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ABSTRACT

To employ a reduced-order cardiovascular model as a digital twin for personalised medicine, it is
essential to understand how uncertainties in the model’s input parameters affect its outputs. The aim
is to identify a set of input parameters that can serve as clinical biomarkers, providing insight into a
patient’s physiological state. Given the challenge of finding useful clinical data, careful consideration
must be given to the experimental design used to acquire patient-specific input parameters. In this
paper, we conduct the first quantification of a cardiovascular system’s sloppiness to elucidate the
structure of the input parameter space. By utilising Sobol indices and examining various synthetic
cardiovascular measures with increasing invasiveness, we uncover how the personalisation process
and the cardiovascular system’s sloppiness are contingent upon the chosen experimental design. Our
findings reveal that continuous clinical measures induce system sloppiness and increase the number of
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personalisable biomarkers, whereas discrete clinical measurements produce a non-sloppy system with
a reduced number of biomarkers. This study underscores the necessity for careful consideration of
available clinical data as differing measurement sets can significantly impact model personalisation.

Keywords Cardiovascular Modelling · Personalised Medicine · Digital Twins · Sensitivity Analysis · Parameter
Identifiability · Sloppy Systems

Author Summary

In personalised medicine, computational models that replicate physical systems — are becoming vital tools for
understanding and predicting individual health. Our study explores cardiovascular models, which simulate heart and
circulatory functions from which clinical metrics may be derived. These models aim to provide personalised insights
into heart health and treatment planning.

A key challenge in building these models is addressing “sloppiness,” a property which provides vital insight into
the response surface structure for which one calibrates a model searching for a global minimum point, a position in
parameter space which best represents a patients cardiovascular health. In order to personalise a model different types
of clinical metrics must be available for a model response to be compared to.

We examined how different types of clinical data — ranging from simple discrete blood pressure readings to detailed
invasive continuous waveform data — impact model sloppiness and the number of personalisable biomarkers. Our results
show that continuous measurements increase the number of personalisable biomarkers but make the personalisation
process more complex through increased sloppiness. In contrast, simpler discrete measurements reduce model
sloppiness simplifying the personalisation process but yield fewer personalisable biomarkers. By analysing the impact
of experimental designs on the personalisation process, our work offers practical insights into improving the reliability
of cardiovascular digital twins, supporting their adoption in personalised medicine.

1 Introduction

The concept of digital twin (DT) originates in the 1960s with NASA creating a virtual representation in the Apollo
13 moon exploration mission. There are now many definitions of DT and one comprehensive definition is “a set of
virtual information constructs that mimics the structure, context and behaviour of an individual or unique physical asset,
which is dynamically updated with data from its physical twin throughout its life-cycle and that ultimately informs
decisions that realise value" [1]. In the realm of medicine, the potential of a DT is profound, particularly in enhancing
patient care and outcomes. In the context of healthcare, a regularly updated digital representation of an individual’s
anatomy, physiology or diseases holds immense promise. It could empower healthcare professionals to simulate and
predict a patient’s disease trajectory enabling intervention and treatment to be delivered in a timely and effective way [2].

Notably, in cardiology, the adoption of heart and circulatory DTs has gradually gained momentum and trust
within the clinical community, evidenced by several proof-of-concept studies [3, 4, 5]. Traditionally, clinical diagnosis
and patient trajectories in cardiology rely heavily on a clinician’s expertise and population-based averages [6]. However,
the emergence of DTs in cardiology signifies a shift towards a more personalised approach. These DTs integrate
mechanistic (physics-based) models, grounded in physiological understanding of the heart, human circulation, and
related physiological processes, with dynamic clinical data collected over time or immediate data available in a clinical
setting [7]. This integration enables the DT tool to provide tailored predictions and assist in clinical diagnosis, catering
for the unique characteristics of each patient. Virtual representations of a patient’s full cardiovascular health in differing
states are referred to as their “physiological envelope" [8].

Clearly, the choice of mechanistic model utilised for a cardiovascular DT is vital to ensure the correct set of
physiological relevance while also maintaining some set of clinical interpretability. Lumped parameter models (LPM)
offer a unique ability to examine both cardiac function and global haemodynamics. LPM provide a simple approach in
which all the main characteristics of the blood flow (i.e. blood pressures, flows and volumes) are captured. Typically, an
LPM is constructed of a heart chamber (acting as a blood pump), a presentation of the mechanical nature of heart valves
and a series of elements representing the various vascular networks in which blood can be transported through the body.
This class of model is usually represented as a system of differential algebraic equations; the size of which depends on
the complexity of the system investigated (full body circulation or anatomically detailed models of specific vessels) [9].

