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Abstract

This paper continues the study of ‘link spectral invariants’ on compact sur-
faces, introduced in our previous work and shown to satisfy a Weyl law in which
they asymptotically recover the Calabi invariant. Here we study their sublead-
ing asymptotics on surfaces of genus zero. We show the subleading asymptotics
are bounded for smooth time-dependent Hamiltonians, and recover the Ruelle in-
variant for autonomous disc maps with finitely many critical values. We deduce
that the Calabi homomorphism admits infinitely many extensions to the group of
compactly-supported area-preserving homeomorphisms, and that the kernel of the
Calabi homomorphism on the group of hameomorphisms is not simple.

FRENCH TITLE: “Asymptotique sous-dominante des invariants spectraux d’entrelacs
et groupes d’homéomorphismes de surfaces.”

FRENCH ABSTRACT

Cet article poursuit 1’étude des ”invariants spectraux d’entrelacs” introduits dans
notre précédent travail, dans lequel il est établit qu’ils vérifient une loi de Weyl faisant
apparaitre I'invariant de Calabi asymptotiquement. Nous étudions ici leur asymptotique
sous-dominante sur les surfaces de genre nul. Nous montrons que celle-ci est bornée
pour tous les hamiltoniens lisses dépendant du temps, et qu’elle fait apparaitre I'invariant
de Ruelle pour les hamiltoniens autonomes du disque ayant un nombre fini de valeurs
critiques. Nous en déduisons que le morphisme de Calabi admet une infinité d’extensions
au groupe des homéomorphismes a support compact qui préservent l'aire, et que le noyau
du morphisme de Calabi sur le groupe des haméomorphismes n’est pas simple.
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1 Introduction

1.1 Area-preserving homeomorphisms of surfaces

Let (M,w) be a compact manifold possibly with boundary, equipped with a volume-form,
and consider the group Homeo.(M,w) of volume-preserving homeomorphisms that are
the identity near the boundary, in the component of the identity.

When the dimension of M is at least three, there is a clear picture due to Fathi
regarding the algebraic structure of this group: there is a mass-flow homomorphism, and
its kernel is a simple group. In contrast, in dimension two the situation is much less
understood despite the fact that many decades have passed since Fathi’s work. We refer
the reader to [6], e.g. Thm. 1.3, for background, including a definition of the mass-flow
homomorphism [6 Sec. 2.3]. In the cases that we will be mainly concerned with here,
that is the disc and the sphere, the kernel of mass-flow is just the group of area and
orientation preserving homeomorphisms.

We recently showed [0, Thm. 1.3] that when dim(M) = 2, the kernel of mass-flow is
never simple. In fact, it contains as a proper normal subgroup the group Hameo(M, w) of
hameomorphisms, whose definition we review in Definition 2.2l When M has boundary,
we also showed that the classical Calabi homomorphism, which we review in Definition [2.1
and which measures the average rotation of the map, extends to Hameo from the group
Ham (M, w) of Hamiltonian diffeomorphisms that are the identity near the boundary. It
is then natural to ask the following.

Question 1.1. When M is closed, is Hameo(M,w) simple? When M has non-empty
boundary, is the kernel of Calabi on Hameo(M,w) simple?

This is an old question. For example, a variant appears in [27, Problem (4)]. Let us
briefly explain why one might hope for a positive answer. Hameomorphisms are home-
omorphisms with well-defined Hamiltonians, and it is natural to wonder whether the
algebraic structure of the group of hameomorphisms could be like that of the group
Ham.(M,w); moreover, Banyaga showed [I] that Ham, is simple when M is closed and
the kernel of Calabi is simple when M has boundary.

Our first result shows that the structure of Hameo is more complicated than this.

Theorem 1.2. The following groups are not perfect:
1. The kernel of Calabi on Hameo(D?, w).
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2. The group Hameo(S?, w).
Both admit surjective group homomorphisms to R.

Recall that a group G is called perfect if it coincides with its commutator subgroup
[G, G]. Note that, since the commutator subgroup is always normal, every (non-abelian)
simple group is perfect and hence we conclude that neither of the groups appearing in
the above theorem are simple.

1.2 A two-term Weyl law

Theorem is proved by studying the asymptotics of the “link spectral invariants”
defined in our previous work [6, Thm. 1.13, Def. 6.14, Eq. (59)]. In [0, Sec. 7.3] we
defined quasimorphisms

i : Diff(S*,w) - R,  fi, : Homeo.(D? w) — R

and we showed that these satisfy the important asymptotic formulae

lim fi.(g) = Cal(g) (1)
on Diff.(D? w), and
lim p.(g) = 0.

We called this the “Calabi property”. Here, Cal denotes the aforementioned Calabi
homomorphism and Diff. denotes the group of diffeomorphisms that are the identity near
the boundary and that preserve w, which we note for the reader coincides with the group
Ham. in the above cases. We refer the reader to our review in Section [2| for more details
about the p; and f.

The above formulas are kinds of Weyl laws. For specialists, we note that the conver-
gence to zero for the py is what one would hope for in a Weyl law, since these invariants
are defined via mean normalization of Hamiltonians. It is natural to ask what can be
said about the subleading asymptotics. With many seemingly similar kinds of Weyl laws,
this tends to be a hard question. For example, the above Calabi property was inspired
by an analogous Weyl law for the related “ECH spectral invariants” defined in [19], see
[9]. For these spectral invariants, all that is known is a bound on the growth rate of the
subleading asymptotics [I1] that is likely far from optimal, with the conjectural bound
being O(1) [20].

In contrast, it turns out that we are able to say quite a lot about the subleading
asymptotics of the . To state our result, let Ru denote the Ruelle invariant from [32]
(see also [17, [18]), which we review in Section [2.1.3] We now state a result that is central
to our proof of Theorem and which is also of independent interest.



Theorem 1.3. If ¢ € Diff (S*,w) (resp. ¢ € Diff ((D?,w) N ker(Cal) ), then the sequence
{k 1 (V) bren (resp. {k fi(¥)}ren) is bounded. In fact, if ¢ = ¢k, where H : D* — R is an
autonomous and compactly supported Hamiltonian on the disc with finitely many critical
values, then

lm () = T k(fi () — Cal() = Cal() — T Ru(i). 2)

A similar result concerning the subleading asymptotics of the p; in the case of au-
tonomous Hamiltonians on the sphere with finitely many critical values also holds, but for
brevity (and because the Ruelle invariant is not defined over the sphere without further
choices), we do not state it.

Remark 1.4. In the statement of the above theorem, we are implicitly invoking the fact
that we can regard any ¢ € Diff.(D? w) as a map of the two-sphere by embedding D? as
a hemisphere and extending by the identity, for our conventions see Section [2.2.4] when
we write (1) in ; we will continue to do this throughout this paper. The invariants
ur and fi can be thought of as invariants of (possibly time-dependent) Hamiltonians as
well, by setting px(H) := pi(¢y) and fi(H) := fi(¢};). This viewpoint is helpful and
adopted in [0, Sec. 3], as well as Section |3| here.

In view of Theorem it is natural to ask if holds more generally. For the
aforementioned ECH spectral invariants, essentially the same question was asked, under
a genericity assumption on the contact form [20]. In the ECH case, simple examples
exist, for example the boundary of the round sphere, with no well-defined subleading
asymptotic limit at all; in this sense, then, the genericity assumption can not be dropped.
In our case, however, we know of no such analog, and indeed Theorem asserts that in
the simplest cases, the subleading asymptotics in fact always recover Ruelle. We therefore
pose as a question the following.

Question 1.5. Is it the case that for any v € Diff ((D? w),

i () = lim k(i) — Cal(4)) = Cal() — - Ru(us)?

We emphasize that, in contrast to the ECH case, we are not requiring any genericity
in v in the above question.

Remark 1.6. If it was known that homogenized PFH spectral invariants [7] are quasi-
morphisms, it would follow from [4] that they agree with the p; and hence satisfy a
two-term Weyl law; the simpler one-term Weyl law is established in [10} 12].

1.3 Infinitely many extensions of Calabi and the simplicity Con-
jecture revisited

Consideration of the asymptotics of the yu; also leads to the resolution of an old question
about the aforementioned Calabi homomorphism.
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Question 1.7 ([14]). Does Cal : Diff (D? w) — R extend to a group homomorphism
Homeo.(D? w) > R ?

Question has a long history which is closely connected to the question of whether
or not the group Homeo,(ID?, w) is simple; see for example [18, Sec. 2.2]. It is known that
no C%continuous extension can exist, because the kernel of Cal is C%-dense. It was also
recently shown that this group is in fact not simple [§], resolving the longstanding “sim-
plicity Conjecture”. However, the question of whether an extension as a homomorphism
exists has remained open.

One might guess that no such extension exists. For example, many groups of home-
omorphisms satisfy an automatic continuity property, see for example [23], and as was
stated above, it is known that a continuous extension can not exist; see also Remark
below. On the contrary, however, we have the following result.

Theorem 1.8. The Calabi homomorphism admits infinitely many extensions to group
homomorphisms Homeo.(D? w) — R.

It follows from Theorem that the group Homeo(D?,w) is not simple. This gives
another proof of the aforementioned “simplicity Conjecture”. It should be emphasized
that our proof uses the nontrivial construction of the f; from [0, Thm. 7.7(iii)] (see Sec
below), so is not self-contained; on the other hand, it does give a new proof, deducing
nonsimplicity purely algebraically from the existence of a geometrically constructed ho-
momorphism out of Homeo.(D?, w). This kind of argument for proving non-simplicity is
much more in line with how non-simplicity is proved for related groups, see the summary
in [8, Sec. 1.1.1], so it is natural to hope for a proof like this. Moreover, this perspective
has value in finding new normal subgroups: to keep the introduction focused, we defer
the precise statement regarding these subgroups to Section below.

