¬v ∨ u)|v, u ∈ S∗}| ≤ 2 ·
(
k
2

)
into the above inequality, we get:

k–MAX–2SAT(CF , k, S) ≥ k–MAX–2SAT(CF , k, S
∗)− 4 ·

(
k

2

)

= OPT(CF , k)− ϵλ (since S∗ is an optimal solution and λ =
4·(k2)

ϵ)

Finally, as OPT(CF , k) ≥ λ we have:

k–MAX–2SAT(CF , k, S) ≥ (1− ϵ) ·OPT(CF , k)

Which implies k–MAX–2SAT(CF ,k,S)
OPT(CF ,k) ≥ (1− ϵ) ≥ (1− ϵ) ·

MAX–2SAT(C′

F′ ,k
′,S′)

OPT(C′

F′ ,k
′) and proves the second case.

The next lemma states an upper-bound for sizeAϵ
(k).

Lemma 3.4. sizeAϵ
(k) is of O

(
k5

ϵ2

)

where sizeAϵ
(k) is defined in Definition 2.4.

Proof. Note that Rϵ returns either ({C1}, k+1) or (CF \ C̃F , k). In the first case sizeAϵ
(k) is of O(1) and so

we need to only consider the case of returning (CF \ C̃F , k). In this case, (R1) and (R2) are satisfied. Since
(R1) is satisfied, there are less than 2λ variables that appear in at least one clause with at least one negative
literal, i.e., |NF | < 2λ. Therefore, |NF ∪ P̃F | ≤ 2λ+ l̃ ≤ 2λ+kλ+k = O(kλ). (R1) and (R2) together imply
that d++(v) + d−+(v) + d+−(v) + d−−(v) < d++(v) + λ < 2λ which means every variable v ∈ VF appears in less

than 2λ clauses of F . Therefore, |CF \ C̃F | is less than 2λ · |NF ∪ P̃F | = O(kλ2) = O
(

k5

ϵ2

)

.

We finally prove Theorem 1.1. For convenience, we restate the theorem here.

Theorem 1.1. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a 2–CNF formula F and a positive integer
k, there is an EPSAKS (efficient polynomial-size approximate kernelization scheme) for k–MAX–2SAT

such that the size of the output of the reduction algorithm is upper-bounded by O
(

k5

ϵ2

)

.

Proof. According to Definition 2.6, the proof is directly derived from Lemma 3.3 and Lemma 3.4.

4 k–WMAX–SAT with Cardinality Constraint on Planar Formulas

In this section, we present an FPT algorithm as well as a PTAS (Polynomial-time approximation scheme)
for k–WMAX–SAT on a special family of sparse CNF formulas that we will refer to as planar formulas. We
now describe this family of formulas.

For a CNF formula F , let GF = (CF ∪ VF , E− ∪ E+) be a bipartite graph such that (Ci, vj) ∈ E+ if Ci

contains vj and (Ci, vj) ∈ E− if Ci contains ¬vj . We call F a planar CNF formula if GF is a planar graph.
Both algorithms presented in this section are designed using Baker’s technique [2] and dynamic program-

ming on tree decomposition. First, we need the following lemmas.

Lemma 4.1 (Eppstein [6]). Let planar graph G have diameter d. Then G has tree-width at most 3d − 2,
and a tree-decomposition of G with such a width can be found in time O(d · |V (G)|).

Lemma 4.2. Let F be a planar CNF formula. Then there is an algorithm with running time O(23d · kd ·
|CF ∪VF |) that takes CF = {C1, C2, . . . , Ct}, a weight function w : CF → R

+, a positive integer k, and a tree
decomposition of GF of width at most d with O(d · |V (GF)|) nodes as input and solves k–WMAX–SAT,
i.e., finds S ⊆ VF such that |S| ≤ k and setting variables of S to true and other variables to false maximizes
the weight of the satisfied clauses.

8

Proof. First, we construct a nice tree decomposition T = (T, {Xt}t∈V (T)) of width at most d with O(d ·
|V (GF)|) nodes in time O(d3 · |V (GF)|) using Lemma 2.1. Then, we use a dynamic programming routine.

For each t ∈ V (T) let Vt ⊆ V (GF) = CF ∪ VF be the union of all the bags present in the subtree of T
rooted at t, including Xt. For each t ∈ V (T), S ⊆ (Xt ∩ VF), C ⊆ (Xt ∩ CF) and 0 ≤ i ≤ k define the
following:

dp[t, S, C, i] :=

Maximum possible weight of satisfied clauses in Vt if we set at
most i variable from Vt to true, set other variables of Vt to false
and ignore variables of VF\Vt such that Ŝ∩Xt = S and Ĉ∩Xt = C
where Ŝ is the set of true variables and Ĉ is the set of satisfied
clauses in Vt.