Each LPM or compartment can be represented as a combination of resistors, capacitors and inductors which
are parameterised by numerical values R, C and L, respectively. For a generic vessel or organ located in a larger
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circulation network, R, C and L represent haemodynamic dissipation, vessel distensibility and the inertial effects of the
blood flow, respectively [10]. Along with the input parameters of the heart chambers and valves, these parameters form
a set of clinical biomarkers, which when personalised to a patient, by integrating patient-specific clinical data, provide
the insight that a cardiovascular DT aims to achieve [11].

Useful clinical data are scarce resources, thus the requirement to identify and choose what data are needed
to personalise a LPM (in order to create a useful cardiac DT) is a complex one [12]. Within a clinical setting, there
are often a range of both continuous and discrete measurement data. But the process of obtaining insightful and
diagnostically useful clinical data often requires a series of invasive tests being conducted on the patient. With any data
collected (e.g., blood pressure, flow and volume for each compartment), one then generates a series of clinical metrics:
ejection fraction [13], to quantify heart failure; pulse pressure [14], to diagnose arterial stiffening; maximum blood
velocity [15], to evaluate heart valve stenosis; cardiac output [16], to measure overall heart health and the observation of
various clinical time series waveforms [17]. These metrics can then be amalgamated into a DT, enriching the model’s
predictions with additional detail and validity. However, given the plethora of available clinical tests, each carrying its
own risks to patients, determining which metrics are indispensable in creating a faithful virtual representation of a
patient becomes a challenging task. Each set of measurements collected and utilised to perform DT related tasks is
denoted an experimental design [18].

The integration of clinical data into an LPM to form a DT, is a task denoted ‘the personalisation process’ (or
‘model personalisation’ or ‘model calibration’). Mathematically, this is also known as the ‘inverse problem’ [19]. One
can think of the solution to the personalisation process as an input parameter set that locates the global minimum
of a response surface, spanned by the combination of input parameters of the mechanistic model and the available
clinical measurements. Thus, we obtain a set of unique clinical biomarkers [20], i.e we have found a point in the input
parameter space such that the outputs of our mechanistic model most closely match the clinical measurements of a
patient. It is this point in the input parameter space which describes a patient’s patho/physiological state.

Despite progress, there are still many open questions surrounding the personalisation process, which we
distil as explicit questions below:

1. What clinical data must be acquired in-vivo to obtain insightful, patient-specific biomarkers?

2. Does the set of biomarkers obtained remain consistent in the presence of new and varying experimental
designs?

3. What is the computational cost associated with finding the solution of the personalisation process under
different experimental designs?

4. Should DTs be built to encapsulate a patient’s “physiological envelope" or should DTs be targeted to specific
conditions?

5. What are the best practices involved in model personalisation under uncertainty?

This study investigates to what extent the above can be answered. Before proceeding, it is important to note
that all investigations in this work are conducted with forward generated model data, in order to understand and
extract the clinical biomarkers from the model in an ideal setting, to eliminate any confounding effects of noise
in clinical data. The clinical data obtained in-vivo influences the in-silico data obtained from the model. With-
out this critical, off-line step, misleading results may be obtained which could then lead to ill-informed clinical decisions.

The structure of this paper is as follows. In section 2, we: (i) review relevant literature, (ii) introduce con-
cepts germane to the personalisation process in both extraction and optimisation of clinical biomarkers, (iii) detail the
position this type of investigation has in the personalisation process and (iv) summarise the principal contributions
of this work. In section 3, the mathematical detail is provided for each tool used for model analysis (Sobol indices,
identifiability analysis and sloppy analysis). We also present the various experimental designs utilised within this
work. Section 4 declares our results from different computational experiments. Discussion of the impact of varying
experimental designs on the personalisation process is given in section 5.

2 Foundations & state of the art

Model personalisation is synonymous with the base concepts of input parameter sensitivity, identifiability and sloppiness
[21]. From the discussion in section 1, it is prudent to review terminologies, prior art and state how this work will
provide a novel insight into the study of model personalisation.
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2.1 Terminologies

When attempting to personalise a cardiovascular model, it is important to discuss the prerequisite properties correspond-
ing to input parameter influence (sensitivity), uniqueness (identifiability) and response surface structure (sloppiness).

