
1 

 

An operation-agnostic stochastic user equilibrium model for 

Mobility-on-Demand networks with congestible capacities 
 

Bingqing Liu1, David Watling2, Joseph Y. J. Chow1* 

1C2SMARTER University Transportation Center, New York University, New York, NY 10012, 

US 
2Institute for Transport Studies, University of Leeds, Woodhouse, Leeds LS2 9JT, UK 

*Corresponding author email: joseph.chow@nyu.edu  

 

Abstract 

Evaluating the impact of privately-owned Mobility-on-Demand (MoD) services is important from 

a regulatory perspective. There is a need to model multimodal equilibria with MoD to support 

policymaking. While there exists a large body of literature on MoD services focusing on service 

design under equilibrium modeling, these studies commonly adopt assumptions of MoD 

operational policies. However, such policies might not be shared with regulatory agencies due to 

commercial privacy concerns of private operators. We model multimodal equilibrium with MoD 

systems in an operation-agnostic manner based on empirical observations of flow and capacity. 

This is done with a Flow-Capacity Interaction (FC) matrix that captures systematic effect of 

congestible capacities, a phenomenon in MoD systems where capacities are affected by flows. The 

FC matrix encapsulates the operation and demand patterns by capturing the empirical equilibrium 

relationship between flows and capacities. An operation-agnostic logit-based stochastic user 

equilibrium (SUE) formulation is proposed and proof of equivalence of the SUE formulation is 

derived. The proof shows that, unlike static capacities, path delays are not just the sum of the 

Lagrange multipliers of the links on the paths, but dependent on the whole network. We name this 

phenomenon as the “non-separable link delays”. A solution algorithm that finds SUE with a 

bounded path set is proposed, with a custom Frank-Wolfe algorithm to solve the non-linear SUE 

formulation. Since the FC matrix cannot be directly observed, an inverse optimization problem is 

introduced to estimate it with observed flow and capacity data. Two numerical examples are 

provided with sensitivity tests. An empirical example with yellow taxi data of downtown 

Manhattan, NY is provided to demonstrate effectiveness of estimating the FC matrix from real 

data, and for determining the equilibrium that captures the underlying flow-capacity dynamics.  

 

Keywords: Mobility-on-Demand, Stochastic User equilibrium, Congestible Capacities, 

multimodal traffic assignment, Inverse optimization 

 

 

1 Background 

Mobility-on-demand (MoD) refers to transportation systems that provide customers with on-

demand, point-to-point mobility services, including bikeshare, micro-mobility, carshare, ride-

hailing, ridesharing, ridepool/microtransit, carpools, among others, typically using digital 

technologies for booking, dispatching, and tracking. Different from traditional transit service, these 

systems are not based on fixed lines and schedules. Operational planning decisions include service 

region coverage and fleet distribution catering to individual or shared trips. Supported by 

Information and Communication Technologies (ICT), the operation of MoD are more flexible and 

complicated with real-time information, leading to a large body of literature on operational models 

of MoD, looking into aspects like rebalancing idle vehicles (Chow and Sayarshad, 2014; Sayarshad 
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and Chow, 2017), updating prices and vehicle routes (Sayarshad and Chow, 2015), and updating 

vehicle schedules (Allahviranloo and Chow, 2019). 

Equilibrium modeling of privately-owned MoD services is vital from a regulatory perspective, 

but it is difficult without the operation policy knowledge shared by the MoD operators. 

Equilibrium modeling of MoD in the literature typically require modeling the MoD operational 

policies. However, operational policies and relevant data are often considered commercially 

confidential by the MoD operators, making such models nonapplicable to the regulators. For 

example, when LADOT created guidelines for private mobility companies to share such data with 

them, Uber sued them in response (Teale, 2020). We focus on equilibrium modeling of multimodal 

transportation systems that involve MoD operators from a regulatory perspective. It is assumed 

that the regulator does not have full knowledge of all operators’ policies but can observe 

multimodal flows and steady state capacities.  

We define MoD as mobility services whose supply distribution responds to demand and is 

affected by demand. For example, e-hailing services deploy vehicles to pick-up customers, so 

customer trip demand impacts the spatial distribution of the vehicle supply. Another example is 

bike-sharing/car-sharing. A company deploys bikes/vehicles to depots considering expected 

demand, and customer trips also impact the distribution of bikes/vehicles. Our research subject 

includes various types of services that exhibit such microscopic supply and demand interaction, 

including ride-hailing, bike-sharing, car-sharing, microtransit, etc. 

Network equilibrium modeling is typically based on the modeling of congestion effect at 

microscopic (link, node, zone) level. The congestion effect under steady state models is often 

reflected as static link capacities or link costs as functions of flows. For MoD, with flexible 

movements of supply (e.g. vehicles cruising, shared bikes rebalancing), congestion effects are 

more complicated. The earliest MoD equilibrium studies looked at street-hailing taxi services 

(Yang and Wong, 1998; Wong et al., 2001; Yang et al., 2002; Wong et al., 2008; Yang et al., 2010; 

Yang and Yang, 2011). In street-hailing, congestion effect are typically reflected by search 

behavior and frictions, which are modeled by the probability of drivers choosing to meet customers 

at a location (Yang and Wong, 1998; Wong et al., 2001; Wong et al., 2008), meeting rates of 

drivers and customers (Yang et al., 2010; Yang and Yang, 2011), and customers’ waiting functions 

(Wong et al., 2001; Yang et al., 2002; Wong et al., 2008). 

With the emergence of ICT, the research focus of MoD switched to e-hailing. In e-hailing, 

congestion effect is even more dependent on the deployment and matching policies of operators. 

Such policies include centralized dispatching (Ban et al., 2019; Di and Ban, 2019) and matching 

based on different behavioral and operational assumptions (Xu et al., 2019; Zhang and Khani, 

2021; Liu et al., 2021). Customers’ wait times are modeled with different forms, typically 

functions of number of hailing passengers and number of idle vehicles. He and Shen (2015) studied 

the equilibrium with both street-hailing taxis and e-hailing taxis, modeling intra-zonal e-hailing 

matching. They assumed that there is little search friction for e-hailing, and modeled that through 

a large constant number within the Cobb–Douglas type meeting function similar to Yang et al. 

(2010). Ban et al. (2019) modeled traffic assignment with ride-sourcing with capacity constraints 

of allocated fleet sizes, assuming a centralized ride-sourcing platform that deploys vehicles to 

maximizes profit. Di and Ban (2019) proposed an equilibrium framework considering driving a 

personal vehicle, riding a personal vehicle, and e-hailing, also assuming centralized fleet 

deployment from the e-hailing platform maximizing profit. Xu et al. (2019) proposed a network 

equilibrium model that considers the cruising and deadheading trips of ride-sourcing vehicles, 

including intranode and internode matching. Ke et al. (2020) modeled the demand-supply 
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equilibrium of ride-sourcing platforms with and without car-pooling in an aggregate context 

without considering network structures. Monopoly (platform maximize revenue) and social 

optimum solutions determine trip fares and fleet sizes. Liu et al. (2021) proposed an equilibrium 

of traditional taxis, app-based taxis, and ride-sourcing. They employ the relationship between 

passengers’ and drivers’ wait time derived from Yang et al. (2010). 

Zhang and Khani (2021) studied a stochastic user equilibrium (SUE) in which ride-sourcing 

services complement the transit service as an access mode. The equilibrium includes the stochastic 

mode choice of riders and logit-based zone choice of drivers. Wait time is assumed to be a 

reciprocal function of average number of available TNC vehicles in the zone.  

In addition to ride-sourcing, there are studies looking at the ride-sharing user equilibrium 

(RUE), which is the equilibrium of solo drivers, ridesharing drivers, and ridesharing passengers. 

Congestion and inconvenience cost of ridesharing are modeled as functions of link flows (Xu et 

al., 2015) or shared travel time and distances (Ma et al., 2020; Li et al., 2020). Congestion delay 

cost can also be modeled with ridesharing capacity constraints (Sun and Szeto, 2021) or meeting 

rate functions (Chen and Di, 2021; Noruzoliaee and Zou, 2022). Bike-sharing and other micro-

mobility studies mostly look at optimal policies from the operator’s perspective, including 

rebalancing, fleet sizing, dock locating (Lin and Yang, 2011; Lin et al., 2013; Chow and Sayarshad, 

2015; Frade and Ribeiro, 2015; Park and Sohn, 2017), pricing (Pfrommer et al., 2014, Singla et 

al., 2015, Haider et al., 2018), and competition between different operators (Jiang and Ouyang, 

2022; Zhang et al., 2023), rather than equilibrium modeling from a regulator’s perspective.  

Assumptions are the basis of model structures and outcomes. Existing equilibrium models of 

MoD adopt centralized deployment assumption or different matching/behavioral assumptions for 

operators. Such a modeling paradigm is not agnostic to the operation of more complicated mobility 

operation forms and more players in the mobility market, especially from a regulator’s perspective.  

Firstly, in real cases, MoD often shows complicated combinations of centralized deployment 

and drivers’ free cruising rather than dominated by one. The equilibrium outcome is highly 

dependent on the specific operation policy of the MoD operator, which the regulators cannot know 

due to data-sharing concerns. This concern is further exacerbated in a multimodal environment. 

With the emergence of technological breakthroughs like innovative electric vehicles (EV) 

charging infrastructure and connected and automated vehicles (CAV), multimodal equilibrium 

becomes increasingly complicated from an analytical perspective. Assumptions regarding 

different modes and operation types need to coexist in one model. Such an overlay of assumptions 

leads to cumbersome models that are less applicable and scalable. For example, with a mixture of 

charging stations and enroute charging devices, the routing of EV-based mobility services becomes 

more complicated. For CAV-based mobility services, deployment and driving behavior would be 

different from operator to operator, leading to further assumptions that are hard to be validated 

without data sharing.  

With the emergence of deep learning, learning-based approaches are applied to user 

equilibrium modeling, which would potentially resolve the overlay of assumptions problem for 

complicated mobility systems. For example, Liu et al. (2023) proposed a learning framework with 

neural networks to capture travelers' path choices and compute user equilibrium flows. Learning-

based approaches are more generic and flexible when it comes to multimodal equilibrium with 

different operation types. However, large amount of data is needed to train the model as a 

compensation for lack of interpretable model structures (1536 sets of equilibrium flows are used 

for training in the numerical tests of Liu et al. (2023)). With big data generated by private mobility 
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companies, such methods would be helpful for the MoD companies. However, for a regulator, 

such methods would not be applicable without such strong data collection capabilities. 

With the above challenges from a regulator’s perspective, we aim to model multimodal 

equilibrium with MoD under the following circumstance: 1) without operation information shared 

by private mobility operators (agnostic to operational assumptions of multiple operators); 2) with 

small data needs for calibration; 3) with a unified and simple model structure that can generalize 

to emerging complex operational settings. 

We introduce the Flow-Capacity Interaction matrix (FC matrix) to capture the microscopic 

interaction between demand and supply in MoD systems without explicitly modeling the operation 

policies that are unknown to a regulator (i.e. “operation-agnostic”). The construction of FC matrix 

is based on the concept of “congestible capacity” from Xu and Chow (2021). Congestible capacity 

describes the phenomenon where capacity distribution in MoD systems is not static, but is affected 

by customer flows and rebalancing/matching policies. Xu and Chow (2021) studied a real-time 

version of congestible capacity. They proposed an offline-online estimation method to capture the 

real-time impacts that flows have on capacities in a subsequent time interval. This approach is not 

capturing the equilibrium state but modeling the real-time states. In this study, we model the static 

network equilibrium state with “congestible capacities” through the proposed forward model. In 

short, Xu and Chow (2021) only proposed a cost function whereas in this study we propose an 

entirely new network equilibrium model that makes use of that cost function. We consider the 

equilibrium state and model congestible capacities in MoD as link capacity constraints, in which 

the capacities are dependent on flows in the network. The dependency of capacities on flows is 

described by the FC matrix in a linear form. We introduce a non-linear stochastic user equilibrium 

(SUE) model with congestible capacity constraints (labeled as the “forward model”). An exact 

solution algorithm is proposed. A new inverse optimization model (labeled as the “inverse model”) 

is formulated to calibrate the FC matrix with multimodal trip and capacity data. 

The FC matrix encapsulates complicated interaction between demand patterns and supply 

patterns including matching, rebalancing, and drivers’ behavior. We acknowledge that the 

relationship between capacity and network-wide flows is indeed complex, and a linear 

approximation may not fully capture the dynamics of flow propagation through the network. We 

have adopted a linear assumption for simplicity, to ensure the uniqueness of solution and an 

efficient solution algorithm. In some cases linear functions are enough to capture the interaction 

of components in very complicated systems. The idea of FC matrix is similar to how the technical 

efficiency matrix in aggregate economic input-output models describe the structure of the 

technology contributions from empirical observation (Leontief, 1936). In Leontief’s IO model, the 

interaction between different economic industries can be quite complex and nonlinear, but for 

modeling localized, incremental impacts a linear model is deemed sufficient. This is also the 

justification for use in linear regression models. In our model, we also keep our analysis to 

localized, incremental changes. We cannot use the model to predict disruptive system changes, but 

we can use it to analyze incremental increase/decrease on capacity effects. Moreover, Hazelton 

and Watling (2004) investigated the stochastic nature of traffic flows using Markov models and 

derived equilibrium distributions, which provide approximations of network flow covariances 

based on linear filters. Their approach highlights how approximating the equilibrium distribution 

of flows through linear approximations can still yield reasonable predictions. An FC matrix is also 

similar to the neural network used by Liu et al. (2023) in a way that they both encapsulate 

complicated behavioral patterns with limited interpretability. However, the FC matrix requires 

much less data to calibrate due the simpler model structure. With inverse optimization approach, 
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only one set of equilibrium flow observation is needed along with a prior set of parameters. 

