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Abstract. In this paper, we investigate the Grundy Coloring prob-
lem for graphs with a cluster modulator, a structure commonly found in
dense graphs. The Grundy chromatic number, representing the maximum
number of colors needed for the first-fit coloring of a graph in the worst-
case vertex ordering, is known to be W [1]-hard when parameterized by
the number of colors required by the most adversarial ordering. We focus
on fixed-parameter tractable (FPT) algorithms for solving this problem
on graph classes characterized by dense substructures, specifically those
with a cluster modulator. A cluster modulator is a vertex subset whose
removal results in a cluster graph (a disjoint union of cliques). We present
FPT algorithms for graphs where the cluster graph consists of one, two,
or k cliques, leveraging the cluster modulator’s properties to achieve the
best-known FPT runtimes, parameterized by both the modulator’s size
and the number of cliques.

Keywords: Grundy Coloring · Cluster Graphs · Max Flow · Fixed-
Parameter Tractable (FPT) Algorithms · Integer Program.

1 Introduction

The first-fit coloring is a heuristic that assigns to each vertex, arriving in a
specified order σ, the smallest available color such that the coloring remains
proper. Here, we denote the colors as natural numbers {1, 2, 3, . . .}. The Grundy
chromatic number (or simply Grundy number) is the number of colors that are
needed for the most adversarial vertex ordering σ, i.e., the maximum number
of colors that the first-fit coloring requires over all possible vertex orderings. In
other words, if the Grundy number of a graph G is ℓ, then ℓ is the largest integer
such that the following holds. There is an ordered partition (V1, . . . , Vℓ) of the
vertex set V (G) of G such that for all i ∈ [ℓ] and v ∈ Vi, NG(v) ∩ Vj 6= ∅ for all
j ∈ {1, . . . , i−1} and Vi is an independent set. Here, we use NG(v) to denote the
set of neighbors of v and [ℓ] to denote the set {1, 2, . . . , ℓ}. Also, we say that any
ordered partition (U1, . . . , Uℓ′) of V (G) is a Grundy coloring of G if it satisfies
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the above-mentioned property. That is, for all i ∈ [ℓ′] and v ∈ Ui, NG(v)∩Uj 6= ∅
for all j ∈ {1, . . . , i − 1} and Ui is an independent set. The Grundy number was
first introduced by Patrick Michael Grundy but was formally defined by Christen
and Selkow [4].

In the Grundy Coloring problem, we are given a graph G and an integer
ℓ, and we want to test whether the Grundy number of G is at least ℓ or not. The
Grundy Coloring problem has been shown to be NP-hard even on special
graph classes like bipartite graphs, their complements, chordal graphs, and line
graphs, as established by known results in the literature [12, 10, 8, 7]. While this
makes solving the problem in general infeasible in polynomial time, efficient
algorithms have been designed for special graph classes. The Grundy Coloring

for a tree can be solved in linear time [9], and this result has been generalized
with a polynomial time algorithm for the bounded-treewidth graphs [11].

Grundy Coloring is well studied in the realm of parameterized complexity.
Aboulker et al. [1] proved that Grundy Coloring is W [1]-hard when parame-
terized by the number of colors required by the most adversarial vertex ordering,
leveraging the structure of half-graphs. Furthermore, their work also establishes

that the brute-force algorithm, with a running time of f(ℓ)n2ℓ−1

, is essentially
optimal under the Exponential Time Hypothesis (ETH). In the context of pa-
rameterized complexity, the problem has been studied with various parameters.
For instance, Bonnet et al. [3] explored the complexity of the Grundy Color-

ing problem, identifying a range of parameterizations for which the problem re-
mains computationally challenging. Similarly, Belmonte et al. [2] considered the
parameters treewidth and pathwidth, and proved the following surprising result.
Grundy Coloring is W [1]-hard when parameterized by treewidth, but FPT
when parameterized by pathwidth. Their work also demonstrates that Grundy

Coloring is FPT when parameterized by the neighborhood diversity (and more
generally modular width). The running time of their algorithm is 2O(w2w)nO(1),
where w is the modular width or neighborhood diversity of the input graph.

We study Grundy Coloring problem on dense graphs from the perspec-
tive of parameterized complexity. We consider the problem when parameterized
by k-cluster modulator. That is, the input consists of a graph G and a vertex
subset R ⊆ V (G) of size r such that G − R is a k-cluster graph (i.e., G − R
has k connected components and each of them is a complete graph). Here, the
parameter is k + r. Observe that in this case, the neighborhood diversity of G is
at most k2r + r. Thus, the result of Belmonte et al. [2] implies that there is an

algorithm with a running time of 2O(2k2
r

)nO(1). Notice that even when k = 1,

this running time is at least 2Ω(22
r

).