2.1.1 Sensitivity

An input parameter’s effect needs to be influential on the output response surface, if this is the case an input parameter
is regarded as sensitive [22], i.e., a change in the input parameter space causes a detectable change on the desired
output. Thus, the said sensitive input parameter may serve as a clinically insightful biomarker for personalisation (in the
creation of a digital twin), due to the ease of capturing the biomarkers’ effects in clinical outputs. One can distinguish
locally and globally sensitive input parameters, with respect to the measurements. Locally sensitive input parameters
are those eliciting the steepest gradient in the output about the model base operating point [23]. Globally sensitive input
parameters are potential bio-markers which operate within a physiologically realistic value range. Input parameters are
said to be most globally sensitive when they cause the greatest influence on the outputs, for the prescribed parameter
ranges [24]. Different methods exist to calculate the sensitivity of input parameters, with the most common being the
variance based methods, which we adopt in this work (see section 3.3). The personalisation process and the use of
cardiovascular DTs is a global process, because we need a virtual representation of patients in a range of physiological
and pathophysiological conditions. Thus, global sensitivity analysis presents itself as an insightful tool in the search for
of clinical biomarkers.

2.1.2 Identifiability

Personalisation of models now entails the pursuit of an identifiable model and identifiable input parameters (an optimal
subset, denoted as clinical bio-markers). The analysis of identifiability in a cardiovascular system model requires three
distinct examinations: structural, sensitivity-based, and practical identifiability. Structural identifiability (theoretical)
assumes abundant and noise-free target output data, rendering a model’s structural identifiability largely academic in
clinical terms. However, this assumption overlooks the possibility that inability to identify input parameters may stem
from the model’s structure rather than data issues [25]. Naturally, if a model lacks structural identifiability, practical
attempts at its utilisation are inherently limited. Sensitivity-based identifiability analysis involves the identification
of sensitive and orthogonal input parameters, under synthetic data generated by the model, to ascertain which input
parameters are identifiable under ideal circumstances [26]. Practical identifiability analysis takes into account of the
quality of patient data, where noise and sampling rates may impact the identification of unique input parameters [27].
For complete personalisation, each stage must be executed sequentially. Within this work, we examine the identifiability
of input parameters through their average influence across output space.

2.1.3 System Sloppiness

System sloppiness is a term used to characterise the structure of the input parameter space [28]. As discussed above,
the main aim in many areas of systems biology is to optimise a dynamical system’s input parameters to available
experimental data. This is normally performed by minimising a cost function, to obtain a point in the input parameter
space corresponding to a global minimum of the cost function J [29], of the form

J(p) =
∑

i

(yi(p, t)− yei )
2,

where p is the input parameter set, yei represents the ith experimental measurement available and yi(p, t) represents the
ith dynamical system output (obtained from the model), which the experimental data are compared against.

Consider an example dynamical system with two input parameters p1 and p2. When optimising such a sys-
tem to experimental data, contour plots displaying the closeness of fit are generated as in figure 1. Here we see that
moving up (in the direction of p2) and left in the parameter space rapidly changes the value of the cost function, i.e.,
indicating how good a fit is obtained by a specific value of p2. This direction is denoted a stiff direction in the input
parameter space. Conversely, if one was to travel up and right (in the direction of p1), one could visit a range of p1
values without incurring changes of the cost function values. This means the manifold generated by p1 is largely linear
whereas the one generated by p2 has steep gradients leading to a unique global minimum. Thus the sloppy direction
controlled by p1 would not make for a good biomarker to calibrate a model due to the limited impact of p1 to the
selection of model outputs. The converse is true for p2. However, most models in systems biology and in cardiovascular
modelling cannot be visualised through a two dimensional contour map. Mathematical sloppiness analysis of our
cardiovascular models can be found in section 3.6.
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p1

p2

Figure 1: A two dimensional sloppy model representation: A two dimensional contour plot displayed as a blue
curve, with the minimum contour value displayed in red for input parameters p1 and p2. Moving up and left would lead
to rapid changes in the contour where as moving up and right would lead to slow changes.

The final stage of personalisation is the optimal estimation of selected input parameters, fitted to patient-
specific clinical data. Before this optimisation takes place, if we can quantify the stiffness/sloppiness present within
the systems input parameter space, it would provide insight into the complexity of the system, and in turn facilitate
the choice of optimisation routine (i.e. gradient descent, particle swarm genetic algorithms, unscented Kalman filter)
[30, 31].