Capacity observations are optional. Such characteristic allows the regulators to apply the model 

with limited trip data.  

When congestible capacities are modeled with access/egress links to represent entering and 

exiting of a MoD service, subnetworks of different modes can be connected to apply the proposed 

SUE model to multimodal equilibrium modeling. Calibrating the FC matrix to multimodal trip 

data captures operation strategies of different modes and their impact on each other without 

knowing their individual policies, much like how Leontief’s input-output model captures inter-

industry interactions at a macroscopic level without needing to know firms’ behaviors.  

 The rest of the paper is organized as follows. Section 2 introduces the concept of congestible 

capacities, the FC matrix, SUE model with congestible capacities (the forward model), the solution 

algorithm, and the estimation method of the FC matrix (the inverse model). Section 3 shows two 

illustrative numerical examples. Section 4 presents a case study in which the FC matrix is estimated 

with yellow taxi data from downtown Manhattan, NY to demonstrate the effectiveness and 

scalability of the forward and inverse models with real data. Section 5 concludes. 

 

2 METHODOLOGY 

2.1 Preliminaries: Congestible capacity 

In existing MoD equilibrium models, congestion effects are modeled in three ways: meeting 

functions (Yang et al., 2010; Xue and Zeng, 2019; Liu et al., 2021), wait time functions (Di and 

Ban, 2019; Xu et al., 2019; Ke et al., 2020), and capacity constraints (Ban et al., 2019). Meeting 

functions and wait time functions assume continuous congestion effect, while capacity constraints 

assume fixed search/wait cost before the capacity binds. Binding capacity means demand exceeds 

supply at a location or in a zone. Lagrange multiplier of capacity constraint represent the extra 

matching cost when the capacity binds.  

We choose capacity constraints to model MoD congestion effects. MoD services can be 

categorized into 2 types: with fixed stations and without fixed stations. The approach of capacity 

constraints is more generalizable to diverse multi-operator settings: for MoD with fixed stations 

such as docked bike-sharing and car-sharing, capacity constraints fit better, since the time of 

picking up a bike/car does not vary much before all the bikes/cars are taken from a station. For 

MoD without fixed stations such as ride-hailing and dockless bike-sharing, assuming evenly 

distributed vehicles, search/wait time remains steady before all vehicles/bikes in the zone are 

occupied, which aligns with the characteristics of capacity constraints. Furthermore, capacity 

constraints can also model fixed route transit services which we can also include in our multimodal 

model. 

As defined by Xu and Chow (2021), congestible capacity refers to the phenomenon where 

capacity distribution in a network does not remain static but is affected by flows in the network. 

MoD generally exhibits such a characteristic due to superposition effects of demand patterns and 

operation policies, leading to complicated interdependency between flows and capacities. Not all 

extra capacity dropped by finished trips and rebalancing can be transformed into available capacity. 

The transformation is dependent on the sequence of customer arrival, departure, and rebalancing 

(for those familiar with traffic signal capacity modeling, this is similar to how steady state delays 

are dependent on a host of dynamic factors like arrival platoon behavior or distance between 

signals).  

We use the 5 bike sharing station simulations in Figure 1 as illustrations. We simulate the 

number of bikes at a bike sharing station. Initially, there are 20 bikes at the bike sharing station. 
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There are 3 sequences that impact the number of bike available: user departure that takes away 

bikes, user arrival that drops off bikes, and rebalancing efforts made by the operator that drop off 

bikes. We set fixed frequencies for the 3 sequences for all the 5 cases, which are 0.05, 0.03, and 

0.02 bikes per unit time, respectively. The distributions of the 3 sequences are different, described 

as follows: 

• Bike station simulation 1: evenly distributed user take-aways; evenly distributed user 

drop-offs; evenly distributed rebalancing drop-offs. 

• Bike station simulation 2: evenly distributed user take-aways; evenly distributed user 

drop-offs; rebalancing drop-offs happen in the first 2 units per 100 units of time (1 

bike/unit time). 

• Bike station simulation 3: evenly distributed user take-aways; evenly distributed user 

drop-offs; rebalancing drop-offs happen in the last 2 units per 100 units of time (1 

bike/unit time). 

• Bike station simulation 4: evenly distributed user take-aways; user drop-offs happen 

in the last 3 units per 100 units of time (1 bike/time unit); rebalancing drop-offs happen 

in the last 2 units per 100 units of time (1 bike/unit time). 

• Bike station simulation 5: evenly distributed user take-aways; drop-offs happen in the 

first 3 units per 100 units of time (1 bike/unit time); rebalancing drop-offs happen in 

the first 2 units per 100 units of time (1 bike/unit time). 

Figure 1 shows how the number of bikes available at the bike station changes with time for 

the 5 cases. Since the total drop-off frequency equals the take-away frequency, the overall number 

of bikes available at the station should remain 20. However, the average number of bikes available 

across the time units are: (1)19.5; (2)21.0; (3)19.0; (4)18.1; (5)22.9. The cases show that, even 

with the same collective frequencies of take-aways and drop-offs, the equilibrium capacities that 

are experienced by the users can be different. All 5 cases are with evenly distributed user take-

aways. The case with the highest average number of bikes is case (5), which has all the drop-offs 

happening earlier than most of the take-aways, so the dropped-off bikes are more available to the 

coming users. For case (4), the drop-offs happen largely after the take-aways, making the dropped-

off bikes unavailable to the users, leading to lower average number of available bikes. Hence, 

equilibrium capacity is determined by the interaction between the three sequences. Generally, 

when more arrivals and input rebalancing happen before the departures, a higher portion are 

transformed as available capacity. 

 

  
(a) Bike station simulation 1 (b) Bike station simulation 2 



7 

 

  
(c) Bike station simulation 3 (d) Bike station simulation 4 

 

 

(e) Bike station simulation 5  
Figure 1. Capacity transformation illustration: Bike station simulation 

 

Except for bike-sharing, a broad range of mobility services which we define as MoD also exhibit 

similar capacity effects. The capacity dynamics of MoD services are all affected by the following 

3 processes, similar to the bike sharing example in Figure 1:  

• Process 1: capacity decrease due to users taking away vehicles/bikes/scooters, etc.;  

• Process 2: capacity increase due to users dropping off vehicles/bikes/scooters, etc.;  

• Process 3: capacity change due to operation policies such as rebalancing/interzonal 

matching.  

The different characteristics of these different services would only lead to different 

distributions of the three processes and different interactions between them. Some other examples 

are as follows.  

• Ride-sourcing: Capacity of a zone is the number of drivers available in the zone. 

o Process 1: When a driver is occupied by a customer, one unit of capacity is taken 

away from the zone.  

o Process 2: When a driver drops off a customer at her destination, this driver adds 

to the capacity of the destination zone. 

o Process 3: When a driver at zone A is matched with a customer at zone B, this 

driver becomes one unit of capacity of zone B. 

• Dockless bike/scooter sharing: Capacity of a zone is the number of bikes/scooters available 

in the zone. 

o Process 1: When a bike/scooter is taken by a customer, one unit of capacity is taken 

away from the zone.  

o Process 2: When a customer drops off a bike/scooter in a zone, this adds to the 

capacity of the zone. 
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o Process 3: When the operator takes bikes/scooters from zone A to zone B, the 

capacity of zone A is decreased, and capacity of zone B is increased. 

• CAV-based ride-sourcing: Capacity of a zone is the number of CAVs available in the zone. 

o Process 1: When a CAV is matched with a customer in a zone, one unit of capacity 

is taken away from the zone.  

o Process 2: When a CAV drops off a customer in a zone, this adds to the capacity of 

the zone. 

o Process 3: When a CAV at zone A is matched with a customer at zone B, this CAV 

becomes one unit of capacity of zone B. 

 

In this study, we aim to model the steady states of such dynamic capacities. As a result of the 

interaction between departures, arrivals, and rebalance/interzonal matching, congestible capacity 

at equilibrium is similar to the average capacity that we calculate for the cases in Figure 1: the 

capacity experienced by the users at a static equilibrium state. Two elements should be captured 

while modeling congestible capacities: demand patterns and operation policies. Demand patterns 

includes customer departure and arrival flows in the MoD network. The impact of demand patterns 

on equilibrium capacities can be captured by modeling flow-capacity relationships. Operation 

policies that cause capacity movements are designed to respond to customer flows, which are 

dependent on customer flows. Hence, operation policies can also be implicitly captured by 

modeling flow-capacity relationships. Note that without observable operation policy knowledge, 

we model only customer flows which could be observed through trip data.  

 As a result, we model congestible capacities at equilibrium as a relationship between 

customer flows and capacities. We define the equilibrium capacity of a MoD zone as a linear 

combination of customer link flows in the network, with coefficients representing the observed, 

aggregated impact of all link flows in the network on the capacity, leading to the construction of 

the FC matrix. Details are discussed in Section 2.2.  

 

2.2 Problem description 

Assume that the service region of a MoD provider can be divided into a number of zones. Each 

zone is represented by a centroid node. Neighboring nodes are connected by links with link cost 

as the MoD service cost between the zones represented by the nodes (note that the links are not 

street segments but OD-level paths between zone centroids). The cost of entering and exiting a 

MoD service is represented by access/egress links connecting the walking modal network with the 

MoD network. In a multimodal setting, each mode or service is represented by a subgraph and are 

all connected with the walking network with access/egress links at the access/egress locations (e.g. 

MoD pick-up/drop-off points, MoD zone centroids if no specific pick-up/drop-off points, bike-

sharing stations). 

We define the above multimodal network as a directed graph 𝐺(𝑉, 𝐸). Each link 𝑖  has a 

capacity 𝑠𝑖  and a constant undersaturated travel cost 𝑡𝑖  when capacity is not binding. The link 

travel cost 𝑡𝑖 is the generalized sum of all the costs for a customer to traverse the link transformed 

into the same units (e.g. $). For links within a mode/service, link cost includes travel time cost, 

fare cost (if applicable), comfort cost etc. For access links, link cost includes the uncongested time 

cost and comfort cost of accessing a mode (e.g. time of unlocking a shared bike, average ride-

hailing wait time in a zone when demand is smaller than supply). For egress links, link cost 

includes the uncongested time cost and comfort cost of egressing a mode (e.g. time of locking up 

a bike, time of returning a car). All elements of link costs are converted to a common unit (e.g. $). 
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We assume 𝑠𝑖 as infinity (uncapacitated) for walking links and links connecting MoD nodes. We 

do not consider crowding congestion in the in-vehicle links of MoD nor the contribution of MoD 

vehicles to the background traffic congestion. We consider 𝑠𝑖 as finite for MoD access links and 

some MoD egress links. Congestible capacity effect generally exists on the MoD access/egress 

links. The capacity of MoD access links represents the amount of available supply at a location, 

which is affected by customer flows and operation. The capacities of MoD egress links are 

typically infinity (e.g. there is no restriction in getting off a vehicle), but in some cases they also 

exhibit congestible capacity effects (e.g. limited docks might cause extra waiting while dropping 

off a bike, and the number of available docks at a station is affected by customer flows and 

operation). 

Travel demand is deterministic and is classified by a set of origin-destination (OD) pairs 𝑊 

starting and ending from the walking network. We denote the travel demand of OD pair 𝑤 ∈ 𝑊 

as 𝑟𝑤 . Dummy links can be setup between OD pairs to capture elastic demand that does not 

participate in a trip. Trips between OD pairs are made along paths 𝑗 ∈ 𝐾 formed by sequences of 

links 𝑖 ∈ 𝐸𝑗, where 𝐸𝑗 denotes the set of all the links on path 𝑗. The path set connecting OD pair 

𝑤 ∈ 𝑊 is denoted as 𝐾𝑤. Link flow of links 𝑖 ∈ 𝐸𝑗 is denoted as 𝑣𝑖. Path flow of path 𝑗 ∈ 𝐾 is 

denoted as ℎ𝑗 . When link flows 𝑣𝑖 reach the link capacity, non-zero Lagrange multipliers 𝑚𝑖 may 

manifest in these links, resulting in path delays 𝑑𝑗. The uncongested path cost of path 𝑗 ∈ 𝐾 is 

denoted as 𝑇𝑗, and congested path cost is denoted as 𝑐𝑗 = 𝑇𝑗 + 𝑑𝑗 .  

