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Abstract

This paper continues the study of ‘link spectral invariants’ on compact sur-
faces, introduced in our previous work and shown to satisfy a Weyl law in which
they asymptotically recover the Calabi invariant. Here we study their sublead-
ing asymptotics on surfaces of genus zero. We show the subleading asymptotics
are bounded for smooth time-dependent Hamiltonians, and recover the Ruelle in-
variant for autonomous disc maps with finitely many critical values. We deduce
that the Calabi homomorphism admits infinitely many extensions to the group of
compactly-supported area-preserving homeomorphisms, and that the kernel of the
Calabi homomorphism on the group of hameomorphisms is not simple.

French title: “Asymptotique sous-dominante des invariants spectraux d’entrelacs
et groupes d’homéomorphismes de surfaces.”

French abstract
Cet article poursuit l’étude des ”invariants spectraux d’entrelacs” introduits dans

notre précédent travail, dans lequel il est établit qu’ils vérifient une loi de Weyl faisant
apparâıtre l’invariant de Calabi asymptotiquement. Nous étudions ici leur asymptotique
sous-dominante sur les surfaces de genre nul. Nous montrons que celle-ci est bornée
pour tous les hamiltoniens lisses dépendant du temps, et qu’elle fait apparâıtre l’invariant
de Ruelle pour les hamiltoniens autonomes du disque ayant un nombre fini de valeurs
critiques. Nous en déduisons que le morphisme de Calabi admet une infinité d’extensions
au groupe des homéomorphismes à support compact qui préservent l’aire, et que le noyau
du morphisme de Calabi sur le groupe des haméomorphismes n’est pas simple.
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1 Introduction

1.1 Area-preserving homeomorphisms of surfaces

Let pM,ωq be a compact manifold possibly with boundary, equipped with a volume-form,
and consider the group HomeocpM,ωq of volume-preserving homeomorphisms that are
the identity near the boundary, in the component of the identity.

When the dimension of M is at least three, there is a clear picture due to Fathi
regarding the algebraic structure of this group: there is a mass-flow homomorphism, and
its kernel is a simple group. In contrast, in dimension two the situation is much less
understood despite the fact that many decades have passed since Fathi’s work. We refer
the reader to [6], e.g. Thm. 1.3, for background, including a definition of the mass-flow
homomorphism [6, Sec. 2.3]. In the cases that we will be mainly concerned with here,
that is the disc and the sphere, the kernel of mass-flow is just the group of area and
orientation preserving homeomorphisms.

We recently showed [6, Thm. 1.3] that when dimpMq � 2, the kernel of mass-flow is
never simple. In fact, it contains as a proper normal subgroup the group HameopM,ωq of
hameomorphisms, whose definition we review in Definition 2.2. When M has boundary,
we also showed that the classical Calabi homomorphism, which we review in Definition 2.1
and which measures the average rotation of the map, extends to Hameo from the group
HamcpM,ωq of Hamiltonian diffeomorphisms that are the identity near the boundary. It
is then natural to ask the following.

Question 1.1. When M is closed, is HameopM,ωq simple? When M has non-empty
boundary, is the kernel of Calabi on HameopM,ωq simple?

This is an old question. For example, a variant appears in [27, Problem (4)]. Let us
briefly explain why one might hope for a positive answer. Hameomorphisms are home-
omorphisms with well-defined Hamiltonians, and it is natural to wonder whether the
algebraic structure of the group of hameomorphisms could be like that of the group
HamcpM,ωq; moreover, Banyaga showed [1] that Hamc is simple when M is closed and
the kernel of Calabi is simple when M has boundary.

Our first result shows that the structure of Hameo is more complicated than this.

Theorem 1.2. The following groups are not perfect:

1. The kernel of Calabi on HameopD2, ωq.
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2. The group HameopS2, ωq.
Both admit surjective group homomorphisms to R.

Recall that a group G is called perfect if it coincides with its commutator subgroup
rG,Gs. Note that, since the commutator subgroup is always normal, every (non-abelian)
simple group is perfect and hence we conclude that neither of the groups appearing in
the above theorem are simple.

1.2 A two-term Weyl law

Theorem 1.2 is proved by studying the asymptotics of the “link spectral invariants”
defined in our previous work [6, Thm. 1.13, Def. 6.14, Eq. (59)]. In [6, Sec. 7.3] we
defined quasimorphisms

µk : DiffpS2, ωq Ñ R, fk : HomeocpD2, ωq Ñ R

and we showed that these satisfy the important asymptotic formulae

lim
kÑ8

fkpgq � Calpgq (1)

on DiffcpD2, ωq, and

lim
kÑ8

µkpgq � 0.

We called this the “Calabi property”. Here, Cal denotes the aforementioned Calabi
homomorphism and Diffc denotes the group of diffeomorphisms that are the identity near
the boundary and that preserve ω, which we note for the reader coincides with the group
Hamc in the above cases. We refer the reader to our review in Section 2 for more details
about the µk and fk.

The above formulas are kinds of Weyl laws. For specialists, we note that the conver-
gence to zero for the µk is what one would hope for in a Weyl law, since these invariants
are defined via mean normalization of Hamiltonians. It is natural to ask what can be
said about the subleading asymptotics. With many seemingly similar kinds of Weyl laws,
this tends to be a hard question. For example, the above Calabi property was inspired
by an analogous Weyl law for the related “ECH spectral invariants” defined in [19], see
[9]. For these spectral invariants, all that is known is a bound on the growth rate of the
subleading asymptotics [11] that is likely far from optimal, with the conjectural bound
being Op1q [20].

In contrast, it turns out that we are able to say quite a lot about the subleading
asymptotics of the µk. To state our result, let Ru denote the Ruelle invariant from [32]
(see also [17, 18]), which we review in Section 2.1.3. We now state a result that is central
to our proof of Theorem 1.2 and which is also of independent interest.
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Theorem 1.3. If ψ P DiffpS2, ωq (resp. ψ P DiffcpD2, ωq X kerpCalq), then the sequence
tk µkpψqukPN (resp. tk fkpψqukPNq is bounded. In fact, if ψ � φ1

H , where H : D2 Ñ R is an
autonomous and compactly supported Hamiltonian on the disc with finitely many critical
values, then

lim
k
kµkpψq � lim

k
kpfkpψq � Calpψqq � Calpψq � 1

2
Rupψq. (2)

A similar result concerning the subleading asymptotics of the µk in the case of au-
tonomous Hamiltonians on the sphere with finitely many critical values also holds, but for
brevity (and because the Ruelle invariant is not defined over the sphere without further
choices), we do not state it.

Remark 1.4. In the statement of the above theorem, we are implicitly invoking the fact
that we can regard any ψ P DiffcpD2, ωq as a map of the two-sphere by embedding D2 as
a hemisphere and extending by the identity, for our conventions see Section 2.2.4, when
we write µkpψq in (2); we will continue to do this throughout this paper. The invariants
µk and fk can be thought of as invariants of (possibly time-dependent) Hamiltonians as
well, by setting µkpHq :� µkpφ1

Hq and fkpHq :� fkpφ1
Hq. This viewpoint is helpful and

adopted in [6, Sec. 3], as well as Section 3 here.

In view of Theorem 1.3 it is natural to ask if (2) holds more generally. For the
aforementioned ECH spectral invariants, essentially the same question was asked, under
a genericity assumption on the contact form [20]. In the ECH case, simple examples
exist, for example the boundary of the round sphere, with no well-defined subleading
asymptotic limit at all; in this sense, then, the genericity assumption can not be dropped.
In our case, however, we know of no such analog, and indeed Theorem 1.3 asserts that in
the simplest cases, the subleading asymptotics in fact always recover Ruelle. We therefore
pose as a question the following.

Question 1.5. Is it the case that for any ψ P DiffcpD2, ωq,

lim
k
kµkpψq � lim

k
kpfkpψq � Calpψqq � Calpψq � 1

2
Rupψq?

We emphasize that, in contrast to the ECH case, we are not requiring any genericity
in ψ in the above question.

Remark 1.6. If it was known that homogenized PFH spectral invariants [7] are quasi-
morphisms, it would follow from [4] that they agree with the µk and hence satisfy a
two-term Weyl law; the simpler one-term Weyl law is established in [10, 12].

1.3 Infinitely many extensions of Calabi and the simplicity Con-
jecture revisited

Consideration of the asymptotics of the µk also leads to the resolution of an old question
about the aforementioned Calabi homomorphism.
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Question 1.7 ([14]). Does Cal : DiffcpD2, ωq Ñ R extend to a group homomorphism
HomeocpD2, ωq Ñ R ?

Question 1.7 has a long history which is closely connected to the question of whether
or not the group HomeocpD2, ωq is simple; see for example [18, Sec. 2.2]. It is known that
no C0-continuous extension can exist, because the kernel of Cal is C0-dense. It was also
recently shown that this group is in fact not simple [8], resolving the longstanding “sim-
plicity Conjecture”. However, the question of whether an extension as a homomorphism
exists has remained open.

One might guess that no such extension exists. For example, many groups of home-
omorphisms satisfy an automatic continuity property, see for example [23], and as was
stated above, it is known that a continuous extension can not exist; see also Remark 5.1
below. On the contrary, however, we have the following result.

Theorem 1.8. The Calabi homomorphism admits infinitely many extensions to group
homomorphisms HomeocpD2, ωq Ñ R.

It follows from Theorem 1.8 that the group HomeocpD2, ωq is not simple. This gives
another proof of the aforementioned “simplicity Conjecture”. It should be emphasized
that our proof uses the nontrivial construction of the fk from [6, Thm. 7.7(iii)] (see Sec
2.2.3 below), so is not self-contained; on the other hand, it does give a new proof, deducing
nonsimplicity purely algebraically from the existence of a geometrically constructed ho-
momorphism out of HomeocpD2, ωq. This kind of argument for proving non-simplicity is
much more in line with how non-simplicity is proved for related groups, see the summary
in [8, Sec. 1.1.1], so it is natural to hope for a proof like this. Moreover, this perspective
has value in finding new normal subgroups: to keep the introduction focused, we defer
the precise statement regarding these subgroups to Section 5.2 below.

Remark 1.9. The homomorphisms we construct in proving Theorem 1.8 are far from
canonical. On the other hand, we will see that our proof does give a natural extension
of the Calabi homomorphism to a homomorphism HomeocpD2, ωq Ñ R1, where R1 is a
certain group containing R as a subgroup; see (28) and (29).

1.4 Simplicity

Given Theorem 1.2, it is natural to ask if some simple non-trivial normal subgroup of
HomeocpD2, ωq exists. After all, there certainly exist groups (e.g. Z) with no simple
normal subgroups at all.

