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Abstract. The objective of this article is to propose two natural gen-
eralizations of covering edges by edges (Edge Dominating Set) and
study these problems from the multivariate lens. The őrst is simply con-
sidering Edge Dominating Set on hypergraphs, called Hyperedge
Dominating Set. Given a hypergraph H = (U ,F), a set F ⊆ F is
called a hyperedge dominating set if all hyperedges intersect with at least
one hyperedge e ∈ F . The objective of the Hyperedge Dominating
Set problem is to determine whether a hyperedge dominating set of size
at most k exists. We őnd it quite surprising that such generalization
is missing from the literature. The second extension we consider is the
t-Path Edge Dominating Set problem. In this problem, the input
consists of a graph G and an integer k, and the goal is to őnd a set P
of at most k paths, each of length at most t, such that for every edge in
G, at least one of its endpoints belongs to the vertex set V (P ) for some
P ∈ P. We show the following results and add to the literature on Edge
Dominating Set.

– Hyperedge Dominating Set is FPT parameterized by k+d, where
d is the maximum size of a hyperedge in the input hypergraph.

– A kernel of size O(kd) can be obtained for the Hyperedge Domi-
nating Set problem, where d is the maximum size of a hyperedge
in the input hypergraph.

– The problem of őnding a Hyperedge Dominating Set is compu-
tationally difficult; speciőcally it is W[2]-hard when parameterized
by k. This hardness result holds even when each vertex is contained
in at most 2 hyperedges and the intersection between any two hy-
peredges is at most 1.

– t-Path Edge Dominating Set is FPT when parameterized by k+t.
Additionally, it has a kernel of size O(k3t3).

Keywords: Edge Dominating Set · FPT · Hypergraph · Kernel.
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1 Introduction

Covering things by things is ubiquitous in theoretical computer science. In most
cases, these can be abstracted as either the classical Set Cover problem or the
Hitting Set problem. In these problems, we are given a hypergraph (U ,F),
here U = {u1, . . . , un} is a universe (set of vertices), and F = {F1, . . . , Fm} is a
family of subsets over U also called hyperedges, and a positive integer k. In the
Set Cover problem, the goal is to find a subfamily F ′ ⊆ F of size at most k, the
union of which contains all the elements of U . In the Hitting Set problem, we
want to find a subset U ′ ⊆ U of size at most k that has a non-empty intersection
with each element of F . These problems, together with their numerous variants
and generalizations, have been some of the most explored research directions in
the field of parameterized complexity. Motivated by these studies, in this paper,
we consider two generalizations of classical Edge Dominating Set and study
them from the Parameterized Complexity perspective [3,9,14,19,20,22].

In the Edge Dominating Set (EDS) problem, we are given a graph G

and an integer k, and the task is to find a set of k edges that dominate all the
edges in G. We say that an edge e1 = (a1, b1) dominates (or covers) another
edge e2 = (a2, b2) if {a1, b1} ∩ {a2, b2} ̸= ∅. Note that the edge dominating
set is a dominating set in the line graph. This problem is known to be NP-
Complete even when restricted to planar or bipartite graphs with maximum
degree 3 [32]. It is also known to admit a factor 2 approximation algorithm in
polynomial time [13]. Fernau was the first to consider the problem from the
perspective of parameterized complexity and, by employing enumeration-based
techniques, obtained an FPT algorithm [10]. After a series of improvements,
the current best algorithm was given by Iwaide and Nagamochi which runs
in time O⋆(2.2351k) [18]5. The problem also admits a polynomial kernel with
O(k2) vertices and O(k3) edges [30]. In fact, people have also tried to improve

constants, and the current best-known kernel has max{k2

2 + 7k
2 , 6k} vertices and

8k3

27 +O(k2) edges [15].
Escoffier et al. even considered this problem in the world of FPT approxima-

tion and designed an FPT algorithm that is faster than the best known FPT exact
algorithm and has a ratio better than 2. In fact, they give an FPT-approximation
scheme [8]. Finally, we would also like to mention that several exact algorithms
have been made for the problem [11,27,28,31]. This demonstrates the extensive
research on Edge Dominating Set through algorithmic approaches designed
to address its NP-hardness.