We model congestible capacities as functions of link flows, 𝑠𝑖 = 𝑓(𝑣), where the function 

characterizes an equilibrium state structure. Xu and Chow (2021) used a linear combination to 

update congestible capacities in real-time cases, which is a linear function of inbound and 

outbound flows of the zone and the capacity of the last time interval. More generally, we assume 

that the flow of all links in the network may contribute to the capacity of each link within the 

network to varying degrees. For example, in ride-sourcing systems, the number of available 

vehicles of a zone may not just be affected by the inbound and outbound flows of the zone, they 

may impact neighboring zones via deadhead cruising.  

We represent the capacity of a link 𝑖 ∈ 𝐸 as the sum of an exogenous capacity 𝑠𝑖0 (e.g. initial 

allocation of vehicles at the start of a period) and the contribution from all the links within the 

network. The flow contributions to the capacity of a link is modeled with linear functions. The 

congestible capacity 𝑠𝑖  of a link 𝑖 ∈ 𝐸  at equilibrium is modeled as Eq. (1), where 𝑝𝑖𝑘  is a 

“contribution efficiency” parameter (referred to as efficiency in this study), representing how much 

the flow on link 𝑘 ∈ 𝐸  contributes to the capacity of link 𝑖 ∈ 𝐸, and 𝑛 is the number of links in 

the network. Not every link has contribution to the capacities of every other link, which means 

there would be zero efficiencies. Specification of the efficiencies is dependent on the network 

structure and intermodal interactions. Examples are given in Section 3. 

 

𝑠𝑖 = 𝑝𝑖1𝑣1 + 𝑝𝑖2𝑣2 + ⋯+ 𝑝𝑖𝑛𝑣𝑛 + 𝑠𝑖,0 (1) 

 

If we write Eq. (1) for all links 𝑖 ∈ 𝐸 as a system of equations in matrix form, we have Eq. (2). 

Vector 𝑺 represents the link capacities. Vector 𝒗 represents the link flows. Matrix 𝑭 and vector 𝒔𝟎 

are defined in Eq. (3) and Eq. (4). Matrix 𝑭  is the Flow-Capacity Interaction matrix (FC 

matrix). FC matrix 𝑭 is composed of efficiencies 𝑝𝑖𝑘, 𝑖 ∈ 𝐸, 𝑘 ∈ 𝐸, which describes the systematic 

pattern of how equilibrium capacities depend on equilibrium flows. The vector 𝒔𝟎 shown in Eq. 

(3) is the vector of exogenous capacities 𝑠𝑖0, 𝑖 ∈ 𝐸. For an uncapacitated link 𝑖, 𝑠𝑖 = 𝑠𝑖,0 = ∞. 



10 

 

 

𝑺 = 𝑭𝒗 + 𝒔𝟎 
(2) 

𝑭 =  

[
 
 
 
 
𝑝11  𝑝12  𝑝13

𝑝21 𝑝22 𝑝23

𝑝31 𝑝32 𝑝33

. . .  𝑝1𝑛

. . . 𝑝2𝑛

. . . 𝑝3𝑛

⋮ ⋮ ⋮
𝑝𝑛1 𝑝𝑛2 𝑝𝑛3

⋱ ⋮
. . . 𝑝𝑛𝑛 ]

 
 
 
 

 

 

(3) 

𝒔𝟎 = [

𝑠1,0

𝑠2,0

⋮
𝑠𝑛,0

] (4) 

 

The FC matrix 𝑭 can be estimated with trip and capacity data to capture the combined impact 

of observed demand patterns and unobserved operation policies on capacities. For example, a MoD 

system with low support for real-time information and poor matching algorithms might see higher 

absolute values of efficiencies than one with better information and matching, since less 

rebalancing generally leads to more imbalanced capacity distribution. When all the efficiencies are 

0, it indicates that the capacity distribution remains constant at equilibrium, meaning that there is 

no congestible capacity effect in the system, for which one example is fixed-route transit services 

(which can thus be included in our multimodal models). If flow on link 𝑘 takes away the capacity 

of link 𝑖, 𝑝𝑖𝑘 = −1 represents perfect efficiency in transferring that flow on link 𝑘 to the capacity 

loss of link 𝑖. If link 𝑘 contributes to the capacity of link 𝑖, 𝑝𝑖𝑘 = 1 represents perfect efficiency in 

transferring the flow on link 𝑘 to the capacity gain of link 𝑖. As shown by Figure 1, The imperfect 

efficiencies are caused by the sequences of pick-ups, drop-offs, and rebalancing and inter-zone 

matching. Generally, more rebalancing or inter-zone matching leads to 𝑝𝑖𝑘 closer to 0, otherwise 

closer to -1 and 1 depending on the relationship of taking and dropping.  

As mentioned in section 1, we aim to incorporate a broad range of mobility services which we 

define as MoD. All these different types of on-demand mobility systems that exhibit the effect of 

congestible capacities have distinct operational characteristics and policies. However, all these 

systems that similar dynamics of link/node capacities. Different operation characteristics leads to 

different distributions of the 3 sequences and different interactions between them. For example, 

for an EV-based car-sharing service, nodes and links closer to a charging hub might receive more 

efficient rebalancing. Comparing ride-hailing and bikeshare, capacity of a bikeshare station is only 

affected by the drop-offs and rebalance at the station, while the capacity of a node in a ride-hailing 

network would be impacted by drop-offs at the node and drop-offs at other nodes in a buffer to 

different extents. All these different effects would be captured as different coefficients in the FC 

matrix, to reflect different response strategies of demand. 

Section 2.3 presents the forward model of a SUE model given a pre-estimated FC matrix. 

Section 2.5 presents the inverse model in which the FC matrix is estimated from multimodal trip 

data and capacity data.  

 

2.3 Forward Model: Formulation of Stochastic User Equilibrium with Congestible 

Capacities 

We define a path-based SUE similar to Bell (1995): a SUE is reached when the assignment of 

demand among alternative paths conforms to the logit model shown in Eq. (5). There also exist 
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other logit-based equilibrim models that account for path overlap, such as nested logit (Beckhor 

and Prashker, 2001), dogit (Chu, 2012), and c-logit (Zhou et al. 2021). For simplicity, we adopted 

the multinomial logit form to focus on the change from the standard SUE model, and subsequent 

extensions can be adopted to capture more realistic route choice behaviors.  

 

𝑙𝑛 (
ℎ𝑗

ℎ𝑗′
) = −𝛼(𝑐𝑗 − 𝑐𝑗′) = −𝛼(𝑇𝑗 + 𝑑𝑗 − 𝑇𝑗′ − 𝑑𝑗′) (5) 

 

where 𝑗 ∈ 𝐾𝑤 and 𝑗′ ∈ 𝐾𝑤 are alternative paths connecting the same OD pair 𝑤 ∈ 𝑊 and 𝛼 > 0 is 

a given parameter.  

We have the path-based SUE with congestible capacity formulation (𝑃1) in Eqs. (6) – (9), in 

which 𝑨 is the link-path incidence matrix and 𝑩 is the OD-path incidence matrix.  

 

𝑃1 : minimize Φ = ∑ ℎ𝑗(ln ℎ𝑗 − 1)
𝑗∈𝐾

+  𝛼𝒕𝑻𝑨𝒉 (6) 

𝑠. 𝑡.  

𝒓 = 𝑩𝒉  (7) 

𝑭𝑨𝒉 + 𝒔𝟎 ≥ 𝑨𝒉  (8) 

𝒉 ≥ 𝟎  (9) 

 

The objective Eq. (6) is composed of the flow-spreading term and the system total uncongested 

travel cost. Eq. (7) is the demand constraint.  Eq. (8) is the congestible capacity constraint. Eq. (9) 

is the path flow non-negativity constraint. The proposed model is a generalization in which SUE 

with static capacities is a special case as noted in Lemma 1 (proof is trivial). 

 

Lemma 1. As 𝑭 → 𝟎, 𝑃1 becomes the SUE formulation with static capacities, where 𝒔𝟎 becomes 

the vector of static capacities. 

 

We define the Lagrange multiplier of the congestible capacity constraint (Eq. (8)) of link 𝑖 as 𝑚𝑖. 

The complementary slackness condition should hold by definition; at SUE, if 𝑚𝑖 > 0, 𝑣𝑖 = 𝑠𝑖; if 

𝑣𝑖 < 𝑠𝑖 then 𝑚𝑖 = 0. The Lagrangian is shown in Eq. (10), where 𝒗 =  𝑨𝒉.  

 

𝑳 = ∑ ℎ𝑗(ln ℎ𝑗 − 1)
𝑗∈𝐾

+  𝛼𝒕𝑻𝒗 + 𝒍𝑻(𝒓 − 𝑩𝒉) + 𝒎𝑻((𝑭 − 𝑰)𝑨𝒉 + 𝒔𝟎) (10) 

 

If we denote 𝑮 =  (𝑭 − 𝑰)𝑨, and 𝒈𝒋 is the jth column of 𝑮 , the KKT condition is shown in Eq. 

(11). 

 
𝜕𝑳

𝜕ℎ𝑗
= ln ℎ𝑗 + 𝛼𝒕𝑻𝒂𝒋 − 𝒍𝑻𝒃𝒋 + 𝒎𝑻𝒈𝒋 = 𝟎  (11) 

 

At SUE, ℎ𝑗 > 0 should be satisfied for all paths 𝑗 ∈ 𝐾. Eq. (11) ensures the result with the log 

term. Eq. (11) can be reduced to Eq. (12). 

 

𝑙𝑛 ℎ𝑗 = −𝛼𝑇𝑗 + 𝒎𝑻𝒈𝒋 + 𝑙𝑤 (12) 
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where 𝑤 ∈ 𝑊  is the OD pair connected by path 𝑗 ∈ 𝐾𝑤 , 𝑙𝑤  is the corresponding Lagrange 

multiplier, 𝒎 is the vector of Lagrange multipliers of the congestible capacity constraints. Eq. (12) 

leads to the logit path flows shown in Eq. (13). 

 

 ℎ𝑗  =   𝑟𝑘
exp(−𝛼𝑇𝑗 + 𝒎𝑻𝒈𝒋)

∑ exp(−𝛼𝑇𝑗′ + 𝒎𝑻𝒈𝒋′)𝑗′∈𝐾𝑘

 (13) 

 

If  𝒎𝑻𝒈𝒋 = −𝛼𝑑𝑗  holds, 𝑃1 yields SUE. Proposition 1 proves that, for any path 𝑗 ∈ 𝐾, 𝒎𝑻𝒈𝒋 =

−𝛼𝑑𝑗 is necessary and sufficient for 𝑃1 to yield SUE.  

 

Proposition 1 (SUE with congestible capacities): 𝑃1 yields a SUE assignment with congestible 

capacities if and only if the Lagrange multipliers m associated with the following constraints 

𝑭𝑨𝒉 + 𝒔𝟎 ≥ 𝑨𝒉 satisfies 𝒎𝑻𝒈𝒋 = −𝛼𝑑𝑗 , ∀𝑤 ∈ 𝑊, for all paths 𝑗 ∈ 𝐾𝑤, where 𝑑𝑗 is the SUE path 

delay.  

 

Proof: We follow a similar logic to Bell (1995). At SUE, we rank all the paths 𝑗 ∈ 𝐾𝑤, 𝑤 ∈ 𝑊, 

according to the value of the function shown in Eq. (14).  

 

𝑓(𝑗) = 𝑙𝑛 ℎ𝑗 +  𝛼𝑇𝑗 , 𝑗 ∈ 𝐾𝑤, 𝑤 ∈ 𝑊 (14) 

  

(i) 

Suppose 𝑓(𝑗) is not the greatest among the paths 𝑗 ∈ 𝐾𝑤. We assume the bottleneck of path 𝑗 ∈ 𝐾 

is link 𝑖 ∈ 𝐸𝑗. In this case, a small increase in the capacity of link 𝑖 would allow the objective 

function to be reduced by shifting some trips from another path 𝑗′ ∈ 𝐾𝑤 to path 𝑗. To minimize the 

objective function, the shift would be made from the path offering the largest reduction in the 

objective. Assume that a small shift of ∆ℎ trips is made from path 𝑗’ to path 𝑗. Ignoring terms in 

∆ℎ2 and higher powers of ∆ℎ, ln(ℎ + ∆ℎ) ≈ ln ℎ +
∆ℎ

ℎ
, so the change in objective can be given by 

Eq. (15). Obviously, 𝑓(𝑗′) is the greatest among the paths 𝑗 ∈ 𝐾𝑤 (Bell, 1995). 

 

𝑑𝐿 = ∆ℎ (𝑙𝑛 ℎ𝑗 − 𝑙𝑛 ℎ𝑗′) + ∆ℎ 𝛼(𝑇𝑗 − 𝑇𝑗′) (15) 

 

This is where the proof differs from Bell (1995). Different from networks with static capacities, 

the switch causes changes in link capacities across the whole network.  

Consider that ∆ℎ trips are added to path j, we denote the capacity of link 𝑞 ∈ 𝐸 before adding 

∆ℎ as 𝑠𝑞, and the capacity after as 𝑠𝑞′. Hence, the capacity change is ∆𝑠𝑞 = 𝑠𝑞′ − 𝑠𝑞. 