Theorem 1.10. Let G :� HomeocpΣ, ωq, where Σ is some compact surface. The com-
mutator subgroup rG,Gs is simple.

The proof of Theorem 1.10 is completely independent of our other results, and does
not use link spectral invariants at all. In fact, we should note that from a certain point
of view, Theorem 1.10 is not too surprising. Indeed, the commutator subgroup of rG,Gs
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is normal in G, so standard arguments as in [14], see in particular the exposition in [8,
Prop. 2.2]), show that rG,Gs is perfect; and, for many transformation groups, perfectness
and simplicity are equivalent.

It would be very interesting to find a geometric characterization of rG,Gs. In the
diffeomorphism case, Banyaga has shown [1] that rG,Gs is the kernel of Cal.

1.5 Themes of the proofs and outline of the paper

A crucial fact for many of our arguments is the following estimate from [6, Eq. (70)] on the
defect of the fk. (We refer the reader to 2.2.2 for preliminaries about quasimorphisms.)

Lemma 1.11 ([6], the proof of Thm. 7.6, 7.7 and Eq. (70)). The fk and µk are quasi-
morphisms of defect 2

k
.

This is a key property that powers many of our arguments and one goal of our paper is
to illustrate the usefulness of this fact. The basic idea is that this defect property allows
us to detect interesting normal subgroups and construct interesting homomorphisms; on
the other hand, our two-term Weyl law from above allows us to recover the Calabi and
Ruelle invariants, which are among the most studied invariants of area-preserving disc
maps, from the fk, for a wide class of diffeomorphisms.

We put this together as follows. In our previous work, we studied twist maps with
“infinite Calabi” invariant, defined via the leading asymptotics of the fk, to show that
Hameo is proper. Here, we study twist maps with “infinite Ruelle invariant,” defined via
the asymptotics of the kfk, to show nonsimplicity of Hameo. More precisely, we define a
subgroup of elements with Op1q subleading asymptotics and we show that this contains
all smooth Hamiltonian diffeomorphisms, but we show that it is proper by constructing
a hameomorphism with “infinite Ruelle invariant;” see Proposition 4.1.

We further comment on the contrast between “infinite Ruelle” and “infinite Calabi”
in Remark 4.4.

1.6 Summary of our knowledge of the normal subgroup struc-
ture

It seems to us useful to summarize in one place what is known about the normal subgroup
structure for the groups that concern us here, and what remains to be understood.

We start with the case of smooth (i.e. C8) diffeomorphisms, established by Banyaga,
for the sake of comparison. We let G8 denote either the group DiffpS2, ωq of smooth
diffeomorphisms of S2 which preserve the area 2-form ω, or the group DiffcpD2, ωq of
compactly supported smooth diffeomorphisms of D2 which preserve ω. As mentioned
above, in the case of S2, we have

rG8, G8s � DiffpS2, ωq,
and in the case of D2 we have

rG8, G8s � kerpCalq � DiffcpD2, ωq.
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Moreover, rG8, G8s is simple; and, in the disc case, we have

G8{rG8, G8s � R. (3)

The case of homeomorphisms seems quite different: a striking phenomenon, which
seems genuinely new, is a plethora of normal subgroups arising from different geometric
considerations.

To elaborate, we described above the subgroup Hameo, which one can think of as
those homeomorphisms that can be said to have Hamiltonians. There is another normal
subgroup FHomeo, containing Hameo, whose precise definition we skip for brevity: one
can think of it as the largest normal subgroup for which Hofer’s geometry can be defined.
Buhovsky has recently shown [2] that FHomeo and Hameo do not coincide. As mentioned
above, we showed in [8, 6], resolving in particular the simplicity conjecture, that FHomeo
is proper. We can therefore summarize the situation regarding these groups, prior to this
work, as follows. Let G denote the group of area and orientation preserving homeomor-
phisms of S2 or the group of compactly supported area-preserving homeomorphisms of
D2.

For S2, we have

rG,Gs � HameopS2, ωq � FHomeopS2, ωq � G

For D2 we have

rG,Gs � kerpCalq � HameopD2, ωq � FHomeopD2, ωq � G,

where here Cal denotes the extension of the Calabi homomorphism mentioned above that
we established in [6, Thm. 1.4]; one expects the inclusion of Hameo into FHomeo to be
proper by the arguments in [2].

Our work here shows that the left most inclusions are proper, by constructing an
explicit normal subgroup, and that rG,Gs is simple. The normal subgroups we construct
to show properness, denoted by NpS2q and NpD2q respectively, do contain rG,Gs, but we
do not know if this inclusion is proper. As a result, for S2, we have

rG,Gs � NpS2q � HameopS2, ωq � FHomeopS2, ωq � G

For D2 we have

rG,Gs � NpD2q � kerpCalq � HameopD2, ωq � FHomeopD2, ωq � G,

To set the context for describing more normal subgroups, it is natural to wonder if (3)
has any counterpart for homeomorphisms. We know that G{rG,Gs contains a subgroup
isomorphic to R and that it therefore has the same cardinality as R, since a continuous
function on the reals is determined by its values on the rationals. However, this is all
we currently know about G{rG,Gs. On the other hand, in this paper we find some
“quasimorphism subgroups” that can be assumed to contain any of the above H whose
quotients are isomorphic to R, see our Section 5.
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There are additional interesting normal subgroups related to the underlying geometry
that are not our focus in the present work. First of all, one can construct normal subgroups
via “fragmentation norms”, see [21]; it is not currently known how these relate to the
normal subgroups above. One can also find normal subgroups between FHomeo and G
by pulling back from the quotient subgroups corresponding to growth rates of infinite
twist maps, see [29].

1.7 Organization of the paper

The outline of the paper is now as follows. After reviewing the preliminaries, we start
with the computation in the smooth case, proving Theorem 1.3; this is the content of
Section 3. We then move to the case of hameomorphisms in Section 4: the outcome of
the computation from the previous section gives an explicit formula for the subleading
asymptotics in the smooth case, and this motivates our definition for a hameomorphism
with unbounded subleading asymptotics, see Section 4, which is the key step in proving
Theorem 1.2. Section 5 uses related ideas to extend the Calabi invariant: the idea is that,
just as the subleading asymptotics are a suitable replacement for Ruelle, the leading
asymptotics allow for infinitely many extensions of Calabi. Finally, in Section 6, we prove
the simplicity result Theorem 1.10.
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2 Preliminaries

We begin by reviewing the relevant background material and elaborating on some defini-
tions mentioned in the introduction.
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2.1 The groups, the Calabi homomorphism and the Ruelle in-
variant

2.1.1 Basic notions

Let S be either the standard 2-sphere S2 � tpx, y, zq P R3 : x2 � y2 � z2 � 1u in R3

or the standard closed 2-disc D2 in R2. We assume that S is endowed with an area
form ω. In the case of the disc, unless otherwise stated, all our maps will be assumed
compactly supported, i.e. functions on D2 are assumed to vanish in some neighborhood of
the boundary of D2 and homeomorphisms of D2 are assumed to coincide with the identity
in some neighborhood of the boundary of D2.

As mentioned in the introduction, our main characters will be

G � HomeocpS, ωq

the group of (compactly supported in the interior) area-preserving homeomorphisms of S
and its smooth counter-part

G8 � DiffcpS, ωq
the group of area preserving diffeomorphisms of S. When S � S2 we will drop the
subscript ‘c’ from the notation. The group G is known to be the C0-closure of G8. A
smooth Hamiltonian H � pHtqtPr0,1s : r0, 1s � S Ñ R generates an isotopy pφtHqtPr0,1s
obtained by integrating the time dependent vector field XHt defined by ωpXHt , �q � dHt.
It is known that G8 coincides with the Hamiltonian group HamcpS, ωq, i.e. that any
ψ P G8 is of the form ψ � φ1

H for some Hamiltonian H.
In the disc case, G8 � HamcpD2, ωq admits a non-trivial group homomorphism Cal :

G8 Ñ R, called the Calabi homomorphism, which we now recall.

Definition 2.1. Let ψ P DiffcpD2, ωq. Since G8 � HamcpD2, ωq, the diffeomorphism ψ is
the time-one map of a Hamiltonian H, i.e. ψ � φ1

H . The quantity

Calpψq �
» 1

0

»
D2

H ω dt

turns out to be independent of the choice of Hamiltonian H and is called the Calabi
invariant of ψ. This defines a map Cal : G8 Ñ R which is a group homomorphism [3]
(see also [25]).

As mentioned in the introduction, we can think of the Calabi homomorphism as
measuring the “average rotation” of the map, see [15, 17].

2.1.2 Some normal subgroups of G

We are interested in this work in a particular normal subgroup of G. The key definition
is as follows. As above, we denote by S a surface which is either S2 or D2.
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Definition 2.2 (Oh-Müller [27]). A homeomorphism ψ P G is called a hameomorphism
(or sometimes a strong Hamiltonian homeomorphism) if there exist a compact subset
K � S, a sequence of Hamiltonians Hi : r0, 1s � S Ñ R, i P N, supported in K and an
isotopy pψtqtPr0,1s with ψ0 � Id and ψ1 � ψ, such that

(i) φtHi converges to ψt in the C0 topology and uniformly in t P r0, 1s,
(ii) Hi is a Cauchy sequence with respect to the Hofer norm } � }.

The set of all hameomorphisms is denoted HameopS, ωq. It is proved that HameopS, ωq �
G [8].

Remark 2.3. Several variants of the above definition may be found in the literature. In
particular, one sometimes replaces the convergence with respect to the Hofer norm } � }
with uniform convergence. However, it was proved by Müller [26] that this change in the
definition gives rise to the same group of hameomorphisms.

In [6, Def. 2.1], we used the following weaker variant. We called ψ a hameomorphism
if there exist a compact set K and a sequence of Hamiltonians Hi, supported in K, such
that the time-1 maps φ1

Hi
converge to ψ and Hi is Cauchy with respect to the Hofer

norm. This weaker notion gives rise to another normal subgroup of G, which we will
denote Hameo1 in this remark. We clearly have the inclusion Hameo � Hameo1, but we
do not know whether equality holds.

Our reason to change from one notion to another is to have stronger statements.
Indeed, in [6, Thm. 1.4] (see also the discussion in Theorem 2.4 below), we extended the
Calabi homomorphism to Hameo1 which is a priori a stronger result than just extending
to Hameo. Here, we find a normal subgroup of G which is strictly smaller than Hameo
(resp. kerpCalq in Hameo); this is a priori a stronger statement than finding a subgroup
in Hameo1 (resp. kerpCalq in Hameo1).

We can use the Calabi homomorphism from above to get some additional subgroups,
as the following shows.