1.1 Edge Dominating Set on Hypergraphs

We first define the notion of domination by a vertex or an edge in a graph. A
vertex dominates itself, all its neighbors, and all the edges that are incident with
it. Similarly, an edge dominates its two endpoints, and all the edges incident
with either of its endpoints. These problems can be broadly classified into four

5 The O⋆ notation hides polynomial factors.
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Fig. 1. An overview of domination problems in graphs and their counterparts in hy-
pergraphs. Problem marked with ∗ has not been previously studied.

Dominatee Dominator Problem FPT Status
In Graphs

Vertices Vertices Dominating Set W[2]-hard [6]

Vertices Edges Edge Cover P [25]

Edges Edges Edge Dominating Set FPT [10,18,30]

Edges Vertices Vertex Cover FPT [4,17]

In Hypergraphs (d-Hypergraphs)

Vertices Vertices Dominating Set W[2]-hard [6]

Vertices Hyperedges Set Cover (d-Set Cover) W[2]-hard [5]
(FPT [5])

Hyperedges Vertices Hitting Set (d-Hitting
Set)

W[2]-hard [7]
(FPT [24,2])

Hyperedges Hyperedges Hyperedge Dominating
Set (d-Hyperedge Domi-
nating Set)

W[2]-hard (FPT)

Table 1. The őgure shows the FPT status with respect to the parameter k (solution
size) of the various domination problems in graphs and hypergraphs.

categories based on whether the dominator and the dominatee is a vertex set or
an edge set. Each type gives rise to some classical well-studied problems in graph
algorithms. A brief overview of the classification is given in fig. 1. In particular,
a set of vertices dominating all the vertices is the Dominating Set problem,
a set of vertices dominating all the edges is the Vertex Cover problem, a set
of edges dominating all the vertices is the Edge Cover problem, and a set of
edges dominating all the edges is the Edge Dominating Set problem. Our
first generalization is obtained by considering these basic problems from graphs
to hypergraphs.

By considering a natural generalization of these problems on hypergraphs
(d-hypergraphs), we get another set of well-studied problems. A d-hypergraph
is a hypergraph where each hyperedge has size at most d, called a d-hyperedge.
In the case where we want to dominate all the edges (d-hyperedges) by a set of
vertices, we get the Hitting Set (d-Hitting Set) problem. Also, when all the
vertices need to be covered by a set of hyperedges (d-hyperedges), we get the
Set Cover (d-Set Cover) problem. The status of each of these problems with
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respect to parameterized complexity is mentioned in Table 1. The domination
of vertices by vertices remains an equivalent problem in terms of complexity in
hypergraphs. Since Dominating Set in graphs is W[2]-hard parameterized by
k, Vertex Dominating Set in hypergraphs is also W[2]-hard parameterized
by k. However, the case where all the hyperedges need to be dominated by a
set of hyperedges has not been studied. We fill this gap in our knowledge by
studying the Hyperedge Dominating Set (HEDS) problem through the lens
of parameterized complexity. In particular, we prove the following.

Theorem 1 (⋆6). There is an algorithm of running time O(ddk · 2dk|F|) for
d-Hyperedge Dominating Set.

Our algorithm is inspired by the techniques for Edge Dominating Set

problem studied in these papers [10,18,30].

Theorem 2. d-Hyperedge Dominating Set admits a kernel of size O((dk)d
2

).