Remark 1.9. The homomorphisms we construct in proving Theorem are far from
canonical. On the other hand, we will see that our proof does give a natural extension
of the Calabi homomorphism to a homomorphism Homeo.(D? w) — R, where R’ is a

certain group containing R as a subgroup; see and .

1.4 Simplicity

Given Theorem [I.2] it is natural to ask if some simple non-trivial normal subgroup of
Homeo,(D? w) exists. After all, there certainly exist groups (e.g. Z) with no simple
normal subgroups at all.

Theorem 1.10. Let G := Homeo (X, w), where X is some compact surface. The com-
mutator subgroup |G, G| is simple.

The proof of Theorem [1.10] is completely independent of our other results, and does
not use link spectral invariants at all. In fact, we should note that from a certain point
of view, Theorem is not too surprising. Indeed, the commutator subgroup of |G, G]



is normal in G, so standard arguments as in [14], see in particular the exposition in [<8]
Prop. 2.2]), show that [G, G] is perfect; and, for many transformation groups, perfectness
and simplicity are equivalent.

It would be very interesting to find a geometric characterization of [G,G]. In the
diffeomorphism case, Banyaga has shown [I] that [G, G] is the kernel of Cal.

1.5 Themes of the proofs and outline of the paper

A crucial fact for many of our arguments is the following estimate from [0, Eq. (70)] on the
defect of the fi. (We refer the reader to for preliminaries about quasimorphisms.)

Lemma 1.11 ([6], the proof of Thm. 7.6, 7.7 and Eq. (70)). The fx and p are quasi-
morphisms of defect %

This is a key property that powers many of our arguments and one goal of our paper is
to illustrate the usefulness of this fact. The basic idea is that this defect property allows
us to detect interesting normal subgroups and construct interesting homomorphisms; on
the other hand, our two-term Weyl law from above allows us to recover the Calabi and
Ruelle invariants, which are among the most studied invariants of area-preserving disc
maps, from the f;, for a wide class of diffeomorphisms.

We put this together as follows. In our previous work, we studied twist maps with
“infinite Calabi” invariant, defined via the leading asymptotics of the f;, to show that
Hameo is proper. Here, we study twist maps with “infinite Ruelle invariant,” defined via
the asymptotics of the k fi, to show nonsimplicity of Hameo. More precisely, we define a
subgroup of elements with O(1) subleading asymptotics and we show that this contains
all smooth Hamiltonian diffeomorphisms, but we show that it is proper by constructing
a hameomorphism with “infinite Ruelle invariant;” see Proposition [4.1]

We further comment on the contrast between “infinite Ruelle” and “infinite Calabi”

in Remark [4.41

1.6 Summary of our knowledge of the normal subgroup struc-
ture

It seems to us useful to summarize in one place what is known about the normal subgroup

structure for the groups that concern us here, and what remains to be understood.

We start with the case of smooth (i.e. C*) diffeomorphisms, established by Banyaga,
for the sake of comparison. We let G® denote either the group Diff(S? w) of smooth
diffeomorphisms of S? which preserve the area 2-form w, or the group Diff.(D? w) of
compactly supported smooth diffeomorphisms of D? which preserve w. As mentioned
above, in the case of S?, we have

[G*,G*] = Diff(S?,w),
and in the case of D? we have

[G®, G*] = ker(Cal) < Diff.(D? w).
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Moreover, [G®, G*] is simple; and, in the disc case, we have
G*/|G*,G*] ~ R. (3)

The case of homeomorphisms seems quite different: a striking phenomenon, which
seems genuinely new, is a plethora of normal subgroups arising from different geometric
considerations.

To elaborate, we described above the subgroup Hameo, which one can think of as
those homeomorphisms that can be said to have Hamiltonians. There is another normal
subgroup FHomeo, containing Hameo, whose precise definition we skip for brevity: one
can think of it as the largest normal subgroup for which Hofer’s geometry can be defined.
Buhovsky has recently shown [2] that FHomeo and Hameo do not coincide. As mentioned
above, we showed in [8] 0], resolving in particular the simplicity conjecture, that FHomeo
is proper. We can therefore summarize the situation regarding these groups, prior to this
work, as follows. Let G denote the group of area and orientation preserving homeomor-
phisms of S? or the group of compactly supported area-preserving homeomorphisms of
D2,

For S?, we have

[G,G] < Hameo(S?, w) < FHomeo(S*, w) < G
For D? we have
[G,G] < ker(Cal) < Hameo(D?, w) = FHomeo(D? w) < G,

where here Cal denotes the extension of the Calabi homomorphism mentioned above that
we established in [0, Thm. 1.4]; one expects the inclusion of Hameo into FHomeo to be
proper by the arguments in [2].

Our work here shows that the left most inclusions are proper, by constructing an
explicit normal subgroup, and that [G, (] is simple. The normal subgroups we construct
to show properness, denoted by N(S?) and N(ID?) respectively, do contain [G, G], but we
do not know if this inclusion is proper. As a result, for S?, we have

|G, G| = N(S?*) < Hameo(S?,w) < FHomeo(S?*,w) < G
For D? we have
[G,G] = N(D?) ¢ ker(Cal) € Hameo(D?, w) = FHomeo(D?, w) < G,

To set the context for describing more normal subgroups, it is natural to wonder if
has any counterpart for homeomorphisms. We know that G/[G, G] contains a subgroup
isomorphic to R and that it therefore has the same cardinality as R, since a continuous
function on the reals is determined by its values on the rationals. However, this is all
we currently know about G/[G,G]. On the other hand, in this paper we find some
“quasimorphism subgroups” that can be assumed to contain any of the above H whose
quotients are isomorphic to R, see our Section [5
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There are additional interesting normal subgroups related to the underlying geometry
that are not our focus in the present work. First of all, one can construct normal subgroups
via “fragmentation norms”, see [21]; it is not currently known how these relate to the
normal subgroups above. One can also find normal subgroups between FHomeo and G
by pulling back from the quotient subgroups corresponding to growth rates of infinite
twist maps, see [29].

1.7 Organization of the paper

The outline of the paper is now as follows. After reviewing the preliminaries, we start
with the computation in the smooth case, proving Theorem [1.3} this is the content of
Section [8] We then move to the case of hameomorphisms in Section [} the outcome of
the computation from the previous section gives an explicit formula for the subleading
asymptotics in the smooth case, and this motivates our definition for a hameomorphism
with unbounded subleading asymptotics, see Section [4, which is the key step in proving
Theorem [1.2] Section [o] uses related ideas to extend the Calabi invariant: the idea is that,
just as the subleading asymptotics are a suitable replacement for Ruelle, the leading
asymptotics allow for infinitely many extensions of Calabi. Finally, in Section [6] we prove
the simplicity result Theorem [1.10]
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2 Preliminaries

We begin by reviewing the relevant background material and elaborating on some defini-
tions mentioned in the introduction.



2.1 The groups, the Calabi homomorphism and the Ruelle in-
variant

2.1.1 Basic notions

Let S be either the standard 2-sphere S? = {(z,y,2) € R : 2% + 3*> + 22 = 1} in R3
or the standard closed 2-disc D? in R?2. We assume that S is endowed with an area
form w. In the case of the disc, unless otherwise stated, all our maps will be assumed
compactly supported, i.e. functions on ID? are assumed to vanish in some neighborhood of
the boundary of D? and homeomorphisms of D? are assumed to coincide with the identity
in some neighborhood of the boundary of D?.

As mentioned in the introduction, our main characters will be

G = Homeo,(S,w)

the group of (compactly supported in the interior) area-preserving homeomorphisms of S

and its smooth counter-part
G* = Diff (S, w)

the group of area preserving diffeomorphisms of S. When S = S? we will drop the
subscript ‘¢’ from the notation. The group G is known to be the C%closure of G®. A
smooth Hamiltonian H = (Hy)epoq] : [0,1] x S — R generates an isotopy (&% )eo.1]
obtained by integrating the time dependent vector field Xy, defined by w(Xy,, ) = dH;.
It is known that G* coincides with the Hamiltonian group Ham/(S,w), i.e. that any
1 € G is of the form ¢ = ¢}, for some Hamiltonian H.

In the disc case, G* = Ham,(D? w) admits a non-trivial group homomorphism Cal :
G* — R, called the Calabi homomorphism, which we now recall.

Definition 2.1. Let ¢ € Diff (D? w). Since G* = Ham,(D?, w), the diffeomorphism ) is
the time-one map of a Hamiltonian H, i.e. 1 = ¢},. The quantity

1

Cal(y) = J H wdt

0 JD?2

turns out to be independent of the choice of Hamiltonian H and is called the Calabi
invariant of ¢. This defines a map Cal : G* — R which is a group homomorphism [3]
(see also [25]).

As mentioned in the introduction, we can think of the Calabi homomorphism as
measuring the “average rotation” of the map, see [15], [17].
2.1.2 Some normal subgroups of G

We are interested in this work in a particular normal subgroup of GG. The key definition
is as follows. As above, we denote by S a surface which is either S? or D2.



Definition 2.2 (Oh-Miiller [27]). A homeomorphism ¢ € G is called a hameomorphism
(or sometimes a strong Hamiltonian homeomorphism) if there exist a compact subset
K < S, a sequence of Hamiltonians H; : [0,1] x S — R, i € N, supported in K and an
isotopy (¢')sefo,1] with ¢° = Id and ¢* = ¢, such that

(i) ¢}, converges to 9" in the C° topology and uniformly in ¢ € [0, 1],
(ii) H; is a Cauchy sequence with respect to the Hofer norm | - ||.

The set of all hameomorphisms is denoted Hameo(S,w). It is proved that Hameo(S, w) #
G [8.

Remark 2.3. Several variants of the above definition may be found in the literature. In
particular, one sometimes replaces the convergence with respect to the Hofer norm | - |
with uniform convergence. However, it was proved by Miiller [26] that this change in the
definition gives rise to the same group of hameomorphisms.