If we manage to compute values of dp, then since Xr = ∅, where r is the root of T , the answer would be
dp[r, ∅, ∅, k] and we can fill the dp array in a bottom-up manner and in the following way:

- Leaf node: If t is a leaf, Xt = ∅ and we have dp[t, ∅, ∅, i] = 0 for all 0 ≤ i ≤ k. So in this case, filling
each cell of dp takes O(1) time.

- Introduce node: If t is an introduce node with child t′ that Xt = Xt′ ∪ {v}, we consider two cases
and fill the entries dp[t, S, C, i] in the following way.

1. v ∈ VF , i.e., v is a variable. Then C ′ ⊆ C might be the set of satisfied clauses of Xt′ , if it satisfies
one of the two below conditions:

(C1) All clauses in C \ C ′ contain a positive literal of v, i.e., Setting v to true satisfies all clauses
in C \ C ′.

(C2) All clauses in C \ C ′ contain a negative literal of v, i.e., setting v to false satisfies all clauses
in C \ C ′.

So we can compute dp[t, S, C, i] as follows

{
maxC′satisfies (C1) dp[t

′, S \ {v}, C ′, i− 1] + w(C \ C ′) if v ∈ S
maxC′satisfies (C2) dp[t

′, S, C ′, i] + w(C \ C ′) if v /∈ S

So in this case, filling one cell of dp takes O(2d) time.

2. v ∈ CF , i.e., v is a clause. Note that because of edge coverage and coherence properties, Var(v) ∩
Vt = Var(v) ∩Xt where Var(v) is the set of variables present in the clause v, either as a positive
or negative literal. So, there are two possibilities:

(P1) v ∈ C and v gets satisfied by setting all variables of S to true, Xt \ S to false and ignoring
variables of VF \Xt.

(P2) v /∈ C and v is not satisfied by setting all variables of S to true, Xt \ S to false and ignoring
variables of VF \Xt.

Therefore, we have:

dp[t, S, C, i] =

dp[t′, S, C \ {v}, i] + w(v) if (P1) is true
dp[t′, S, C, i] if (P2) is true
INVALID otherwise

So, in this case filling one cell of dp takes O(1) time.

Overall we can fill dp[t, S, C, i] for an introduce node t in O(2d) time.

- Forget node: If t is a forget node with child t′ that Xt = Xt′ \ {w}, we again consider two cases:

1. w ∈ VF , i.e., w is a variable. Note that w is either set to true or false and therefore:

dp[t, S, C, i] = max

{
dp[t′, S, C, i] setting w to false
dp[t′, S ∪ {w}, C, i] setting w to true

9

2. w ∈ CF , i.e., w is a clause.

dp[t, S, C, i] = max

{
dp[t′, S, C, i] w does not get satisfied
dp[t′, S, C ∪ {w}, i] w gets satisfied

Note that in this case filling one cell of dp takes O(1) time.

- Join node: If t is a join node with children t1 and t2 that Xt = Xt1 = Xt2 , we consider all possibilities
of S1, S2 and C1, C2, and compute the value of dp[t, S, C, i] by:

max
S1∪S2=S, C1∪C2=C, |S1|≤j≤i

dp[t1, S1, C1, j]
+ dp[t2, S2, C2, i− j + |S1 ∩ S2|]
− w(C1 ∩ C2)

So in the case of join nodes, we can compute the value of each cell of dp in O(22d), because of 2d

possibilities for S1 ∪ C1 and at most 2d possibilities for S2 ∪ C2.

The total number of array’s cells is O(|V (T)| · 2d · k) and we can fill each cell in time O(22d), since by
Lemma 2.1 |V (T)| = O(d · |V (GF)|) = O(d · |CF ∪VF |) we can fill all the cells in time O(23d · kd · |CF ∪VF |).
Again by Lemma 2.1, constructing T is done in time O(d3 · |CF ∪ VF | which gives us the overall runtime of
O(23d · kd · |CF ∪ VF |).

Finally, using the standard technique of backlinks, i.e., memorizing for every cell of dp how its value was
obtained, we can find an optimal solution, i.e., a subset S ⊆ VF such that |S| ≤ k and setting its variables
to true maximizes the weight of the satisfied clauses, within the same running time.

4.1 FPT Algorithm

Here, we use Lemma 4.1 and Lemma 4.2 to show that k–WMAX–SAT on planar formulas is FPT. That is
we prove Theorem 1.2. For convenience, we restate the theorem here.

Theorem 1.2. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF formula F , a weight
function w : CF → R

+ and a positive integer k, there is an FPT algorithm for k–WMAX–SAT that runs
in O(236k · k3 · |CF ∪ VF |) time.