Our main results are when k = 1 and k = 2. When k = 1, the parameter is
the clique modulator. In this case, we design an algorithm with a running time
of O(2O(r2) + n + m), where m is the number of edges in the graph, and this
result can be found in Section 3.

As a byproduct of our proof, we also get that the problem admits a kernel
of size O(r2r). When k = 2, we design an algorithm with a running time of
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O(2O(r2)n6). To prove this result we model the problem as many instances of
the classic max flow problem. This result can be found in Section 4.

For general k we give faster algorithm with a running time of 2O(2kr)nO(1)

in Section 5. To prove this result we first observe some structural results on
Grundy coloring and then model the problem as an Integer Linear Program
with few variables, like the method used by Belmonte et al. [2].

2 Preliminaries

For a natural number q ∈ {1, 2, . . .}, we use [q] to denote the set {1, 2 . . . , q}.
Let a = (a1, . . . , an) and b = (b1, . . . , bm) be two sequences. The concatenation
of a and b, denoted ab, is the sequence formed by appending all elements of b
to the end of a, resulting in (a1, . . . , an, b1, . . . , bm). A sequence c = (c1, . . . , cs)
is called a subsequence of a sequence d = (d1, . . . , dt) if there exists a strictly
increasing sequence of indices 1 ≤ i1 < · · · < is ≤ t such that cj = dij

for all
j ∈ {1, . . . , s}.

We use standard graph notations in this paper: for a graph G, the set of
vertices is denoted by V (G) (with a size of |V (G)| = n), and the set of edges is
denoted by E(G) (with a size of |E(G)| = m). For a vertex v ∈ V (G), we use
NG(v) to denote the open neighborhood set of v in G. That is, NG(v) = {u ∈
V (G) : {u, v} ∈ E(G)}. We also use NG[v] for the closed neighborhood set of v
in G, i.e., NG(v) ∪ {v}. For a vertex subset X ⊆ V , G[X] represents the induced
subgraph of G over X. That is, V (G[X]) = X and E(G[X]) = {{u, v} ∈ E(G) :
u, v ∈ X}. For X ⊆ V (G), G − X denotes the induced subgraph G[V (G) \ X].

A vertex subset I ⊆ V (G) is called an independent set if for any pair of
vertices u, v ∈ X, {u, v} /∈ E(G). A vertex subset K ⊆ V (G) is called an clique
if for any pair of vertices u, v ∈ X, {u, v} ∈ E(G) (i.e., G[K] is a complete graph).
A graph G is a cluster graph if each connected component of G is a complete
graph. We say that G is a k-cluster graph if G is a cluster graph and the number
of connected components in G is k. For a graph G, a vertex subset R ⊆ V (G) is
a clique modulator if V (G) \ R is a clique in G. For a graph G, a vertex subset
R ⊆ V (G) is a cluster modulator (respectively, k-cluster modulator) if G − R is
a cluster graph (respectively, k-cluster graph).

A graph coloring is called proper if no two adjacent vertices share the same
color; otherwise, it is referred to as improper. In the context of proper colorings,
we define color classes as subsets C ⊆ V (G), where all vertices within C are
assigned the same color in the coloring of graph G. We denote the color classes
of G as (C1, . . . , Cγ), where γ represents the total number of colors used.

Now we prove some simple results about Grundy coloring which we use in
the later sections. The proofs of results marked (⋆) are omitted due to paucity
of space.

Lemma 1 (⋆). Let G be a graph and u, v ∈ V (G) such that NG[u] = NG[v].
Let σ be a permutation of V (G) and σ̂ is the permutation obatined from σ by
swapping the vertices u and v in σ. Then, the first-fit colorings of G with respect
to σ and σ̂ use the same number of colors.
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Lemma 2 (⋆). Consider a permutation σ of the vertices and perform the first-
fit coloring to it to reach the color classes (C1, . . . , Cγ). For each 1 ≤ i ≤ γ, let
the vertices in Ci be {vi1, . . . , vini

} where ni is the number of vertices in the ith

color class. Then the following permutation is called the sorted permutation of
σ and will have the exact same color classes as σ under the first-fit coloring:

σs = v11, v12, . . . , v1n1
, v21, v22, . . . , v2n2

, . . . , vγ1, vγ2, . . . , vγnγ

Due to the above lemma, throughout this paper, we will present a color
classification instead of a permutation of vertices to represent a Grundy coloring.