In [0, Def. 2.1], we used the following weaker variant. We called 1) a hameomorphism
if there exist a compact set K and a sequence of Hamiltonians H;, supported in K, such
that the time-1 maps ¢}{i converge to 1 and H; is Cauchy with respect to the Hofer
norm. This weaker notion gives rise to another normal subgroup of G, which we will
denote Hameo' in this remark. We clearly have the inclusion Hameo < Hameo’, but we
do not know whether equality holds.

Our reason to change from one notion to another is to have stronger statements.
Indeed, in [6, Thm. 1.4] (see also the discussion in Theorem [2.4] below), we extended the
Calabi homomorphism to Hameo” which is a priori a stronger result than just extending
to Hameo. Here, we find a normal subgroup of G which is strictly smaller than Hameo
(resp. ker(Cal) in Hameo); this is a priori a stronger statement than finding a subgroup
in Hameo' (resp. ker(Cal) in Hameo').

We can use the Calabi homomorphism from above to get some additional subgroups,
as the following shows.

Theorem 2.4 ([6], Theorem 1.4). The Calabi homomorphism on G* extends canonically
to a group homomorphism Hameo(D?,w) — R. Moreover, for any v € Hameo(D? w) and
any sequence H; as in Definition [2.9 the extension of the Calabi homomorphism satisfies

Cal(¢) = lim Cal(gb}{i).
1—00
This gives another normal subgroup of GG in the case of the disc, namely the kernel of
Cal : Hameo(D? w) — R.
2.1.3 The Ruelle invariant

We now recall the construction of the Ruelle quasi-morphism, following [I7]. Recall that
G* := Diff .(D? w) denotes the group of compactly-supported area-preserving diffeomor-
phisms of the 2-disc. We fix a trivialization

TD? =~ D? x R? (4)
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(which is unique up to homotopy). The group G* is contractible, so if g € G* we may
pick an isotopy {g:} from Id to g, again unique up to homotopy. For a point z € D?, let

v,(2) € R\{0}
denote the first column of dg;(z) € SL(2,R) expressed in the trivialisation ({4]), and
Ang,(z) e R

the variation in the angle of v;(z), measured with respect to a fixed direction (say the
x-axis) and integrated over 0 < ¢ < 1. The uniqueness of the choice of {g;} up to
homotopy shows this does not depend on the choice of isotopy from ¢ to Id. The function
z — Ang, (z) is smooth and so integrable. Setting

r(g) := . Angg(z) w

we obtain the Ruelle invariant

Ru(g) := lim r(¢”)/p.
p—0
This is a non-trivial homogeneous quasi-morphism on G* (and on the kernel of the Calabi
homomorphism).

Gambaudo and Ghys [17, Proposition 2.9] give a formula for the Ruelle invariant in
the special case of an autonomous Hamiltonian flow of a function H € C*(D?) with
finitely many critical values. Suppose £ € R is a regular value of H, so H~!(¢) is a finite
disjoint union of circles. Each such circle C' bounds a disc in D?, and we associate the
sign +1, respectively —1, to C < H '(§) depending on whether H increases, respectively
decreases, as one crosses from the exterior to the interior region.

Then

RuUf>;:Ru«ﬁa:=J;nH(®d£ (5)

where the integer ny () € Z is the signed sum of values +1 over the connected components
C of H1(¢).

Specialising further to the case of a smooth function H € C*(D?) which is Morse with
critical points p;, this simplifies to ([I8, Section 2.4]):

Ru(H) = \(—=1)™) H(p;) (6)

7

where ind(p;) is the Morse index of p;.

2.2 Monotone links, spectral invariants and quasimorphisms

The material for this section was developed in [6]. We refer the reader to this paper for
further details.
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2.2.1 Monotone links and their spectral invariants

We call a Lagrangian link (or Lagrangian configuration) any subset of the form L =
Ly v - - U L where the L;’s are pairwise disjoint smooth simple closed curves in S?,
see Figure [l A Lagrangian link is called monotone if the connected components of its

area(S?)

complement all have the same area =4

Figure 1: Two examples of Lagrangian links on S? with respectively k = 4 and k = 5
components.

Remark 2.5. In [0, Def. 1.12], we introduced a more general notion of n-monotonicity,
where 7 is a non-negative real parameter. We will not need this more general notion in
the present paper. What we call monotonicity here corresponds to O-monotonicity.

Let L be a monotone link with & components. We can take the product of the compo-
nents to form the associated connected submanifold Sym(L) inside the k-fold symmetric
product Sym*(S?) := (S*)*/Sym,,, where Sym, is the permutation group permuting the
factors of (S?)¥. The symplectic form w on S? induces a singular symplectic form on
Sym*(S?) whose singular locus is away from Sym(L) and makes Sym(L) a Lagrangian
submanifold. After smoothing the symplectic form near the singular locus, the Lagrangian
Floer cohomology of Sym(L) with itself is well-defined and non-zero [0, Lem. 6.10]. It
enables us to define the link spectral invariants as follow.

Given a Hamiltonian function H : [0,1] x §* — R, we define Sym(H) : [0,1] x
Sym*(S?) — R to be Sym(H),([x1,...,zx]) := S, Hi(z;). The Lagrangian link spec-
tral invariant ¢, (H) is defined to be csym(r)(Sym(H)), where csym(z)(Sym(H)) is the
Lagrangian spectral invariant of Sym(H) with respect to the Lagrangian submanifold
Sym(L) [0l Equation (54)]. We have shown in [6, Thm 1.13, Lem. 6.16, 6.17] that it is
well-defined and independent from the choice of smoothing of the symplectic form as long
as the smoothing is sufficiently local. For a Hamiltonian diffeomorphism ¢ € Diff (S?, w) (=
Ham(S?,w)) and a mean-normalized generating Hamiltonian H (i.e. {, Hywdt = 0 for
all t € [0,1], and ¥ = ¢}), we have shown in [6, Thm 1.13, Lem. 6.16, 6.17] that
cp(v) := cp(H) is well-defined and independent of the choice of H.
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Remark 2.6. In the specific case of a link L by parallel circles, similar invariants were
previously constructed by Polterovich and Shelukhin [29] using orbifold Floer cohomology
[16], [5] and the computational techniques in [22].

2.2.2 Quasimorphisms for diffeomorphism groups

Recall that a quasimorphism on a group I' is a map f : I' — R for which there exists a
constant D > 0 such that for any a,be T,

|f(ab) — f(a) = f()| < D

The constant D is called a defect of f. A quasimorphism f is said to be homogeneous if
it satisfies f(a*) = kf(a) for any k € Z and a € T..

The spectral invariant c;, may be used to construct quasimorphisms on G* = Diff (S?, w).
This was proved in [0, Thm 7.6], inspired by an older (and famous) construction of Entov
and Polterovich [13].

Let L be a monotone Lagrangian link with k& components and ¢ € Diff(S?, w) and let
us introduce the homogenized spectral invariant

1
p(H) = lim —cg (H™),

n—owo N,

for any Hamiltonian H on S?; these are the j; mentioned in the introduction. The
above limit does not depend on the choice of the link L; see Theorem below. Here the
notation H* means the n-times composition of H, where the composition of Hamiltonians
is defined by (H{K):(x) = Hy(z) + K; o (¢) 7 (x). Tt is well known that HfK generates
@l o L, thus H*™ generates the isotopy (¢f;)".

Note that gy has a shift property (see [6, Thm 1.13]), namely for any Hamiltonian H
and any constant ¢ € R, we have

p(H + ¢) = e (H) + c. (7)
As above, we obtain invariants associated to elements of Diff (S, w) (still denoted ) by:

p () = pu(H), (8)

for any mean-normalized Hamiltonian H such that ¢}, = . This does not depend on the
choice of H, see [0, Thm. 1.13, Lem 6.17].

Theorem 2.7 ([6] Thm. 7.6, Thm. 7.7). For fized k, the map py : Diff (S*,w) — R does
not depend on the choice of Lagrangian link L. Moreover the following properties hold

1. (Hofer continuity and monotonocity) For all Hamiltonians H, K,
1 1
min(Hy(x) — K (z))dt < pp(H) — pup(K) < | max(Hy(z) — Ky(x))dt.

0 zeS2 0 zeS?2
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2. (Lagrangian control) Let H be a Hamiltonian and L = L1 U ---u Ly, be a Lagrangian
link, such that for alli =1, ...,k the restriction of H to L; is a function oft denoted
¢;. Then,

peH) = 7Y f (1)t

3. (Quasimorphism) The map uy is a homogeneous quasimorphism of defect %

The first item implies that the quasimorphisms py : Diff(S?,w) — R are Lipschitz
continuous with respect to Hofer distance dy on Diff(S?, w) defined by

dy(p, ) := inf |H— K], 9
wle.v)im nt | K] )
where the norm is given by |H| := S(l](maXSz H; — mingz Hy)dt (See e.g. [28] for an

introduction to Hofer’s distance). A consequence of item 2, proved in [0, Thm 7.7(ii)], is
that the quasimorphisms py are linearly independent. In the case k = 1, we recover the
Entov-Polterovich quasimorphism [13]. As a consequence of the first and second items,
for any Hamiltonian H, we have

1t 1t

which will be useful to us later.

2.2.3 Quasimorphisms on the sphere

We now introduce quasimorphisms on the sphere. Denote

T = g — .
By (8) and the shift property (7)), we have

fr(H) = fildy)

for all Hamiltonians H (not only for mean-normalized ones). The f; give quasimorphisms
on Diff(S? w) which have similar properties to the ;. Our motivation for introducing
them is their C%-continuity, which is not satisfied by the u;. We collect in the next
theorem their useful properties.