Theorem 2 is proved using the concept of representative sets [12].Given a
hypergraph H defined on U = {u1, . . . , un} and F = {F1, . . . , Fm}, we can
define a dual hypergraph H∗ on U∗ and F∗ as follows. For each F ∈ F , create a
vertex xF ∈ U∗ and for each u ∈ U , create a subset of U∗ corresponding to the
hyperedges in F that contain u and add this subset to F∗. Notice that a set of
vertices S of a hypergraph H is a vertex dominating set in H if and only if the
set of hyperedges corresponding to S is a hyperedge dominating set in the dual
hypergraph H∗. Specifically, S ⊆ U is a vertex dominating set of size at most k

in a hypergraph H where the degree of every vertex is bounded by d if and only if
the set of at most k d-hyperedges corresponding to S is a hyperedge dominating
set in the dual d-hypergraph H∗. Thus, our FPT algorithm and kernelization
results for d-Hyperedge Dominating Set (d-HEDS) also extend to Vertex

Dominating Set in hypergraphs where the degree of every vertex is bounded
by d. Notice that even though the degree of every vertex in H∗ is at most d, the
size of the hyperedges in H∗ is not bounded. So, a simple branching algorithm
may not work.

However, when we allow the size of the hyperedges to be unbounded, the
problem becomes W[2]-hard. In fact, we show that the problem Hyperedge

Dominating Set is hard even for a specific case where the frequency of every
element is bounded, i.e., every vertex has bounded degree and any pair of sets
in the family has a bounded intersection.

Theorem 3 (⋆). Hyperedge Dominating Set is W[2]-hard parameterized
by k even when the intersection of any two edges is bounded by 1 and the degree
of any vertex is bounded by 2.

We show that the above theorem implies that Hyperedge Dominating Set

is W[2]-hard even when the hypergraph is K2,2-free. Here K2,2-free means that
there are no two vertices present in two hyperedges. This result is in contrast to
the fact that Dominating Set is FPT in Ki,j-free graphs, that is, graphs that do
not contain the complete bipartite graph with i and j vertices as subgraph [26].

6 Proofs of results marked with ⋆ are omitted due to paucity of space.
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1.2 Covering Edges by Paths : t-path Edge Dominating Set

Our next generalization is motivated by the following analogy: Vertex Cover

and Edge Dominating Set can be viewed as domination of edges by paths of
length 1 and 2, respectively. Here, we consider a vertex as a path of length 1 and
an edge as a path of length 2. We extend this to study domination of edges by
paths of length t. In this problem, given a graph G and an integer k as input, the
goal is to find at most k paths, each with length at most t, which dominate all
edges in the graph. In simple words, deleting vertices appearing on these paths
results in an independent set. In this paper, we design an FPT algorithm and a
kernel for the t-path Edge Dominating Set (t-path EDS) problem. We give
a randomized FPT algorithm parameterized by k+ t using the technique of color
coding, and then we derandomize it by utilizing an (n, k)-perfect hash family [5].

Theorem 4. Given an instance I = (G = (V,E), k) of t-path Edge Domi-

nating Set, there is a deterministic FPT algorithm that runs in time
(8e)kt4t2O(log2kt)nO(1) and finds at most k paths, each of length at most t, that
dominate all the edges in E.

One might ponder why we do not study this problem parameterized by k

or t alone? We give a reduction from an NP-hard problem s-t Hamiltonian

Path to our problem. In the s-t Hamiltonian Path problem, we are given
a graph G, two vertices s, t ∈ V (G) and the task is to check if a path exists
that goes through every vertex exactly once and starts from s and ends at t.
The reduction is as follows. Given G, we subdivide every edge. We add paths
P1 = (s1, s2, s) and P2 = (t, t1, t2) to the graph with subdivided edges. Let the
modified graph be G′. Then, (G′, 1, 2n + 1) is an equivalent instance of t-path

Edge Dominating Set. It is easy to see that G has a s-t hamiltonian path if
and only if G′ has a path on 2n+1 vertices that dominates all its edges. An FPT
algorithm for t-path Edge Dominating Set parameterized by k alone would
imply a polynomial time algorithm for the s-t Hamiltonian Path, implying P
= NP.

Similarly, an FPT algorithm parameterized by t alone would imply a poly-
nomial time algorithm for Vertex Cover, which is our problem corresponding
to t = 1 and is known to be NP-hard, thus, implying P = NP.

Theorem 5 (⋆). t-path Edge Dominating Set admits a kernel of size
O(k3t3).

We would like to remark that the best known kernel for Vertex Cover

(corresponding to t = 1) has size O(k) and for Edge Dominating Set (corre-
sponding to t = 2) has size O(k2) [15,21,29].