Lemma 3. Let G be a graph, and γ be the Grundy number of G. There is
a Grundy coloring (C1, . . . , Cγ) of G with the following property. There is an
index i ∈ {1, . . . , γ} such that for each j ≤ i, we have |Cj | > 1, and for each
j > i, we have |Cj | = 1.

Proof. The lemma states that we can rearrange the singleton color classes in a
Grundy coloring of G such that all singleton color classes appear at the end,
resulting in a proper coloring that still uses the maximum number of colors.

Consider a permutation σ such that the first-fit coloring of G with respect
to σ uses γ colors. Let (C1, . . . , Cγ) be the corresponding color classes. If this
coloring satisfies the property stated in the lemma, then we are done. Suppose,
that this is not the case. Then, there must exist indices x and w such that
w > x, |Cx| = 1, and |Cw| ≥ 2. Since Cx is a singleton, the vertex u ∈ Cx must
be adjacent to at least one vertex in each of the color classes Cy for all y < x.
Additionally, the vertices in Cz for all z > x must also be adjacent to u. This
implies that u is adjacent to a vertex in each color class except Cx. Therefore,
(C1, . . . , Cx−1, Cx+1, . . . , Cγ , Cx) is a Grundy coloring of G.

By repeating this process for all singleton classes, we obtain a proper color
classification in which all singleton classes appear at the end, which is the desired
result and completes the proof. ⊓⊔

3 Grundy Coloring with a Clique Modulator

In this section, we design a faster FPT algorithm for Grundy Coloring when
parameterized by the size of the given clique modulator. Here, the input is a
graph G and a clique modulator R of G of size r. Our main idea is to construct
a permutation of vertices in G, which results in a maximum number of colors
using first-fit coloring. We say that a Grundy coloring of G is an optimal solution
if the number of colors used is the Grundy number of G. We start describing the
properties of an optimal solution with the following lemmas.

Lemma 4. Let G be a graph, R be a clique modulator of G, and γ be the Grundy
number of G. There is a Grundy coloring (C1, . . . , Cγ) of G with the following
property. There is an index i ∈ {1, . . . , γ} such that for each j ≤ i, Cj ∩ R 6= ∅,
and for each j > i, Cj ∩ R = ∅ and |Cj | = 1.
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Proof. The proof follows a similar approach to that of Lemma 3. Note that
at most one vertex from the clique can be in any color class. By applying the
same method, but focusing only on the color classes Cj of size one that satisfies
Cj ∩ R = ∅, instead of considering all color classes Cj of size one, we arrive at
the desired result. ⊓⊔

Lemma 5. Let G be a graph, R be a clique modulator of size at most r, and γ
be the Grundy number of G. There is a vertex subset Q ⊆ V (G) \ R of size r
with the following property. Let σ2 be an arbitrary ordering of V (G) \ (R ∪ Q).
Then, there exists an ordering σ1 of Q ∪ R such that the first-fit coloring of G
with respect to σ1σ2 uses γ number of colors.

Proof. We begin by applying Lemma 4, which guarantees the existence of a
Grundy coloring (C1, . . . , Cγ) of G such that there exists an index i ∈ {1, . . . , γ}
with the following properties: For each j ≤ i, Cj ∩ R 6= ∅, and for each j > i,
Cj ∩R = ∅ and |Cj | = 1. This implies that all singleton color classes, consisting of
vertices from V (G)\R, appear at the end of the coloring. Since each color class Cj

for j ≤ i contains at most one vertex from V (G)\R, we define Q =
⋃r

j=1(Cj \R).
By construction, Q contains at most r vertices from V (G) \ R within the first r
color classes, ensuring that |Q| ≤ r.

Observe that we have i ≤ r. All remaining color classes (Cr+1, . . . , Cγ) are
singletons where Cj ∩R = ∅ for each j ∈ {r +1, . . . , γ}. Therefore, we can define
an arbitrary ordering σ2 for the vertices in V (G) \ (R ∪ Q), corresponding to the
color classes (Cr+1, . . . , Cγ). We then construct the ordering σ1 for the vertices in
Q∪R based on the color classes (C1, . . . , Cr), ensuring that it respects the first-fit
coloring that resulted in the color classes (C1, . . . , Cγ). Thus, by concatenating
σ1 and σ2, the first-fit coloring of G with respect to this ordering uses exactly γ
colors, completing the proof. ⊓⊔