Theorem 2.8 ([6], Thm. 7.7 (iii), Thm. 7.6 (support control)). 1. (C°-continuity) For
all k = 1, the quasimorphism f;, is continuous with respect to C° topology and ex-
tends continuously to Homeo(S?, w)

2. (Support control) For all k =1 and ¢ € Homeo(S?,w) whose support is included in

a disc of area < k+r1 Then, fi(¢) = 0.

Remark 2.9. In fact, for any positive integers k, k', the difference pp — pp extends
continuously to a quasimorphism on Homeo(S? w). Its defect is bounded above by the
sum of the defects of uy and py, i.e. by % + % In particular, f; has defect % + 2.
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2.2.4 Inducing quasimorphisms on the disc

Let ¢ : D? — S? be a smooth symplectic embedding which identifies the disc D? with
the northern (or southern) hemisphere. Then we have an inclusion Homeo.(D? w) <
Homeo(S? w) and the maps f, induce by restriction quasimorphisms on Homeo,(ID?, w).

Let H be a Hamiltonian which is compactly supported in the disc. Then the La-
grangian control property yields u1(H) = 0 hence

1

Fel0ky) = i (H) = ju(dly) + j Huwdt. (11)

0 JS?

and in particular we obtain the following strengthening of the bound on the defect in

Remark (which we already stated in Lemma |1.11]).
Lemma 2.10. The f, restricted to the disc are quasimorphisms with defect 2/k.

Using the Lagrangian control property and a Lagrangian link L consisting of horizontal

circles L; = {(z,y,2) € S*| 2 = -1 + 2k+'r1}7 i=1,...,k, we can compute f; explicitly for

Hamiltonians that only depend on the variable z, namely:

| =

fllply) = & 2 H(-1+2¢5) (12)

This formula will be used in some subsequent sections.

3 The subleading asymptotics and the Ruelle invari-
ant

In this section, we first show that the spectral invariants {{4} have O(1) subleading
asymptotics, and then compute those asymptotics exactly in the case of autonomous disc
maps with finitely many critical values.

3.1 O(1) subleading asymptotics

The proof that the spectral invariants {u;} have O(1) subleading asymptotics in the
smooth case is an almost immediate consequence of the key inequality

|1k (Poth1) — pe(t0) — pur(h1)] < (13)

o

from Lemma [I.111

Theorem 3.1. For any v € Diff(S?,w), the sequence {k jux () }ren is bounded.
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Proof. Let Goqy := {¢ € Diff(S*,w)|kur(¢) = O(1)}. Equation shows both that
if ¢o,¢1 € Goqy, then so is the product i1, and also that ¢ € Go() if and only if
Y~ € Gogny. Therefore, Goy is a subgroup of Diff (S?, w). Since py, (1) is invariant under
conjugating ¢ by elements in Diff (S*,w), Go1) is a normal subgroup.

Since Diff (S?, w) is simple, to show Go(1y = Diff (S?, w) it therefore suffices to show that
Go(1y contains a single non-identity element. Let H be the height function (projection
to z co-ordinate) of S* « R®. Let L, be the k-component monotone link all of whose
components are level sets of H. By the Lagrangian control property, we have ux(H) = 0.
Since H is mean-normalized, we have uz(¢k) = 0, but ¢k is not the identity element in

Diff(S?, w). The result follows. O

By restricting the {y,} to Hamiltonians on S? supported (for instance) in a hemisphere,
we immediately obtain:

Corollary 3.2. Let D? be a disc in S* with area at most half of that of S®. For any
Y € Diff (D?, w), the sequence {k - (fr(1) — Cal(v))) }ren is bounded.

Proof. 1t follows from and Theorem O]

3.2 Autonomous Hamiltonians

For general smooth Hamiltonian diffeomorphisms on the disc, we know from above that
k- (fr(x)) — Cal(y)) is bounded as k — oo, but not that this sequence has a well-defined
limit. For autonomous maps with finitely many critical values, the limit does exist, and
is determined by the classical Ruelle invariant from Section [2.1.3} showing this is the aim
of this section.

The main result is the following.

Theorem 3.3. Let H : (D* w) — R be a compactly supported autonomous Hamiltonian
with finitely many critical values. Then,

1
I}im (kp(H) — (k+ 1)Cal(H)) = —§Ru(H). (14)
—00

Theorem [1.3] directly follows from Theorem [3.1] Corollary [3.2 and Theorem [3.3] The
proof of Theorem [3.3|is independent of the rest of the paper and an uninterested reader
might want to skip it in a first reading.

Remark 3.4. The coefficient k+1 of Cal(H) is the reciprocal of the monotonicity constant
of a k-component link L, (see [0, Definition 1.12]).

The proof will use monotone Lagrangian links L, ‘most’ of whose connected compo-
nents are contained in level sets of H. In order to describe these links, we need the notion
of the Reeb graph.

Let H : (S?,w) — R be an autonomous Hamiltonian with finitely many critical values.
We define an equivalence relation ~ on S? via x ~ y if and only if they lie in the same
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connected component of a level set of H. Let G := S?/ ~ be the Reeb graph of H
equipped with the quotient topology, and R : S* — G be the associated quotient map.
There is a uniquely defined continuous function Hg : G — R such that H = Hg o R.

Lemma 3.5. The space G is homeomorphic to a finite tree.

Proof. We are going to describe a finite graph structure on GG and then we will show that
it is a tree.

We define the set of vertices of G to be the Hg-preimage of the set of critical values
of H. We want to show that the set of vertices is finite. It suffices to show that for
every critical value ¢ of H, H '(c) has only finitely many connected components. Let
J1 © Jo O ... be a nested sequence of open intervals such that n,J, = {c}. By possibly
passing to a subsequence, we can assume that ¢ is the only critical value of H in J;. Under
this assumption, the number of connected components of H~'(.J,,) equals to the number
of connected components of H~1(.J,,) and it is a finite number k. that is independent of n.
Recall that the intersection of a nested sequence of connected compact sets is connected.
Therefore, H *(c) also has k. connected components.

We define the complement of the vertices of GG to be the open edges of G. We need to
show that the complement of the vertices has finitely many connected components and
every connected component is homeomorphic to (0, 1). But it follows easily from the fact
that for any two consecutive critical values co < ¢1 of H, H|g-1((cy.er)) 1 H ({0, 1)) —
(co, 1) is submersive and hence is a fibre bundle.

Finally, if G were not a tree, then we would be able to lift a non-trivial 1-cycle from
G to S?, contradicting H,(S%* Z) = 0. O

We record here a useful consequence of the argument in Lemma [3.5 here:

Lemma 3.6. For any connected open set U < G, the set R (U) = S? is connected.

Proof. We use the sets J, in the proof of Lemma [(3.5, When V < G is a connected
component of H;'(J,), R7*(V) is one of the connected components of H—1(J,). Since
R~(V) is also open, it is path-connected.

On the other hand, when V' < G is a connected open set not containing any vertex of
G, R7Y(V) is clearly also path connected.

For a general connected open set U c G, we can write it as a union of open sets
U = U4V, each of the V,’s is of one of the two types above. Since every R~ (V) is
path-connected and U is path-connected, we conclude that R~'(U) is path-connected
and hence connected. O

Let t be the number of vertices of G and enumerate the vertices vy,...,v;. Let p be
the Borel measure on GG such that for every open set U < GG, we define

u(U) = Llw)w-

m; = p(v;) € [0, 1].

Fori=1,...,t, let
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Note that for any = € G\{vy, ..., v}, we have p(zx) = 0. Many of the components of our
desired links L, will be of the form R~!(z) for some x € G\{vy, ..., v;}. But when m; > 0
and k is large, we also need to put many components near R~ (v;) for L, to be monotone.
There are connected closed subsets in S? with positive measure but empty interior so we
have to be particularly careful near R~*(v;) when we construct L,. To construct L,, we
need to first explain a decomposition of G using .

For the following decomposition of GG, we assume that k € N satisfies k_+1 < p(e) for
every open edge e € G. For i = 1,...,¢, let {U;;}3, be the connected components of
G\{v;}, where s; := val(v;) is the valency of v;, which equals to the number of connected
components of G\{v;}. Denote M(Um‘) by a;; so we have m; + 371 a;; = 1. By our

assumption on k, we have a; ; 3 7 for all j Let r;; € (0 be the unique number

st
such that a;; —r;; is an 1nteger mult1ple of — Y +1

For any v; and any j = 1,...,s;, we define x;; € U;; to be the unique point such
that x;; is on an edge adjacent to v; and the open interval between v; and x;; has p-
measure 7; ;. The existence of z; ; is guaranteed by the assumption =5 < u(e), whilst its
uniqueness comes from the fact that G is a tree (so there is a bljectlve correspondence
between edges adjacent to v; and connected components U; ;). Moreover, again by the
assumption 27 < p(e), we have that z;; # xyy unless i = ' and j = ;. Most
importantly, by our choice of 7’Z » each connected component of G\{z;;}; ; has py-measure

being an integer multiple of Denote the component of G\{z; ;}; ; containing v; by V;.

k+1
. S; val(v;
Let Sy := [(k+1)m;]. By construction, we have pu(V;) = m;+3 5" rij € (mi, m;+ ﬁ]
o (k+ 1)u(V;) is an integer in the interval (S, Sk; + val(v;)].
For alli =1,...,t, let J; be a connected open subset of V; that contains v; (see Figure
. The following simple observation will be useful in constructing L.

Lemma 3.7. There exist Si,; pairwise disjoint circles in R_l(JZ-) each of which bounds a

disc of area 5 in R™'(J;).

Proof. When (k + 1)m; < 1, the lemma is regarded as vacuously true so we assume
By Lemma [3.6] we show that R~ !(J;) is connected. Since R~1(J;) is a connected open
proper subset of the sphere, it is diffeomorphic to a planar domain.
Moreover, we have

(l{? + 1)W(R71(J1)) > (k’ + 1)mz = Sk:,i-

It is therefore clear that we can ﬁnd Ski-many pairwise disjoint circles in R7'(.J;) such

that each bounds a disc of area 5 in R™'(J;). O
We are now ready to construct our L,.