Proof. Construct GF and without loss of generality suppose the graph is connected. Then, do a breadth-first
search (BFS) on the graph starting from an arbitrary variable. Since GF is bipartite the first level would
contain variables, the second level would contain clauses, the third level would contain variables, etc.

If the number of levels is more than 2k, for each 0 ≤ i label the level 2i + 1, which contains variables,
with [i mod (k + 1)]. Note that since the number of levels is at least 2k + 1, we would use all the k + 1
different labels and therefore there should be a label that all of its variables are set to false in the optimal
answer. We consider all the k + 1 possibilities for this label and each time, set variables of one of the k + 1
labels, say label l, to false. This makes some clauses satisfied, then we remove variables with label l and also
satisfied clauses to get a new graph GF,l. Each connected component of GF,l would contain at most 2k + 1
levels and therefore its diameter is at most 4k. Using Lemma 4.1 a tree decomposition of GF,l with width
at most 12k can be found in time O(k · |VF ∪CF |), and thus with O(k · |VF ∪CF |) nodes. Then using Lemma
4.2 we can solve k–WMAX–SAT on the CNF formula induced by GF,l in time O(236k · k2 · |CF ∪ VF |). By
doing so for every label 0 ≤ l < k + 1, we can find the optimal solution in time O(236k · k3 · |CF ∪ VF |).

If the number of levels is at most 2k, we can use Lemma 4.1 and Lemma 4.2 on GF directly.

4.2 Polynomial-time Approximation Scheme

Now, we prove Theorem 1.3. For convenience, we restate the theorem here.

Theorem 1.3. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF formula F , a weight
function w : CF → R

+ and a positive integer k, there is a polynomial-time approximation scheme that runs
in O(1

ϵ2 · 2
36

ϵ · k · |CF ∪ VF |) time and finds S ⊆ VF such that |S| ≤ k and

k–WMAX–SAT(CF , w, k, S) ≥ (1− ϵ) ·OPT(CF , w, k)

10

Proof. Fix an arbitrary 0 < ϵ ≤ 1, let d = ⌈ 1
ϵ ⌉ and suppose S∗ ⊆ VF is an optimal solution to k–WMAX–

SAT on (F , w, k), i.e., |S∗| ≤ k and setting variables of S∗ to true maximizes the weight of the satisfied
clauses. Also, let C∗ be the set of clauses that get satisfied by setting variables of S∗ to true. Construct GF

and without loss of generality suppose the graph is connected. Then, do a breadth-first search (BFS) on the
graph starting from an arbitrary clause.

If the number of levels is at least 2d, for each 0 ≤ i label the level 2i + 1, which contains clauses,
with [i mod d]. Let CF,l be the set of all clauses with label l. Note that since the number of levels
is at least 2d, we would use all the d different labels and therefore there should be a label l∗ such that

w(C∗ ∩ CF,l) ≤
w(C∗)

d = OPT(CF ,w,k)
d .

We consider all the d possibilities for l∗ and each time remove clauses with one of the labels, say label
l, to get a new graph GF,l. Each connected component of GF,l contains at most 2d levels, and therefore its
diameter is at most 4d.

Using Lemma 4.1 a tree decomposition of GF,l with width at most 12d can be found in time O(d·|VF∪CF |)
and thus with O(d · |VF ∪ CF |) nodes. Then using Lemma 4.2 we can solve k–WMAX–SAT on the CNF
formula induced by GF,l in time O(236d · kd · |CF ∪ VF |). Let Sl be the optimal solution of k–WMAX–SAT
on the CNF formula induced by GF,l and let k–WMAX–SAT(C, w, k, S) be the weight of satisfied clauses
in C ⊆ CF if we set variables of S to true. Then we have the following for every label 0 ≤ l < d:

k–WMAX–SAT(CF , w, k, Sl) ≥ k–WMAX–SAT(CF \ CF,l, w, k, Sl)

≥ k–WMAX–SATT(CF \ CF,l, w, k, S
∗)

= k–WMAX–SAT(CF , w, k, S
∗)− w(C∗ ∩ CF,l)

= OPT(CF , w, k)− w(C∗ ∩ CF,l)

And for l∗ we also have:

k–WMAX–SAT(CF , w, k, Sl∗) ≥ OPT(CF , w, k)− w(C∗ ∩ CF,l∗)

≥ OPT(CF , w, k)−
OPT(CF , w, k)

d
≥ (1− ϵ) ·OPT(CF , w, k)

Therefore, by finding Sl for every label 0 ≤ l < d, we can find the optimal solution in time O(1
ϵ2 · 2

36

ϵ · k ·
|CF ∪ VF |).