For any link 𝑞 ∈ 𝐸\ 𝐸𝑗 , ∆𝑠𝑞 can be given by Eq. (16). Since 𝑣𝑞 does not change, the change 

in capacity resource caused by adding ∆ℎ is ∆𝑠𝑞. 

 

∆𝑠𝑞 = ∑ 𝑝𝑞𝑖

𝑖∈𝐸𝑗

ℎ𝑗 − ∑ 𝑝𝑞𝑖

𝑖∈𝐸𝑗

(ℎ𝑗 + ∆ℎ) = ∑ 𝑝𝑞𝑖

𝑖∈𝐸𝑗

∆ℎ (16) 

 

For any link 𝑞 ∈ 𝐸𝑗, the capacity constraint before adding the trips can be written as Eq. (17).  
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𝑣𝑞 ≤ 𝑠𝑞 (17) 

 

The capacity constraint after adding the trips becomes Eq. (18). To compute the resource change 

of the constraint before and after adding the trips, the left-hand side of the constraint should be the 

same. The conversion is shown in Eq. (18). 

 

𝑣𝑞 + ∆ℎ ≤ 𝑠𝑞′ → 𝑣𝑞 ≤ 𝑠𝑞′ − ∆ℎ (18) 

 

Hence, change in the capacity resource of link q on path j is (𝑠𝑞′ − ∆ℎ) − 𝑠𝑞, which equals to 

(∑ 𝑝𝑞𝑖𝑖∈𝐸𝑗
− 1)∆ℎ, according to Eq. (16).  

Therefore, the change in objective can be written as Eq. (19). 

 

            𝑑𝐿′ = ∑ ∑ 𝑝𝑞𝑖

𝑖∈𝐸𝑗𝑞∉𝐸𝑗

∆ℎ 𝑚𝑞 + ∑ (∑ 𝑝𝑞𝑖

𝑖∈𝐸𝑗

− 1)

𝑞∈𝐸𝑗

∆ℎ 𝑚𝑞 (19) 

 

Let us denote the element in qth row and jth column of 𝑮 = (𝑭 − 𝑰)𝑨 as 𝑔𝑞𝑗. For link 𝑞 ∈ 𝐸𝑗 , 

𝑔𝑞𝑗 = ∑ 𝑝𝑞𝑖𝑖∈𝐸𝑗
− 1. For link 𝑞 ∉ 𝐸𝑗, 𝑔𝑞𝑗 = ∑ 𝑝𝑞𝑖𝑖∈𝐸𝑗

. Hence, Eq. (19) can be written as Eq. (20). 

 

𝑑𝐿′ = 𝒎𝑻𝒈𝒋 ∆ℎ (20) 

 

Change in the objective caused by a switch of ∆ℎ from path j’ to path j is then written as Eq. (21). 

 

𝑑𝐿 = (𝒎𝑻𝒈𝒋 − 𝒎𝑻𝒈𝒋′)∆ℎ (21) 

 

Combining Eq. (15) and Eq. (21), we have Eq. (22). 

 

𝒎𝑻𝒈𝒋 − 𝒎𝑻𝒈𝒋′ =  𝑙𝑛 (
ℎ𝑗

ℎ𝑗′
) + 𝛼(𝑇𝑗 − 𝑇𝑗′) (22) 

 

According to SUE, trips are allocated to paths according to the logit model shown in Eq. (5). 

Hence, we have Eq. (23) for SUE with congestible capacities, where 𝑗′ ∈ 𝐾𝑤  is the path that 

maximizes 𝑓(𝑗) =  𝑙𝑛(ℎ𝑗) +  𝛼𝑇𝑗 among all 𝑗 ∈ 𝐾𝑤. 

 

𝑙𝑛 (
ℎ𝑗

ℎ𝑗′
) = −𝛼(𝑇𝑗 + 𝑑𝑗 − 𝑇𝑗′ − 𝑑𝑗′) 

(23) 

 

Combining Eq. (22) and Eq. (23), we end up with Eq. (24). 

 

𝒎𝑻𝒈𝒋 − 𝒎𝑻𝒈𝒋′ = −𝛼(𝑑𝑗 − 𝑑𝑗′) (24) 

 

Eq. (24) can be re-written as Eq. (25), where 𝑎𝑤 is an OD-specific constant.  
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𝒎𝑻𝒈𝒋  = −𝛼𝑑𝑗 + 𝑎𝑤,   𝑗 ∈ 𝐾𝑤, 𝑤 ∈ 𝑊 (25) 

 

With a logit model as the path choice model of 𝑃1, path flows ℎ𝑗  are dependent on relative costs 

between the paths in 𝐾𝑤  that connect the same OD pair 𝑤 ∈ 𝑊 . This means that only the 

differences between path costs (𝑇𝑗 + 𝑑𝑗) impact path flows. Hence, the OD-specific constant 𝑎𝑤 

can be omitted to arrive at Eq. (26). 

  

𝒎𝑻𝒈𝒋  = −𝛼𝑑𝑗 ,   𝑗 ∈ 𝐾𝑤, 𝑤 ∈ 𝑊 (26) 

 

 

(ii) 

Alternatively, suppose 𝑓(𝑗) the greatest among the paths 𝑗 ∈ 𝐾𝑤. In that case, path j is path j’ in 

(i), and Eqs. (24), (25) and (26) obviously hold. ∎  

 

As shown in Eq. (25), unlike static capacities, path delays are not just the sum of the Lagrange 

multipliers of the links on the paths, making it impossible for us to identify unique link delays. 

This point shows the core characteristic of the concept “congestible capacities”:  the distribution 

of capacities in the network is affected by the flows, leading to a single path delay dependent on 

the whole network. We call this phenomenon “non-separable link delays”. This is a unique 

phenomenon that we observe from such systems. As for solution uniqueness, the proof from Bell 

(1995) remains applicable. 

 

Lemma 2. The Lagrange multipliers 𝒎∗, 𝒍∗ and path flows 𝒉∗ at SUE are unique if and only if all 

the constraints that bind are linearly independent.  

 

Through the proof of Bell (1995) we only know that the Lagrange multipliers are unique if and 

only if all the constraints that bind are linearly independent, as opposed to having unique link 

delays. Lemma 2 does not assure link delays are unique. However, with unique Lagrange 

multipliers we can get unique path delays. Unique path delays then lead to a unique SUE flow 

assignment. 

 

2.4 Proposed solution algorithm with 𝝆-bounded shortest path generation 

At the SUE point solved from 𝑃1, all the paths 𝑗 ∈ 𝐾 are assigned non-zero flows. A reasonable 

path set needs to be determined. Like Bell (1995), we first considered iterative balancing with 

column generation. However, iterative balancing is not applicable with non-separable link delays. 

It leads to a nonconvex constraint space where intermediate iterative balancing solutions may get 

stuck. Column generation is not applicable either, since unique link delays cannot be found through 

solving 𝑃1 due to Lemma 2. The non-separable link delays also make more conventional methods 

like the Method of Successive Averages (MSA) hard to be applied. As shown by Proposition 1, 

path delays are not just determined by the links along the paths, but all the links in the network. 

Such a property makes it very complicated to assign penalties, since path delays are not just 

determined by the links along the paths, but all the links in the network. It is hard to assign separate 

penalties to links to reflect the non-separable links delays across the iterations. Hence, we consider 

other choice set generation approaches. 

Methods from the literature include choice set pre-generation, bounded rational models, and 

endogenous choice set restriction to determine the path set for SUE. Choice set pre-generation 
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refers to the method of identifying a path set before running the SUE algorithm, and iteratively 

improve the path set by adjusting link costs according to the SUE solutions (Prato and Bekhor, 

2006; Bovy, 2009). The disadvantage is that the travel cost inputs for choice set generation are 

inconsistent over iterations (Watling et al., 2018). The bounded rational models give a space of 

flow solutions, assuming that travelers are indifferent to path cost differences within an 

indifference band (Mahmassani and Chang, 1987; Lou et al., 2010; Di et al., 2013; Di and Liu, 

2016). However, this method does not give a point solution or a probability distribution of the 

solution space. The endogenous choice set restriction method determines a path set by adding 

constraints to the SUE formulations (Pel and Chaniotakis, 2017; Rasmussen et al., 2015), but the 

existence of SUE solution cannot be guaranteed. This shortcoming is solved by Watling et al. 

(2018) through a Bounded Choice Model, which integrates a path utility bound to determine the 

equilibrium path set, as well as conditions to guarantee SUE existence.  

With 𝑃1, we use the choice set pre-generation method for path set determination. We use the 

k-shortest path generation algorithm from Yen (1971) for convenience which is modified to avoid 

cycles by checking repeated nodes, combined with a bounding ratio 𝜌 to limit the number of paths 

generated. The bounding ratio is defined as the upper bound of the cost ratio of the paths with the 

largest and smallest path costs within a path set of an OD pair. With computational consideration, 

we want to limit the number of paths for large-scale real network and eliminate the longer paths 

that are less realistic. The bounding ratio 𝜌 implicitly limits the number of paths and removes long 

paths. In contrast to k-shortest path algorithm, it leads to desirable properties that the number of 

paths will be OD-specific (e.g. distant OD pairs have more paths than close OD pairs) and context-

specific (e.g. rise of cost leads to rise of path cost upper bound and number of paths). The 𝜌 

parameter could be set according to the specific case and modeling requirement. The 𝜌-bounded 

shortest path generation also ignores the impact of path overlap, which could be addressed by 

embedding other more complicated path generation in future research. For example, incorporating 

Bounded Path Size (BPS) route choice models like the bounded path size SUE model proposed by 

Duncan et al. (2024) is one possibility. The Bounded Choice Model with Local Detour Threshold 

(BCM-LDT) proposed by Rasmussen et al. (2024) could also be considered to incorporate local 

detouredness. Whether the routes are realistic is dependent on the 𝜌 value. There might be some 

unrealistic routes assigned non-zero flows when 𝜌 is set too large. However, the actual parameter 

that controls the level of stochasticity is the parameter 𝛼 in the objective function.  When 𝛼 is 

calibrated properly, unrealistic path in terms of length will be assigned positive flows that are very 

close to zero. In real applications, 𝜌  could be applied to ignore such paths. Other types of 

unrealistic paths, which are not in terms of length, could be dealt with through having link costs 

that represent an overall cost to include other aspects such as comfort level. In a multimodal or 

MaaS setting, path finding algorithms with time-dependent, label-constraining, or disjointness 

features could also be considered (Sherali et al, 1998; Sherali et al, 2003).  

In the solution algorithm we propose, for all OD pairs, a path set that satisfies the bounding 

ratio is generated using the k-shortest path algorithm to form an 𝑨 matrix. Paths connecting OD 

pair 𝑤 ∈ 𝑊 are generated starting from the shortest path until the path cost of the latest generated 

path exceeds 𝜌 times the shortest path cost. In the next step, we solve 𝑃1 with the bounded path set 

to obtain a SUE with the 𝑨 matrix. The proposed algorithm is shown in Algorithm 1. Proposition 

2 proves that when 𝜌 → ∞, Step 2 of Algorithm 1 gives a full path set which leads to a SUE with 

congestible capacities.  

 
Algorithm 1. Solution algorithm with 𝝆-bounded shortest path generation 
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Step 1 (Initialization): Initialize empty path sets for all OD pairs. 

Step 2 (Path set generation) 

Repeat the following for each OD pair 𝑤 ∈ 𝑊: 

- Generate the next shortest path using undersaturated link costs with the k-shortest path 

generation method. If no more paths could be generated, move on to the next OD pair 𝑤 + 1. 

- If the generated path is the first path of OD pair 𝑤 whose undersaturated cost is 𝑇𝑤0, add the path 

to the path set of OD pair 𝑤 and move on to the next OD pair 𝑤 + 1. If the generated path is not 

the first path of OD pair 𝑤, check if its cost is greater than 𝜌𝑇𝑤0. If so, move on to the next OD 

pair 𝑤 + 1; if not, add the path to the path set of OD pair 𝑤. 

Step 3 (SUE finding) 

- Form 𝑨 and 𝑩 matrices based on the path sets generated from Step 2. 

- Solve 𝑃1 with 𝑨 and 𝑩 using Algorithm 2 to obtain 𝒉,𝒎. 

Step 4 (Output SUE flows and capacities) 

- Equilibrium path flows: 𝒉 

- Equilibrium link flows: 𝒗 =  𝑨𝒉 

- Equilibrium capacities: 𝒔 = 𝑭𝑨𝒉 + 𝒔𝟎 

 

Proposition 2 (Algorithm convergence): Algorithm 1 converges to a SUE assignment with 

congestible capacities with a complete path set, i.e. a solution to P1, when 𝜌 → ∞.  

 

Proof: When ρ → ∞, the upper bound of path cost of OD pair w ∈ W is ρTw0 → ∞. All the paths 

connect OD pair w ∈ W will be enumerated. With a full path set, solving P1 gives SUE assignment 

with congestible capacities. ∎ 

 

As discussed before, 𝑃1 cannot be solved by Bell’s iterative balancing (Bell, 1995) or MSA. 