Construction 3.8. We consider a monotone Lagrangan link L, comprising of the fol-

lowing 3-types of circles, which we call them type T7, type To; (i = 1,...,t) and type T5;

(1 =1,...,t), respectively.

18



Figure 2: On the left: R~'(J;) (the union of pink and light blue regions) contains R~ (v;)
(pink region) and type Ty; circles (blue). R™(V;) (the union of pink, light blue and
light green regions) contains both type T3, circles (red) and type T»; circles. Type T}
circles (black) are level sets outside the interior of R~!(V;). On the right: we indicate
a neighborhood of the vertex v; in G, coloured to indicate the images of the respective
regions on the left.

1. Any component of G\{z; ;}; ; not containing any v; is an interval. We can subdivide
that interval so that each sub-interval has p-measure k—}rl Let X be the union of
{z;;}:; and the additional points we added to subdivide the intervals. Then R™*(X)
gives us | X| = k — X' ((k + D)u(V;) — 1) circles in S%. For each i = 1,...,t, we
discard Sy,; + val(v;) — (k + 1)u(V;) many circles from R™(X) that are closest to
R(V;). The remaining circles, k — 3'_, (S + val(v;) — 1) many, are the type T}

circles of L.

2. By Lemma , we choose Sy ; pairwise disjoint circles in R~!(J;) bounding disjoint

discs of area 7 in R~ '(J;). They are the type Ty circles of L.

3. The complement of the associated Sj; disjoint closed discs in R‘l(%) is also a
connected open subset of S?. Therefore, we can put an additional set of (k +
1)pu(V;) — Sk, — 1 circles, each bounding a disc of area =7 again, to obtain a further
collection of circles. Together with the Sy; + val(v;) — (k + 1)u(V;) circles that we
discard from R™!(X), we get a collection of val(v;) — 1 circles, which are called type
T;; circles of L.

We use the notation L, ; for j € T} (resp. j € Ty, j € T3;) to refer to a connected
component of L, of type 11 (resp. Th;, T5;).

First note that L, is indeed a k-component monotone link, because all the components
of its complement have area k—il On top of this, the three types of circles above have the
following features respectively.

1. Sl-fibres lying above open edges of G
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2. components coming from Lemma , which can be chosen as close to R~*(v;) as
desired; and

3. ‘remaining’ components not of the first two types, but the number of them is
val(v;) — 1, whch is independent of k. Moreover, they are arbitrarily close to R~ (v;)
when we increase k.

For each vertex v; € G, let x; := 2 — val(v;). We are now going to use the monotone
links L, from Construction [3.§ to prove the following.

Proposition 3.9. Let H : (S?,w) — R be an autonomous Hamiltonian with finitely many
critical values. Then

Lim (k‘ﬂk(H) —(k+1) LQ H) = _%iZtIXiHG(Ui) (15)

Remark 3.10. When H is Morse, reduces to

tim () (k1) [ )=—§Z 100 H ()

where {p;}*_, is the set of critical points of H. Compare to Equation (0).

Proof of Proposition[3.9 For every k € N such that == +1 < pfe), we apply Construction
3.8 to obtain a monotone link L, as above. We continue to use the notations V;, J;, 11,
T5;, T, etc, but they should be understood that they depend on k.

The Lagrangian control property [10| applied to the link L, yields

k(i) € Y H(Ly), (16)

j=1

where H(Ly ;) := {H(y)|ly € L}
We want to show that, by choosing J; to be sufficiently small, we obtain the following
three identities corresponding to the three types of circles:

1 t
lim H (L, k—i—lf H ) == val(v;)Hg(v;), 17
M((Z > 3 B ) 22 (v)) Ho(v;) (17)

JjeT
i ([ S B |-+ 1)f H | = —val(o)Ho(w), for alli,  (18)
b=\ \ jem., R=\(V;)
klirn H(Ly ;) = (val(v;) — 1)Hg(v;), for all 4. (19)
—0
Jj€T3 4

Note that these are limits of sets, since not all the Ly ; are contained in level sets of H;
however, the J; shrink with £ and hence the diameters of the sets H(Ly ;) also tend to
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zero as k increases to infinity. Once these equalities are proved, by summing them up we
will get

k t
lim (Z H(Lij) = (k1) | H) = 5 2 elle) =2l (20
The result then follows from and the observation that the RHS of is precisely
-3 o xiHe(v).

Identity will be proved ‘edge by edge’. More precisely, let E be the set of edges of
G. Each connected component of S*\ | J iery Ly other than Vi, ..., Vi, is topologically an
annulus and is canonically labeled by an edge e € E. Let A ,..., A} he k be the connected
components that are labeled by e and denote their closures by Ziyi fori=1,...,her. By
possibly relabeling, we can assume that ZZ’i N Z;j # g if and only if j € {i —1,4,7 + 1}.
Let 5AZ,¢ = Lj;y v Lj; fori=1,... hep Note that, every component of | J;cp, Lr; is
of the form Lf ; for precisely one e € E and i € {0,...,hex}. By identifying Af ; with
([, =] x R/Z,dz A dy) using an S'-equivariant area preserving diffeomorphism, in

RF17 ke
such a way that Ly ; is identified with {i} x R/Z, we have

Z (H(szi) —(k+1) f e H>

=1

=(k+ 1);1;]“ —H’(kil)(z— k%l) +0 (ﬁ) dz

k+1

= 1
- (e )+ ()

=1

where Taylor’s theorem was used in passing from the first to the second line above. Note
that h. ) < (k+1). By passing k to oo and applying the fundamental theorem of calculus,
we get

hek
’ 1
lim (H(L;,i) — (k+ 1)f H) = lim S (H(Ly,,, ) — H(Lio))
e — 00 ’

ki

:%(Hg(ale) ~ Hy( )

where d’e are the corresponding vertices adjacent to e. By adding back the term limy, H (Li,o),
we have

he,k

lim <i H(Lg;) — Z(k + 1) JAe | H) zé(HG(éle) + Heg (%))

k—aoo .
i=1

This completes the calculation over a single edge e. By summing over all e € E, we get

(R
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Equation follows from the fact that |T5,| = val(v;) — 1 and the fact that Ly ;, for
J € T3, is approaching to R '(v;) as k goes to infinity. Therefore, it suffices to verify

Equation (18).
Let e > 0 be such that limy_,o Sk ex = 0 for all ¢. Let J; be a sufficiently small
neighborhood of v; such that Hg(J;) < [Ha(vs) — e, Ha(v;) + €;]. It implies that

Z H(Lk,j) C [SkiHa(vi) — Ski€k, SkiHa(vi) + Skick]

JETo ;i
On the other hand, recall that /L(UZ) =m; = ,fil Therefore, we can find an open disc
Dy.; © R(J;) such that w(Dy;) = k+1 It implies that

lim Z H(Lk j) - (/{5 + 1) J H|=lim [—QSk i€k 2Sk iEk] = (Q for all ¢ (21)
k—co jeThs ’ Dy s k—o0 ’ ’

Recall that w(R ™ (V;))\Dy;) = w(R (Vi) —w(Dg,) = Seatvallvs) _ Ski  vallv)) - rpepefore,

k1 k1 k1
we also have

lim (k + 1) f H = lim (k + Dw(R " (Vi)\Dy:)Ha(v;) = val(v;) Ha(v;) for all i
k—o0 Ril(vi)\Dk,i k—o0
(22)
Equation now follows from Equations and (22)). m

Proof of Theorem[3.3. We embed D? into the northern hemisphere of S?. By Proposition
and (), it suffices to show that Y_, x;Hg(v;) coincides with {, ng(€)dé. We can
reinterpret {p ng(£)d¢ using G as follows. Let vy be the vertex of G given by R(JD?)
(it is also the R-image of the entire southern hemisphere). Let e be an edge of G. Let
the two vertices adjacent to e be dTe and 0~ e. Since G is a tree, there is no ambiguity
to require that d"e is further away from v; than 0 e (we allow that 0 e = vy). If
Hg(0%e) > Hg(0 e), we define n, = 1. If Hg(0%e) < Hg(0 e), we define n, = —1. It is
clear from the definition of ng that

Jorntere =3 | ne=Ytae) - Hoteo)

where the sum is over all edges of G. For any vertex v of G other than vy, there is a
unique edge e, of G such that d%e, = v because G is a tree. Therefore, we have

t

Z(HG(EJ%) — Hg(0 7€) = —val(v1)He(v1) + Z (He(v;) — (val(vy) — 1)He(v;))

e =2

t
Z HG Uz

where the last equality uses that Hg(vi) = 0 and y; = 2 — val(v;). It completes the
proof. O]
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Remark 3.11. For higher genus surfaces, one can use a similar method to estimate ¢ (H)
for appropriate monotone links L most of whose components are level sets of H. However,
the homogenized spectral invariant ;1 will depend on the particular link L, and not only
on the number of components of L. Therefore, for any fixed sequence of monotone links
{L; }ren, this method should not give a robust estimate of the subleading asymptote of
pr, for all autonomous Hamiltonians H simultaneously.

4 Non-simplicity for kernel of Calabi and for Hameo

In this section, we prove Theorem [I.2] whose statement we recall here.

Theorem (Theorem . The following groups are not perfect:
1. The kernel of Calabi on Hameo(D?, w).
2. The group Hameo(S?, w).
Both admit surjective group homomorphisms to R.

The goal of this section is to explain the proof. The broad strategy of the proof is as
follows. Let G denote either Homeo.(D? w) or Homeo(S?,w) and let H be any of the two
groups in the statement of Theorem We begin by defining certain normal subgroups
of H, denoted by N(D?) and N(S?) respectively, which will turn out to be proper. Now,
these groups are also normal in G and since any normal subgroup of G contains [G, G]
(see [8, Prop. 2.2]E[), we conclude that H is not perfect. The calculation of a quotient
isomorphic to R proceeds readily from this, as we will explain.