The related concepts of identifiability and sloppiness provide different but insightful information about the
personalisation process [32]. Identifiability is a binary situation, whilst sloppiness quantifies the difficulty associated
with obtaining precise identifiable input parameters. The sloppiness analysis of a model can either distinguish stiff and
sloppy regions of the input parameter space, or show that the whole system under investigation can be regarded as
sloppy. Note, most system biology models belong to the latter category [33, 34]. Within this work, we examine the
sloppiness associated with the sensitivity matrices, which are defined by input parameter effects on the chosen outputs.
Therefore, we can also establish a secondary aim of investigating the effects of differing experimental design on a
cardiovascular system sloppiness.

2.2 Relevant Literature

Cardiovascular model personalisation has been attempted in many clinically important areas such as, congenital
heart disease, fetal circulation or whole heart multi-scale modelling [35, 36, 37]. In the majority of works, standard
optimisation routines are used to obtain a set of input parameters which are representative of the experimental data
[38, 39, 40]. Outside of the standard optimisation routines, data assimilation methods, namely ensemble and unscented
Kalman filters, have developed traction as an efficient way to estimate patient specific input parameters, at a reduced
cost, compared to the optimisation methods [41, 42, 31]. Another area which attracted research community’s attention
recently is the utilisation of sensitivity analysis to guide the search and selection of an optimal input parameter subset
for simpler and more efficient parameter estimations. Colunga et al. [43] applied this technique to incorporate invasive
right heart data to obtain the personalisation of a model of pulmonary hypertension with 25 parameters. Where as
Strocchi et al. [44] applied global sensitivity analysis to a 117-parameter cell-to-organ 4-chamber heart representation,
reducing the model down to 45 personalisable parameters. Schafer et al. [45] examined how the sensitivities in a 1D
model of the carotid artery change with respect to age and sex, highlighting how the input parameters for personalisation
do not remain constant.

As discussed above, it is also important to understand the identifiability of input parameters, because this provides
reassurance that any optimised input parameters are unique to a patient. Casas et al. [46] performed a profile likelihood
analysis of a LPM to personalise flow in the systemic circulation. In comparison, other researchers such as Pironet et
al., [47, 48] performed a structural and sensitivity identifiability analysis on a LPM to highlight what outputs would be
required to obtain unique input parameters. In addition, there have been developments of experimental approaches from
Marquis et al., de Bournonville et al. and Sala et al., who used invasive patient data to make good first estimates of model
input parameters before optimisation which ensured more input parameters within the model are identifiable [49, 50, 51].

Another popular approach was to optimise input parameters in an iterative manner [52]. Bjordalsbakke et al.
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[53] applied an iterative step-wise reduction scheme in which, guided by sensitivity analysis, they began to optimise a
group of parameters with increased number, each time with different cost functions to examine the closeness of fit.
Bjordalsbakke [53] found that cost functions constructed from waveform data, as opposed to common clinical metrics,
produced the smallest errors. Hann et al. [54], took a similarly structured approach in reducing the number of available
outputs to reduce the complexity associated with the model. They demonstrated that differing measurement sets consist-
ing of continuous and discrete measurements allowed for each subsection of the model to be optimised with minimal
error. The impact of varying outputs have also been examined by Eck et al. [55] through uncertainty quantification in the
arterial wall models and concluded that continuous time series Sobol indices gave a more insightful look into the process.

All studies above indirectly examined the impact of changing outputs on obtaining personalisable input pa-
rameter sets. However this was not the primary objective of their investigations. The most notable publication to date
which investigated the impact of experimental design on a cardiovascular model was that of Colebank et al. [56].
They studied the impact of 4 different experimental designs on the ventricular function and found easily identifying
biomarkers of the ventricular function, when a practical identifiability analysis is performed (including continuous data
from both the left and right side of the heart).