2 Preliminaries

We use N to denote the set of positive integers. For a graph G, we denote its
vertex set and edge set as V (G) and E(G), respectively. A hypergraph H on
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a universe U = {u1, . . . , un} is a family F of subsets of U . For a set W ⊆ U ,
F −W denotes all the sets in F that do not contain any element from W . The
frequency or equivalently the degree of a vertex v in a hypergraph is the number
of hyperedges which contains v. A path P in a graph G is a sequence of distinct
vertices v1, . . . , vℓ, with ℓ > 1, such that (vi, vi+1) ∈ E(G), for each i ∈ [ℓ − 1].
We say that a path is of length t if the path contains t distinct vertices. For a
path P , let VP = {v : v ∈ V (P )} be the set of vertices contained in the path P .
For a set of paths P = {P1, . . . , Pℓ}, let VP = {v : v ∈

⋃

P∈P V (P )} be the set
of vertices contained in the paths in P. Let P be a set of paths that dominate
all the edges in a graph, then we denote the set of vertices in VP as used. For a
vertex v, N(v) = {u : (u, v) ∈ E} denotes the set of neighbors of v. For a set of
vertices X, N(X) = (

⋃

v∈X N(v)) \X. For a subset of vertices S, G[S] denotes
the graph induced on S, i.e., the graph on the vertex set S and the set of edges
present between any two vertices of S.

For two sets A and B, A \ B denotes the set of elements in A, but not in
B. For an integer i, we denote the set {1, . . . , i} by [i]. For integers i and j, we
denote the set {i, . . . , j} by [i, j]. For sets A and B, by A ⊎ B, we denote the
disjoint union of the sets.

3 Kernel for d-Hyperedge Dominating Set

In this section, we will develop a kernel for d-Hyperedge Dominating Set

using representative sets. We begin with the definition of representative sets.

Definition 1 ([12]). (q-Representative Family) Given a family A over a
universe U , a subfamily A′ ⊆ A is said to q-represent A if for every set B ⊆ U
of size q such that there is an A ∈ A and A∩B = ∅, there is a set A′ ∈ A′ such
that A′ ∩B = ∅. If A′ ⊆ A is q-representative for A we write A′ ⊆q

rep A.

Theorem 6 ([12]). Given a family A of sets of size p over a universe, and
q ∈ N, a q-representative family Â ⊆ A for A with at most

(

p+q
p

)

sets can be

computed in time O(|A|(
(

p+q
p

)

pω +
(

p+q
p

)ω−1
). Here, ω < 2.373 is the matrix

multiplication exponent.

Theorem 2. d-Hyperedge Dominating Set admits a kernel of size O((dk)d
2

).

Proof. In the d-HEDS problem, we have a universe U and family F of sets of
cardinality at most d and an integer k as input. We compute a q-representative
set, with q = dk, of F using the algorithm in Theorem 6. Let F̂ be the q-
representative set of F . We know |F̂ | ≤

(

dk+d
d

)

= O((dk)d) and we can find F̂

in time O(|F|((dk)ddω + (dk)dω−d)) = O(|F|(dk)dω). Note that |F| ≥
(

dk+d
d

)

,

otherwise, we can take F̂ = F . Now, let Û be the union of elements in the sets in
F̂ . Then, |Û | ≤ d·

(

dk+d
d

)

. For all possible subsets U of Û , of size at most d, we add

a set from F to F̂ , if it exists, which contains the elements of U . The number of

sets added to F̂ is at most
(

|Û|
d

)

+
(

|Û|
d−1

)

+ . . .+
(

|Û|
1

)

≤
(

|Û|+d−1
d

)

≤
(d(dk+d

d )+d−1

d

)

.
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Û

A

A
′

UX

Fig. 2. An illustration of the proof of Theorem 2.