In Step 3 of Algorithm 1, 𝑃1 is solved through a Frank-Wolfe algorithm (Frank and Wolfe, 1956) 

(not implemented in the same traffic assignment-based approach from LeBlanc et al., 1975) as 

shown in Algorithm 2. Since the objective of 𝑃1 is convex and constraints are linear, Frank-Wolfe 

algorithm is applicable. As shown in Algorithm 2, while solving for the step size 𝑋, the equation 
𝜕Φ(𝒉𝒏−𝟏+𝑋(𝒚∗−𝒉𝒏−𝟏))

𝜕𝑋
= 0 has a log term. We use the bisection method to solve for 𝑋, which stops 

when the sections are smaller than a threshold 𝜀. 

 
Algorithm 2: Frank-Wolfe algorithm applied to solve 𝑷𝟏 

Start with an initial feasible guess 𝒉𝟎, 𝑛 = 1, 𝑋 = ∞. 

𝑐𝑜𝑢𝑛𝑡 = 0. 

While 𝑋 ≤ 𝜖 and 𝑐𝑜𝑢𝑛𝑡 < 𝑁 do 

- Solve min
𝒚

∑
𝜕Φ

𝜕ℎ𝑗
(ℎ𝑗

𝑛)𝑦𝑗𝑗∈𝐾 , subject to 𝑭𝑨𝒚 + 𝒔𝟎 ≥ 𝑨𝒚, 𝒓 = 𝑩𝒚, 𝒚 ≥ 𝟎, to obtain 𝒚∗. 

- Solve min
𝑋

Φ(𝒉𝒏−𝟏 + 𝑋(𝒚∗ − 𝒉𝒏−𝟏))  by solving 
𝜕Φ(𝒉𝒏−𝟏+𝑋(𝒚∗−𝒉𝒏−𝟏))

𝜕𝑋
= 0 , which can be 

simplified to ∑ (log(ℎ𝑗
𝑛−1 + 𝑋(𝑦𝑗

∗ − ℎ𝑗
𝑛−1)) + 𝛼𝒕𝑻𝒂𝒋)(𝑦𝑗

∗ − ℎ𝑗
𝑛−1)𝑗∈𝐾 = 0  with bisection 

method (stops when sections smaller than 𝜀).  

- Update ℎ: 𝒉𝒏 = 𝒉𝒏−𝟏 + 𝑋(𝒚∗ − 𝒉𝒏−𝟏). 

- If 𝑋 ≤ 𝜖, 𝑐𝑜𝑢𝑛𝑡 =  𝑐𝑜𝑢𝑛𝑡 + 1, else, 𝑐𝑜𝑢𝑛𝑡 = 0. 
Return 𝒉𝒏. 

 

2.5 Inverse model: estimation of the Flow-Capacity Interaction Matrix 

In application, FC matrices need to be estimated for equilibrium modeling. We propose an 

estimation method of the FC matrix given observed equilibrium path flows, equilibrium capacities, 

and initial capacities by formulating the inverse optimization problem of the forward model (𝑃1), 



17 

 

solving for 𝑭 with the parameter 𝛼 preset. An inverse optimization model takes an optimization 

problem with observed decision variables and a prior set of parameters and solves for the 

parameters such that the observed variables are optimal. Inverse optimization has a rich literature 

starting from Burton and Toint (1992) and Ahuja and Orlin (2001) with inverse shortest path 

problems. Reviews are provided in Xu et al. (2018) and Chan et al. (2023). No such inverse 

problem has been formulated for SUE models, much less for the more generalized proposed model. 

We denote the observed flow of path 𝑗 ∈ 𝐾 as ℎ𝑂,𝑗 , vector of observed path flows as 𝒉𝑶, 

observed equilibrium capacity of link 𝑖 ∈ 𝐸 as 𝑠𝑂,𝑖, initial capacity of link 𝑖 ∈ 𝐸 as 𝑠0,𝑖. The FC 

matrix is estimated with an initial prior denoted as 𝑭0, in which the element at the 𝑖th row and 𝑘th 

column is denoted as 𝑝𝑖𝑘
0 . The choice of prior 𝑭0 may affect the estimation results, and additional 

data can help improve estimation with more robust and repeated observations of the prior (see 

traffic monitoring application in Xu et al., 2018, 2021). A default choice of 𝑭0 can be a 𝑛 × 𝑛 all-

zero matrix.  

Decision variables of the inverse optimization problem include the perturbations of selected 

FC matrix elements, and the Lagrange multipliers of the constraints in 𝑃1: 𝒎, 𝒍. Perturbations 

include positive and negative perturbations of selected elements of the FC matrix. The set of 

selected elements are defined as (𝑖, 𝑘) ∈ 𝑍. Selection of the elements depends on the situation, 

considering network structure, rebalancing policies of the service, and other assumptions, which 

will be illustrated in the examples of section 3. Positive perturbation of the element at the 𝑖th row 

and 𝑘th column of the FC matrix is denoted as 𝑝𝑖𝑘
+ , while negative perturbation of the element is 

denoted as 𝑝𝑖𝑘
− . Both 𝑝𝑖𝑘

+  and 𝑝𝑖𝑘
−  are non-negative. We denote the perturbed FC matrix as 𝑭±, in 

which the element at the 𝑖 th row and 𝑘 th column is (𝑝𝑖𝑘
0 + 𝑝𝑖𝑘

+ − 𝑝𝑖𝑘
− ) . The 𝑗 th column of 

(𝑭± − 𝑰)𝑨 is denoted as 𝒈𝒋
±.  

The basic inverse optimization formulation for the FC matrix has an objective of minimizing 

the total perturbation, and KKT conditions of 𝑃1 as constraints. The KKT conditions of 𝑃1 are 

shown in Eqs. (26) – (31).  

 

ln ℎ𝑗 + 𝛼𝒕𝑻𝒂𝒋 − 𝒍𝑻𝒃𝒋 − 𝒎𝑻𝒈𝒋 = 0 (26) 

𝒉 > 0 (27) 

𝒎 ≥ 0 (28) 

𝒎((𝑭 − 𝑰)𝑨𝒉 + 𝒔𝟎) = 𝟎 (29) 

(𝑭 − 𝑰)𝑨𝒉 + 𝒔𝟎 ≥ 0  (30) 

𝒓 = 𝑩𝒉 (31) 

 

In practice, Eq. (26) can cause infeasibility of the inverse optimization problem. For path 𝑗1 and 

𝑗2  connecting the same OD pair, 𝒍𝑻𝒃𝒋𝟏 = 𝒍𝑻𝒃𝒋𝟐 . From Eq. (26), we have ln ℎ𝑗1 + 𝛼𝒕𝑻𝒂𝒋𝟏 −

𝒎𝑻𝒈𝒋𝟏 = lnℎ𝑗2 + 𝛼𝒕𝑻𝒂𝒋𝟐 − 𝒎𝑻𝒈𝒋𝟐 . When 𝒎𝑻𝒈𝒋𝟏 = 𝒎𝑻𝒈𝒋𝟐 = 0 , ln(
ℎ𝑗1

ℎ𝑗2

) = −𝛼𝒕𝑻(𝒂𝒋𝟏 − 𝒂𝒋𝟐) , 

indicating that the observed path flows need to yield logit flows to make Eq. (26) hold. However, 

in real data, observed path flows hardly yield logit flows exactly. To be compatible with non-logit 

path flows, we add the term 𝛽 ∑ (ln ℎ𝑂,𝑗 +𝛼𝒕𝑻𝒂𝒋 − 𝒍𝑻𝒃𝒋 − 𝒎𝑻𝒈𝒋
±)2

𝑗∈𝐾  to the objective function to 

fit the observed path flows to logit flows and eliminate Eq. (26) from the constraints. Note that the 

network flow observations do not need to be a full set that covers all the paths. Partial observations 

would also work, but with some possible accuracy loss. If only partial observations are obtained 

with only paths 𝑗 ∈ 𝐾′ ⊂ 𝐾, this term can be the sum over 𝑗 ∈ 𝐾′. In practice, critical paths with 
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significant demand could be observed to ensure the overall accuracy. The parameter 𝛽 controls 

how close the resulting logit flows are from the observed flows, which can be set according to 

specific estimation needs.  

Moreover, solving the basic inverse optimization problem ensures that the estimated FC 

matrix leads to the observed flows (decision variables in the forward model), but not the observed 

capacities. We add another term 𝛾 ∑ (∑ ∑ (𝑝𝑖𝑘
0 + 𝑝𝑖𝑘

+ − 𝑝𝑖𝑘
− )𝑎𝑘𝑗ℎ𝑂,𝑗𝑘∈𝐸𝑗∈𝐾 + 𝑠0,𝑖 − 𝑠𝑂,𝑖)

2
𝑘∈𝐸 to the 

objective function to minimize the sum of square of the differences between equilibrium capacities 

computed from the estimated FC matrix and observed equilibrium capacities (the capacity-fitting 

term). The parameter 𝛾 is the weight of capacity fitting. If capacity data is available, this term 

would help fit a FC matrix that leads to both observed flows and capacities. If capacity data is not 

available, the term could be neglected (𝛾 = 0). The fitted FC matrix would still lead to the 

observed path flows. 

The resulting inverse optimization problem is formulated as 𝑃2. Eq. (31) is eliminated since 

demand is observed through path flows in this case. 

 

𝑃2: min∑ (𝑝𝑖𝑘
+ + 𝑝𝑖𝑘

− )
(𝑖,𝑘)∈𝑍

+ 𝛽 ∑ (ln ℎ𝑂,𝑗 +𝛼𝒕𝑻𝒂𝒋 − 𝒍𝑻𝒃𝒋 − 𝒎𝑻𝒈𝒋
±)

2

𝑗∈𝐾

+ 𝛾 ∑ (∑ ∑ (𝑝𝑖𝑘
0 + 𝑝𝑖𝑘

+ − 𝑝𝑖𝑘
− )𝑎𝑘𝑗ℎ𝑂,𝑗

𝑘∈𝐸𝑗∈𝐾
+ 𝑠0,𝑖 − 𝑠𝑂,𝑖)

2

𝑘∈𝐸

 

(32) 

Subject to  

(𝑭± − 𝑰)𝑨𝒉𝑶 + 𝒔𝟎 ≥ 0 (33) 

𝒎((𝑭± − 𝑰)𝑨𝒉𝑶 + 𝒔𝟎) = 0 (34) 

𝑝𝑖𝑘
+ ,  𝑝𝑖𝑘

− ≥ 0, ∀(𝑖, 𝑘) ∈ 𝑍 (35) 

𝒎 ≥ 0 (36) 

 

𝑃2 is a quartic program with quadratic constraints. The term (𝒎𝑻𝒈𝒋
±)2 in the objective function 

Eq. (32) is quartic. Constraint of Eq. (34) is quadratic due to the term 𝒎𝑭±. To solve 𝑃2, we use 

a commercial solver LINGO which tackles non-linear optimization problems with non-linear 

constraints. In practice, there are other methods that can be considered to solve 𝑃2. For example, 

McCormick envelopes (McCormick, 1976) can transform bilinear terms (𝒎𝑭±) and squares of 

bilinear terms ( (𝒎𝑻𝒈𝒋
±)2 ) into a set of linear upper and lower bound constraints. For the 

computational experiments in our case study, we found a commercial solver was adequate, and 

leave more efficient algorithmic development to future research. 

Compared with learning-based approaches (Liu et al., 2023), the proposed inversed 

optimization approach requires much smaller amount of data. Only one set of equilibrium flows 

along with prior estimates are needed to estimate the FC matrix. Capacity observations are optional. 

The solution of 𝑃2 is non-unique with respect to the capacities, since the capacity of a link with 

congestible capacities may be affected by a set of links, but all the solutions equally capture the 

flow-capacity interdependency caused by demand patterns and operation policies. Due to such 

non-uniqueness, the accuracy of the equilibrium capacities computed from the estimated FC matrix 

is dependent on the parameter 𝛾, since the structure of 𝑃2 is derived from optimality conditions of 

path flows, not capacities. The non-unique FC matrix estimated from the same observed path flows 

lead to non-unique equilibrium capacities from estimated FC matrix. This is a known challenge 

with inverse optimization where further regularization and additional data or repeated observations 
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(see discussion in Xu et al., 2018) can help to address. We illustrate this non-uniqueness in Section 

3.2. Such non-uniqueness would not bias the reproduced equilibrium flows significantly. Since the 

structure of 𝑃2 imbeds the KKT conditions of the forward SUE assignment model. This ensures 

that the estimated FC matrix is the optimal one in terms of producing the observed path flows, 

given the prior of the FC matrix and the same constraints in additional to the KKT conditions. 

Due to such non-uniqueness, the estimated FC matrix by 𝑃2 has limited interpretability. The 

major purpose of the estimated FC matrix is for flow prediction. However, although the matrix 

does not give explicit information regarding operational policies, it can imply some important 

information. Adding the constraints while estimating the matrix makes the estimated matrix more 

interpretable. This makes operational policy inferences possible. For example, as shown in the 

downtown Manhattan FC matrix calibration in section 4.3, sign constraints could also be added to 

define if it is a contribution or reduction. Another example would be to constrain the relative 

relationship between the coefficients that reflects the contribution to the same capacity from 

different links. 