Theorem 2.4 ([6], Theorem 1.4). The Calabi homomorphism on G8 extends canonically
to a group homomorphism HameopD2, ωq Ñ R. Moreover, for any ψ P HameopD2, ωq and
any sequence Hi as in Definition 2.2 the extension of the Calabi homomorphism satisfies

Calpψq � lim
iÑ8

Calpφ1
Hi
q.

This gives another normal subgroup of G in the case of the disc, namely the kernel of
Cal : HameopD2, ωq Ñ R.

2.1.3 The Ruelle invariant

We now recall the construction of the Ruelle quasi-morphism, following [17]. Recall that
G8 :� DiffcpD2, ωq denotes the group of compactly-supported area-preserving diffeomor-
phisms of the 2-disc. We fix a trivialization

TD2 � D2 � R2 (4)
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(which is unique up to homotopy). The group G8 is contractible, so if g P G8 we may
pick an isotopy tgtu from Id to g, again unique up to homotopy. For a point z P D2, let

vtpzq P R2zt0u
denote the first column of dgtpzq P SLp2,Rq expressed in the trivialisation (4), and

Anggpzq P R

the variation in the angle of vtpzq, measured with respect to a fixed direction (say the
x-axis) and integrated over 0 ¤ t ¤ 1. The uniqueness of the choice of tgtu up to
homotopy shows this does not depend on the choice of isotopy from g to Id. The function
z ÞÑ Anggpzq is smooth and so integrable. Setting

rpgq :�
»
D2

Anggpzqω

we obtain the Ruelle invariant

Rupgq :� lim
pÑ8

rpgpq{p.

This is a non-trivial homogeneous quasi-morphism on G8 (and on the kernel of the Calabi
homomorphism).

Gambaudo and Ghys [17, Proposition 2.9] give a formula for the Ruelle invariant in
the special case of an autonomous Hamiltonian flow of a function H P C8

c pD2q with
finitely many critical values. Suppose ξ P R is a regular value of H, so H�1pξq is a finite
disjoint union of circles. Each such circle C bounds a disc in D2, and we associate the
sign �1, respectively �1, to C � H�1pξq depending on whether H increases, respectively
decreases, as one crosses from the exterior to the interior region.

Then

RupHq :� Rupφ1
Hq �

»
R
nHpξqdξ (5)

where the integer nHpξq P Z is the signed sum of values �1 over the connected components
C of H�1pξq.

Specialising further to the case of a smooth function H P C8
c pD2q which is Morse with

critical points pi, this simplifies to ([18, Section 2.4]):

RupHq �
¸
i

p�1qindppiqHppiq (6)

where indppiq is the Morse index of pi.

2.2 Monotone links, spectral invariants and quasimorphisms

The material for this section was developed in [6]. We refer the reader to this paper for
further details.
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2.2.1 Monotone links and their spectral invariants

We call a Lagrangian link (or Lagrangian configuration) any subset of the form L �
L1 Y � � � Y Lk where the Li’s are pairwise disjoint smooth simple closed curves in S2,
see Figure 1. A Lagrangian link is called monotone if the connected components of its

complement all have the same area areapS2q
k�1

.

Figure 1: Two examples of Lagrangian links on S2 with respectively k � 4 and k � 5
components.

Remark 2.5. In [6, Def. 1.12], we introduced a more general notion of η-monotonicity,
where η is a non-negative real parameter. We will not need this more general notion in
the present paper. What we call monotonicity here corresponds to 0-monotonicity.

Let L be a monotone link with k components. We can take the product of the compo-
nents to form the associated connected submanifold SympLq inside the k-fold symmetric
product SymkpS2q :� pS2qk{ Symk, where Symk is the permutation group permuting the
factors of pS2qk. The symplectic form ω on S2 induces a singular symplectic form on
SymkpS2q whose singular locus is away from SympLq and makes SympLq a Lagrangian
submanifold. After smoothing the symplectic form near the singular locus, the Lagrangian
Floer cohomology of SympLq with itself is well-defined and non-zero [6, Lem. 6.10]. It
enables us to define the link spectral invariants as follow.

Given a Hamiltonian function H : r0, 1s � S2 Ñ R, we define SympHq : r0, 1s �
SymkpS2q Ñ R to be SympHqtprx1, . . . , xksq :� °k

i�1Htpxiq. The Lagrangian link spec-
tral invariant cLpHq is defined to be 1

k
cSympLqpSympHqq, where cSympLqpSympHqq is the

Lagrangian spectral invariant of SympHq with respect to the Lagrangian submanifold
SympLq [6, Equation (54)]. We have shown in [6, Thm 1.13, Lem. 6.16, 6.17] that it is
well-defined and independent from the choice of smoothing of the symplectic form as long
as the smoothing is sufficiently local. For a Hamiltonian diffeomorphism ψ P DiffpS2, ωq p�
HampS2, ωqq and a mean-normalized generating Hamiltonian H (i.e.

³
S2 Htωdt � 0 for

all t P r0, 1s, and ψ � φ1
H), we have shown in [6, Thm 1.13, Lem. 6.16, 6.17] that

cLpψq :� cLpHq is well-defined and independent of the choice of H.
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Remark 2.6. In the specific case of a link L by parallel circles, similar invariants were
previously constructed by Polterovich and Shelukhin [29] using orbifold Floer cohomology
[16], [5] and the computational techniques in [22].

2.2.2 Quasimorphisms for diffeomorphism groups

Recall that a quasimorphism on a group Γ is a map f : Γ Ñ R for which there exists a
constant D ¡ 0 such that for any a, b P Γ,

|fpabq � fpaq � fpbq| ¤ D

The constant D is called a defect of f . A quasimorphism f is said to be homogeneous if
it satisfies fpakq � kfpaq for any k P Z and a P Γ.

The spectral invariant cL may be used to construct quasimorphisms onG8 � DiffpS2, ωq.
This was proved in [6, Thm 7.6], inspired by an older (and famous) construction of Entov
and Polterovich [13].

Let L be a monotone Lagrangian link with k components and φ P DiffpS2, ωq and let
us introduce the homogenized spectral invariant

µkpHq � lim
nÑ8

1

n
cLpH7nq,

for any Hamiltonian H on S2; these are the µk mentioned in the introduction. The
above limit does not depend on the choice of the link L; see Theorem 2.7 below. Here the
notation H7n means the n-times composition of H, where the composition of Hamiltonians
is defined by pH7Kqtpxq � Htpxq �Kt � pφtHq�1pxq. It is well known that H7K generates
φtH � φtK , thus H7n generates the isotopy pφtHqn.

Note that µk has a shift property (see [6, Thm 1.13]), namely for any Hamiltonian H
and any constant c P R, we have

µkpH � cq � µkpHq � c. (7)

As above, we obtain invariants associated to elements of DiffpS2, ωq (still denoted µk) by:

µkpϕq � µkpHq, (8)

for any mean-normalized Hamiltonian H such that φ1
H � ϕ. This does not depend on the

choice of H, see [6, Thm. 1.13, Lem 6.17].

Theorem 2.7 ([6] Thm. 7.6, Thm. 7.7). For fixed k, the map µk : DiffpS2, ωq Ñ R does
not depend on the choice of Lagrangian link L. Moreover the following properties hold

1. (Hofer continuity and monotonocity) For all Hamiltonians H,K,» 1

0

min
xPS2

pHtpxq �Ktpxqqdt ¤ µkpHq � µkpKq ¤
» 1

0

max
xPS2

pHtpxq �Ktpxqqdt.
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2. (Lagrangian control) Let H be a Hamiltonian and L � L1Y� � �YLk be a Lagrangian
link, such that for all i � 1, . . . , k the restriction of H to Li is a function of t denoted
ci. Then,

µkpHq � 1

k

ķ

i�1

» 1

0

ciptqdt.

3. (Quasimorphism) The map µk is a homogeneous quasimorphism of defect 2
k
.

The first item implies that the quasimorphisms µk : DiffpS2, ωq Ñ R are Lipschitz
continuous with respect to Hofer distance dH on DiffpS2, ωq defined by

dHpϕ, ψq :� inf
ϕ�φ1H ,ψ�φ1K

}H �K}, (9)

where the norm is given by }H} :� ³1
0
pmaxS2 Ht � minS2 Htqdt (See e.g. [28] for an

introduction to Hofer’s distance). A consequence of item 2, proved in [6, Thm 7.7(ii)], is
that the quasimorphisms µk are linearly independent. In the case k � 1, we recover the
Entov-Polterovich quasimorphism [13]. As a consequence of the first and second items,
for any Hamiltonian H, we have

1

k

ķ

i�1

» 1

0

min
xPLi

Htpxqdt ¤ µkpHq ¤ 1

k

ķ

i�1

» 1

0

max
xPLi

Htpxqdt, (10)

which will be useful to us later.

2.2.3 Quasimorphisms on the sphere

We now introduce quasimorphisms on the sphere. Denote

fk :� µk � µ1.

By (8) and the shift property (7), we have

fkpHq � fkpφ1
Hq

for all Hamiltonians H (not only for mean-normalized ones). The fk give quasimorphisms
on DiffpS2, ωq which have similar properties to the µk. Our motivation for introducing
them is their C0-continuity, which is not satisfied by the µk. We collect in the next
theorem their useful properties.

Theorem 2.8 ([6], Thm. 7.7 (iii), Thm. 7.6 (support control)). 1. (C0-continuity) For
all k ¥ 1, the quasimorphism fk is continuous with respect to C0 topology and ex-
tends continuously to HomeopS2, ωq

2. (Support control) For all k ¥ 1 and φ P HomeopS2, ωq whose support is included in
a disc of area ¤ 1

k�1
. Then, fkpφq � 0.

Remark 2.9. In fact, for any positive integers k, k1, the difference µk1 � µk extends
continuously to a quasimorphism on HomeopS2, ωq. Its defect is bounded above by the
sum of the defects of µk and µk1 , i.e. by 2

k
� 2

k1
. In particular, fk has defect 2

k
� 2.
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2.2.4 Inducing quasimorphisms on the disc

Let ι : D2 Ñ S2 be a smooth symplectic embedding which identifies the disc D2 with
the northern (or southern) hemisphere. Then we have an inclusion HomeocpD2, ωq �
HomeopS2, ωq and the maps fk induce by restriction quasimorphisms on HomeocpD2, ωq.

Let H be a Hamiltonian which is compactly supported in the disc. Then the La-
grangian control property yields µ1pHq � 0 hence

fkpφ1
Hq � µkpHq � µkpφ1

Hq �
» 1

0

»
S2
H ω dt. (11)

and in particular we obtain the following strengthening of the bound on the defect in
Remark 2.9 (which we already stated in Lemma 1.11).