Note that the size of F̂ now is at most
(

dk+d
d

)

+
(d(dk+d

d )+d−1

d

)

=O((dk)d
2

). Note

that we also assume |F| ≥ O((dk)d
2

), otherwise we can return the original
instance itself. We claim that (Û , F̂) is our desired kernel. The total time taken is

O(|F|((dk)d
2

)). Our construction is polynomial in the size of the input instance.
Let Ŝ be a solution for the instance (Û , F̂) and U

Ŝ
=

⋃

F∈Ŝ
F . Then, U

Ŝ
hits

all the sets in F̂ . We claim that U
Ŝ

hits all the sets in F . Suppose not. Then let

A be a set in F that is not hit by U
Ŝ
. Since F̂ contains a q-representative set,

there must exist some set A′ in F̂ which is disjoint from U
Ŝ
. But U

Ŝ
hits all the

sets in F̂ , which is a contradiction.
Let S be a solution for the instance (U ,F) and US =

⋃

F∈S F . We know that

S dominates all the sets in F . We claim that there exists a subfamily S′ in F̂
of cardinality at most |S| that dominates all the sets in F̂ . For a set A ∈ S, if
A ∈ F̂ then we pick A in S′. Otherwise, we have two cases. If Û ∩ A ̸= ∅, then
we choose a set A′ that is added for the subset Û ∩ A in the construction of
F̂ . If Û ∩ A = ∅, we don’t add any set corresponding to A. This completes the
construction of S′ and notice that |S′| ≤ |S|. Next we need to prove that S′ is a
solution to (Û , F̂). Fix an arbitrary set X ∈ F̂ . We know that X is dominated
by S. Let A ∈ S be a set that dominates X. That is, X ∩A ̸= ∅. If A ∈ F̂ , then
A ∈ S′ (by construction of S′), and hence X is dominated by S′. Suppose this
is not the case. Notice that ∅ ≠ X ∩ A ⊆ A ∩ Û . We have added a set A′ to S′

corresponding to A, where A′ ∩ Û = A ∩ Û . This implies that A′ dominates X.
See fig. 2 for an illustration. ⊓⊔

4 FPT algorithm for t-path Edge Dominating Set

In this section, we present an algorithm for solving t-path Edge Dominating

Set (t-path EDS). Given a graph G = (V,E) and an integer k, the objective
of this problem is to find at most k paths, each with a length of at most t, that
cover all the edges in G. Recall that a path is considered to have a length of t if
it consists of t vertices. A path P is said to cover (dominate) an edge e = (a, b)
if the set of vertices VP intersects with {a, b}. It is important to note that when
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t = 2, the problem is the same as the Edge Dominating Set problem. The
paths in the solution may have overlapping vertices or edges.

A randomized algorithm for t-path EDS is described in Algorithm 3 and
Theorem 7 states the main result. However, before we state our main result, we
list a few lemmas that will be used to prove the correctness of our algorithm.

Lemma 1 ([16]). There is an algorithm to find a vertex cover of size k (if it
exists) in a graph G, in time O⋆(1.25284k).

Our next lemma uses the notion of a colorful path. We first define what we
mean by a colorful path in a graph and mention a known result that states how
to find one, if it exists.

Definition 2 (Colorful Path). For a graph G = (V,E), a positive integer
k and a coloring f : V → [k] of the vertices of G using k colors, we call P a
colorful path in G if all the vertices in P get distinct colors. That is, for any two
distinct vertices u, v ∈ VP , f(u) ̸= f(v).

Lemma 2 ([1,5]). Let G be a graph, k be a positive integer, and f : V → [k]
be a coloring of V using k colors. There exists a deterministic algorithm that
checks in time 2knO(1) whether G contains a colorful path on k vertices and, if
this is the case, returns one such path.

For a graph G, a set of colors Col, and a coloring f : V → [|Col|], we de-
fine a subroutine called Path(Col) which is TRUE if invoking Lemma 2 on the
instance (G, |Col|, f) returns a colorful path that uses all the colors in Col. For
implementation details, please refer to [5].