Another aim of our study is to reveal and analyse the impact of experimental designs on system sloppiness.
Sloppiness is a property which has been known in system biology models for over a decade [33]. Most studies have
been focused on pharmacokinetic models [57] and examinations of the route cause of sloppiness. More recently, a
formal definition of sloppiness was given and the concept was used to obtain a minimum set of outputs to ensure
identifiability [58, 59]. The impact of experimental designs on system sloppiness has been understood through the
lens of model identifiability (i.e., varying the model and the data shown to the model can induce different intensity of
model sloppiness which in turn impacts the overall identifiability of the model parameters) [60, 61, 62]. In terms of
cardiovascular modelling, sloppy analysis has been applied to electrophysiology modelling with the focus on calcium
and potassium channel modelling. Whitterker et al. [63], utilised sloppy analysis to provide a method to simplify
complex models of ion channels that improves parameter identifiability which will aid in future development in
voltage-gated ion channels. Sloppy analysis has been applied to other classes of biochemical models [64, 65]. For
example, Bravo et al. [34] applied sloppy analysis to a Bayesian model of an electrophysiological process to highlight
how the identification of stiff parameter combinations made the model personalisation much simpler. As far as we are
aware, sloppy analysis of a mechanical LPM of the cardiovascular system has not been performed, nor has the impact
of varying experimental designs on sloppiness been studied.

2.3 Rationale and Contributions

DTs in cardiovascular medicine offer profound promise in improving patient care. In order to advance the application of
DTs in clinic, further study into the impact of experimental designs on the personalisation process must be understood.
We investigate the impact of varying clinical metrics, both continuous and discrete, in an ideal scenario (without the
bias of measurement noise). The main contributions of the work are:

1. Stability of identifiable parameters: Through varying experimental designs, we investigate changes in the
identifiability ranking of input parameters.

2. Sloppy analysis of an LPM: We perform and report the first global sloppy analysis of a cardiovascular LPM
to aid our understanding of the personalisation process.

3. Clinical metric guidelines: By evaluating different clinical metrics, we provide insight into the set of clinical
data (and therefore measurements) needed for the effective personalisation of cardiovascular models.

By rigorously assessing the impact of varying clinical metrics and performing the first insightful sloppy analysis of
a cardiovascular model, revealing the structure of the input parameter space, our work furthers the investigation and
understanding needed in the personalisation of cardiovascular DTs.

3 Methods

Here, we examine the methods used for analysing a 4-chamber cardiovascular circulation model. In section 3.1, we
present the 4-chamber model, explain the computational framework and provide a full parameterisation with their initial
conditions. We then detail the clinical measures utilised in this work, which map to the different measurement sets
in section 3.2. The global sensitivity method of Sobol indices and the related Fisher information matrix are given in
section 3.3 and section 3.4 respectively. In section 3.5, we then examine an average metric for input parameter influence.
We detail how to examine system sloppiness in an n−dimensional space in section 3.6. Finally, section 3.7 is devoted
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to highlight the iterative workflow we devised to examine the effects of varying experimental design on input parameter
influence and sloppiness.

3.1 Cardiovascular Model

Our LPM can be expressed in a standard state space formulation:

d

dt
X(t) = f

(

X(t); p
)

, Y (t) = h(X(t)), (1)

in which p denotes an input parameter vector, X represents the set of state variables of the system, f is a function
describing the system (usually this is an collection of differential algebraic equations), h is the measurement function
where the forward model synthetic measurements are generated, using the computed state variables X , and Y represents
the measurements of interest.

The model declared in its electrical analogue form in figure 2 is a system-set, differential algebraic equation
based, electrical analogue cardiovascular model, after Comunale et al., [66], with 4 heart chambers and a representation
of both the systemic and pulmonary circulations. The model was first developed to model both physiological and
pathophysiological states. The state variables of each compartment are specified by its time-dependant dynamic
pressure P (mmHg), inlet flow Q (mL/s) and volume V (mL):

Xk(t) = (Vk(t), Pk(t), Qk(t)) , k ∈ {la, lv, sa, svb, sv, ra, rv, pa, pvb, pv}, (2)

where la denotes the left atrium, lv denotes the left ventricle, sa the systemic arteries, svb the systemic vascular bed,
sv the systemic venous system, ra the right atrium, rv the right ventricle, pa the pulmonary arteries, pvb the pulmonary
vascular bed and pv the pulmonary venous system, Formally, t is a continuous time variable.

Figure 2: 4-Chamber cardiovascular model: Our state-space cardiovascular model, first introduced by Comunale et
al. [66]. Both left and right atria and ventricles are represented by the Shi double cosine model [67]. Heart valves are
assumed to have Ohmic behaviour allowing no back flow. The systemic and pulmonary circulations are represented by
a CRRCR combination with all parameters are given in table 1.