Lemma 2.10. The fk restricted to the disc are quasimorphisms with defect 2{k.

Using the Lagrangian control property and a Lagrangian link L consisting of horizontal
circles Li � tpx, y, zq P S2 | z � �1� 2 i

k�1
u, i � 1, . . . , k, we can compute fk explicitly for

Hamiltonians that only depend on the variable z, namely:

fkpϕ1
Hq �

1

k

ķ

i�1

Hp�1� 2 i
k�1

q. (12)

This formula will be used in some subsequent sections.

3 The subleading asymptotics and the Ruelle invari-

ant

In this section, we first show that the spectral invariants tµku have O(1) subleading
asymptotics, and then compute those asymptotics exactly in the case of autonomous disc
maps with finitely many critical values.

3.1 Op1q subleading asymptotics

The proof that the spectral invariants tµku have Op1q subleading asymptotics in the
smooth case is an almost immediate consequence of the key inequality

|µkpψ0ψ1q � µkpψ0q � µkpψ1q| ¤ 2

k
(13)

from Lemma 1.11.

Theorem 3.1. For any ψ P DiffpS2, ωq, the sequence tk µkpψqukPN is bounded.
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Proof. Let GOp1q :� tψ P DiffpS2, ωq|kµkpψq � Op1qu. Equation (13) shows both that
if ψ0, ψ1 P GOp1q, then so is the product ψ0ψ1, and also that ψ P GOp1q if and only if
ψ�1 P GOp1q. Therefore, GOp1q is a subgroup of DiffpS2, ωq. Since µkpψq is invariant under
conjugating ψ by elements in DiffpS2, ωq, GOp1q is a normal subgroup.

Since DiffpS2, ωq is simple, to show GOp1q � DiffpS2, ωq it therefore suffices to show that
GOp1q contains a single non-identity element. Let H be the height function (projection
to z co-ordinate) of S2 � R3. Let Lk be the k-component monotone link all of whose
components are level sets of H. By the Lagrangian control property, we have µkpHq � 0.
Since H is mean-normalized, we have µkpφ1

Hq � 0, but φ1
H is not the identity element in

DiffpS2, ωq. The result follows.

By restricting the tµku to Hamiltonians on S2 supported (for instance) in a hemisphere,
we immediately obtain:

Corollary 3.2. Let D2 be a disc in S2 with area at most half of that of S2. For any
ψ P DiffcpD2, ωq, the sequence tk � pfkpψq � CalpψqqukPN is bounded.

Proof. It follows from (11) and Theorem 3.1.

3.2 Autonomous Hamiltonians

For general smooth Hamiltonian diffeomorphisms on the disc, we know from above that
k � pfkpψq � Calpψqq is bounded as k Ñ 8, but not that this sequence has a well-defined
limit. For autonomous maps with finitely many critical values, the limit does exist, and
is determined by the classical Ruelle invariant from Section 2.1.3: showing this is the aim
of this section.

The main result is the following.

Theorem 3.3. Let H : pD2, ωq Ñ R be a compactly supported autonomous Hamiltonian
with finitely many critical values. Then,

lim
kÑ8

pkµkpHq � pk � 1qCalpHqq � �1

2
RupHq. (14)

Theorem 1.3 directly follows from Theorem 3.1, Corollary 3.2 and Theorem 3.3. The
proof of Theorem 3.3 is independent of the rest of the paper and an uninterested reader
might want to skip it in a first reading.

Remark 3.4. The coefficient k�1 of CalpHq is the reciprocal of the monotonicity constant
of a k-component link Lk (see [6, Definition 1.12]).

The proof will use monotone Lagrangian links Lk ‘most’ of whose connected compo-
nents are contained in level sets of H. In order to describe these links, we need the notion
of the Reeb graph.

Let H : pS2, ωq Ñ R be an autonomous Hamiltonian with finitely many critical values.
We define an equivalence relation � on S2 via x � y if and only if they lie in the same
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connected component of a level set of H. Let G :� S2{ � be the Reeb graph of H
equipped with the quotient topology, and R : S2 Ñ G be the associated quotient map.
There is a uniquely defined continuous function HG : GÑ R such that H � HG �R.

Lemma 3.5. The space G is homeomorphic to a finite tree.

Proof. We are going to describe a finite graph structure on G and then we will show that
it is a tree.

We define the set of vertices of G to be the HG-preimage of the set of critical values
of H. We want to show that the set of vertices is finite. It suffices to show that for
every critical value c of H, H�1pcq has only finitely many connected components. Let
J1 � J2 � . . . be a nested sequence of open intervals such that XnJn � tcu. By possibly
passing to a subsequence, we can assume that c is the only critical value of H in J1. Under
this assumption, the number of connected components of H�1pJnq equals to the number
of connected components of H�1pJnq and it is a finite number kc that is independent of n.
Recall that the intersection of a nested sequence of connected compact sets is connected.
Therefore, H�1pcq also has kc connected components.

We define the complement of the vertices of G to be the open edges of G. We need to
show that the complement of the vertices has finitely many connected components and
every connected component is homeomorphic to p0, 1q. But it follows easily from the fact
that for any two consecutive critical values c0   c1 of H, H|H�1ppc0,c1qq : H�1ppc0, c1qq Ñ
pc0, c1q is submersive and hence is a fibre bundle.

Finally, if G were not a tree, then we would be able to lift a non-trivial 1-cycle from
G to S2, contradicting H1pS2;Zq � 0.

We record here a useful consequence of the argument in Lemma 3.5 here:

Lemma 3.6. For any connected open set U � G, the set R�1pUq � S2 is connected.

Proof. We use the sets Jn in the proof of Lemma 3.5. When V � G is a connected
component of H�1

G pJnq, R�1pV q is one of the connected components of H�1pJnq. Since
R�1pV q is also open, it is path-connected.

On the other hand, when V � G is a connected open set not containing any vertex of
G, R�1pV q is clearly also path connected.

For a general connected open set U � G, we can write it as a union of open sets
U � YαVα, each of the Vα’s is of one of the two types above. Since every R�1pVαq is
path-connected and U is path-connected, we conclude that R�1pUq is path-connected
and hence connected.

Let t be the number of vertices of G and enumerate the vertices v1, . . . , vt. Let µ be
the Borel measure on G such that for every open set U � G, we define

µpUq :�
»
R�1pUq

ω.

For i � 1, . . . , t, let
mi :� µpviq P r0, 1s.
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Note that for any x P Gztv1, . . . , vtu, we have µpxq � 0. Many of the components of our
desired links Lk will be of the form R�1pxq for some x P Gztv1, . . . , vtu. But when mi ¡ 0
and k is large, we also need to put many components near R�1pviq for Lk to be monotone.
There are connected closed subsets in S2 with positive measure but empty interior so we
have to be particularly careful near R�1pviq when we construct Lk. To construct Lk, we
need to first explain a decomposition of G using µ.

For the following decomposition of G, we assume that k P N satisfies 3
k�1

  µpeq for
every open edge e P G. For i � 1, . . . , t, let tUi,jusij�1 be the connected components of
Gztviu, where si :� valpviq is the valency of vi, which equals to the number of connected
components of Gztviu. Denote µpUi,jq by ai,j so we have mi �

°si
j�1 ai,j � 1. By our

assumption on k, we have ai,j ¡ 3
k�1

for all i, j. Let ri,j P p0, 1
k�1

s be the unique number

such that ai,j � ri,j is an integer multiple of 1
k�1

.
For any vi and any j � 1, . . . , si, we define xi,j P Ui,j to be the unique point such

that xi,j is on an edge adjacent to vi and the open interval between vi and xi,j has µ-
measure ri,j. The existence of xi,j is guaranteed by the assumption 3

k�1
  µpeq, whilst its

uniqueness comes from the fact that G is a tree (so there is a bijective correspondence
between edges adjacent to vi and connected components Ui,j). Moreover, again by the
assumption 3

k�1
  µpeq, we have that xi,j � xi1,j1 unless i � i1 and j � j1. Most

importantly, by our choice of ri,j, each connected component of Gztxi,jui,j has µ-measure
being an integer multiple of 1

k�1
. Denote the component of Gztxi,jui,j containing vi by Vi.

Let Sk,i :� tpk�1qmiu. By construction, we have µpViq � mi�
°si
j�1 ri,j P pmi,mi� valpviq

k�1
s

so pk � 1qµpViq is an integer in the interval pSk,i, Sk,i � valpviqs.
For all i � 1, . . . , t, let Ji be a connected open subset of Vi that contains vi (see Figure

2). The following simple observation will be useful in constructing Lk.

Lemma 3.7. There exist Sk,i pairwise disjoint circles in R�1pJiq each of which bounds a
disc of area 1

k�1
in R�1pJiq.

Proof. When pk � 1qmi   1, the lemma is regarded as vacuously true so we assume
pk � 1qmi ¥ 1.

By Lemma 3.6, we show that R�1pJiq is connected. Since R�1pJiq is a connected open
proper subset of the sphere, it is diffeomorphic to a planar domain.

Moreover, we have

pk � 1qωpR�1pJiqq ¡ pk � 1qmi ¥ Sk,i.

It is therefore clear that we can find Sk,i-many pairwise disjoint circles in R�1pJiq such
that each bounds a disc of area 1

k�1
in R�1pJiq.

We are now ready to construct our Lk.

Construction 3.8. We consider a monotone Lagrangan link Lk comprising of the fol-
lowing 3-types of circles, which we call them type T1, type T2,i (i � 1, . . . , t) and type T3,i

(i � 1, . . . , t), respectively.
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Figure 2: On the left: R�1pJiq (the union of pink and light blue regions) contains R�1pviq
(pink region) and type T2,i circles (blue). R�1pViq (the union of pink, light blue and
light green regions) contains both type T3,i circles (red) and type T2,i circles. Type T1

circles (black) are level sets outside the interior of R�1pViq. On the right: we indicate
a neighborhood of the vertex vi in G, coloured to indicate the images of the respective
regions on the left.

1. Any component of Gztxi,jui,j not containing any vi is an interval. We can subdivide
that interval so that each sub-interval has µ-measure 1

k�1
. Let X be the union of

txi,jui,j and the additional points we added to subdivide the intervals. Then R�1pXq
gives us |X| � k �°t

i�1ppk � 1qµpViq � 1q circles in S2. For each i � 1, . . . , t, we
discard Sk,i � valpviq � pk � 1qµpViq many circles from R�1pXq that are closest to
R�1pViq. The remaining circles, k �°t

i�1pSk,i � valpviq � 1q many, are the type T1

circles of Lk.

2. By Lemma 3.7, we choose Sk,i pairwise disjoint circles in R�1pJiq bounding disjoint
discs of area 1

k�1
in R�1pJiq. They are the type T2,i circles of Lk.