5 Conclusion

In this work, we showed that k–MAX–2SAT admits an EPSAKS of size O(k
5

ϵ2). As the monotone variant

of the problem, Maximum k–Vertex Cover, admits an EPSAKS of size O(kϵ) [13], which also works for
weighted graphs, is it possible to improve the kernel size for k–MAX–2SAT or design an EPSAKS for its
weighted version?

We also showed that k–WMAX–SAT on planar graphs admits an FPT algorithm as well as a PTAS.
Does this problem also admit a kernelization?

References

[1] P. Austrin and A. Stankovic, Global cardinality constraints make approximating some max-2-csps
harder, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of Technology,
Cambridge, MA, USA, D. Achlioptas and L. A. Végh, eds., vol. 145 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, pp. 24:1–24:17.

[2] B. S. Baker, Approximation algorithms for np-complete problems on planar graphs, 41 (1994).

11

[3] M. Bläser and B. Manthey, Improved approximation algorithms for max-2sat with cardinality
constraint, in Algorithms and Computation, 13th International Symposium, ISAAC 2002 Vancouver,
BC, Canada, November 21-23, 2002, Proceedings, P. Bose and P. Morin, eds., vol. 2518 of Lecture Notes
in Computer Science, Springer, 2002, pp. 187–198.

[4] P. Crescenzi and L. Trevisan, Max np-completeness made easy, Theor. Comput. Sci., 225 (1999),
pp. 65–79.

[5] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh, Parameterized Algorithms, Springer, 2015.

[6] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, in Proceedings of the Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’95, USA, 1995, Society for Industrial
and Applied Mathematics, p. 632–640.

[7] U. Feige, A threshold of ln n for approximating set cover, J. ACM, 45 (1998), p. 634–652.

[8] F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi, Kernelization: Theory of
Parameterized Preprocessing, Cambridge University Press, 2019.

[9] T. Hofmeister, An approximation algorithm for MAX-2-SAT with cardinality constraint, in Algo-
rithms - ESA 2003, 11th Annual European Symposium, Budapest, Hungary, September 16-19, 2003,
Proceedings, G. D. Battista and U. Zwick, eds., vol. 2832 of Lecture Notes in Computer Science,
Springer, 2003, pp. 301–312.

[10] P. Jain, L. Kanesh, F. Panolan, S. Saha, A. Sahu, S. Saurabh, and A. Upasana,
Parameterized Approximation Scheme for Biclique-free Max k-Weight SAT and Max Coverage,
pp. 3713–3733.

[11] S. Khanna and R. Motwani, Towards a syntactic characterization of ptas, in Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, New York, NY, USA,
1996, Association for Computing Machinery, p. 329–337.

[12] D. Lokshtanov, F. Panolan, M. S. Ramanujan, and S. Saurabh, Lossy kernelization, in Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, H. Hatami, P. McKenzie, and V. King, eds., ACM, 2017, pp. 224–237.

[13] P. Manurangsi, A note on max k-vertex cover: Faster fpt-as, smaller approximate kernel and improved
approximation, in 2nd Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, San
Diego, CA, USA, J. T. Fineman and M. Mitzenmacher, eds., vol. 69 of OASIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, pp. 15:1–15:21.

[14] , Tight running time lower bounds for strong inapproximability of maximum k-coverage, unique
set cover and related problems (via t-wise agreement testing theorem), in Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
S. Chawla, ed., SIAM, 2020, pp. 62–81.

[15] D. Marx, Parameterized complexity and approximation algorithms, Comput. J., 51 (2008), pp. 60–78.

[16] F. Panolan and H. Yaghoubizade, Partial vertex cover on graphs of bounded degeneracy, in Com-
puter Science - Theory and Applications - 17th International Computer Science Symposium in Russia,
CSR 2022, Virtual Event, June 29 - July 1, 2022, Proceedings, A. S. Kulikov and S. Raskhodnikova,
eds., vol. 13296 of Lecture Notes in Computer Science, Springer, 2022, pp. 289–301.

[17] P. Raghavendra and N. Tan, Approximating csps with global cardinality constraints using SDP
hierarchies, in Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, Y. Rabani, ed., SIAM, 2012, pp. 373–387.

[18] M. Sviridenko, Best possible approximation algorithm for MAX SAT with cardinality constraint,
Algorithmica, 30 (2001), pp. 398–405.

12

	Introduction
	Preliminaries
	Parameterized Complexity
	Tree Decomposition and Tree-width

	EPSAKS for k–MAX–2SAT with Cardinality Constraint
	k–WMAX–SAT with Cardinality Constraint on Planar Formulas
	FPT Algorithm
	Polynomial-time Approximation Scheme

	Conclusion