Let S = V (G)\R. Notice that S is a clique in G. Now we define an equivalence
relation ∼R on S as follows. For any two vertices u, v ∈ S, u ∼R v if and only
if NG[u] = NG[v]. Let E1, . . . , Eq be the equivalence classes of ∼R. It is easy to
see that q ≤ 2r. Now from each equivalence class Ei arbitrarily select a subset
Fi ⊆ Ei of size min{r, |Ei|}. Let F =

⋃q
i=1 Fi. Constructing F is efficient. For

each vertex v, we determine its equivalence class by examining its neighbors in
R. The vertex v is included in F only if its equivalence class within F contains
fewer than r vertices. This procedure involves iterating over all vertices and the
edges between R and S, resulting in a time complexity of O(n + m).

Now we prove the following lemma.

Lemma 6. The Grundy number of G is equal to the sum of the Grundy number
of G[R ∪ F ] and |V (G) \ (R ∪ F )|.

Proof. The proof is based on the following observation. If σ2 is an arbitrary
ordering of V (G) \ (R ∪ F ). Then for any ordering σ1 of G[R ∪ F ], the number
of colors in the first-fit coloring of G with respect to σ1σ2 is equal to the sum
of the number of colors in the first-fit coloring of G with respect to σ1, and
|V (G) \ (R ∪ F )|.
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According to Lemma 4, there exists a color classification (C1, . . . , Cγ) using
Grundy number of colors such that there is an index i ∈ {1, . . . , γ} where, for
each j ≤ i, we have Cj ∩ R 6= ∅, and for each j > i, we have Cj ∩ R = ∅ and
|Cj | = 1. Since Cj ∩R = ∅ for all j > i, and R contains r vertices, we have i ≤ r.

Consider the first r′ color classes, (C1, . . . , Cr′), containing exactly r vertices
from the clique S. Since there are at least r vertices in S, we have r′ ≥ r. Using
Lemma 1, we can swap any vertex from S in these color classes with a vertex
from the set F . Given that F includes at least min{r, |Ei|} vertices from each
equivalence class of ∼R, this swap is feasible. After the swap, the vertices from
S in the first r′ color classes are exactly those from F , and their number is r.
Let Q ⊆ F denote these r vertices from F .

The modified color classification (C1, . . . , Cr′) now includes vertices from
R∪Q in the first r′ color classes, with the remaining color classes being singletons
that can be ordered at the end. The vertices in F \ Q can be placed as singleton
color classes before the singleton color classes from V (G)\ (R ∪F ). Finally, with
|V (G) \ (R ∪ F )| singleton vertices left, these can be assigned in any order at
the end. Thus, the Grundy number of G equals the sum of the Grundy number
of G[R ∪ F ], and |V (G) \ (R ∪ F )|, as the first r′ color classes include all non-
singleton vertices from R ∪ Q ⊆ R ∪ F , and the remaining vertices are assigned
their own colors.

The set Q satisfies the necessary conditions of Lemma 5. Therefore, if σ′

2

is an arbitrary ordering of V (G) \ (R ∪ Q), then there exists an ordering σ′

1

of Q ∪ R such that the first-fit coloring of G with respect to the concatenated
order σ′

1σ′

2 uses exactly γ colors. To leverage this result, we choose σ′

2 as an
ordering in which the vertices of F \ Q appear first. We now define σ1 to be the
concatenation of σ′

1 with the first |F \ Q| vertices from σ′

2, effectively placing
these vertices immediately after the vertices in R ∪ Q. Finally, we define σ2 as
the ordering of the remaining vertices in σ′

2. This construction ensures that the
orderings σ1 and σ2 satisfy the desired conditions, and the proof is complete. ⊓⊔

The following theorem follows from Lemma 6.

Theorem 1. The Grundy Coloring problem parameterized by the size r of
a clique modulator admits a kernel of size O(r2r).

Theorem 2. There is an algorithm that given a graph G and a clique modulator
R of size r, runs in time O(2O(r2) + n + m)) and outputs a Grundy coloring of
G using the maximum number of colors.