In the rest of this section we define the normal subgroups N(D?), N(S?) and prove
their properness.

Proper normal subgroups from subleading asymptotics

To define our normal subgroups, we will use the subleading asymptotics of the quasimor-
phims arising from link spectral invariants which were introduced in Section [2.2.2]

First, consider the case of the disc. Denote by ker(Cal) the kernel of the Calabi
homomorphism Cal : Hameo(D?, w) — R. Recall the quasimorphism f, : Homeo(S? w) —
RR; its restriction to Homeo,(ID?, w) has defect bounded by %, see Lemma . Our normal
subgroup will consist of those elements (of the kernel of Cal) for which the f, have bounded
subleading asymptotics. More precisely, define

N(D?) := {1 € ker(Cal) : the sequence |k fi(¢)| is bounded}.

Proposition 4.1. N(D?) is a normal subgroup of ker(Cal) which contains all of its smooth
elements. Moreover, it is also normal in Homeo,(D?, w).

!Proposition 2.2 in [§] is only stated on the disc, but holds on any compact surface by the same
argument.
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Proof. The argument here is very similar to that of the proof of Theorem and so we
will not provide all the details. N(D?) is a subgroup because the f; have defect % and it
is normal in Homeo.(D? w) because ker(Cal) is a normal subgroup and because the f,
being homogeneous quasimorphisms, are invariant under conjugation.

The fact that N(D?) contains all of the smooth elements in the kernel of Calabi is a
consequence of Corollary [3.2} this is because for such ), we have p1 (1)) = Cal(y)) = 0. O

In the case of the sphere, our normal subgroup is defined similarly, however we cannot
use the quasimorphisms f : Homeo(S? w) — R because although the restriction fj, :

Homeo(D? w) — R has defect %, the f, have defect % + 2; see Remark . We remedy
this problem by working instead with the sequence of quasimorphisms

Gk = Mok_1 — Hok-1_1, (23)

for kK > 2 on Homeo(S?* w). Then, the defect of g; is bounded by % + 2,6_2—1_1, ; see
Remark , which in particular converges to 0 as k goes to infinity. (While many other
differences pla(k) — fa(k—1) Would also have defect limiting to 0, the choice a(k) = 2k —1
will be particularly convenient for our calculations in Section 4.3.)

Define

N(S?) := {¢ € Hameo(S?, w) : the sequence |(2¥ — 1)g(v)| is bounded}.

Proposition 4.2. N(S?) is a normal subgroup of Hameo(S?, w) which contains all of its
smooth elements. Moreover, it is also normal in Homeo(S? w).

As in the case of N(D?), the proof of the above is similar to that of Theorem and
so we will omit it.

To prove properness of these normal subgroups, we will exhibit examples of hameo-
morphisms with unbounded subleading asymptotics.

4.1 A quickly twisting hameomorphism

The first part of the proof is to find a useful element that is in Hameo. As in our previous
work, [8 [7, [6], the desired map will be a twist map. However, in our previous work, we
studied “infinite twists” that were twisting so quickly that they were not in Hameo. Here,
we find a map that is twisting slowly enough to define an element of Hameo, but quickly
enough to have interesting, i.e. unbounded, subleading asymptotics. The construction of
this map will be the topic of this section.

Let T : S? — S? be defined as follows.
We view S? as the standard unit sphere {(z,y,2) € R? : 2% + 4* + 2% = 1} in R3 and
equip it with the symplectic form w = ﬁd@ A dz where (0, z) are the standard cylindrical

coordinates on R3. Denote by p_ the point on S? whose z—coordinate is —1. We pick a
function H : S*\{p_} — R which is of the form

H(9,z) = h(z),
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where h : (—1,1] — R is a smooth function which vanishes for z > —% and, for z < —%,
satisfies the identity

h(z) =

The function H induces a well-defined flow ¢%; on S? which fixes the point p_ and its
action on (0, z), with z > —1, is given by the following equation

142 (24)

¢%(0,2) = (0 + dnh' (2)t, 2).

We define
T :=¢y.
Note that T is supported in the disc D? := {(6,2) : =1 < z < 0} = S? and so we can
view it as an element of either of Homeo,(ID?, w) or Homeo(S2 )

Proposition 4.3. T € Hameo(D? w). Moreover,
1!
Cal(T) = f h(2)dz < oo,
-1

Note that the above proposition implies that 7" € Hameo(S? w) as well.

Remark 4.4. As mentioned earlier, the homeomorphism T twists slowly enough to be
in Hameo, and so its Calabi invariant is well-defined, yet it twists fast enough not to be
contained in N(ID?); the heuristic reasoning behind 7' ¢ N (D?) is that, since H(p_) = oo,
T has “infinite Ruelle invariant.”

In comparison, if we were to modify the function A in Equation (24]) to

2
1+ 2

h(z) =

we would obtain an “infinite twist” homeomorphism that spins too fast to be contained
in Hameo; here the heuristic reasoning is that the condition Sl_l h(z)dz = oo forces the
homeomorphism to have “infinite Calabi invariant.” Indeed, this can be proven rigorously
via the argument given in [8] (see also the proof of [6], Theorem 1.3]).

Proof of Proposition[{.3 By definition of Hameo, to prove that 7" € Hameo(D? w), we
must find smooth Hamiltonians K, supported in a compact subset of the interior of
D? = {(0,2) : =1 < 2z < 0} such that

(A) ok, ST,
(B) ¢ is Cauchy for the C%-distance, uniformly in ¢ € [0, 1],

(C) the sequence K, is Cauchy for Hofer’s norm | - |.
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We start by picking Hamiltonians H,, as follows. Let D, := {(0,z) : —1 < z <
—1+¢,} = D? be the disc of radius &, := 22%1 (in z coordinate) centered at p_; note that

€n
X
Now, pick the Hamiltonian H,, so that the following hold:

Area(D,)) = ¢,Area(D?) = (25)

(i) H,, depends only on the z variable,

(i) H, = H outside of D,, and H,, ~ , /i in the interior of D,,,

(i) [Hoer — Hall < 4/ 2.

To see why H, can be picked to satisfy the above, note that H(—1 +¢&,) = 4 /% and so
to obtain H,, it suffices to smoothly flatten H on the interior of D,,.

Note that ¢3; o T~ = Id outside of D,, and hence ¢}, <, 7. We will find Hamilto-
nians K, such that ¢ = ¢}, , the sequence K, is Cauchy for Hofer’s norm | - || and ¢}
is Cauchy for the C°-distance, uniformly in ¢. Note that once this is proven Theorem
yields

1 (!
Cal(T) = lim Cal(¢y ) =limCal(¢y, ) =lim | Hyw=| Hw= —J h(z)dz.
n n -1

n D2 D2 2
We need the following lemma whose proof relies on ideas going back to Sikorav [33].

Lemma 4.5. Let A be a Euclidean 2-disc equipped with an area form w of total area A.
Suppose D < A is diffeomorphic to D* and that Area(D) < ]Av for some integer N > 0.
Let F' be a smooth Hamiltonian supported in the interior of D. Then, we have

dp(¢F,1d) < % + 2A.

where dy denotes the Hofer distance on Ham (A, w) and |F| = Sé (maxa F; — minp Fy)dt
1s the Hofer norm of F.

Before proving this lemma, we will use it to construct the sequence of Hamiltonians
K,.
For each n, the Hamiltonian H,,;; — H,, is supported in the disc D,,, by item (ii) above,
and ||Hy1 — Hyl < 4 /%, by (iii). Let A, < D? be the disc centered at p_ and of area
A, 1= 27"2_ By Equation ([25)), we have Area(D,,) < % for N := 2132 Hence, applying
Lemma 4.5 we obtain Hamiltonians G,, supported in A,, which satisfy

1 _ 41 =141
® 06, = PHpor—Hy = PH Pl

2
o |G| < MuetHnl 4 94, < VN» +2A,.
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N 2B/l
is supported in A,,, the C%-distance dco (0%, ,1d) is bounded by the diameter of A,,, which
is O(27/*). It follows that the series Y., dco(¢, ,1d) is summable as well (uniformly in
t).

Now let us define K7 := H; and then recursively K, ., := K,1G,, for n > 1. Then,

1 1 41 1 1
¢Kn = ¢H1¢Gl T '(/5Gn,1 = ¢Hn

2
Note that Var 124, = Zv2 —1—21% and thus the series Y, | |G;| is summable. Since G,

Moreover, since > . | [|Gill = Y72, | Kip1 — Ki| is summable, the sequence K, is Cauchy
with respect to the Hofer norm. Similarly, since .. deo (0g,,1d) is summable, ¢
converges for the C° topology.

This completes the proof of Proposition modulo the proof of the lemma which we
provide below. ]

Proof of Lemma[{.5. We will present the proof of the lemma under the simplifying as-
sumption that the Hamiltonian F' is time independent and leave the more general case,
which is very similar, to the reader. Note that we have only applied Lemma to
time-independent Hamiltonians.

Pick pairwise disjoint discs Dy, ..., Dy < A such that each of these discs has the same
area as D. There exist Hamiltonian diffeomorphisms 1, ... ¥y € Ham (A, w) such that

e (D)= D, foreachi=1,..., N,
o dy(¢;,1d) < 4.

