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Forum

LeishGEM:
genome-wide deletion
mutant fitness and
protein localisations in
Leishmania

The LeishGEM Team1,*

LeishGEM is a genome-wide func-

tional annotation community re-

source for Leishmania mexicana,

where deletion mutant growth

in vitro and in vivo is measured

and protein localisation is deter-

mined by endogenous tagging and

LOPIT-DC (localisation of organelle

proteins by isotope taggingwith dif-

ferential centrifugation) spatial pro-

teomics. Data are being made

available pre-publication via http://

leishgem.org which allows data-

driven identification of the mecha-

nisms for Leishmania parasitism.

The power of genome-scale reverse genet-

ics in Leishmania rapidly became apparent

through development of high-throughput

CRISPR/Cas9-assisted reverse genetics

[1] and barcoded deletion mutants for

parallel fitness phenotyping in vitro and

in vivo [2–4]. This motivated develop-

ment of the LeishGEM project to gener-

ate an open dataset for the parasitology

community. The streamlined workflow

designed for this project enables gener-

ation of deletion mutants at a rate of

one 96-well plate per week (Figure 1, left).

In parallel, using experience in high-

throughput localisation [5], endogenously-

tagged cell lines are generated and imaged

at a rate of one 96-well plate every 2 weeks

(Figure 1, right).

This project uses a Cas9 and T7

RNA polymerase-expressing Leishmania

mexicana cell line [1], derived from strain

MNYC/BZ/62/M379, competent for trans-

mission through sand flies and formamma-

lian infection. All primers for PCR-based

construct and single guide (sg)RNA gener-

ation for the deletion and tagging were

designed based on the SNP- and indel-

corrected genome sequence and refined

gene model annotation (including novel

small open reading frames with stable

transcripts) of this cell line [6,7]. Over

the course of this project, which started

in 2021, all 8267 protein-coding genes,

except those which cannot be targeted

uniquely for technical reasons, will be

targeted for deletion, and 2700 for endoge-

nous tagging with a fluorescent protein.

Each deletion mutant is checked by PCR

for deletion of the target locus. To date,

77% of targeted loci yielded viable cell

lines and ~51% (n = 2088) are confirmed

as gene knockouts, with the remainder

either technical genotyping failures or pop-

ulations in which at least 1% of the popula-

tion retains a copy of the gene.

Leishmania is transmitted by sand flies,

growing as promastigote forms in the

midgut before being transmitted by bite

to a person or animal. There they infect

macrophages and differentiate into the

amastigote form. High-throughput pheno-

typing of L. mexicana mutants has been

developed and has been used to assess

parasite growth as promastigotes, differen-

tiation to axenic amastigotes, ability to

infect murine macrophages in vitro, and

ability to infect mice. Figure 1 shows the

workflow and multiple time points of this

large-scale endeavour. For growth and

fitness comparisons, approximately 300

barcoded deletion mutants and control

cell lines are combined in pools. For mea-

surement of promastigote growth in culture,

the barcode proportions are assessed

from DNA samples taken after 0 h, 24 h,

48 h, and 72 h of growth. Stationary-

phase promastigote cultures are used to

initiate cell differentiation assays and

mouse infections. For in vitro assays, the

library pools are grown either as axenic

amastigotes or in murine bone-marrow-

derived macrophages, for 24 and 72 h.

For virulence and survival assays in the

mouse, DNA samples are taken early post

infection (at 72 h) to allow comparison

with in vitro differentiation assays, while

the later timepoints (3 weeks, 6 weeks)

help to define the role of proteins involved

in pathogenicity and establishing parasit-

ism. In addition, a select number of deletion

mutants will be phenotypically analysed

in sandfly infections. Fitness is quantita-

tively assessed by barcode sequencing

(bar-seq), with previously characterised

deletion mutants and a dilution series of

barcoded parental cell lines included in

each mutant pool as controls and for

pool-to-pool normalisation. This allows

precise genome-scale quantitative pheno-

type mapping and identifies the proteins

involved in virulence and longevity in all life

cycle stages.