 

3 Numerical Examples 

3.1 Illustrative small example 

Before application to larger networks, we use a toy network to demonstrate how the models and 

solution algorithm works. The network is shown in Figure 2, in which Figure 2(a) is a 

demonstration of the initial network, and Figure 2(b) is the expanded network connecting 

subgraphs of different modes with transfer links. In the toy network, there are three modes: walk, 

bike-share, and ride-hail. There are 4 nodes in the original network: 1,2,3, and 4. There are 2 bike-

sharing stations where the travelers can pick up and drop off bikes: 2 and 3. There are 10 units of 

demand going from 1 to 4 (1 to 8 in (b)). Customers can choose to walk, to go to the bike-sharing 

station at 2 and ride a shared bike, or to ride-hail directly from 1.  

 

 

 
(a) Original Network (b) Expanded Network 

Figure 2. Toy network. 

 

In Figure 2(b), the green part is the bike-sharing subgraph, the black part is the walking subgraph, 

the blue part is the ride-hailing subgraph, and the orange links are the transfer links connecting the 

subgraphs. The cost of transfer link accessing/egressing bike-sharing is the time of picking 

up/dropping off a bike (we assume both 0 here). The cost of a transfer link accessing ride-hailing 

is the wait time before being picked up by a ride-hailing vehicle (we assume 10 here), and the cost 

of the transfer link egressing ride-hailing is 0 (no restriction on getting off). Links in bike-sharing, 

walking, and ride-hailing subnetworks are uncapacitated (no restriction on traveling in these modes 

through the real network (a)). Access link 𝑔 is capacitated due to limited number of bikes available 
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at 5 (initial capacity assumed as 5). Egress link ℎ is capacitated due to limited number of vacant 

docks at 6 (initial capacity assumed as 5). Access link 𝑖 accessing ride-hailing is restricted by the 

number of vehicles available near 1 (initial capacity assumed as 5), while egress link 𝑗  is 

incapacitated. The undersaturated travel times and initial capacities of the links are labeled in 

Figure 2(b). 

 

3.1.1 Forward model illustration 

The capacities of the access links 𝑔, 𝑖, and egress link ℎ are dependent on the flows. The bikes at 

the bike-sharing station at node 2 are taken away by the customers traversing link ℎ. The ride-

hailing vehicles available near node 1 are taken by the customers traversing link 𝑖. The vacant 

docks at the bike-sharing station at node 2 are taken away by the customers traversing link ℎ. With 

rebalancing of bike-sharing and matching of ride-sourcing providers, we assume a 0.1 absolute 

efficiency for link 𝑔, 𝑖, and ℎ. The above capacity dependency pattern leads to the FC matrix 𝑭 

shown in Table 1. With such an efficiency, the capacity change of link 𝑔, 𝑖, and ℎ would be 10% 

of the flows on themselves, which complies with the condition of localized, incremental changes. 

 
Table 1. FC matrix (𝑭) assumed for the toy network. 

 a b c d e f g h i j 

a 0 0 0 0 0 0 0 0 0 0 

b 0 0 0 0 0 0 0 0 0 0 

c 0 0 0 0 0 0 0 0 0 0 

d 0 0 0 0 0 0 0 0 0 0 

e 0 0 0 0 0 0 0 0 0 0 

f 0 0 0 0 0 0 0 0 0 0 

g 0 0 0 0 0 0 -0.1 0 0 0 

h 0 0 0 0 0 0 0 -0.1 0 0 

i 0 0 0 0 0 0 0 0 -0.1 0 

j 0 0 0 0 0 0 0 0 0 0 

 

In this case, we do not apply Algorithm 1 to determine a bounded path set. Instead, we solve the 

model with different path sets to illustrate how different path sets affect the equilibrium. There are 

4 paths going from 1 to 4: i-f-j, b-g-e-h-d, a, and b-c-d. We add the paths one by one from the 

shortest to the longest and use Algorithm 2 to solve the SUE, assuming 𝛼 = 1. The results are 

shown in Table 2.  

 
Table 2. SUE with different path set 

Number 

of paths  

Paths 

generated 

Path 

flows 

Link flows 

(a,b,c,d,e,f,g,h,i,j) 

Equilibrium 

capacities 

(a,b,c,d,e,f,g,h,i,j) 

𝒎𝑻𝒈𝒋 + 𝛼𝑻𝒋 
Objective 

value 

1 ifj - - - - Infeasible 

2 
ifj, 

bgehd 
- - - - Infeasible 

3 

ifj, 

bgehd, 

a 

4.545, 

4.545, 

0.909 

0.909, 4.545, 0, 4.545, 

4.545, 4.545, 4.545, 

4.545, 4.545, 4.545 

∞, ∞, ∞, ∞, ∞, ∞, 

4.545, 4.545, 4.545, 

∞ 

28.39, 28.39, 

30 
217.315 

4 

ifj, 

bgehd, 

a, 

bcd 

4.545, 

4.545, 

0.893, 

0.017 

0.893, 4.562, 0.017, 

4.562, 4.545, 4.545, 

4.545, 4.545, 4.545, 

4.545 

∞, ∞, ∞, ∞, ∞, ∞, 

4.545, 4.545, 4.545, 

∞ 

28.372, 28.372, 

30, 34 
217.298 
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Static 

capacity 

ifj, 

bgehd, 

a, 

bcd 

4.999, 

5, 

0.001, 

0 

0, 4.999, 0, 4.999, 4.999, 

5, 4.999, 4.999, 5, 5 

∞, ∞, ∞, ∞, ∞, ∞, 

5, 5, 5, ∞ 

21.332, 21.332, 

30, 34 
211.094 

 

As stated in Section 2.2, the value of 
𝒎𝑻𝒈𝒋

𝛼
 represents a path delay of path 𝑗. The value 𝒎𝑻𝒈𝒋 + 

𝛼𝑻𝒋 should give us the trip utility as shown in Table 2. It can be verified that the assignment and 

trip utilities conform to the logit model shown in Eq. (5). The flows assigned with all 4 paths are 

shown in Figure 3. 

 

 
Figure 3. Equilibrium flows and capacities of the toy network. 

 

With one path or two paths, the assignment is not feasible. The reason for those 2 scenarios to be 

infeasible is due to insufficient capacities of bikeshare and ride-hailing. When applied to an actual 

multimodal network with car paths, such an issue would only happen when some of the capacities 

are exceeded, which could be the capacity of any part of the multimodal network: road link 

capacity, fleet capacity, etc. The infeasibility shows that either the path set is not realistic (more 

paths are needed), or the network capacities are actually insufficient. With three paths, the 

assignment becomes feasible with an optimal objective value of 217.315. With all four paths, 

adding the longest path bcd leads to a reduction of only 0.0017 to the objective value. The flow on 

path bcd is 0.017, which is only 0.17% of the total demand. In real cases, insignificant paths like 

path bcd can be left out by running Algorithm 1 with a reasonable bounding ratio. In this case, the 

corresponding bounding ratio would be around 1.6.  

Comparing the SUE with congestible capacities with the SUE with static capacities (both with 

all four paths), for OD 1, the capacities of link 𝑔,𝑖,ℎ are reduced by the congestible capacity effect, 

which leads to more flow on path ifj and bgehd.  

 

3.1.2 Inverse model illustration 

We use the equilibrium flows as with 4 paths solved from the forward model as observed path 

flows to estimate the FC matrix under two circumstances: without capacity and with capacity 

fitting. Without capacity fitting, 𝛽 = 1 and 𝛾 = 0. With capacity fitting, 𝛽 = 𝛾 = 1. 

Table 3 shows the estimated FC matrix without capacity fitting. Compared with the FC matrix 

that generates the equilibrium flows (original FC matrix), there is one different element: 𝑝𝑔𝑔 , 

which is -0.1 in the original FC matrix but estimated as 0. Equilibrium flows computed from the 

estimated FC matrix is the same as the observed path flows. The reason is that, on path bgehd, 
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there is another link with congestible capacity which have the same estimated efficiencies as the 

original efficiencies: link h. Congestible capacity constraint of link h restricts the flow on path 

bgehd to the same as the observed flow. 

With capacity fitting, the estimated FC matrix is identical to the original FC matrix shown in 

Table 1. 

 
Table 3. Estimated FC matrix (𝑭) without capacity fitting. 

 a b c d e f g h i J 

a 0 0 0 0 0 0 0 0 0 0 

b 0 0 0 0 0 0 0 0 0 0 

c 0 0 0 0 0 0 0 0 0 0 

d 0 0 0 0 0 0 0 0 0 0 

e 0 0 0 0 0 0 0 0 0 0 

f 0 0 0 0 0 0 0 0 0 0 

g 0 0 0 0 0 0 0 0 0 0 

h 0 0 0 0 0 0 0 -0.1 0 0 

i 0 0 0 0 0 0 0 0 -0.1 0 

j 0 0 0 0 0 0 0 0 0 0 

 

3.2 Nguyen-Dupuis network  

To comply with the condition of localized, incremental changes, we test 0.1 and 0.2 absolute 

efficiencies in this example. 

 

3.2.1 Base case: 0.1 absolute efficiency with different bounding ratios 

We further test the model and solution algorithm on the Nguyen-Dupuis network (Nguyen and 

Dupuis, 1984) shown in Figure 4 with a multimodal setting. The network has 13 nodes and 19 

links. Undersaturated travel costs of the links are labeled in red by the side of the links, which 

includes time costs converted to dollars and fare cost if applicable. The numbers on the links are 

link IDs. There are four OD pairs in the network (OD1:1-2, OD2: 1-3, OD3: 4-2, OD4: 4-3). The 

demands of the OD pairs are 400, 800, 600, 200, respectively.  

We assume that the Nguyen-Dupuis network in Figure 4 is the walking network, from 

which the travelers can transfer to three other modes: bike-sharing, ride-hailing, and microtransit. 

Travelers can transfer to bike-sharing by picking up a bike at node 5 and can transfer back to the 

walking network by dropping off the bikes at node 11. There are three paths they can take while 

riding a shared-bike: 5-6-7-11 (undersaturated travel cost is $8.5), 5-6-10-11 (undersaturated travel 

cost is $11), and 5-9-10-11 (undersaturated travel cost is $12.5). The ride-hailing service picks up 

and drops off passengers at nodes 1, 2, 3, 4, 5, 11, and 12. Travelers can transfer to ride-hailing 

and transfer back to walking from these nodes. Between each pair of pick-up and drop-off nodes 

of ride-hailing, the drivers take the shortest path. Hence, the subnetwork of ride-hailing is 

composed of links connecting all pairs of pick-up and drop-off nodes, the travel costs of which are 

shown in Table 4. Microtransit runs from node 12 to 11 through a fixed route (12-6-7-11) with an 

undersaturated travel cost of $5. Travelers can transfer to micro-transit at node 12 and transfer 

back to walking at node 11.  
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Figure 4. Nguyen-Dupuis network with multiple modes. 

 

The network in Figure 4 is expanded into the complete network with 24 nodes and 54 links 

as shown in Figure 5, which is composed of four subnetworks (walking subnetwork in black, 

microtransit subnetwork in blue, ride-hailing subnetwork in green, and bike-sharing subnetwork 

in red) and the transfer links between modes (in orange). All the links within the subnetworks are 

uncapacitated, while the capacities of the transfer links are dependent on the availability of the 

three modes. 

Initially, there are 400 shared bikes available at node 5, and 300 vacant docks available at 

node 11. We assume it takes 1 min to pick up/drop off a shared bike. Hence, the initial capacities 

of link (5,16) and (17,11) are 400 and 300, respectively, and the undersaturated travel costs are $1 

for both. 

 For microtransit, the initial number of seats available at node 12 is 100, and there is no 

restriction on getting off microtransit at node 11. The average access cost is $5. The initial 

capacities of link (12,14) and (15,11) are 100 and infinity (uncapacitated), respectively. The travel 

cost of (12,14) is $5, and (15,11) has $0 cost.  

For ride-hailing, the initial number of vehicles available at nodes 1, 2, 3, 4, 5, 11, and 12 are 

all 200. A typical cost of waiting is $3. The initial capacities of the transfer links accessing ride-

hailing (links (4,21), (1,18), (5,22), (12,24), (11,23)) are 200, and the travel costs are $3. Since 

nodes 3 and 4 are destinations, we ignore the access links to ride-hailing there. The transfer links 

egressing ride-hailing are uncapacitated and have $0 travel cost due to no restrictions getting off.    

 

 



24 

 

 
Figure 5. Complete network of the Nguyen-Dupuis network 

example. 

Table 4. Costs of ride-hailing links in the 

complete network 

 
 

Assumptions regarding the FC matrix are similar to the toy network in section 3.1. Capacities 

of the access links of micro-transit, bike-share, and ride-hailing are taken away by a proportion of 

the flows traversing them. Capacity of the bike-share egress link is taken away by a proportion of 

the flow traversing it. All the absolute values of the efficiencies above are assumed to be 0.1, which 

means that the capacity taken away/added is 10% of the flow that affects the capacity.  