Consider the time-independent Hamiltonian

1 N
L -1
H := —NZElFOIM .

It is supported in the union of the discs D; and |H| < ”—f,” Therefore,
F
0(6}.10) < (b 0ly) + dn (0l 1) < di (0, 5}y) + o

Hence, to prove the lemma, it is sufficient to show that dg (¢}, ¢%) < 2A. To do so,
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first observe that ¢}, = Hf\il )y UNQ/) Dand ¢k = ]_[].V ;/N. Hence,

=1

di (g, ¢p) = dn (ﬂ BTy ,H ¢F>
<¢F ﬂwwj Lot HWF )

de@-qﬁ?w;l, oX)

Mz

-
I
—

-

S
I
—

Ay (oY, 6307 + dy (PR v, o)

=

<.
I
—

dp (i, 1d) + dp (7, 1d)

U

~
I
—

.

-
Il
—

2 dy (1r,1d) < 2A

The inequahtles on the second and fourth lines follow from the triangle inequality where

N
when 7 =1, qu Hl_ll %gzﬁF ¢_ should be understood as ¢} = ¢}.. The equalities on
the third and fifth hnes follow from the bi-invariance of Hofer’s metric and the inequality
on the final line follows from the fact that we picked v; such that dy(¢;,1d) < 4. O

4.2 The case of the disc

We now use the map T' to prove that the group N(D?) from Proposition is proper in
the kernel of Calabi on Hameo(D?, w).
Proof of properness of N(D?). We will do this in two steps.

Step 1. We claim that the sequence |k(fx(T") — Cal(T))| is unbounded, where T' €
Hameo(D?, w) is as in Proposition [4.3]

Recall the (non-smooth) function H from (24)) which we used in the definition of 7.
Let H,(z) be a sequence of smoothings of H, depending only on z, that agree with H

except for —1 <z < -1+ 22%1 One could, for example, take H,, to be as in the proof of
Proposition [4.3]

Note that ¢y 7 and so, by the C? continuity property of the fi, we have
fi(T) = lim fi(gy,)-

Now, since H and the H,, depend only on z, we can compute fk(gb}{n) using the Lagrangian
Control property; see Section [2.2.2] We have

fi(on ) = ZH 1+2—+1)

28



Since H, = H, except for —1 < z < —1 + 22%, for n large enough we have fk(qﬁllqn) =
; Zf:1 H(- k+1) and hence

)= R DAL+ 2) = DL 2

Recall that Cal(T) = 5571 h(z)dz < oo. Hence, proving that kf,(T) — kCal(T) is

unbounded, is equivalent to proving that the sequence whose kth term is given by

21 fy(T) ~ (k + 1)Ca(T)) =23 (-1 + 2]{%1) (k1) L he)d:  (26)

is unbounded; we will prove this below.
Write a; = .,k + 1. Observe that can be rewritten as

k+l’

(k + 1);1 (J h(as) — h(z)dz> (k1) J h(2)dz.

ag

The term SZ}':“ h(z)dz is zero since h is supported in —1 < z < —z. So we must prove
unboundedness of the sum.

Since h is a convex function, we have h(a;) — h(z) < h'(a;)(a; — z). Thus

1
3

(k+1 Zk] (f h(as) — h(z)dz) <(k+ 1)i (h’(ai) f " - z)dz>

= (k + 1)i (h'(ai)ﬁ) :i (h'(ai)kiﬂ) |

=1

Now, since h’ is non-decreasing, we have
k
>
il

This shows that (k+1) 3F | (Xal h{a;) — h(z)dz) is unbounded and concludes the proof
of unboundedness of the sequence in (26)).

Step 2. Let © € Diff.(D? w) be such that Cal(0) = Cal(T) and define

k Ai41 1
"(a;) < ZJ B (z)dz = f h'(z)dz = —h(ay) e

=1V

W =ToO™"

Then, Cal(¢') = 0. We will show that the sequence |k f(¢'))| is unbounded which implies
that ¢’ ¢ N(D?) and hence establishes properness of N(D?).
By Lemmal|l.11

kfie(W') — kfi(T) — kfr(©@7 )] < 2.
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Now, we claim that the sequence {kfi(T) + kfr(© 1)} is unbounded which, in combina-
tion with the above inequality, implies that the sequence |k fi(¢)"))| is unbounded.

The fact that {kfx(T) + kfr(©7")}, is unbounded is an immediate consequence of
Theorem the sequence {k - (fx(©7!) — Cal(©71))}, is bounded, by the theorem, and
the sequence {k - (fx(T") — Cal(¢))}x is unbounded, by Step 1. Hence, the sum of these
two sequences, which is exactly {kfi.(T) + kfx(©~1)}1, is unbounded. This completes the
proof of the fact that ¢’ ¢ N(D?). O

Once we know that ¢’ ¢ N(ID?), it is not hard to produce a surjetive group homomor-
phism from G to R. Indeed, choose the map © in Step 2 above to commute with 7" and
to be generated by an autonomous Hamiltonian. Then, 7" and © are associated to the
time-1 maps of flows of vector fields, and we can generate a one-parameter subgroup by
flowing for time ¢ instead; the image N’ of this subgroup in the quotient of G' by N(D?)
is isomorphic to R and splits as a direct summand because it is divisible.

4.3 The case of the sphere
Recall, from Proposition .2 the normal subgroup
N(S?) := {¢ € Hameo(S?,w) : the sequence |(2¥ — 1)gi(1/)| is bounded},

where g is the quasimorphism defined by (23).
We will show that N(S?) is proper by showing that a variant 7" of the map T from
Proposition [4.3]is in Hameo(S?,w) but not in N (S?).

Proof of properness of N(S?). Let T" be the time-1 flow of F'(0, z) = f(z) = 2 away

- 1+2z
from the south pole, and we set T"(p_) = p_. We claim that 7" € Hameo(S? w); this
follows directly from Proposition 4.3| via the observation that 7" o T~ is smooth.

Define
2k 1 1
= k —_—
S(k) = V2 Z} \[ .

Then, arguing as in Step 2 of Section [4.2] it can be shown that

2F 1

(2" = 1)gi(T") = S(k) — ST

S(k—1) = S(k) — 2S(k — 1) — S(k—1). (27)

2k—1 1

We will only provide an outline of the proof of the above formula as its derivation is
similar to what was done in Section[4.2] Here is the outline: take an appropriate sequence
of smoothings F),(z) of F(z) which coincide with F' away from a small neighborhood of
p_. Then, follows from the following two items

1. ¢p, 7 and so, by the C° continuity of g, we have g;(T") = lim, . g (¢, )-
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2. using the Lagrangian Control property, one obtains that

9u(0h) = e S(h) — g =Sk — 1)

The calculation in the second item, via the Lagrangian Control property, holds because
we can assume that the link for jix ; has the form {z = —1 + 5=}, where 7 ranges from

1 to 28 — 1. For z corresponding to such an i, 4 /ﬁ = %, and this is the value of F,

on the link for sufficiently large n.
It follows from that to show that 7" is not in N(S?), we need to estimate the
difference

S(k) — 28 (k — S(k — 1).

R T
The crux of the issue is showing that S(k) — 2S(k — 1) is unbounded. To see this, write

S(k)—25(k — 2 l\ﬁ—2f22_1 o7

>x/27<1—\/g>,

which is unbounded in k.
To complete the proof, it therefore remains to show that the term
bounded in k. To do this, we write

1 2k=1 Sk —1)
S LG Al g T g T

S(k — 1) is

2k11

I+
s=—5(k — 1) is bounded in k. We conclude from this the

sequence (28 — 1)g(T") is unbounded and hence 7" ¢ Hameo(S?, w). This completes the
proof of Theorem [1.2] O

The term Sg,fj) differs from the right Riemann sum, for the integrable function 4/ —— on
—1<2z2<1,by Qk%z, hence

The analogous argument as in the disc case shows from this that there is a surjection
to R.

5 Infinitely many extensions of Calabi

Having applied the two-term Weyl law to study the normal subgroup structure of G =
Homeo,(D?, w), we now invoke related asymptotic considerations to prove Theorem [1.8]
which we recall for the reader states that the Calabi homomorphism admits infinitely
many extensions to G. We also elaborate on the promise from the introduction that this
perspective has value in identifying new normal subgroups whose quotients can be com-
puted. We note for the benefit of the reader that while this section is thematically linked
to the previous one, it does not cite results from there and so can be read independently.
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5.1 The main theorem

We begin with the promised proof of Theorem [I.8 which collects considerations of the
asymptotics of the f; via a short argument.

Proof of Theorem[I.8. Define the group R’ := RY/ ~ where s ~ t if and only if s — ¢ has
limit 0. There is a natural map

S:GoR, g (f29) f3(9) -, falg), ) (28)

(We have not included f; here, because as we have defined it, it is 0.) By Lemma [1.11]
this is a group homomorphism. There is also a canonical homomorphism

A:R—> R, z0 (x,z,...,2).
Now by the Weyl law , we have
S(h) = (Cal, Cal, Cal, .. .) (29)

for every h € Diff.(D? w).

We now find a section of the map A, as follows. The group R’ is a vector space over
R. Take the vector v; = (1,...,1,...) € R’; by Zorn’s Lemma, we can extend this to a
basis  for R'. The section of A now comes from the splitting of R’ with respect to this
basis. More precisely, we define

s: R >R, s(v)=a, v = ajv; + Z a;v;.

v;€8,v; #V1

It now follows from that s o S is the desired extension. Since there are infinitely
many choices of extensions 3, and the map S is surjective (see Proposition below), it
follows that there are infinitely many extensions. m

Remark 5.1. One might wonder to what degree Zorn’s lemma is actually necessary in
extending the Calabi homomorphism to a group homomorphism Homeo,(D? w) — R. As
communicated to the authors by C. Rosendal, there are models of set theory where the
axiom of choice is false and every homomorphism between Polish groups is continuous;

in particular, no extension of Cal to a group homomorphism Homeo.(D? w) — R exists
in those models. See [31, Thm. 5.] and [30].