In generic form, the equations relating to the passive compartmental state variables all take the form:

dVs,k

dt
= Qk −Qk+1,

dPk

dt
=

1

Ck

(Qk −Qk+1), Qk =
Pk−1 − Pk

Rk

. (3)

Above, the subscripts (k − 1), k, (k + 1) respectively represent the proximal, present and distal system compartments;
Vs,k(mL) denotes the circulating (stressed) volume [68] and Ck (ml/mmHg) and Rk (mmHgs/mL) denote compartmental
compliance and the Ohmic resistance between compartments k, (k + 1). Flow in and out of the active heart chambers
are controlled by Ohmic diode valves:

Qk =

{

Pk−1−Pk

Rval
, Pk−1 > Pk,

0 Pk−1 ≤ Pk,
(4)
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where Rval = (Rlv, Rla, Rrv, Rra) representing the resistances across aortic, mitral, pulmonary and tricuspid valves.
The active heart chambers can be represented by time varying elastances Ek(t) (mmHg/ml), which determines the
change in pressure for a given change in the volume [68]:

Ek(t) =
Pk(t)

Vk(t)− Vk,0
=

Pk(t)

Vk,s(t)
, k ∈ {lv, rv, la, ra} (5)

where Vk,0 & Vk,s(t) represent the chamber unstressed and stressed volumes for the two ventricles and atria. Ek(t) is
written following [67]:

t̃ = Mod(t+ (1− Ek,shift)τ, τ)

Ek(t̃) = (Ek,max − Ek,min) · e(t̃) + Ek,min,

e(t̃) =











1
2

[

1− cos( πt̃
τk,es

)
]

, 0 ≤ t̃ < τk,es,

1
2

[

1 + cos(
π(t̃−τk,es)
τk,ep−τk,es

)
]

, τk,es ≤ t̃ < τk,ep,

0, τk,ep ≤ t̃ < τ,

(6)

where e(t; τk,es, τk,ep, Ek,shift) is the activation function for the heart chamber and is parameterised by the end
systolic and end pulse timing parameters τk,es and τk,ep respectively.

Table 1 provides the parameterisation for the model to produce physiological results for the 4-chamber model in which
the input parameter space has a dimensionality of 36. To construct the model, the cardiovascular LPM Julia package
CirculatorySystemModels.jl [69] is utilised which reduces the system to 8 ordinary differential equations in volume
with the initial volumes also given in table 1. The model is solved utilising the Vern7 [70] algorithm with tolerances of
1e−6. For 30 cardiac cycles the model computes in 0.064s.

3.2 Clinical Measures

When varying the experimental design, we adopt medically accurate measures which are utilised in diagnosing
cardiovascular issues. To investigate the effect of experimental design, we devise an additive algorithm: each time we
move to a new measurement set, we add the new measurement to the previous output set and therefore defining a
new output space of increased dimension, for the analysis of input parameter effects. Practically, the below outputs
represent the conventional tests which a patient may be subjected to, with increasing invasiveness to assess their
cardiovascular health. While we do not target a specific condition in this work the increasing output sets represent
further and deepening knowledge about a patients physiological envelope.

In tables 2, 3 and 4, we display the various measurement sets for the cases of discrete, continuous and
mixed measurement sets.

3.2.1 Discrete Measurements

In the discrete case in table 2, we utilise only single point metrics. These metrics can be obtained through just 3 clinical
tests:

1. Blood Pressure (BP): This can be readily obtained through a sphygmomanometer reading while a patient is in
hospital. In our chosen model, this measurement is obtained by calculating Max(Psa)

Min(Psa)
and corresponds to set 1.

2. Ejection Fraction (EF): This can be obtained through an echocardiogram. In our model, we calculate EF for the
left and right ventricle then the left and right atria as Max(Vi)−Min(Vi)

Min(Vi)
. For i = lv, rv, la, ra this corresponds to

sets 2A, 2B, 2C and 2D.

3. Max(Qi) - Maximum flow: This could be obtained from either an echocardiogram or a cardiac MRI. This
is calculated for the systemic arteries, pulmonary arteries, aortic valve, mitral valve, pulmonary valve and
tricuspid valve.

To highlight the additive process of the experiment in the discrete setting, for example, the full output set for 3A is
defined as follows:

Set 3A = (BP,EFlv, EFrv, EFla, EFra,Max(Qs)).
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Table 1: Input parameters for the 4 chamber model: Each input parameter is displayed along with the respective
units and valves. Here we fix the heart period cycle to τ = 0.81(s).