3. The complement of the associated Sk,i disjoint closed discs in R�1pViq is also a
connected open subset of S2. Therefore, we can put an additional set of pk �
1qµpViq�Sk,i�1 circles, each bounding a disc of area 1

k�1
again, to obtain a further

collection of circles. Together with the Sk,i � valpviq � pk � 1qµpViq circles that we
discard from R�1pXq, we get a collection of valpviq�1 circles, which are called type
T3,i circles of Lk.

We use the notation Lk,j for j P T1 (resp. j P T2,i, j P T3,i) to refer to a connected
component of Lk of type T1 (resp. T2,i, T3,i).

First note that Lk is indeed a k-component monotone link, because all the components
of its complement have area 1

k�1
. On top of this, the three types of circles above have the

following features respectively.

1. S1-fibres lying above open edges of G;
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2. components coming from Lemma 3.7, which can be chosen as close to R�1pviq as
desired; and

3. ‘remaining’ components not of the first two types, but the number of them is
valpviq�1, whch is independent of k. Moreover, they are arbitrarily close to R�1pviq
when we increase k.

For each vertex vi P G, let χi :� 2 � valpviq. We are now going to use the monotone
links Lk from Construction 3.8 to prove the following.

Proposition 3.9. Let H : pS2, ωq Ñ R be an autonomous Hamiltonian with finitely many
critical values. Then

lim
kÑ8

�
kµkpHq � pk � 1q

»
S2
H



� �1

2

ţ

i�1

χiHGpviq (15)

Remark 3.10. When H is Morse, (15) reduces to

lim
kÑ8

�
kµkpHq � pk � 1q

»
S2
H



� �1

2

ş

j�1

p�1qindppjqHppjq

where tpjusj�1 is the set of critical points of H. Compare to Equation (6).

Proof of Proposition 3.9. For every k P N such that 3
k�1

  µpeq, we apply Construction
3.8 to obtain a monotone link Lk as above. We continue to use the notations Vi, Ji, T1,
T2,i, T3,i, etc, but they should be understood that they depend on k.

The Lagrangian control property 10 applied to the link Lk yields

kµkpHq P
ķ

j�1

HpLk,jq, (16)

where HpLk,jq :� tHpyq|y P Lk,ju.
We want to show that, by choosing Ji to be sufficiently small, we obtain the following

three identities corresponding to the three types of circles:

lim
kÑ8

��¸
jPT1

HpLk,jq
�
� pk � 1q

»
S2zYti�1R

�1pViq
H

�
� 1

2

ţ

i�1

valpviqHGpviq, (17)

lim
kÑ8

�
�
�
� ¸
jPT2,i

HpLk,jq
�

� pk � 1q

»
R�1pViq

H

�

� �valpviqHGpviq, for all i, (18)

lim
kÑ8

¸
jPT3,i

HpLk,jq � pvalpviq � 1qHGpviq, for all i. (19)

Note that these are limits of sets, since not all the Lk,j are contained in level sets of H;
however, the Ji shrink with k and hence the diameters of the sets HpLk,jq also tend to
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zero as k increases to infinity. Once these equalities are proved, by summing them up we
will get

lim
kÑ8

�
ķ

j�1

HpLk,jq � pk � 1q
»
S2
H

�
� 1

2

ţ

i�1

pvalpviq � 2qHGpviq. (20)

The result then follows from (16) and the observation that the RHS of (20) is precisely
�1

2

°t
i�1 χiHGpviq.

Identity (17) will be proved ‘edge by edge’. More precisely, let E be the set of edges of
G. Each connected component of S2z�jPT1 Lk,j other than Vk,1, . . . , Vk,t is topologically an
annulus and is canonically labeled by an edge e P E. Let Aek,1, . . . , A

e
k,he,k

be the connected

components that are labeled by e and denote their closures by A
e

k,i for i � 1, . . . , he,k. By

possibly relabeling, we can assume that A
e

k,i XA
e

k,j � H if and only if j P ti� 1, i, i� 1u.
Let BAek,i � Lek,i�1 Y Lek,i for i � 1, . . . , he,k. Note that, every component of

�
jPT1 Lk,j is

of the form Lek,i for precisely one e P E and i P t0, . . . , he,ku. By identifying Aek,i with

pr i�1
k�1

, i
k�1

s � R{Z, dz ^ dyq using an S1-equivariant area preserving diffeomorphism, in
such a way that Lek,i is identified with tiu � R{Z, we have

he,k¸
i�1

�
HpLek,iq � pk � 1q

»
Aek,i

H

�

�pk � 1q
he,k¸
i�1

» i
k�1

i�1
k�1

�H 1p i

k � 1
qpz � i

k � 1
q �O

�
1

pk � 1q2


dz

�
�

1

2pk � 1q
he,k¸
i�1

H 1p i

k � 1
q
�
� he,k O

�
1

pk � 1q2



where Taylor’s theorem was used in passing from the first to the second line above. Note
that he,k   pk�1q. By passing k to 8 and applying the fundamental theorem of calculus,
we get

lim
kÑ8

he,k¸
i�1

�
HpLek,iq � pk � 1q

»
Aek,i

H

�
� lim

kÑ8
1

2
pHpLek,he,kq �HpLek,0qq

�1

2
pHGpB1eq �HGpB0eqq

where Bie are the corresponding vertices adjacent to e. By adding back the term limkHpLek,0q,
we have

lim
kÑ8

�
he,k¸
i�0

HpLek,iq �
he,k¸
i�1

pk � 1q
»
Aek,i

H

�
�1

2
pHGpB1eq �HGpB0eqq

This completes the calculation over a single edge e. By summing over all e P E, we get
(17).
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Equation (19) follows from the fact that |T3,i| � valpviq � 1 and the fact that Lk,j, for
j P T3,i, is approaching to R�1pviq as k goes to infinity. Therefore, it suffices to verify
Equation (18).

Let εk ¡ 0 be such that limkÑ8 Sk,iεk � 0 for all i. Let Ji be a sufficiently small
neighborhood of vi such that HGpJiq � rHGpviq � εk, HGpviq � εks. It implies that¸

jPT2,i
HpLk,jq � rSk,iHGpviq � Sk,iεk, Sk,iHGpviq � Sk,iεks

On the other hand, recall that µpviq � mi ¥ Sk,i
k�1

. Therefore, we can find an open disc

Dk,i � R�1pJiq such that ωpDk,iq � Sk,i
k�1

. It implies that

lim
kÑ8

�
�
�
� ¸
jPT2,i

HpLk,jq
�

� pk � 1q

»
Dk,i

H

�

� lim

kÑ8
r�2Sk,iεk, 2Sk,iεks � 0 for all i (21)

Recall that ωpR�1pViqzDk,iq � ωpR�1pViqq�ωpDk,iq � Sk,i�valpviq
k�1

� Sk,i
k�1

� valpviq
k�1

. Therefore,
we also have

lim
kÑ8

pk � 1q
»
R�1pViqzDk,i

H � lim
kÑ8

pk � 1qωpR�1pViqzDk,iqHGpviq � valpviqHGpviq for all i

(22)

Equation (18) now follows from Equations (21) and (22).

Proof of Theorem 3.3. We embed D2 into the northern hemisphere of S2. By Proposition
3.9 and (5), it suffices to show that

°t
i�1 χiHGpviq coincides with

³
R nHpξqdξ. We can

reinterpret
³
R nHpξqdξ using G as follows. Let v1 be the vertex of G given by RpBD2q

(it is also the R-image of the entire southern hemisphere). Let e be an edge of G. Let
the two vertices adjacent to e be B�e and B�e. Since G is a tree, there is no ambiguity
to require that B�e is further away from v1 than B�e (we allow that B�e � v1). If
HGpB�eq ¡ HGpB�eq, we define ne � 1. If HGpB�eq   HGpB�eq, we define ne � �1. It is
clear from the definition of nH that»

R
nHpξqdξ �

¸
e

»
HGpeq

ne �
¸
e

pHGpB�eq �HGpB�eqq

where the sum is over all edges of G. For any vertex v of G other than v1, there is a
unique edge ev of G such that B�ev � v because G is a tree. Therefore, we have

¸
e

pHGpB�eq �HGpB�eqq � � valpv1qHGpv1q �
ţ

i�2

pHGpviq � pvalpviq � 1qHGpviqq

�
ţ

i�1

χiHGpviq

where the last equality uses that HGpv1q � 0 and χi � 2 � valpviq. It completes the
proof.
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Remark 3.11. For higher genus surfaces, one can use a similar method to estimate cLpHq
for appropriate monotone links L most of whose components are level sets of H. However,
the homogenized spectral invariant µL will depend on the particular link L, and not only
on the number of components of L. Therefore, for any fixed sequence of monotone links
tLkukPN, this method should not give a robust estimate of the subleading asymptote of
µLk for all autonomous Hamiltonians H simultaneously.

4 Non-simplicity for kernel of Calabi and for Hameo

In this section, we prove Theorem 1.2 whose statement we recall here.

Theorem (Theorem 1.2). The following groups are not perfect:

1. The kernel of Calabi on HameopD2, ωq.
2. The group HameopS2, ωq.
Both admit surjective group homomorphisms to R.

The goal of this section is to explain the proof. The broad strategy of the proof is as
follows. Let G denote either HomeocpD2, ωq or HomeopS2, ωq and let H be any of the two
groups in the statement of Theorem 1.2. We begin by defining certain normal subgroups
of H, denoted by NpD2q and NpS2q respectively, which will turn out to be proper. Now,
these groups are also normal in G and since any normal subgroup of G contains rG,Gs
(see [8, Prop. 2.2]1), we conclude that H is not perfect. The calculation of a quotient
isomorphic to R proceeds readily from this, as we will explain.

In the rest of this section we define the normal subgroups NpD2q, NpS2q and prove
their properness.

Proper normal subgroups from subleading asymptotics

To define our normal subgroups, we will use the subleading asymptotics of the quasimor-
phims arising from link spectral invariants which were introduced in Section 2.2.2.

First, consider the case of the disc. Denote by kerpCalq the kernel of the Calabi
homomorphism Cal : HameopD2, ωq Ñ R. Recall the quasimorphism fk : HomeopS2, ωq Ñ
R; its restriction to HomeocpD2, ωq has defect bounded by 2

k
, see Lemma 2.10. Our normal

subgroup will consist of those elements (of the kernel of Cal) for which the fk have bounded
subleading asymptotics. More precisely, define

NpD2q :� tψ P kerpCalq : the sequence |kfkpψq| is boundedu.
Proposition 4.1. NpD2q is a normal subgroup of kerpCalq which contains all of its smooth
elements. Moreover, it is also normal in HomeocpD2, ωq.