The Leishmania cell is being mapped using

microscopy (fluorescent protein tagging at

the endogenous locus) and mass spec-

trometry (LOPIT-DC) [8]. The Leishmania

cell is highly structured, meaning that sub-

cellular microscopic localisation of a protein

can often be mapped to a specific organ-

elle [9]. Since TrypTag has already mapped

subcellular protein localisation genome-

wide in the related parasite Trypanosoma

brucei [5], only proteins that lack or

have low (<30%) sequence identity to a

T. brucei ortholog were selected for tag-

ging in Leishmania (approximately 30% of

protein-coding genes). Over the course of

this ongoing project, every candidate will

be endogenously tagged at the N terminus

and C terminus with mNeonGreen [10] and

diffraction-limited widefield epifluorescence

microscopy images of >200 cells at ran-

dom cell cycle stages are captured per

cell line, for both promastigotes and axe-

nic amastigotes (Figure 1). Every image

set is manually annotated, drawing on a
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standardised ontology linked with gene

ontology (GO) cellular component terms,

and using a standardised modifier scheme

to describe more complex localisation

patterns. This maps localisation in the

promastigote and any change of local-

isation or expression level in in vitro

amastigotes. In addition to the tagging,

proteome-wide LOPIT-DC data have

been generated, with localisation anno-

tated by Gaussian mixture model classi-

fication. This approach localises the

endogenous protein and avoids possible

tag interference with N- or C-terminal

organelle targeting sequences or anchors.

The LOPIT-DC approach also provides

the information for non-microscopically

analysable structures like ribosomes and

proteins that are not included in the tagging

set due to their high similarity to T. brucei

proteins (discussed earlier). These comple-

mentary approaches will help to build a cel-

lular map of a large majority of Leishmania

proteins.

Our aim is to support the parasitology

community by making available all the

cell differentiation and fitness phenotyp-

ing data along with the complementary

protein localisation. These data are acces-

sible through two dedicated websites,

in phased releases (Figure 1). Fitness

phenotype data in promastigotes, axenic

amastigotes, in macrophages, and in mice,

localisation classifications from LOPIT-DC

and annotated microscopic images

from LeishTag are available on the

LeishGEM Data Browseri. Microscopy im-

ages – example fields of view of N- and

C-terminal tagging in promastigotes and

axenic amastigotes – are available on

LeishTagii. Once data collection is com-

plete, these data will be integrated into

TriTrypDB [11] for access under the phe-

notype and localisation sections of the cor-

responding gene pages and integrated into

the search tools for phenotype strength

and localisation. Raw data will ultimately

be available in open data repositories in

standard data formats – sequencing

read archive (SRA) for bar-seq, proteo-

mics identifications database (PRIDE) for

LOPIT-DC, and Zenodo for microscopy

and supporting metadata. This will include

the code necessary to replicate the quanti-

tative analyses, and Python modules are

planned to facilitate programmatic access

to all data.

Leishmania sp. are deadly human para-

sites which evolved vertebrate parasitism

independently of the Trypanosoma line-

ages [12]. Despite recent advances –

such as Alphafold structural prediction

and the TrypTag resource – an enormous

portion of the Leishmania genome lacks

primary functional annotation. LeishGEM

data will comprehensively map the most

important systems for infectivity to a mam-

malian host and map the cellular struc-

tures in which they reside (Figure 2).

Moreover, the similarity of gene content in

the related human-infective Leishmania spe-

cies [13] means that LeishGEM is relevant to

research on all these parasites. As of April

2024, phenotype data for 2305deletionmu-

tants, microscopy subcellular localisations

for 1209 proteins, and LOPIT localisa-

tion classifications for 2406 proteins are

available. Given current throughput, the

complete fitness and localisation data

are expected to be available by 2025,
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Figure 1. Workflow for high-throughput gene deletion, phenotyping and tagging. Schematic of the

reverse genetics workflows, from automated primer design to data release routes, and integration of

complementary localisation of organelle proteins by isotope tagging with differential centrifugation (LOPIT-DC)

data. Abbreviations: sgRNA, single guide RNA; T. brucei, Trypanosoma brucei.
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with subsequent papers describing and

analysing the dataset. In the meantime, it

is anticipated this research will underpin

fundamentally new types of analyses, from

the evolution of systems necessary for

vertebrate parasitism in Leishmania to iden-

tification of novel organelle subdomains

or subcompartments necessary for their

function. For large-scale analyses of pre-

publication data made available through

LeishGEM, the authors are keen to es-

tablish collaborations, while for smaller-

scale analyses, like fitness phenotype

or localisation of one or two proteins,

researchers may do so by citing this pub-

lication and the LeishGEM or LeishTag

website, respectively.
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proteins by isotope tagging (LOPIT) data, highlighting the group (pink) or groups (pink and cyan) classified by

Gaussian mixture model and the protein (circled). Showing two proteins from (B), and one not scheduled for

tagging. Abbreviations: gDNA, genomic DNA, ORF, open reading frame.
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