Proof. Let F ⊆ V (G) be the subset mentioned in Lemma 6. Recall that |F | ≤
r2r. Let G′ = G[R ∪ F ]. Moreover, by Lemma 6, to prove the theorem it is
enough to get an ordering σ1 of G′ such that first-fit coloring with respect to σ1

uses the Grundy number of G′ many colors. To get such an ordering σ1, we use
Lemma 5. By Lemma 5, there is a vertex subset Q ⊆ V (G′) \ R of size r with
the following property. Let σ′

2 be an arbitrary ordering of V (G′)\ (R∪Q). Then,
there exists an ordering σ′

1 of Q ∪ R such that the first-fit coloring of G′ with
respect to σ′

1σ′

2 uses Grundy number of G′ many colors.
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Since V (G′) \ R = F and |F | ≤ r2r, the number of choices for Q is bounded

by
(

r2r

r

)
, which is upper bounded by rr2r2

. For each Q, the number of choices
for σ′

1 is upper bounded by r2r. Thus trying all choices for Q and σ′

1 is upper

bounded by 2O(r2). Thus in time 2O(r2), we can compute an ordering σ1 such
that the first fit coloring of G′ with respect to σ1 uses Grundy number of G′

many colors. Since the construction of the set F takes O(n + m) time, the total

running time is O(2O(r2) + n + m). ⊓⊔

4 Grundy Coloring with a 2-Cluster Modulator

Next, we examine the parameter of a 2-cluster modulator. After removing the
2-cluster modulator R from G, the remaining graph G − R forms a 2-cluster
graph, meaning that G − R consists of two connected components, K1 and K2,
which are complete graphs. Let S = V (K1) and S′ = V (K2), where S and S′

are cliques in G. The key idea for this case is to reduce it to a max-flow problem.
Let the size of the modulator be |R| = r. We begin with the following simple
lemma.

Lemma 7. Let (C1, . . . , Cγ) be a Grundy coloring of G. Then, there do not exist
two distinct color classes Ci and Cj such that |Ci| = |Cj | = 1 and Ci ⊆ S and
Cj ⊆ S′

Proof. Assume that there exist color classes Ci and Cj such that |Ci| = |Cj | = 1
such that the element x ∈ Ci is a vertex of S, and the element y ∈ Cj is a vertex
of S′. Without loss of generality, assume that 1 ≤ i < j ≤ γ. Therefore, since y
is colored with a number greater than i, due to the definition of first-fit coloring,
it must have an edge to a vertex with color i, which can only be x. But since
x and y are from two disjoint cliques with no edges between them, this is not
possible. This contradiction completes the proof. ⊓⊔

We now define an equivalence relation ∼R on the set S ∪ S′. Specifically,
for any two vertices u, v ∈ S ∪ S′, we say u ∼R v if and only if they have the
same closed neighborhood, i.e., NG[u] = NG[v]. The equivalence classes of ∼R

are denoted E1, . . . , Eq and E′

1, . . . , E′

q′ , where Ei’s come from the clique S and
E′

j ’s come from the clique S′. Similar to the case of a clique modulator, we have

q + q′ ≤ 2r+1. Now from each equivalence class Ei arbitrarily select a subset
Fi ⊆ Ei of size min{r, |Ei|}. Also, for each equivalence class E′

j arbitrarily select

a subset F ′

j ⊆ E′

j of size min{r, |E′

j |}. Let F =
( ⋃

j Fj

)
∪

( ⋃
i F ′

i

)
. Notice that

|F | ≤ r2r+1.

Lemma 8. There is a vertex subset Q ⊆ F of size at most 2r and a (not
necessarily optimal) Grundy coloring (C ′

1, . . . , C ′

γ′) of G[Q ∪ R] with the follow-
ing property. There is an optimal Grundy coloring (C1, . . . , Cγ) of G such that
(C ′

1, . . . , C ′

γ′) is a subsequence of (C1, . . . , Cγ).
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Proof. Consider an optimal Grundy coloring (Ĉ1, . . . , Ĉγ) of G. Let (Ĉα1
, . . . , Ĉαr′

)
be the color classes that contain at least one vertex from R. Clearly, r′ ≤ r, as
there are at most r such color classes. Furthermore, note that each of the color
classes Ĉα1

, . . . , Ĉαr′
can contain at most two vertices from V (G)\R, since each

class contains at most one vertex from each clique in G − R.
By Lemma 1, we can swap the vertices of (Ĉα1

, . . . , Ĉαr′
) that belong to

V (G) \ (R ∪ F ) with vertices from F that are in the same equivalence classes
under ∼R. This is feasible because F contains min{r, |Ei|} and min{r, |E′

j |}
vertices from each equivalence class Ei and E′

j , respectively, and each color class
contains at most one vertex from the clique S or S′, ensuring that the swap
maintains the structure of the coloring.

After performing these swaps, we obtain a new Grundy coloring (C1, . . . , Cγ),
and (Cα1

, . . . , Cαr′
) denote the color classes that contain the vertices from R.