Remark 5.2. In [6], the Calabi invariant was previously extended to a homomorphism
Cal on Hameo(D? w) by the rule

H— Jdet,

where H is any Hamiltonian for a given hameomorphism; such a Hamiltonian is not
unique, but [6] showed that this extension does not depend on the choice of Hamiltonian.
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Any of the extensions to Homeo.(D? w) in Theorem agree with this extension when
restricted to Hameo; this follows from the fact that, similarly to (29)),

S(h) = (Cal, Cal, Cal, .. .), (30)

for any h € Hameo(D?, w).

To see why the above equation is true, we note that, as in the proof of [6, Thm. 1.1],
if h € Hameo(D? w) and H : [0,1] x D* — R is a C° Hamiltonian for A, then, for any
¢ > 0, we can find smooth Hamiltonians G,, such that

1. ¢¢, converges to h in the C° topology,

2. G, uniformly converges to H.

Then,

Folh) — fu(Go)| < and UGm—JH‘<5,

where in the first inequality above we have used the Hofer continuity property; see [2.7
Since € > 0 is arbitrary, follows from the above inequalities and ().

5.2 Normal subgroups with explicit quotients

It has been an open question since the proof of the simplicity Conjecture mentioned in
the introduction to identify the quotient of G by the normal subgroup of finite energy
homeomorphisms FHomeo constructed there; see [8]. The circle of ideas around the
proof of Theorem allows us to resolve a variant of this question: we can find normal
subgroups whose quotient can be calculated.

For example, define N to be the kernel of the map S from (28)).
Proposition 5.3. The map S from is surjective. In particular, G/N ~ R'.

Proof. Given an element s € RY, we define a smooth autonomous Hamiltonian H on the
complement of the north pole p, € S?, and depending only on z, recursively as follows.

Call s; the (: — 1)** component of s. To motivate what follows, note that, given k,
we can take our Lagrangian Link to correspond to the set {z = —1 + ,ﬁfl 1 < < kb
Fix also the data of a smooth function £ : [0,1] — R that is constant near 0 and 1 and
satisfies £(0) = 0 and E(1) = 1.

We start by defining H to be equal to 0 on {—1 < z < 0}. Next, we define H to be
equal to 2sy on {z = 1/3}. We now extend H to a smooth function on {—1 < z < 1/3}
by defining it to be equal to H(1/3)E(li/3) on {0 < z < 1/3}. Note that for any extension
H' of H to a smooth function of z on the entire interval [—1, 1], we have fy(H') = s9, by
the Lagrangian Control property (12)).
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Now assume inductively, that we have extended H to a smooth function on {—1 <
z < =14 21 for some k > 2, that is constant near the endpoints of this interval and
satisfies

o
filH)=s; 2<i<k

for any further extension of H to a smooth function on [—1,1]. We seck to extend H to
a smooth function on {—1 < z < —1 + 252} that is also constant near the endpoints of
this interval and satisfies

Qﬁ(f{)zzsi, 25§i < k‘%l

for any further extension of H to a smooth function on [—1,1]. Note, first of all, that

-1+ k2f2 < —1+ 5. In particular, the equation

H(—1+ 242y = (k4 1) skH—ZH

k+2 k+2)
i=1

makes sense, and we use it to deﬁne H on {z =—1+ 2:;2} We therefore have a function
H defined on {1 < z < =1+ 2% krufz = Qkk:;} which is smooth on the first of these
sets and constant near the endpoints of the first of these sets. Since —1 4 =% k +1 < -1+ Q,f—ﬁ,

there is no obstruction to further extending H smoothly to {—1 <z < —1+ 2:122} : more
precisely, we define H to be

2k + 2 2k —(—1+25) )
(H(_1+k+2)_H(_1+k—H))E< ST ok +H(_1+k—+1)

k+2 k+1

on {—1+ 25 <2< -1+ 221
As above, we note that any further extension of H to a smooth function on {—1 <
z < 1} will have

fk+1(H) = Sk+1, (31)

by the Lagrangian Control property (12).

Given an element s € RY, we now define ¥ to be the time-1 flow of the Hamiltonian
H constructed above, away from p,, and we set ¥(p;) = p,. We can view this as a
compactly supported homeomorphism of the disc, which we also denote by 1, and we
claim that S(i) = s : indeed, for any fixed k, we can approximate ¢ in C° by smooth
flows corresponding to Hamiltonians that depend only on z, without changing the values
of H on the components {z = —1 + ¢ %1 of the Lagrangian Link, hence the claim follows
from together with the C° continuity of f;, (Theorem [2.8]). O

Remark 5.4. For a more familiar presentation of G/N via Proposition , we note that
the group R’ is isomorphic to R. Indeed, both are uncountable vector spaces over Q of
the same cardinality.

34



Remark 5.5. The map S allows us to define many other subgroups whose quotients can
be identified. Indeed, we can take any subgroup H < R', and then by Proposition [5.3]
Ny := S7Y(H) will be a normal subgroup with quotient . One can think of the different
Ny as “leading asymptotics subgroups”: they correspond to different prescriptions of the
leading asymptotics of the fi. We may also produce groups by varying the target of S by
taking different quotients of RY. For example, if we quotient by the relation that s ~ ¢ if
and only if s — ¢ remains bounded and take this to be the target of S, then the induced
homomorphism out of G is still surjective, but one can show that its kernel contains
FHomeo and Hameo, as introduced in the discussion at the end of the introduction.

6 The commutator group of G is simple

The goal of this section is to prove Theorem [1.10] We denote by G the kernel of the mass
flow homomorphism Homeo (2, w) — R, where ¥ is a surface either compact or the inte-
rior of a compact surface with boundary. We denote by [G, G] the commutator subgroup,
i.e. the subgroup generated by commutators. We will denote by [f,g] = f~'¢~!fg the
commutator of two elements f and g. Theorem asserts that |G, G] is simple.

As was mentioned in the introduction, it is known (see footnote |1} that any normal
subgroup of G contains [G, (] and in particular the commutator group of [G, G], which
is normal in G, contains [G, G], hence [G, G] is perfect. Another consequence of this fact
is the simplicity of [G, G| (Theorem follows from the next lemma.

Lemma 6.1. Any normal subgroup of |G, G] is normal in G.

Proof. Let H be a normal subgroup of [G,G]. To prove that H is normal in G, we need
to prove that for all h € H and g € G, the conjugate g~ 'hg belongs to H.

First step. Let he H and g € G. We will prove that g~ 'hg € H under the condition:
The open set U = X\supp(h) is non empty. (I)

Let S be an embedded disc included in U. We will show that g may be written
as a composition ¢ = ab, with a supported in S and b € [G,G]. Since a and h have
disjoint supports, we have a~'ha = h. Using that H is normal in [G,G] we deduce
g thg = b='hb € H as claimed.

To prove the decomposition of g, let (.S;);e; be a finite open cover of 3 by discs of the
form S; = f;(S) for some f; € G. By Fathi’s fragmentation theorem [I4, Thm. 6.6] the
map ¢ can be written as a product g = g1 ---gn of elements in GG such that each g, is
supported in a disc S;, for some i, € I. Such g, can then be written in the form

ga = (fi:lgafia) © [fia7 ga]
Since f;lga fi,, 1s supported in S, this shows that each g, may be represented in the
quotient G/[G, G] by an element supported in S. As a consequence, their product g may

also be represented in G/[G, G] by an element a supported in S. This exactly means that
g = ab for some b € |G, G].
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Second step. We finally show that g 'hg € H for any h € H and g € G. This will rely
on the first step and the following lemma.

Lemma 6.2. Let h € H and let z be a fized point of h (which exists by Arnold conjecture
[24]). Then for every sufficiently small open neighborhood U of z, there exists £ € H such
that supp(f) # ¥ and ¢ coincides with h on U.

We postpone the proof of this lemma and use it to conclude the proof of the second
step. Let h e H and g € G. Let £ € H be as provided by Lemma . Then, h¢~! and
¢ belong to H and both satisfy condition (I). Our first step shows that g '(h¢')g e H
and g~'0g € H. As a consequence, their product g~'hg belongs to H. This concludes the
proof of the second step and of Lemma [6.1] n

Proof of Lemma[6.2. Let U be a small neighborhood of z. How small it is will be made
precise below. Since z is fixed, it is known| that for every open neighborhood V of z, there
exists an element a € G which coincides with A in a neighborhood of z and is supported
in V. We may assume that U is so small that « = h on U. We will use such an «a to
build our map /.

Let = be a point such that h(z) # z. Note that we may assume without loss of
generality that such a point exists. Taking a point y close to x but distinct from x, we
obtain a configuration of four pairwise distinct points x, y, h(z), h(y). Let f € G be such
that f(x) = y. Let A be an open neighborhood of z. If A is chosen small enough, then
the four open sets A, B = h(A), C = f(A) and D = h(C') are pairwise disjoint. In this
situation, it is easy to check that for any g € G supported in A we have

supp([f~19)) cAuC and [f' g]=gon A
Similarly, since B u D = h(A u C), we have for any g € G supported in A
supp([p"4 [f 9]l cAuBuCuUD and [R[f ! g]] =g on A

Since h € H and H is normal in [G,G], the element [h~1, [f~!, g]] belongs to H. Thus,
we have shown that any element of G' supported in A coincides on A with an element of
H supported in Au BuC u D # . We will apply this fact to an appropriate conjugate
of the map « from the beginning of the proof.

Let f € [G,G] be a map that sends z to x (this can be found for instance among
diffeomorphisms). Then, if the open sets U and V' are chosen sufficiently small, the map
BaB~tis supported in A. By the above observation, there exists an element v € H which
coincides with Sa37! on A and whose support is not the whole of 3. Then, ¢ = $y3~1
suits our needs. Indeed, ¢ coincides with o on V hence with h on U. Moreover, since H
is normal in [G,G], £ € H and its support is not the whole of X. ]

2This is a standard folklore statement that can be proved by a combination of the Schoenflies and the
Oxtoby-Ulam theorem.
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