1Proposition 2.2 in [8] is only stated on the disc, but holds on any compact surface by the same
argument.
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Proof. The argument here is very similar to that of the proof of Theorem 3.1 and so we
will not provide all the details. NpD2q is a subgroup because the fk have defect 2

k
and it

is normal in HomeocpD2, ωq because kerpCalq is a normal subgroup and because the fk,
being homogeneous quasimorphisms, are invariant under conjugation.

The fact that NpD2q contains all of the smooth elements in the kernel of Calabi is a
consequence of Corollary 3.2; this is because for such ψ, we have µ1pψq � Calpψq � 0.

In the case of the sphere, our normal subgroup is defined similarly, however we cannot
use the quasimorphisms fk : HomeopS2, ωq Ñ R because although the restriction fk :
HomeocpD2, ωq Ñ R has defect 2

k
, the fk have defect 2

k
� 2; see Remark 2.9. We remedy

this problem by working instead with the sequence of quasimorphisms

gk :� µ2k�1 � µ2k�1�1, (23)

for k ¥ 2 on HomeopS2, ωq. Then, the defect of gk is bounded by 2
2k�1

� 2
2k�1�1

, ; see
Remark 2.9, which in particular converges to 0 as k goes to infinity. (While many other
differences µαpkq � µαpk�1q would also have defect limiting to 0, the choice αpkq � 2k � 1
will be particularly convenient for our calculations in Section 4.3.)

Define

NpS2q :� tψ P HameopS2, ωq : the sequence |p2k � 1qgkpψq| is boundedu.
Proposition 4.2. NpS2q is a normal subgroup of HameopS2, ωq which contains all of its
smooth elements. Moreover, it is also normal in HomeopS2, ωq.

As in the case of NpD2q, the proof of the above is similar to that of Theorem 3.1 and
so we will omit it.

To prove properness of these normal subgroups, we will exhibit examples of hameo-
morphisms with unbounded subleading asymptotics.

4.1 A quickly twisting hameomorphism

The first part of the proof is to find a useful element that is in Hameo. As in our previous
work, [8, 7, 6], the desired map will be a twist map. However, in our previous work, we
studied “infinite twists” that were twisting so quickly that they were not in Hameo. Here,
we find a map that is twisting slowly enough to define an element of Hameo, but quickly
enough to have interesting, i.e. unbounded, subleading asymptotics. The construction of
this map will be the topic of this section.

Let T : S2 Ñ S2 be defined as follows.
We view S2 as the standard unit sphere tpx, y, zq P R3 : x2 � y2 � z2 � 1u in R3 and

equip it with the symplectic form ω � 1
4π
dθ^ dz where pθ, zq are the standard cylindrical

coordinates on R3. Denote by p� the point on S2 whose z–coordinate is �1. We pick a
function H : S2ztp�u Ñ R which is of the form

Hpθ, zq � hpzq,

24



where h : p�1, 1s Ñ R is a smooth function which vanishes for z ¥ �1
2

and, for z ¤ �3
4
,

satisfies the identity

hpzq �
c

2

1� z
. (24)

The function H induces a well-defined flow φtH on S2 which fixes the point p� and its
action on pθ, zq, with z ¡ �1, is given by the following equation

φtHpθ, zq � pθ � 4πh1pzqt, zq.

We define
T :� φ1

H .

Note that T is supported in the disc D2 :� tpθ, zq : �1 ¤ z ¤ 0u � S2 and so we can
view it as an element of either of HomeocpD2, ωq or HomeopS2, ωq.
Proposition 4.3. T P HameopD2, ωq. Moreover,

CalpT q � 1

2

» 1

�1

hpzqdz   8.

Note that the above proposition implies that T P HameopS2, ωq as well.

Remark 4.4. As mentioned earlier, the homeomorphism T twists slowly enough to be
in Hameo, and so its Calabi invariant is well-defined, yet it twists fast enough not to be
contained in NpD2q; the heuristic reasoning behind T R NpD2q is that, since Hpp�q � 8,
T has “infinite Ruelle invariant.”

In comparison, if we were to modify the function h in Equation (24) to

hpzq � 2

1� z

we would obtain an “infinite twist” homeomorphism that spins too fast to be contained
in Hameo; here the heuristic reasoning is that the condition

³1
�1
hpzqdz � 8 forces the

homeomorphism to have “infinite Calabi invariant.” Indeed, this can be proven rigorously
via the argument given in [8] (see also the proof of [6, Theorem 1.3]).

Proof of Proposition 4.3. By definition of Hameo, to prove that T P HameopD2, ωq, we
must find smooth Hamiltonians Kn supported in a compact subset of the interior of
D2 � tpθ, zq : �1 ¤ z ¤ 0u such that

(A) φ1
Kn

C0ÝÑ T ,

(B) φtKn is Cauchy for the C0-distance, uniformly in t P r0, 1s,
(C) the sequence Kn is Cauchy for Hofer’s norm } � }.
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We start by picking Hamiltonians Hn as follows. Let Dn :� tpθ, zq : �1 ¤ z ¤
�1� εnu � D2 be the disc of radius εn :� 1

22n
(in z coordinate) centered at p�; note that

AreapDnq � εnAreapD2q � εn
2
. (25)

Now, pick the Hamiltonian Hn so that the following hold:

(i) Hn depends only on the z variable,

(ii) Hn � H outside of Dn and Hn �
b

2
εn

in the interior of Dn,

(iii) }Hn�1 �Hn} ¤
b

2
εn

.

To see why Hn can be picked to satisfy the above, note that Hp�1 � εnq �
b

2
εn

and so

to obtain Hn it suffices to smoothly flatten H on the interior of Dn.

Note that φ1
Hn

� T�1 � Id outside of Dn and hence φ1
Hn

C0ÝÑ T . We will find Hamilto-
nians Kn such that φ1

Kn
� φ1

Hn
, the sequence Kn is Cauchy for Hofer’s norm } � } and φtKn

is Cauchy for the C0-distance, uniformly in t. Note that once this is proven Theorem 2.4
yields

CalpT q � lim
n

Calpφ1
Knq � lim

n
Calpφ1

Hnq � lim
n

»
D2

Hn ω �
»
D2

H ω � 1

2

» 1

�1

hpzqdz.

We need the following lemma whose proof relies on ideas going back to Sikorav [33].

Lemma 4.5. Let ∆ be a Euclidean 2-disc equipped with an area form ω of total area A.
Suppose D � ∆ is diffeomorphic to D2 and that AreapDq   A

N
for some integer N ¡ 0.

Let F be a smooth Hamiltonian supported in the interior of D. Then, we have

dHpφ1
F , Idq ¤

}F }
N

� 2A.

where dH denotes the Hofer distance on Hamcp∆, ωq and }F } � ³1
0
pmax∆ Ft�min∆ Ftqdt

is the Hofer norm of F .

Before proving this lemma, we will use it to construct the sequence of Hamiltonians
Kn.

For each n, the Hamiltonian Hn�1�Hn is supported in the disc Dn, by item (ii) above,

and }Hn�1 � Hn} ¤
b

2
εn

, by (iii). Let ∆n � D2 be the disc centered at p� and of area

An :� 2�n{2. By Equation (25), we have AreapDnq   An
N

for N :� 2t3n{2u. Hence, applying
Lemma 4.5, we obtain Hamiltonians Gn supported in ∆n which satisfy

� φ1
Gn

� φ1
Hn�1�Hn � φ�1

Hn
φ1
Hn�1

,

� }Gn} ¤ }Hn�1�Hn}
N

� 2An ¤
b

2
εn

N
� 2An.
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Note that

b
2
εn

N
�2An � 2n

?
2

2t3n{2u� 2

2
n
2

and thus the series
°8
i�1 }Gi} is summable. Since Gn

is supported in An, the C0-distance dC0pφtGn , Idq is bounded by the diameter of An, which
is Op2�n{4q. It follows that the series

°8
i�1 dC0pφtGi , Idq is summable as well (uniformly in

t).
Now let us define K1 :� H1 and then recursively Kn�1 :� Kn7Gn for n ¥ 1. Then,

φ1
Kn � φ1

H1
φ1
G1
� � �φ1

Gn�1
� φ1

Hn .

Moreover, since
°8
i�1 }Gi} �

°8
i�1 }Ki�1 �Ki} is summable, the sequence Kn is Cauchy

with respect to the Hofer norm. Similarly, since
°8
i�1 dC0pφtGi , Idq is summable, φtKn

converges for the C0 topology.
This completes the proof of Proposition 4.3 modulo the proof of the lemma which we

provide below.

Proof of Lemma 4.5. We will present the proof of the lemma under the simplifying as-
sumption that the Hamiltonian F is time independent and leave the more general case,
which is very similar, to the reader. Note that we have only applied Lemma 4.5 to
time-independent Hamiltonians.

Pick pairwise disjoint discs D1, . . . , DN � ∆ such that each of these discs has the same
area as D. There exist Hamiltonian diffeomorphisms ψ1, . . . , ψN P Hamcp∆, ωq such that

� ψipDq � Di for each i � 1, . . . , N ,

� dHpψi, Idq ¤ A
N

.

Consider the time-independent Hamiltonian

H :� 1

N

Ņ

i�1

F � ψ�1
i .

It is supported in the union of the discs Di and }H} ¤ }F }
N

. Therefore,

dHpφ1
F , Idq ¤ dHpφ1

F , φ
1
Hq � dHpφ1

H , Idq ¤ dHpφ1
F , φ

1
Hq �

}F }
N

.

Hence, to prove the lemma, it is sufficient to show that dHpφ1
H , φ

1
F q ¤ 2A. To do so,
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first observe that φ1
H �±N

i�1 ψiφ
1{N
F ψ�1

i and φ1
F �

±N
i�1 φ

1{N
F . Hence,

dHpφ1
H , φ

1
F q � dH

�
N¹
i�1

ψiφ
1
N
F ψ

�1
i ,

N¹
i�1

φ
1
N
F

�

¤
Ņ

i�1

dH

�
φ
N�i
N
F

i¹
j�1

ψjφ
1
N
F ψ

�1
j , φ

N�i�1
N

F

i�1¹
j�1

ψjφ
1
N
F ψ

�1
j

�

�
Ņ

i�1

dHpψiφ
1
N
F ψ

�1
i , φ

1
N
F q

¤
Ņ

i�1

dHpψiφ
1
N
F ψ

�1
i , φ

1
N
F ψ

�1
i q � dHpφ

1
N
F ψ

�1
i , φ

1
N
F q

�
Ņ

i�1

dHpψi, Idq � dHpψ�1
i , Idq

�
Ņ

i�1

2 dHpψi, Idq ¤ 2A

The inequalities on the second and fourth lines follow from the triangle inequality where

when i � 1, φ
N�i�1
N

F

±i�1
j�1 ψjφ

1
N
F ψ

�1
j should be understood as φ

N
N
F � φ1

F . The equalities on
the third and fifth lines follow from the bi-invariance of Hofer’s metric and the inequality
on the final line follows from the fact that we picked ψi such that dHpψi, Idq ¤ A

N
.