Assuming 𝛼 = 1, we solve the assignment using Algorithm 1 with 17 different bounding 

ratios 𝜌: from 3.4 to 5.0 with an interval of 0.1. The objective value change and system total travel 

cost change are shown in Figures 6-7. We pick four scenarios to show the detailed results: 

Scenario(a): 𝜌 = 3.5, Scenario(b): 𝜌 = 4, Scenario(c): 𝜌 = 4.5, Scenario(d): 𝜌 = 5. Parameter 

settings are: 𝜖 = 0.001, 𝑁 = 5, 𝜀 = 0.001. The algorithm was run on a laptop with 2.3 GHz 

Quad-Core Intel Core i7 and 32GB installed RAM, with Python 3.7. The results are shown in 

Figure 8. Note that Algorithm 1 is not able to obtain the Lagrange multipliers (𝒎).  

 

  
Figure 6. Objective value change with bounding 

ratio. 

Figure 7. System total cost change with bounding 

ratio. 

From Figures 6-7, we observe that the objective value is significantly reduced when the 

bounding ratio is increased to 3.5, indicating that 3.5 can be considered a sufficient value of 

bounding ratio to capture enough path choice diversity. After the bounding ratio is increased to 4, 

both the objective value and system total cost hardly change. The method is effective in eliminating 

unreasonable paths.  
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We also observe that the feasibility of assignment depends on the relationship between 

demand and base capacities with fixed flow-capacity patterns. With current demand and initial 

capacities, the assignment is infeasible when bounding ratio is smaller than 3.4. This is because 

the capacity-flow dependency could lead to very small capacities at certain links, which is a 

situation that the MoD operators would like to avoid.  

 

Remark 1. Feasible assignments obtained by changing base capacities indicate that proper initial 

fleet deployment could avoid inadequate capacities, which shows a potential application of the 

SUE model with congestible capacities. 

 

As shown in Figure 8, equilibrium link flows and capacities change very little across Scenario 

(b), (c) and (d), indicating that the assignment with the 16 paths in Scenario (b) basically 

incorporate all effective paths. In Scenario (d), the paths in Scenario (a) are assigned 97.79% of 

the total demand. Looking at Figure 8, with higher bounding ratio, flows on links with major flows 

switch to links with minor flows. For example, link (4,5),(5,6),(6,7),(7,8) form a major corridor, 

since they are more likely to be a part of shorter paths. Flows on these major links generally 

decrease when more paths are generated, switching to longer paths.  

 

3.2.2 Sensitivity test: 0.2 absolute efficiency 

To illustrate how the FC matrix affects the assignment results, we change all the non-zero 

efficiency from 0.1 to 0.2. The assignment is shown in Figure 9. The bounding ratio 𝜌 is set to 5 

to be compared with Scenario (d). Algorithm 1 is applied with the same configuration, taking 

35.59 sec. Equilibrium link flows are shown in Figure 9. The optimal objective value is 55187.13. 

 

 

  
(a) Bound ratio = 3.5 (b) Bound ratio = 4 
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(c) Bound ratio = 4.5 (d) Bound ratio = 5 

Figure 8. Link flow and link capacities at SUE (0.1 absolute efficiency). 

 

 

 
Figure 9. Link flow (in red) and link capacities (in black) at SUE with congestible capacities (0.2 absolute 

efficiency). 

 

Larger absolute efficiency results in more decrease in access capacities, which reflects less 

rebalancing effort in real cases. Compared with Scenario (d), ride-hailing, bike-share, and micro-

transit have less flows due to reduced equilibrium capacities of access links. Equilibrium capacities 

of ride-hailing access links (4,21),(5,22),(1,18),(12,24),(11,23) are reduced from 181.82 to 166.67. 
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Equilibrium capacities of bike-share access link (5,16) is reduced from 272.73 to 250.0. 

Equilibrium capacities of bike-share access link (12,14) is reduced from 90.91 to 83.34. Flows 

within ride-hailing, bike-share, and micro-transit subnetworks significantly reduced. More flows 

are assigned to the walking subnetwork.  

 

3.2.2 Sensitivity test of 𝜶 

To show how 𝛼 affects the assignment results, we set 𝛼 = 0.9 to obtain SUE with bounding ratio 

and FC matrix the same as Scenario (d). Equilibrium link flows are shown in Figure 10. The 

optimal objective value is 49138.18. 

 

 
Figure 10. Link flow (in red) and link capacities (in black) at SUE with congestible capacities (𝛼 =  0.9). 

 

Compared with Scenario (d) (𝛼 = 1.0), the 10% change in 𝛼 does not lead to change in capacities, 

but significant change in flows. Less randomness in route choice leads to more concentrated flow 

distribution. With larger 𝛼, generally, flows on links with major flows become larger, while flows 

on links with minor flows becomes smaller. Such effect can be observed in Figure 8. For example, 

the major corridor formed by link (4,5),(5,6),(6,7),(7,8) is assigned less flow compared with 

Scenario (d). While links with small amounts of flows such as (9,10),(10,11),(11,2) are assigned 

more flows. 

Parameter 𝛼 represents customers’ perception of travel costs, which need to be pre-estimated 

from local data. The parameter can be adopted from mode choice/path choice models from local 

planning frameworks. When there are more factors than travel time and fare such as comfort level, 

weighted travel cost 𝛼𝑡𝑖 can be extended to a linear combination.  

 

4 Case study with yellow taxi data from Downtown Manhattan, NY 

To demonstrate application of the model to a real network, we selected an area composed of 19 

taxi zones in downtown Manhattan, NY and extracted OD demand from yellow taxi data of July 
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1st, 2021 (TLC, 2021). The study area is shown in Figure 11, in which the zone IDs are labeled 

in red. OD demands aggregated to origin and destination are shown in Figure 12.  

 

 
Figure 11. Study area composed of 19 taxi zones in downtown Manhattan. 

  
(a) OD demand aggregated to origins (b) OD demand aggregated to destinations 

Figure 12. Origin and destination demand aggregated from yellow taxi data on July 1st, 2021. 

 

We treat each taxi zone as a node and form a network by connecting all pairs of neighboring 

zones with bidirectional links as shown in Figure 13. We assume that the origins/destinations of 

the OD demand from yellow taxi data are origins/destinations of the trips, which may involve first-

mile/last-mile walking. This assumption is inconsistent with the data but is acceptable since this 

case study is for demonstration of model application instead of practical evaluation. For real cases, 

trip OD demand should be applied. 

To model the trips composed of first-mile walking, taxi ride, and last-mile walking, we 

constructed the network as shown in Figure 14. The network has 57 nodes and 287 links, including 

five parts: the access network for first-mile walking, taxi network for taxi rides, egress network 

for last-mile walking, transfer-in links connecting the access network with the taxi network, and 

transfer-out network connecting the taxi network with the egress network. Links within the access 

network, egress network, and taxi network are bidirectional, while the transfer-in and transfer-out 

links are single-directional. The 19 nodes in the access network serve as origins while the 19 nodes 

in the egress network are destinations, so the trips would have a structure of first-mile 

walking→taxi ride→last-mile walking. Link costs in access network and egress network are set as 
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the walking times of the shortest path connecting the centroids of the zones, assuming an average 

walking speed of 3 mph. Link costs in the taxi network are set as the driving times of the shortest 

paths connecting the centroids of the zones, assuming an average driving speed of 12.7 mph. Taxi 

fare is ignored in this case.  

 

 
 

Figure 13. Downtown Manhattan network. Figure 14. Complete network for trip modeling. 

 

Shortest paths are computed from OpenStreetMap using python packages OSMnx and 

NetworkX. Links within the access, egress, and taxi networks are uncapacitated, since we assume 

that the modeled flows is only a small proportion of the background traffic. The transfer-out links 

are also incapacitated since there are no restrictions on getting off the taxis. The transfer-in links 

are the ones with congestible capacities, whose initial capacities are 750. We assume the 

undersaturated link costs of transfer-in links are $1, representing a waiting time without congestion. 

 

4.1 Base case: 0.75 absolute efficiency 

We assume a 0.75 absolute efficiency for all zones in the research area. Efficiency from all 

transfer-in links to itself is -0.75, and efficiency from all transfer-out link to the transfer-in link of 

the same node is 0.75. We run Algorithm 1 with the same configuration as the Nguyen-Dupuis 

example. Bounding ratio is set to be 1.1, generating 660 paths. Parameter settings are: 𝜖 = 0.01, 

𝑁 = 5, 𝜀 = 0.001. The algorithm converged after 65 iterations. Run time is 16min 48s (6min 30s 

on path generation, 10min 18s on Frank-Wolfe algorithm). Figure 15 and Table 5 show the 

equilibrium flows in the access, egress, and taxi networks. Figure 16 shows the saturation and 

flows of transfer-in flows in each zone. Figure 17 shows the capacity change caused by the flows 

(𝑠𝑖 − 𝑠0,𝑖 ). The maximum absolute capacity change is 105.19, which is 14.03% of the initial 

capacity. The changes also falls into a range of localized, incremental change. 

Taxi flows are larger on the northwestern part of the study area, which is where the high OD 

demand is as shown in Figure 12. Access and egress walking flows are very small, indicating that 

first-mile/last-mile walking only occurs on the longer paths. This happens when taxi is 

significantly faster than walking. None of the transfer-in links have binding capacities, indicating 

that there is no extra wait caused by limited capacities (𝒎𝑻𝒈𝒋 = 0). Undersaturated path costs 

determine the logit flows. The highest saturation rate appears at zone 4 (99.3%), which is the zone 

with the highest origin and destination demand. Zones with higher demand tend to have higher 

saturation rates due to more capacities taken away by the incoming flow, which can be observed 

from Figures 11 and 12. Capacities move from northwest to southeast given the demand 

distribution. The northwestern part has high origin demand as well as high destination demand, 
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while in the southeastern part, destination demand is significantly higher than origin demand, 

which leads to more taxis being left in the southeast.  

 

 

   
(a) Access walking flows (b) Taxi flows (c) Egress walking flows 

Figure 15. Link flows (0.75 absolute efficiency) 

Table 5. Link flows (0.75 absolute efficiency) 

Access walking 

links 
Taxi links 

Start End Flow Start End Flow Start End Flow Start End Flow Start End Flow 

0 4 0.00 0 4 28.00 5 13 220.48 10 9 94.50 15 14 125.25 

2 18 0.18 0 11 8.84 5 18 35.04 10 11 167.15 15 10 94.89 

6 1 0.05 0 16 6.15 6 1 10.23 10 3 91.51 15 3 52.57 

9 14 0.07 1 2 4.58 6 5 60.39 10 15 88.33 15 13 52.51 

10 11 0.06 1 6 16.68 6 18 14.80 10 14 119.41 15 18 92.85 

12 17 0.07 1 18 7.65 7 12 116.80 11 3 114.12 15 2 162.63 

13 5 0.02 2 1 5.61 7 17 213.44 11 4 208.61 16 3 55.18 

 Egress walking 

links 

2 15 89.29 7 9 136.56 11 10 140.69 16 11 40.53 

2 18 104.73 7 14 62.47 11 16 100.33 16 0 20.34 

Start End Flow 3 10 59.85 7 15 222.92 11 0 39.18 16 4 13.65 

2 18 0.02 3 11 127.60 8 17 206.62 12 7 67.84 17 12 120.11 

3 15 0.44 3 13 194.69 8 9 126.17 12 17 127.69 17 7 149.12 

8 4 0.04 3 15 53.47 8 4 223.26 13 3 266.95 17 9 294.23 

9 14 0.05 3 16 111.30 9 17 84.95 13 15 26.09 17 8 209.50 

10 11 0.13 4 0 100.48 9 8 77.54 13 18 16.18 18 2 40.62 

11 16 0.08 4 8 212.93 9 4 137.89 13 5 179.34 18 1 12.02 

12 17 0.31 4 9 125.83 9 11 109.81 14 7 115.49 18 6 36.49 

13 3 0.01 4 10 80.08 9 10 104.83 14 9 147.58 18 5 59.02 

13 5 0.05 4 11 169.88 9 14 316.38 14 10 147.34 18 13 37.96 

14 7 0.21 4 16 40.85 9 7 82.34 14 15 187.01 18 15 103.34 

17 8 0.11 5 6 43.30 10 4 63.59 15 7 217.18  
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Figure 16. Saturation rates of transfer-in links 

(0.75 absolute efficiency). 

Figure 17. Capacity change (𝑠𝑖 − 𝑠0,𝑖) of transfer-in links (0.75 

absolute efficiency). 

 

4.2 Comparison case: 0.5 absolute efficiency 

To test how the efficiency parameters affect the assignment, we change the absolute efficiencies 

to 0.5 to compare with the base case. Efficiency from all transfer-in links to itself is -0.5, and 

efficiency from all transfer-out link to the transfer-in link of the same node is 0.5. Path set is the 

same as base case. Computation configuration and parameter settings are the same as the base case. 