4.1 colorful t-path cover and t-path cover

We describe a problem called colorful t-path cover that takes a graph G,
a positive integer k, a vertex subset V ′ ⊆ V , and a coloring f : V ′ → [q] of V ′

using q colors, and checks if there exist at most k colorful paths in G[V ′], each
of length at most t, say P, such that {f(v) : v ∈ VP} = [q]. The paths need not
be vertex disjoint which implies that q ≤ kt. In essence, we want to find at most
k colorful paths, each of length at most t, that use all the colors. We define it
formally below.

colorful t-path cover

Input: I = (G, k, V ′, q, f) where G = (V,E) is a graph, k ∈ N, V ′ ⊆ V ,
a set of q colors, and f : V ′ → [q] is a coloring of V ′ using q colors.
Parameter: k + t.
Output: A set P such that |P| ≤ k, each P ∈ P is a colorful path of
length at most t and {f(v) : v ∈ VP} = [q].

We can solve an instance I = (G, k, V ′, q, f) of colorful t-path cover by
invoking Algorithm 1 that uses Lemma 3 as a subroutine.
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Algorithm 1 An FPT algorithm for colorful t-path cover

Input: (I = (G = (V,E), k, V ′, Col, f))
Parameter: k + t

Output: YES if there exist at most k paths in G[V ′], each of length at most t, that
together use all the colors in Col, else NO.

1: for i = 1 to k do
2: Invoke Lemma 3 on (Col, i).
3: If the output is YES, then return YES.
4: end for
5: return NO.

Lemma 3 (⋆). Let G = (V,E) be a graph, V ′ ⊆ V , Col be a set of colors,
k be a positive integer, and f : V ′ → [|Col|] be a function. Then, for a subset
of colors col ⊆ Col and some i ∈ Z

+, Cover(col, i) is TRUE if there exist i

paths, each of them colorful and of length at most t, in G[V ′], say P, such that
{f(v) : v ∈ VP} = col. It is FALSE otherwise. Cover(col, i) can be computed
using the following recursive formula.

Cover(col, i) =
∨

C⊆col where |C|≤t,

col′=(col\C)∪W where W⊂C, and

Path(C)=TRUE

Cover(col′, i− 1)

with

Cover(col, 1) =

{

Path(col) if |col| ≤ t

FALSE otherwise

Moreover, Cover(Col, k) can be computed in time 22(kt+t) · k2t · nO(1).

The running time of Algorithm 1 is 22(kt+t) · O(k3t) · nO(1), since Lemma 3
is invoked at most k times. Its correctness follows from the correctness of the
above lemma.

We now describe another problem called t-path cover that takes a graph
G, an integer k, a partition V1 ⊎ V2 ⊎ V3 of V , and checks if there exist at most
k paths in G[V1 ∪ V2], each of length at most t, that cover all the vertices in V1

but do not use any vertex from V3. The paths need not be vertex disjoint. We
define it formally below.

t-path cover

Input: An instance I = (G, k, V1, V2, V3) where G = (V,E) is a graph, k
is a positive integer, and V1 ⊎ V2 ⊎ V3 is a partition of V .
Parameter: k + t

Output: A set P such that |P| ≤ k, each P ∈ P is a path of length at
most t in G[V1 ∪ V2], V1 ⊆ VP and V3 ∩ VP = ∅.
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Algorithm 2 An FPT algorithm for t-path cover

Input: (I = (G = (V,E), k, V1, V2, V3))
Parameter: k + t

Output: YES if there exist at most k paths in G[V1 ∪ V2], each of length at most t,
that cover all the vertices in V1 and do not contain any vertex from V3, else NO.

1: Color the vertices of V1 such that every vertex gets a distinct color. Let χ̃ : V1 →
[kt− |V1|+ 1, kt] be a coloring where vertices of V1 get distinct colors.

2: for r = 0 to kt− |V1| do
3: Color the vertices in V2 uniformly at random using r colors. Let χ : V2 → [r] be

a coloring of V2 uniformly at random. (Note that when r = 0, we do not color
the vertices of V2 and proceed with just the coloring on V1.)