Moreover, for each i ∈ [r′], Cαi
⊆ R ∪ F . Let Q = (Cα1

∪ . . . ∪ Cαr′
) ∩ F . Notice

that |Q| ≤ 2r. Thus, (C1, . . . , Cγ) is the desired optimal Grundy coloring. ⊓⊔

Definition 1. A Grundy coloing (C ′

1, . . . , C ′

γ′) of G[Q ∪ R] is called extendable
if there is an optimal Grundy coloring (C1, . . . , Cγ) of G such that (C ′

1, . . . , C ′

γ′)
is a subsequence of (C1, . . . , Cγ).

Lemma 9. Let (C ′

1, . . . , C ′

γ′) be a (not necessarily optimal) Grundy coloring of
G[Q ∪ R], that is extendable. Let β = max{|S \ Q|, |S′ \ Q|}. Then, Grundy
number of G is γ′ + β.

Proof. Since the sequence of color classes (C ′

1, . . . , C ′

γ′) is extendable, there ex-
ists an optimal Grundy coloring (C1, . . . , Cγ) of G such that (C ′

1, . . . , C ′

γ′) is a
subsequence of (C1, . . . , Cγ). Furthermore, note that the color classes which ap-
pear in (C1, . . . , Cγ) but not in (C ′

1, . . . , C ′

γ′) consist exclusively of vertices from
V (G) \ R.

By Lemma 7, these remaining color classes are either composed of two vertices
(one from each clique) or a single vertex (from the clique with the greater number
of remaining vertices). Hence, the total number of these additional color classes
corresponds to β = max{|S \ Q|, |S′ \ Q|}, where S and S′ are the vertex sets
of the cliques in G − R. Consequently, the Grundy number of G is given by
γ = γ′ + β, where γ′ represents the number of color classes in the subsequence
(C ′

1, . . . , C ′

γ′). ⊓⊔

Because of Lemma 8, the number of choices for Q is at most 2O(r2). For
each such choice the number of Grundy colorings of G[Q ∪ R] is 2O(r log r) be-
cause |Q ∪ R| ≤ 3r. Thus, we can guess the correct choice for Q and a Grundy

coloring (C ′

1, . . . , C ′

γ′) of G[Q ∪ R], that is extendable in time 2O(r2). Thus our
next job is to test whether (C ′

1, . . . , C ′

γ′) is indeed extendable. Towards that, we
construct a flow network and prove that the network has a large flow if and only
if (C ′

1, . . . , C ′

γ′) is extendable.

Theorem 3. There is an algorithm that given a graph G and a Grundy coloring
(C ′

1, . . . , C ′

γ′) of G[Q ∪ R], runs in time O(n6) and decides if (C ′

1, . . . , C ′

γ′) is
extendable.
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· · ·

· · ·

vsource

vsink

v′

1
v′

2
v′

s

v10 v
1γ′

· · ·v20 v
2γ′

· · ·vs0 vsγ′

v1 v2 vs

· · ·

· · ·

Fig. 1. An overview of the flow network for extendable checking algorithm.

Proof. The algorithm we propose is based on a flow network. Without loss of
generality, assume that |S \ Q| ≥ |S′ \ Q|. Let the vertices in S \ Q be u1, . . . , us,
and the vertices in S′ \ Q be u′

1, . . . , u′

s′ . Our flow network consists of s + 1 main
sections that form a bipartite subgraph, s auxiliary vertices, a source vsource that
is adjacent to one part, and a sink vsink that is adjacent to the second part.

For each vertex ui of S \ Q, consider γ′ + 1 vertices vi0, . . . , viγ′ that each
represents the location of the paired or singleton color class containing ui between
the gaps of color classes (C ′

1, . . . , C ′

γ′). The vertices viλ for 1 ≤ i ≤ s and
0 ≤ λ ≤ γ′, form a part of our bipartite subgraph. After considering these main
vertices, we create an extra auxiliary vertex vi for each of the vertices ui of S \Q
to handle our constraints. For each vertex u′

j of S′ \ Q, consider a vertex v′

j that
represents u′

j in our bipartite subgraph. In addition, let us add s − s′ dummy
vertices v′

s′+1, . . . , v′

s that represent null nodes that will be used to determine
singleton color classes. These dummy vertices, along with the vertices v′

j for
1 ≤ j ≤ s′, form the second part of our bipartite subgraph. Now it is time to
complete the flow network. Figure 1 shows an example of such a flow network.