Run time of Algorithm 1 is 16min 41sec (6min 30s on path generation, 10min 11s on Frank-Wolfe 

algorithm). Algorithm 2 converged after 65 iterations. Figure 18 compares the saturation rates 

and flows of transfer-in links with the base case. Figure 19 compares capacity changes caused by 

the flows (𝑠𝑖 − 𝑠0,𝑖) with the base case. The maximum absolute capacity change is 70.13, which is 

9.35% of the initial capacity. The changes also falls into a range of localized, incremental change. 

With the same path set as the base case in section 4.1, and no binding link (as shown in 

Figure 14), path flows are the same as the base case, determined by undersaturated path costs. The 

difference is the equilibrium capacities. Comparing the saturation rates of 2 cases (Figures 16 and 

18), with more rebalancing efforts (0.5 absolute efficiency), zones that lose capacities have lower 

saturation rates, and zones that gains capacities have higher saturation rates. It can be observed 

from Figure 19 that the capacity shift from the northeast to the southwest is less significant 

compared with the base case due to more rebalancing effort. Capacity distribution becomes less 

sensitive to the flows, leading to a more even distribution of the capacities. 

 

Remark 2. Decreases in absolute efficiencies can be observed by the proposed model to lead to 

more even distribution of capacities, implying more rebalancing or inter-zone matching.  
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Figure 18. Saturation rate and flows of transfer-in 

links (0.5 absolute efficiency). 

Figure 19. Capacity change (𝑠𝑖 − 𝑠0,𝑖) of transfer-in 

links (0.5 absolute efficiency). 

 

4.4 System evaluation with demand change: 95% demand 

To demonstrate the application of estimated FC matrices, we changed the travel demand to 95% 

of the base case (all OD pairs) to evaluate system changes with the same FC matrix from the base 

case. All the other parameters are kept the same as the base case. Run time of Algorithm 1 is 

17min 41sec (6min 9s on path generation, 11min 32s on Frank-Wolfe algorithm). Algorithm 2 

converged after 75 iterations. Figure 20 compares the saturation rates and flows of transfer-in 

links with the base case. Figure 21 compares capacity changes caused by the flows (𝑠𝑖 − 𝑠0,𝑖) with 

the base case. 

 As shown in Figure 20, compared with the base case, all the saturation rates and flows are 

lower with lower demand. As shown in Figure 21, absolute capacity changes are all smaller except 

zone 5, which is also very close. Smaller demand leads to smaller flows, which has smaller impact 

on the capacity distributions. This case shows how the model with estimated FC matrices could be 

applied to evaluate the impact of system demand changes, with unchanged travel and operation 

patterns. 

 

  
Figure 20. Saturation rate and flows of transfer-in 

links (0.5 absolute efficiency). 
Figure 21. Capacity change (𝑠𝑖 − 𝑠0,𝑖) of transfer-in 

links (0.5 absolute efficiency). 
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4.3 FC matrix estimation 

To demonstrate the use of 𝑃2 for estimation of the FC matrices with trip and capacity data, we 

adopt the equilibrium path flows and capacities solved from the base case in section 4.1 as the 

observed path flows and capacities to estimate an FC matrix. Two different sets of estimations are 

applied to demonstrate their impact on the resulting equilibrium capacities: 1) 𝛽 = 1, 𝛾 = 1; 2) 

𝛽 = 1, 𝛾 = 100. 

The initial guess of the FC matrix is an all-zero matrix for both cases, representing static 

capacities. In addition to the constraints in 𝑃2, we add the following set of constraints (Eqs. (37 – 

38)). For all pairs of (𝑖, 𝑖) in which 𝑖 is a transfer-in link, we define a set 𝑍𝑖𝑛. For all pairs of (𝑖, 𝑗) 

in which 𝑖 is a transfer-in link and 𝑗 is the transfer-out link at the same MoD node, we define a set 

𝑍𝑜𝑢𝑡. These constraints ensure the interpretability of the estimation results by making sure that 

there is no over-rebalancing (over-compensating the reduced capacities/over-alleviate the 

increased capacities). All other elements of the FC matrix are assumed to be 0 (no perturbation). 

−1 ≤ 𝑝𝑖𝑖
0 + 𝑝𝑖𝑖

+ − 𝑝𝑖𝑖
− ≤ 0, (𝑖, 𝑖) ∈ 𝑍𝑖𝑛 (37) 

0 ≤ 𝑝𝑖𝑗
0 + 𝑝𝑖𝑗

+ − 𝑝𝑖𝑗
− ≤ 1, (𝑖, 𝑗) ∈ 𝑍𝑜𝑢𝑡 (38) 

We use the commercial solver LINGO to solve 𝑃2 for these instances. Results are shown in Table 

6.  

 
Table 6. Estimated efficiencies of the base FC matrix. 

Node ID 

(𝑞) 

Efficiencies of transfer-in link (𝑖) flow to the 

capacity at node 𝑞 (𝑝𝑖𝑖) 

Efficiencies of transfer-out link (𝑗) flow to the 

capacity at node 𝑞 (𝑝𝑖𝑗) 

Case (1): 𝛽 = 1, 𝛾 =
1 

Case (2): 𝛽 = 1, 𝛾 =
100 

Case (1): 𝛽 = 1, 𝛾 = 1 
Case (2): 𝛽 = 1, 𝛾 =

100 

0 0 0 0.179 0.538 

1 -0.100 -0.131 0 0 

2 -0.007 0 0 0.032 

3 0 0 0.068 0.271 

4 0 -0.059 0.133 0 

5 0 -0.000 0.004 0 

6 -0.007 0 0 0.092 

7 -0.028 -0.214 0 0 

8 -0.047 -0.128 0 0 

9 -0.011 0 0 0.057 

10 0 0 0.016 0.009 

11 0 0 0.009 0.049 

12 -0.063 0 0 0.131 

13 0 0 0.027 0.176 

14 -0.023 0 0 0.081 

15 -0.015 -0.044 0 0 

16 0 0 0.128 0.384 

17 -0.023 -0.185 0 0 

18 0 -0.106 0.006 0 

 

The 2 estimated FC matrices lead to the same equilibrium flows, whose absolute errors 

compared with observations are shown in Figure 22(a). Both estimated FC matrices are very 

different from the FC matrix defined in the base case which generated the observed flows and 

capacities, while the equilibrium path flows generated have small differences as shown in Figures 
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22(a). When other system settings are the same, different FC matrices could lead to the same 

equilibrium flows and capacities as discussed in section 2.5. In this case, since we chose the all-

zero matrix as the initial guess, minimizing perturbation leads to less non-zero parameters than 

expected. Between the transfer-in link and transfer-out link of a MoD node, only one link is 

estimated to have impact on the capacity for all MoD nodes in both cases. Comparing the two 

cases, the resulting equilibrium path flows are the same, while accuracy of equilibrium capacities 

are different. Capacity accuracy comparison of Case 1 and 2 are shown in Figure 22(b) and Figure 

23. Case (2) has significantly more accurate capacities due to a larger weight 𝛾 of the capacity-

fitting term.  

 

  
(a) Histogram of path flow differences (observed vs. 

solved with estimated FC matrix) 

(b) Histogram of equilibrium capacity differences 

(observed vs. solved with estimated FC matrix) 

Figure 22. Flow and capacity accuracy of case (1): 𝛽 = 1, 𝛾 = 1. 

 

 
Figure 23. Histogram of equilibrium capacity differences of case (2): 𝛽 = 1, 𝛾 = 100. (observed vs. solved 

with estimated FC matrix)  
 

Remark 3. Inverse optimal parameters from even the same initial prior can have the same 

equilibrium path flows but different capacity accuracies, with higher 𝛾  weights for improved 

capacity fitting. 

 

In practice, selection of the initial prior of the FC matrix affects the estimation result 

significantly. Interpretable initial priors representing basic rebalancing/matching policies and 

customer/driver arrival patterns would help get interpretable results. For example, negative 

efficiencies for nearby transfer-in links and positive efficiencies for nearby transfer-out links may 

make sense. Additional constraints can be added to 𝑃2 to ensure interpretability. For example, 

zones further away can be constrained to have smaller absolute efficiency than zones closer. 

Efficiency 𝑝𝑖𝑗  can be assumed proportional to the distance between 𝑖  and 𝑗  to help avoid 

aggregation of congestible capacity effect to one link. In some cases where the capacity 

distribution data are not available, the capacity-fitting term from the objective of 𝑃2  can be 

removed.  
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For real MoD and multimodal networks with path flow and capacity data, the FC matrix can 

be estimated as a digital profile capturing the combined effect of travel behavior and operation 

strategy. Different FC matrices with different combinations of travel behavior and operation 

policies can be estimated to build a library of digital profiles. The library could facilitate planning 

and design of new/extended service areas by extracting digital profiles that align with the intended 

service area, which should have similar factors that determine travel behavior (e.g. demographics, 

land use information, travel surveys). Such digital profiles could be used to model equilibrium 

flows to compare different operating policies or for use as priors.  

 

5 Conclusion 

This study proposed a nonlinear optimization formulation that yields a logit-based SUE for MoD 

systems with congestible capacities, which is a phenomenon that capacity distribution depends on 

the flows. The capacitated SUE model from Bell (1995) is generalized to have capacities as 

functions of flows through an input-output-based FC matrix that captures a combined effect of 

travel behavior and operation policies, making it possible to model MoD equilibrium without 

operation information form the MoD providers. Proof of equivalence of the formulation and SUE 

is given, which shows how the path delays can be obtained through a combination of Lagrange 

multipliers of the capacity constraints. The uniqueness of the solution is discussed. The model has 

a simple structure which is easy to scale and apply.  

Because of the unique structure of the non-separable capacity effects, balancing algorithms 

like Bell (1995) are shown to be ineffective. Instead, a solution algorithm that generates a 𝜌-

bounded path set is proposed. A Frank-Wolfe algorithm is applied to solve the nonlinear SUE 

formulation. An inverse optimization formulation is derived to estimate the FC matrices with 

observed equilibrium path flows and capacities along with a prior. 

Three examples are given, including a small toy network to illustrate the formulation and 

solution algorithm, one larger numerical example to demonstrate the application to multimodal 

systems, and one example of downtown Manhattan, NY to show the application to real networks. 

Sensitivity tests are conducted to demonstrate the influence of the travel time coefficient 𝛼 and the 

efficiency parameters which defines how much link flows affect capacities. The proposed 

estimation method of FC matrix is tested in the downtown Manhattan case. 

Compared to the literature, there are 2 major contributions. First, the model provides a 

generalized equilibrium framework to empirically model equilibrium state interactions of dynamic 

capacities and flows across modes. Secondly, without knowing the operation policies of the MoD 

operators, the estimation of the FC matrix requires limited observations without having to make 

assumptions on operators’ policies, which allows modeling for regulators without data shared by 

operators. Such an approach addresses the problem of MoD equilibrium modeling needed by 

public policy-makers under the data privacy limitations from private operators. Ultimately, we 

hypothesized that we could model these complex dynamics in a steady state model using linear 

functions, much like how complex inter-industry interactions are modeled with simple linear 

Input-Output models by Leontief (1936) or linear regression models for that matter (the subjects 

of those models typically are nonlinear to some extent). The point of the design is that it can capture 

the steady state effects of these multimodal, MoD systems. Through the numerical experimentation 

with the use of the proposed inverse models, we empirically prove that we can get good fits to the 

real data that can result in interpretable analysis. 
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There are some shortcomings that could be addressed in further studies. The proposed logit-

based formulation retains the independence of irrelevant alternative (IIA) property, which leads to 

issues addressing path correlation. Other choice models such as the c-logit logit model could be 

applied to the SUE formulation. Other more effective path set identifying methods can also be 

considered. The equilibrium assignment and capacity distribution are dependent on the path set, 

indicating that path recommendation under a MaaS setting could influence the equilibrium, which 

could be another future direction. Considering the dependency of feasibility on the relationship 

between the demand and base capacities, further research could look at determining the feasibility 

criterion of the assignment, which could be helpful for the initial fleet deployment. In addition, to 

achieve more accurate modeling, another future direction would be to explore other forms of flow-

capacity relationships other than the simple linear form. With a more accurate non-linear model, 

we would not have to restrict attention to just local and incremental changes, but at the price that 

we can no longer prove uniqueness or guarantee such an efficient algorithm.  

Interpretability of the FC matrices can be poor due to the complex factors that affect them. 

However, with data from different regions with different operations, it is possible to model the 

relationship between the FC matrices and the factors affecting them (e.g. demographics, land-use 

information, travel survey data, and operation policies). A further exploration can be conducted to 

identify additional counterfactual scenarios that can be analyzed with this model framework.   

While this study provides a steady-state model of MoD networks, it does not consider the 

impact of operation cost and pricing. It can determine the resulting route flows for a given operator 

policy, not considering its stability with respect to cost allocation options available to the operator. 

The work of Liu and Chow (2023) does consider cost allocation but maintains simple route flow 

decisions without congestible capacity effects. Future research may tie these two efforts together 

with an assignment game model that exhibits customer behavior under congestible capacities. 
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