4: Let Col = Range(χ) ∪ Range(χ̃).
5: Deőne a coloring function f : (V1 ∪ V2) → [|Col|] where f(v) = χ̃(v) if v ∈ V1

and f(v) = χ(v) if v ∈ V2.
6: Invoke Algorithm 1 on the instance (G, k, V1 ∪ V2, Col, f).
7: If the algorithm outputs YES, then return YES.
8: end for
9: return NO instance.

Lemma 4 (⋆). Given an instance I = (G, k, V1, V2, V3) of t-path cover,
there is a randomized algorithm that, given a YES instance, returns YES with
probability at least

(

1− 1
ec

)

for some constant c > 1, and given a NO instance,

always returns NO. The algorithm runs in time 22(kt+t) · ekt · k3t2 · nO(1).

A description of the algorithm is given in Algorithm 2.

4.2 Algorithm for t-path EDS

Our randomized FPT algorithm is described in Algorithm 3.

Theorem 7. Given an instance I = (G = (V,E), k) of t-path EDS, there is a
randomized FPT algorithm that runs in time (8e)kt4tk4t2nO(1) and finds at most
k paths, each of length at most t, that dominate all edges in E. Given a YES
instance, it returns a solution with probability at least

(

1− 1
ec

)

, for a constant
c > 1. It returns NO when given a NO instance.

Proof. We first compute a vertex cover A of size at most kt using Lemma 1.
Recall that we call a vertex used if it occurs in one of the k solution paths. We
guess a subset Aused ⊆ A that consists of used vertices. Note that |Aused| should
be at most kt as the total number of used vertices cannot exceed kt. Then,
Aleft = A \ Aused is the remaining part of the vertex cover A, and I = V \ A is
an independent set. Since vertices in Aleft are not used, the vertices in Nleft =
N(Aleft) ∩ I must be used to dominate the edges going across Aleft and Nleft.
In case of a YES instance, |Nleft| ≤ kt. Moreover, for a YES instance, G[Aleft]
must be an independent set because any edge completely contained in G[Aleft]
can only be dominated by vertices in Aleft.
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Algorithm 3 An FPT algorithm for t-path Edge Dominating Set

Input: (I = (G = (V,E), k))
Parameter: k + t

Output: YES if there exists a set P such that |P| ≤ k, each p ∈ P is a path of length
at most t and the paths in P dominate every edge in E, else NO.

1: Find a vertex cover A of size at most kt using Lemma 1.
2: If a vertex cover of size kt doesn’t exist, then return NO instance.
3: Let I = V \A.
4: for each subset Aused ⊆ A of size at most kt do
5: Let Aleft = A \Aused, Nleft = N(Aleft) ∩ I and B = I \Nleft.
6: Let Z = Aused ∪Nleft.
7: If G[Aleft] is not an independent set or |Z| > kt, go to Step 4 and proceed with

the next guess of Aused.
8: Invoke Algorithm 2 on the instance (G, k, Z,B,Aleft).
9: If the subroutine returns YES, return YES and terminate.

10: Else, go to Step 4 and proceed with the next guess of Aused.
11: end for
12: return NO instance.

Given this structure of a graph (Aused, Aleft, Nleft, B), where B = I \ Nleft,
solving t-path EDS on
(G, k) reduces to solving t-path cover on (G, k, Z,B,Aleft), where Z = Aused∪
Nleft. The correctness holds due to Claim 8 listed below.

Claim 8 A solution to the instance (G, k, Z,B,Aleft) of t-path cover, where
Z = Aused ∪Nleft, is also a solution to the instance (G, k) of t-path EDS.

Proof. Let Pcov be the solution to the instance (G, k, Z,B,Aleft) of t-path

cover. Then, Pcov consists of at most k paths, each of length at most t, that
cover all the vertices in Z and do not contain any vertex from Aleft. Edges within
G[Aused], edges going across Aused and Aleft, edges going across Aused and B all
contain vertices of Aused and hence, have a non-empty intersection with the
paths in Pcov. Similarly, edges going across Aleft and Nleft contain the vertices
of Nleft and edges going across Aused and Nleft have used vertices as both their
endpoints. Thus, these kinds of edges also have a non-empty intersection with
the paths in Pcov. As every edge in the graph has a non-empty intersection with
the paths in Pcov, the paths in Pcov dominate every edge in the graph, and hence,
the claim holds. ⊓⊔

Since Algorithm 2 is invoked as a subroutine, we have that Algorithm 3 also
returns YES with probability at least

(

1− 1
ec

)

. If the given instance is a NO
instance, Algorithm 2 always returns NO, and hence, Algorithm 3 also returns
NO.