4.2 The case of the disc

We now use the map T to prove that the group NpD2q from Proposition 4.1 is proper in
the kernel of Calabi on HameopD2, ωq.
Proof of properness of NpD2q. We will do this in two steps.

Step 1. We claim that the sequence |kpfkpT q � CalpT qq| is unbounded, where T P
HameopD2, ωq is as in Proposition 4.3.

Recall the (non-smooth) function H from (24) which we used in the definition of T .
Let Hnpzq be a sequence of smoothings of H, depending only on z, that agree with H
except for �1 ¤ z ¤ �1 � 1

22n
. One could, for example, take Hn to be as in the proof of

Proposition 4.3.

Note that φ1
Hn

C0ÝÑ T and so, by the C0 continuity property of the fk, we have

fkpT q � lim
nÑ8

fkpφ1
Hnq.

Now, since H and the Hn depend only on z, we can compute fkpφ1
Hn
q using the Lagrangian

Control property; see Section 2.2.2. We have

fkpφ1
Hnq �

1

k

ķ

i�1

Hnp�1� 2
i

k � 1
q.
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Since Hn � H, except for �1 ¤ z ¤ �1 � 1
22n

, for n large enough we have fkpφ1
Hn
q �

1
k

°k
i�1Hp�1� 2 i

k�1
q and hence

fkpT q � 1

k

ķ

i�1

Hp�1� 2
i

k � 1
q � 1

k

ķ

i�1

hp�1� 2
i

k � 1
q.

Recall that CalpT q � 1
2

³1
�1
hpzq dz   8. Hence, proving that kfkpT q � kCalpT q is

unbounded, is equivalent to proving that the sequence whose kth term is given by

2pkfkpT q � pk � 1qCalpT qq � 2
ķ

i�1

hp�1� 2
i

k � 1
q � pk � 1q

» 1

�1

hpzq dz (26)

is unbounded; we will prove this below.
Write ai � �1� 2 i

k�1
, for i � 0, . . . , k � 1. Observe that (26) can be rewritten as

pk � 1q
ķ

i�1

�» ai
ai�1

hpaiq � hpzqdz


� pk � 1q

» ak�1

ak

hpzqdz.

The term
³ak�1

ak
hpzqdz is zero since h is supported in �1 ¤ z ¤ �1

2
. So we must prove

unboundedness of the sum.
Since h is a convex function, we have hpaiq � hpzq ¤ h1paiqpai � zq. Thus

pk � 1q
ķ

i�1

�» ai
ai�1

hpaiq � hpzqdz


¤ pk � 1q

ķ

i�1

�
h1paiq

» ai
ai�1

pai � zqdz



� pk � 1q
ķ

i�1

�
h1paiq 2

pk � 1q2


�

ķ

i�1

�
h1paiq 2

k � 1



.

Now, since h1 is non-decreasing, we have

ķ

i�1

2

k � 1
h1paiq ¤

ķ

i�1

» ai�1

ai

h1pzqdz �
» 1

a1

h1pzqdz � �hpa1q kÑ8ÝÑ �8.

This shows that pk�1q°k
i�1

�³ai
ai�1

hpaiq � hpzqdz
	

is unbounded and concludes the proof

of unboundedness of the sequence in (26).

Step 2. Let Θ P DiffcpD2, ωq be such that CalpΘq � CalpT q and define

ψ1 � T �Θ�1.

Then, Calpψ1q � 0. We will show that the sequence |kfkpψ1qq| is unbounded which implies
that ψ1 R NpD2q and hence establishes properness of NpD2q.

By Lemma 1.11
|kfkpψ1q � kfkpT q � kfkpΘ�1q| ¤ 2.
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Now, we claim that the sequence tkfkpT q� kfkpΘ�1quk is unbounded which, in combina-
tion with the above inequality, implies that the sequence |kfkpψ1qq| is unbounded.

The fact that tkfkpT q � kfkpΘ�1quk is unbounded is an immediate consequence of
Theorem 3.1: the sequence tk � pfkpΘ�1q �CalpΘ�1qquk is bounded, by the theorem, and
the sequence tk � pfkpT q � Calpψqquk is unbounded, by Step 1. Hence, the sum of these
two sequences, which is exactly tkfkpT q� kfkpΘ�1quk, is unbounded. This completes the
proof of the fact that ψ1 R NpD2q.

Once we know that ψ1 R NpD2q, it is not hard to produce a surjetive group homomor-
phism from G to R. Indeed, choose the map Θ in Step 2 above to commute with T and
to be generated by an autonomous Hamiltonian. Then, T and Θ are associated to the
time-1 maps of flows of vector fields, and we can generate a one-parameter subgroup by
flowing for time t instead; the image N 1 of this subgroup in the quotient of G by NpD2q
is isomorphic to R and splits as a direct summand because it is divisible.

4.3 The case of the sphere

Recall, from Proposition 4.2, the normal subgroup

NpS2q :� tψ P HameopS2, ωq : the sequence |p2k � 1qgkpψq| is boundedu,

where gk is the quasimorphism defined by (23).
We will show that NpS2q is proper by showing that a variant T 1 of the map T from

Proposition 4.3 is in HameopS2, ωq but not in NpS2q.

Proof of properness of NpS2q. Let T 1 be the time-1 flow of F pθ, zq � fpzq �
b

2
1�z , away

from the south pole, and we set T 1pp�q � p�. We claim that T 1 P HameopS2, ωq; this
follows directly from Proposition 4.3 via the observation that T 1 � T�1 is smooth.

Define

Spkq �
?

2k
2k�1̧

i�1

c
1

i
.

Then, arguing as in Step 2 of Section 4.2, it can be shown that

p2k � 1qgkpT 1q � Spkq � 2k � 1

2k�1 � 1
Spk � 1q � Spkq � 2Spk � 1q � 1

2k�1 � 1
Spk � 1q. (27)

We will only provide an outline of the proof of the above formula as its derivation is
similar to what was done in Section 4.2. Here is the outline: take an appropriate sequence
of smoothings Fnpzq of F pzq which coincide with F away from a small neighborhood of
p�. Then, (27) follows from the following two items

1. φ1
Fn

C0ÝÑ T 1 and so, by the C0 continuity of gk, we have gkpT 1q � limnÑ8 gkpφ1
Fn
q.
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2. using the Lagrangian Control property, one obtains that

gkpφ1
Fnq �

1

2k � 1
Spkq � 1

2k�1 � 1
Spk � 1q.

The calculation in the second item, via the Lagrangian Control property, holds because
we can assume that the link for µ2k�1 has the form tz � �1� i

2k�1 u, where i ranges from

1 to 2k � 1. For z corresponding to such an i,
b

2
1�z �

b
2k

i
, and this is the value of Fn

on the link for sufficiently large n.
It follows from (27) that to show that T 1 is not in NpS2q, we need to estimate the

difference

Spkq � 2Spk � 1q � 1

2k�1 � 1
Spk � 1q.

The crux of the issue is showing that Spkq � 2Spk � 1q is unbounded. To see this, write

Spkq�2Spk � 1q �
?

2k
2k�1̧

i�1

c
1

i
� 2

?
2k

2k�1�1¸
i�1

c
1

2i

¥
?

2k

�
1�

c
1

2

�
,

which is unbounded in k.
To complete the proof, it therefore remains to show that the term 1

2k�1�1
Spk � 1q is

bounded in k. To do this, we write

1

2k�1 � 1
Spk � 1q � 2k�1

2 � 2k�1 � 1

Spk � 1q
2k�2

.

The term Spk�1q
2k�2 differs from the right Riemann sum, for the integrable function

b
2

1�z on

�1 ¤ z ¤ 1, by 1
2k�2 , hence 1

2k�1�1
Spk � 1q is bounded in k. We conclude from this the

sequence p2k � 1qgkpT 1q is unbounded and hence T 1 R HameopS2, ωq. This completes the
proof of Theorem 1.2.

The analogous argument as in the disc case shows from this that there is a surjection
to R.

5 Infinitely many extensions of Calabi

Having applied the two-term Weyl law to study the normal subgroup structure of G �
HomeocpD2, ωq, we now invoke related asymptotic considerations to prove Theorem 1.8,
which we recall for the reader states that the Calabi homomorphism admits infinitely
many extensions to G. We also elaborate on the promise from the introduction that this
perspective has value in identifying new normal subgroups whose quotients can be com-
puted. We note for the benefit of the reader that while this section is thematically linked
to the previous one, it does not cite results from there and so can be read independently.
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5.1 The main theorem

We begin with the promised proof of Theorem 1.8, which collects considerations of the
asymptotics of the fk via a short argument.

Proof of Theorem 1.8. Define the group R1 :� RN{ �, where s � t if and only if s� t has
limit 0. There is a natural map

S : GÑ R1, g Ñ pf2pgq, f3pgq, . . . , fnpgq, . . .q. (28)

(We have not included f1 here, because as we have defined it, it is 0.) By Lemma 1.11,
this is a group homomorphism. There is also a canonical homomorphism

∆ : RÑ R1, x ÞÑ px, x, . . . , xq.

Now by the Weyl law (1), we have

Sphq � pCal,Cal,Cal, . . .q (29)

for every h P DiffcpD2, ωq.
We now find a section of the map ∆, as follows. The group R1 is a vector space over

R. Take the vector v1 � p1, . . . , 1, . . .q P R1; by Zorn’s Lemma, we can extend this to a
basis β for R1. The section of ∆ now comes from the splitting of R1 with respect to this
basis. More precisely, we define

s : R1 Ñ R, spvq � a1, v � a1v1 �
¸

viPβ,vi�v1
aivi.

It now follows from (29) that s � S is the desired extension. Since there are infinitely
many choices of extensions β, and the map S is surjective (see Proposition 5.3 below), it
follows that there are infinitely many extensions.

Remark 5.1. One might wonder to what degree Zorn’s lemma is actually necessary in
extending the Calabi homomorphism to a group homomorphism HomeocpD2, ωq Ñ R. As
communicated to the authors by C. Rosendal, there are models of set theory where the
axiom of choice is false and every homomorphism between Polish groups is continuous;
in particular, no extension of Cal to a group homomorphism HomeocpD2, ωq Ñ R exists
in those models. See [31, Thm. 5.] and [30].