First, we add (vsource, v′

j) edges for all 1 ≤ j ≤ s to complete the first half
of our network. Then, we add (viλ, vi) edges for all 1 ≤ i ≤ s and 0 ≤ λ ≤ γ′.
We also add (vi, vsink) edges for all 1 ≤ i ≤ s to complete the second half of the
network. Now, it remains to add the edges between these two halves. For each
1 ≤ i, j ≤ s and 0 ≤ λ ≤ γ′, we add the (v′

j , viλ) edge to the network, if and
only if creating a paired color class with u′

j and ui and placing it immediately

after the λth color class of (C ′

1, . . . , C ′

γ′) does not violate any constraints. That
is, for each p ∈ {1, . . . , λ}, u′

j and ui must have an edge to at least one vertex
in C ′

p. Also, for each q ∈ {λ + 1, . . . , γ′}, and y ∈ C ′

q, y is adjacent to a vertex
in {u′

j , ui}. When v′

j represents a null node, we only add the edge (v′

j , viγ′), if
and only if the singleton color class consisting of ui can be placed immediately
after the last color class of (C ′

1, . . . , C ′

γ′). This holds when ui has at least one
neighbor in each of the color classes in (C ′

1, . . . , C ′

γ′).
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Finally, the capacity of all edges is set to 1, and we are ready to use this flow
network in our algorithm. Since the capacities are integers, the maximum flow
in this network will also be integral. By running a Maximum Flow solver on
this network, we obtain a maximum matching in the bipartite subgraph formed
by the s + 1 main sections, with the condition that for each 1 ≤ i ≤ s, only
one of the vertices vi0, . . . , viγ′ can be a part of the matching. This matching
represents the paired and singleton color classes placed in their respective gaps.
Note that singletons can appear in the final gap, according to the constraints on
adding edges in the flow. The order of the pairs inside each gap can be arbitrary,
as each pair includes a vertex from each clique. However, in the final gap, where
singletons may appear, we arrange the pairs in an arbitrary order before placing
the singletons (the order of the singletons can also be arbitrary). As outlined
in Lemma 3, in any arbitrary Grundy coloring, a singleton can be placed at
the end without affecting any properties of the Grundy coloring. This is why
we only consider singletons to appear at the end. The size of this matching
determines the extendibility of (C ′

1, . . . , C ′

γ′): if it is equal to s, the answer is
positive; otherwise, it is negative. The total running time of this algorithm is

s(γ′ + 2) + 2︸ ︷︷ ︸
Vertices

+ s(γ′ + 2)︸ ︷︷ ︸
Fixed edges

+ s2γ′

︸︷︷︸
Other edges

× 2(n − r − s − s′)︸ ︷︷ ︸
Needed operations

for checking an edge

+ O
((

s(γ′ + 2) + 2
)3

)

︸ ︷︷ ︸
Solving for

Maximum Flow [6]

.

This running time can be upper-bounded, yielding a total time complexity of
O(n2) + O(n2) + O(n3) × O(n) + O

(
(n2)3

)
= O(n6). Thus, we provided a O(n6)

algorithm to check the extendability of the Grundy coloring (C ′

1, . . . , C ′

γ′) of
G[Q ∪ R], concluding the proof. ⊓⊔

Theorem 4. There is an algorithm that given a graph G and a 2-cluster mod-
ulator R of size r, runs in time O(2O(r2)n6) and outputs a Grundy coloring of
G using the maximum number of colors.

Proof. Let F ⊆ V (G) be the subset from Lemma 8, with |F | ≤ r2r+1. Let
G′ = G[R ∪ F ]. By Lemma 8, there exists a subset Q ⊆ V (G) \ R of size at most
2r such that G[Q ∪ R] has the following property: an optimal Grundy coloring
(C1, . . . , Cγ) of G contains a subsequence (C ′

1, . . . , C ′

γ′).
Therefore, we can guess the correct Q and a Grundy coloring (C ′

1, . . . , C ′

γ′)

of G[Q∪R], extendable in 2O(r2) time. Testing if (C ′

1, . . . , C ′

γ′) is extendable can

be done in O(n6), as per Theorem 3. After confirming extendability, Lemma 9
allows us to calculate the Grundy number and Grundy coloring of G. Using a
similar approach explained in Section 3, constructing F takes O(n + m) time.

Thus, the total running time would be of O(2O(r2)n6), as desired. ⊓⊔

5 Solving the k-Cluster Modulator Case

Finally, we consider the more general scenario involving a k-cluster modulator.
In this setting, after removing the k-cluster modulator R from G, the remaining
graph G − R forms a k-cluster graph.
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Let K1, . . . , Kk denote the connected components of G − R, each of which
is a complete graph. Define S1 = V (K1), . . . , Sk = V (Kk) to be the cliques in
G. Throughout this section, we denote r = |R|. To address this case, we encode
the problem as an Integer Linear Program (ILP) with a number of variables
bounded by a function of r + k. First, we define some notations and prove some
auxiliary lemmas.