Heart Parameters
Parameter Name Symbol LV RV LA RA

Maximal
Elastance [mmHg/ml]

Emax 2.8 0.45 0.13 0.09

Minimal
Elastance [mmHg/ml]

Emin 0.07 0.035 0.09 0.045

Unstressed
Volume [ml]

V0 20 30 3 7

End Systolic
Time [s]

τes 0.269τ 0.269τ 0.11τ 0.11τ

End Diastolic
Time [s]

τep 0.452τ 0.452τ 0.18τ 0.18τ

Atrial Activation
Time [s]

Eshift 0 0 0.85τ 0.85τ

Valve Resistance [mmHg · s/ml] Rval 0.01 0.01 0.005 0.005
Circulation Parameters Initial Volume Values

Resistance Systemic
Arteries [mmHg · s/ml]

Rsa 0.0448
Initial Volume

Systemic Arteries [ml]
Vsa,0 98.3

Resistance Systemic
Vascular Bed [mmHg · s/ml]

Rsvb 0.824
Initial Volume

Systemic Veins [ml]
Vsv,0 117.996

Resistance Systemic
Veins [mmHg · s/ml]

Rsv 0.0269
Initial Volume

Pulmonary Arteries [ml]
Vpa,0 100.5

Resistance Pulmonary
Arteries [mmHg · s/ml]

Rpa 0.003
Initial Volume

Pulmonary Veins [ml]
Vpv,0 126.4

Resistance Pulmonary
Vascular Bed [mmHg · s/ml]

Rpvb 0.0552
Initial Volume

Left Ventricle [ml]
Vlv,0 149.6

Resistance Pulmonary
Veins [mmHg · s/ml]

Rpv 0.0018
Initial Volume

Right Ventricle [ml]
Vrv,0 189.2

Compliance Systemic
Arteries [ml/mmHg]

Csa 0.983
Initial Volume

Left Atrium [ml]
Vla,0 71

Compliance Systemic
Veins [ml/mmHg]

Csv 29.499
Initial Volume

Right Atrium [ml]
Vra,0 67

Compliance Pulmonary
Arteries [ml/mmHg]

Cpa 6.7

Compliance Pulmonary
Veins [ml/mmHg]

Cpv 15.8

Discrete Measurement Sets
Set 1 2A 2B 2C 2D

Measurement
Added BP EFlv EFrv EFla EFra

Set 3A 3B 3C 3D 3E 3F
Measurement

Added Max(Qs) Max(Qp) Max(Qlv) Max(Qla) Max(Qrv) Max(Qra)

Table 2: Table of Discrete Measurements: Each discrete measurement set shows which new measurement is added to
the increasing output set, along with all existing measurements. Each discrete measurement equates to a single point
extracted from the cardiac cycle.
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3.2.2 Continuous Measurements

For the continuous measurements displayed in table 3, each continuous waveform obtained is made up of 150 time
points. This metrics can be obtained though 4 clinical metrics below.

1. Qi - Flow rate: This can be obtained through a Doppler ultrasound, for the systemic, pulmonary, aortic valve,
mitral valve, pulmonary valve and tricuspid valve.

2. Vi - Chamber volume: can be obtained through a cardiac MRI, for the two ventricles and two atria.

3. Plv, Psa - Left heart pressures: These invasive diagnostic measurements can be obtained through catherterisa-
tion for the left ventricle and systemic artery.

4. Prv, Ppa, Pra, Ppv - Right heart and circulation pressures: These invasive measurements can be obtained by
performing Swan-Ganz catherterisation and wave form pressures are collected in the right heart for the right
ventricle, pulmonary artery, right atrium and pulmonary vein (which can also be seen as a surrogate for left
atrial pressure).

Continuous Measurement Sets

Set 1A 1B 1C 1D 1E 1F
Measurement

Added Qs Qp Qlv Qla Qrv Qra

Set 2A 2B 2C 2D 3A 3B
Measurement

Added Vlv Vrv Vla Vra Plv Psa

Set 4A 4B 4C 4D
Measurement

Added Prv Ppa Pra Ppv

Table 3: Continuous Measurement Table: Each continuous set shows which new measurement is added to the
increasing output set, along with all measurements that have appeared before. Each continuous measurement equates to
a single converged cardiac cycle, consisting of 150 time points.