Remark 5.2. In [6], the Calabi invariant was previously extended to a homomorphism
Cal on HameopD2, ωq by the rule

H ÞÑ
»
Hωdt,

where H is any Hamiltonian for a given hameomorphism; such a Hamiltonian is not
unique, but [6] showed that this extension does not depend on the choice of Hamiltonian.
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Any of the extensions to HomeocpD2, ωq in Theorem 1.8 agree with this extension when
restricted to Hameo; this follows from the fact that, similarly to (29),

Sphq � pCal,Cal,Cal, . . .q, (30)

for any h P HameopD2, ωq.
To see why the above equation is true, we note that, as in the proof of [6, Thm. 1.1],

if h P HameopD2, ωq and H : r0, 1s � D2 Ñ R is a C0 Hamiltonian for h, then, for any
ε ¡ 0, we can find smooth Hamiltonians Gm such that

1. φ1
Gm

converges to h in the C0 topology,

2. Gm uniformly converges to H.

Then,

|fkphq � fkpGmq|   ε and

����
»
Gm �

»
H

����   ε,

where in the first inequality above we have used the Hofer continuity property; see 2.7.
Since ε ¡ 0 is arbitrary, (30) follows from the above inequalities and (1).

5.2 Normal subgroups with explicit quotients

It has been an open question since the proof of the simplicity Conjecture mentioned in
the introduction to identify the quotient of G by the normal subgroup of finite energy
homeomorphisms FHomeo constructed there; see [8]. The circle of ideas around the
proof of Theorem 1.8 allows us to resolve a variant of this question: we can find normal
subgroups whose quotient can be calculated.

For example, define N to be the kernel of the map S from (28).

Proposition 5.3. The map S from (28) is surjective. In particular, G{N � R1.

Proof. Given an element s P RN, we define a smooth autonomous Hamiltonian H on the
complement of the north pole p� P S2, and depending only on z, recursively as follows.

Call si the pi � 1qst component of s. To motivate what follows, note that, given k,
we can take our Lagrangian Link to correspond to the set tz � �1 � 2i

k�1
: 1 ¤ i ¤ ku.

Fix also the data of a smooth function E : r0, 1s Ñ R that is constant near 0 and 1 and
satisfies Ep0q � 0 and Ep1q � 1.

We start by defining H to be equal to 0 on t�1 ¤ z ¤ 0u. Next, we define H to be
equal to 2s2 on tz � 1{3u. We now extend H to a smooth function on t�1 ¤ z ¤ 1{3u
by defining it to be equal to Hp1{3qEp z

1{3q on t0 ¤ z ¤ 1{3u. Note that for any extension

H 1 of H to a smooth function of z on the entire interval r�1, 1s, we have f2pH 1q � s2, by
the Lagrangian Control property (12).
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Now assume, inductively, that we have extended H to a smooth function on t�1 ¤
z ¤ �1 � 2k

k�1
u, for some k ¥ 2, that is constant near the endpoints of this interval and

satisfies
fipHq � si, 2 ¤ i ¤ k

for any further extension of H to a smooth function on r�1, 1s. We seek to extend H to
a smooth function on t�1 ¤ z ¤ �1 � 2k�2

k�2
u that is also constant near the endpoints of

this interval and satisfies

fipHq � si, 2 ¤ i ¤ k � 1

for any further extension of H to a smooth function on r�1, 1s. Note, first of all, that
�1� 2k

k�2
¤ �1� 2k

k�1
. In particular, the equation

Hp�1� 2k�2
k�2

q � pk � 1qsk�1 �
ķ

i�1

Hp�1� 2i
k�2

q,

makes sense, and we use it to define H on tz � �1� 2k�2
k�2

u. We therefore have a function

H defined on t�1 ¤ z ¤ �1� 2k
k�1

uYtz � �1� 2k�2
k�2

u, which is smooth on the first of these

sets and constant near the endpoints of the first of these sets. Since �1� 2k
k�1

  �1� 2k�2
k�2

,

there is no obstruction to further extending H smoothly to t�1 ¤ z ¤ �1� 2k�2
k�2

u : more
precisely, we define H to be

�
Hp�1� 2k � 2

k � 2
q �Hp�1� 2k

k � 1
q


E

�
z � p�1� 2k

k�1
q

2k�2
k�2

� 2k
k�1

�
�Hp�1� 2k

k � 1
q

on t�1� 2k
k�1

¤ z ¤ �1� 2k�2
k�2

u.
As above, we note that any further extension of H to a smooth function on t�1 ¤

z ¤ 1u will have
fk�1pHq � sk�1, (31)

by the Lagrangian Control property (12).
Given an element s P RN, we now define ψ to be the time-1 flow of the Hamiltonian

H constructed above, away from p�, and we set ψpp�q � p�. We can view this as a
compactly supported homeomorphism of the disc, which we also denote by ψ, and we
claim that Spψq � s : indeed, for any fixed k, we can approximate ψ in C0 by smooth
flows corresponding to Hamiltonians that depend only on z, without changing the values
of H on the components tz � �1� 2i

k�1
u of the Lagrangian Link, hence the claim follows

from (31) together with the C0 continuity of fk (Theorem 2.8).

Remark 5.4. For a more familiar presentation of G{N via Proposition 5.3, we note that
the group R1 is isomorphic to R. Indeed, both are uncountable vector spaces over Q of
the same cardinality.
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Remark 5.5. The map S allows us to define many other subgroups whose quotients can
be identified. Indeed, we can take any subgroup H � R1, and then by Proposition 5.3,
NH :� S�1pHq will be a normal subgroup with quotient H. One can think of the different
NH as “leading asymptotics subgroups”: they correspond to different prescriptions of the
leading asymptotics of the fk. We may also produce groups by varying the target of S by
taking different quotients of RN. For example, if we quotient by the relation that s � t if
and only if s � t remains bounded and take this to be the target of S, then the induced
homomorphism out of G is still surjective, but one can show that its kernel contains
FHomeo and Hameo, as introduced in the discussion at the end of the introduction.

6 The commutator group of G is simple

The goal of this section is to prove Theorem 1.10. We denote by G the kernel of the mass
flow homomorphism HomeocpΣ, ωq Ñ R, where Σ is a surface either compact or the inte-
rior of a compact surface with boundary. We denote by rG,Gs the commutator subgroup,
i.e. the subgroup generated by commutators. We will denote by rf, gs � f�1g�1fg the
commutator of two elements f and g. Theorem 1.10 asserts that rG,Gs is simple.

As was mentioned in the introduction, it is known (see footnote 1) that any normal
subgroup of G contains rG,Gs and in particular the commutator group of rG,Gs, which
is normal in G, contains rG,Gs, hence rG,Gs is perfect. Another consequence of this fact
is the simplicity of rG,Gs (Theorem 1.10) follows from the next lemma.

Lemma 6.1. Any normal subgroup of rG,Gs is normal in G.

Proof. Let H be a normal subgroup of rG,Gs. To prove that H is normal in G, we need
to prove that for all h P H and g P G, the conjugate g�1hg belongs to H.

First step. Let h P H and g P G. We will prove that g�1hg P H under the condition:

The open set U � Σzsuppphq is non empty. (I)

Let S be an embedded disc included in U . We will show that g may be written
as a composition g � ab, with a supported in S and b P rG,Gs. Since a and h have
disjoint supports, we have a�1ha � h. Using that H is normal in rG,Gs we deduce
g�1hg � b�1hb P H as claimed.

To prove the decomposition of g, let pSiqiPI be a finite open cover of Σ by discs of the
form Si � fipSq for some fi P G. By Fathi’s fragmentation theorem [14, Thm. 6.6] the
map g can be written as a product g � g1 � � � gN of elements in G such that each gα is
supported in a disc Siα for some iα P I. Such gα can then be written in the form

gα � pf�1
iα
gαfiαq � rfiα , gαs.

Since f�1
iα
gαfiα is supported in S, this shows that each gα may be represented in the

quotient G{rG,Gs by an element supported in S. As a consequence, their product g may
also be represented in G{rG,Gs by an element a supported in S. This exactly means that
g � ab for some b P rG,Gs.
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Second step. We finally show that g�1hg P H for any h P H and g P G. This will rely
on the first step and the following lemma.

Lemma 6.2. Let h P H and let z be a fixed point of h (which exists by Arnold conjecture
[24]). Then for every sufficiently small open neighborhood U of z, there exists ` P H such
that suppp`q � Σ and ` coincides with h on U .

We postpone the proof of this lemma and use it to conclude the proof of the second
step. Let h P H and g P G. Let ` P H be as provided by Lemma 6.2. Then, h`�1 and
` belong to H and both satisfy condition (I). Our first step shows that g�1ph`�1qg P H
and g�1`g P H. As a consequence, their product g�1hg belongs to H. This concludes the
proof of the second step and of Lemma 6.1.

Proof of Lemma 6.2. Let U be a small neighborhood of z. How small it is will be made
precise below. Since z is fixed, it is known2 that for every open neighborhood V of z, there
exists an element α P G which coincides with h in a neighborhood of z and is supported
in V . We may assume that U is so small that α � h on U . We will use such an α to
build our map `.

Let x be a point such that hpxq � x. Note that we may assume without loss of
generality that such a point exists. Taking a point y close to x but distinct from x, we
obtain a configuration of four pairwise distinct points x, y, hpxq, hpyq. Let f P G be such
that fpxq � y. Let A be an open neighborhood of x. If A is chosen small enough, then
the four open sets A, B � hpAq, C � fpAq and D � hpCq are pairwise disjoint. In this
situation, it is easy to check that for any g P G supported in A we have

suppprf�1, gsq � AY C and rf�1, gs � g on A.

Similarly, since B YD � hpAY Cq, we have for any g P G supported in A

suppprh�1, rf�1, gssq � AYB Y C YD and rh�1, rf�1, gss � g on A.

Since h P H and H is normal in rG,Gs, the element rh�1, rf�1, gss belongs to H. Thus,
we have shown that any element of G supported in A coincides on A with an element of
H supported in AYBYC YD � Σ. We will apply this fact to an appropriate conjugate
of the map α from the beginning of the proof.

Let β P rG,Gs be a map that sends z to x (this can be found for instance among
diffeomorphisms). Then, if the open sets U and V are chosen sufficiently small, the map
βαβ�1 is supported in A. By the above observation, there exists an element γ P H which
coincides with βαβ�1 on A and whose support is not the whole of Σ. Then, ` � βγβ�1

suits our needs. Indeed, ` coincides with α on V hence with h on U . Moreover, since H
is normal in rG,Gs, ` P H and its support is not the whole of Σ.

2This is a standard folklore statement that can be proved by a combination of the Schoenflies and the
Oxtoby-Ulam theorem.
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