Definition 2. Let (C1, . . . , Cγ) be a Grundy coloring of G. Define CL(Ci) to be
the set of cliques with a vertex in the color class Ci.

Lemma 10. Let (C1, . . . , Cγ) be a Grundy coloring of G and let (Cα1
, . . . , Cαt

)
be the color classes that do not contain a vertex from the modulator R, with
α1 ≤ · · · ≤ αt. Then we have CL(Cαt

) ⊆ · · · ⊆ CL(Cα1
).

Proof. Suppose, for contradiction, that there exist two color classes Cαi
and Cαj

with i > j such that CL(Cαi
) \ CL(Cαj

) 6= ∅. Let Sx be a clique in CL(Cαi
) \

CL(Cαj
). By definition, there exists a vertex v ∈ Sx that appears in Cαi

. Since
Sx /∈ CL(Cαj

), this vertex v is not adjacent to any vertex in Cαj
. However,

this contradicts the properties of a Grundy coloring, which requires that every
vertex in a later color class (here, Cαi

) must be adjacent to at least one vertex in
every earlier color class (here, Cαj

). This contradiction proves the containment
relationship, establishing the desired result. ⊓⊔

Similar to the previous sections, let us define an equivalence relation ∼R on
the set

⋃k
i=1 Si. For any two vertices u, v ∈

⋃k
i=1 Si, we say u ∼R v if and only

if they have the same closed neighborhood, i.e., NG[u] = NG[v]. Notice that
each equivalence class is a subset of a clique. The equivalence classes of ∼R, that
are subsets of the clique Si, are denoted by Ei,1, . . . , Ei,q(i), where q(i) is the
number of equivalent classes in Si. The total number of equivalence classes is∑k

i=1 q(i) ≤ k2r. Now from each equivalence class Ei,j arbitrarily select a subset

Fi,j ⊆ Ei,j of size min{r, |Ei,j |}. Let F =
⋃k

i=1

( ⋃q(i)
j=1 Fij

)
. Note that we have

|F | ≤ rk2r.

Lemma 11. There is vertex subset Q ⊆ F of size at most kr and a (not nec-
essarily optimal) Grundy coloring (C ′

1, . . . , C ′

γ′) of G[Q ∪ R] with the follow-
ing property. There is an optimal Grundy coloring (C1, . . . , Cγ) of G such that
(C ′

1, . . . , C ′

γ′) is a subsequence of (C1, . . . , Cγ).

Proof. The proof is almost identical to the proof of Lemma 8. ⊓⊔

Recall the definition of extendable Grundy coloring of G[R∪Q] (Definition 1).

Lemma 12. Let (C ′

1, . . . , C ′

γ′) be a (not necessarily optimal) Grundy coloring

of G[Q∪R], that is extendable. Let β = maxk
i=1{|Si \Q|}. Then, Grundy number

of G is γ′ + β.

Proof. By applying Lemma 10 instead of Lemma 7 within the detailed steps of
the proof of Lemma 9, it is clear that the proof is derived similarly. ⊓⊔
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Theorem 5 (⋆). There is an algorithm that given a graph G and a Grundy
coloring (C ′

1, . . . , C ′

γ′) of G[Q ∪ R], decides if (C ′

1, . . . , C ′

γ′) is extendable. This

algorithm runs in time O(p2.5p+o(p)), where p = O(2krr).

Theorem 6. There is an algorithm that given a graph G and a k-cluster mod-
ulator R of size r, outputs a Grundy coloring of G using the maximum number
of colors. This algorithm runs in time O(2O(kr2)p2.5p+o(p)), where p = O(2krr).

Proof. Let F ⊆ V (G) be the subset from Lemma 11. Following a similar ap-
proach as in the proof of Theorem 4, we find that |F | ≤ r2r+k. We can guess the

correct Q and a Grundy coloring (C ′

1, . . . , C ′

γ′) of G[Q∪R], extendable in 2O(kr2)

time. To check whether (C ′

1, . . . , C ′

γ′) we can use the algorithm of Theorem 5 in

O(p2.5p+o(p)) time. By applying the same method as before, we obtain a total

running time of O(2O(kr2)p2.5p+o(p)), as desired. ⊓⊔
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