Running time: Computing a vertex cover A of size at most kt takes time
O∗(1.25284kt). There are at most 2kt choices of Aused and for each choice of Aused,
Steps 5 and 7 take polynomial time and invoking Algorithm 2 takes 22(kt+t) ·ekt ·
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O(k4t2) · nO(1) time. So, the total time taken is O(1.25284kt) · nO(1) + 22(kt+t) ·
(2e)kt · O(k4t2) · nO(1). Thus, the algorithm runs in time (8e)kt4tk4t2nO(1). ⊓⊔

Remark 1. Notice that, the way the algorithm is presented, it returns YES with
probability at least

(

1− 1
ec

)

if the given instance is a YES instance and NO
when the given instance is a NO instance. We can tweak Lemma 3 to return a
set of colorful paths using the standard technique of backlinks. The necessary
modifications in all the algorithms will give us a set of solution paths.

We can derandomize the algorithm using an (n, k)-perfect hash family. An
(n, k)-perfect hash family F is a family of functions from [n] to k such that for
every set S ⊆ [n] of size k, there exists a function f ∈ F that splits S evenly.
That is, for every 1 ≤ j, j′ ≤ k, |f−1(j) ∩ S| and |f−1(j′) ∩ S| differ by at
most 1. For any n, k ≥ 1, one can construct an (n, k)-perfect hash family of size
ekkO(logk)logn in time ekkO(logk)nlogn [5,23].

The deterministic algorithm does the following. It finds a vertex cover A of
size at most kt, guesses a subset Aused of used vertices from A and partitions the
vertices of the graph into Z ⊎B ⊎Aleft, as described in Algorithm 3. If |Z| ≤ kt,
then for each r ∈ [0, kt− |Aused|], it constructs an (|Z|, |Aused|+ r)-perfect hash
family Fr and for each f ∈ Fr, invokes Algorithm 1 on (G, k, Z, [|Aused|+ r], f).
The properties of an (n, k)-perfect hash family ensure that if there exists a set P
of at most k paths, each of length at most t, in G[Z ∪B] covering all the vertices
in Z, then there is a function f ∈ Fr that is injective on VP and consequently,
Algorithm 1 finds a set of at most k colorful paths with the required properties
for the coloring f . A vertex cover A of size at most kt can be computed in
O(1.25284kt) · nO(1) time. There are 2kt choices for Aused. For each choice of
Aused, partitioning the vertices into Z ⊎B ⊎Aleft takes polynomial time and for
each r ∈ [kt − |Aused|], constructing a (|Z|, |Aused| + r)-perfect hash family Fr

takes ekt(kt)O(logkt)ktlog(kt) time and invoking Algorithm 1 for each f ∈ Fr

takes ekt(kt)O(logkt)log(kt) · 22(kt+t)O(k3t)nO(1). So, the total time taken is

(8e)kt4t · 2O(log2kt)nO(1).

Theorem 4. Given an instance I = (G = (V,E), k) of t-path Edge Domi-

nating Set, there is a deterministic FPT algorithm that runs in time
(8e)kt4t2O(log2kt)nO(1) and finds at most k paths, each of length at most t, that
dominate all the edges in E.

5 Conclusion

In this paper, we study two generalizations of EDS from the perspective of
parameterized complexity. In particular, we study the EDS problem in hyper-
graphs, called d-HEDS. We study another extension of EDS where we want to
dominate the edges by paths of length t. We give FPT algorithms and polynomial
kernels for both problems. We also demonstrate the hardness of the Hyperedge

Dominating Set problem when each element has bounded frequency and any
pair of sets in the family intersect in at most one element.
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