3.2.3 Mixed Measurement Sets

The previous two measurement settings will reveal the difference between continuous and discrete metrics. The mixed
measurement set combines both the discrete and continuous measurements but represents a standard diagnosis procedure
with increasing invasiveness, i.e., in clinic, a patient would not be subject to invasive chamber pressure measurements
unless deemed necessary. Apart from one additional measurement (noisy blood pressure) which will be introduced
bellow, all other metrics and corresponding measurement sets are the same as the ones defined in sections 5 and 6.

• BPN - noisy blood pressure: This set is added to represent the situation of a patient taking their own arterial
blood pressure measurement at home, with noisy reading due to potential human error and lower device
accuracy. The analysis of noisy output data will provide insight into how global sensitivity indices alter in the
presence of noise.

BPN is calculated as

BPN =
Max(Psa)

Min(Psa)
× (1 + ϵ), ϵ ∼ N(0, 0.1).

In this setting, set 2 represents an arterial blood pressure measurement obtained in hospital and is assumed to not be
subject to noise. Slightly different to the measurement sets introduced in sections 5 and 6, here set 2 will replace set 1
instead of adding to it and set 2 will be used in all increasing measurement sets for the later sets.

3.3 Sobol indices

Given a model of the form in equation 1 with Y (a continuous or discrete output), a variance based first order or total
order effect can be calculated for a generic input factor pi. pci denotes the complementary set, i.e., all other model inputs
excluding pi. Performing a Sobol analysis provides the quantification of the input parameter effect against a specific
output [71]. Both the first and total order sensitivity indices return a matrix of the form:

S = Sj,i, j = 1, ...,m; i = 1, ..., n, (7)
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Mixed Measurement Sets
Set 1 2 3A 3B 3C 3D

Measurement
Added BPN BP EFlv EFrv EFla EFra

Set 4A 4B 4C 4D 4E 4F
Measurement

Added Qs Qp Qlv Qla Qrv Qra

Set 5A 5B 5C 5D 5E
Measurement

Added Max(Qlv) Max(Qla) Max(Qrv) Max(Qra) Vlv

Set 5F 5G 5H 6A 6B
Measurement

Added Vrv Vra Vra Psv Psa

Set 7A 7B 7C 7D
Measurement

Added Prv Ppa Pra Ppv

Table 4: Table of Mixed Measurement: Each set shows which new measurement is added to the increasing output
set (apart from set 2 which replaces set 1) along with all measurements that have appeared before. Each discrete
measurement added constitutes to a single point extracted from the cardiac cycle. For each continuous measurement
added, this constitutes to a converged cardiac cycle made up 150 time points.

where n and m represent the number of input parameters and output measurements, respectively. In this work, we
handle a fixed high-dimensional input parameter space (n = 36). However, when the experimental design changes, m
varies and also the output measurement space. For example, in the discrete measurement setting, the largest value of m
is 11. In comparison, in the mixed measurement setting, the largest output set (set 7D) results in m = 1609, so the
resulting sensitivity matrix is of size S = (1609× 36).

The first and total order sensitivity indices can be written as:

S1,i(Y ) =
Var(E(Y |pi))

Var(Y )
, ST,i(Y ) =

E(Var(Y |pci ))

Var(Y )
, (8)

where S1,i, ST,i denote the first and total order indices’ vectors for an input parameter pi against the specific output Y .
In order to quantify the effects continuous measurements have on the calculation of sensitivity indices, we typically
average this sensitivity waveform. Rather than averaging across a time range (which process regions of low variance
equally to those of high variance), one seeks to expose differential sensitivities by examining variance-weighted
averages:

TASi =

∑

k Si(Y
c(tk))Var(Y c(tk))

∑

k Var(Y c(tk))
, (9)

where TASi is the time averaged first/total order effect of an input parameter i and Y c(tk) represents the approximated
continuous measurement at time step k [55].

The sensitivity indices can be interpreted as:

ST,i = Si +
∑

i ̸=j

Sij +
∑

i ̸=j ̸=k

Sijk + ...,

i.e., for a given input parameter pi, the total order indices are the first order indices (pi’s independent effects) plus all
higher order interactions. This study utilises the total order sensitivity matrix to quantify an input parameter’s full
impact on the outputs. To ensure convergence, we used 75, 000 samples with the Jansen estimator [72, 73] with a
bootstrapping sample of 1000 [74].

3.4 Fisher Information

Another important matrix derived from the (m× n) sensitivity matrices is the square (n× n) Fisher information matrix
(FIM) [75]:

F = S
T
S. (10)

The FIM is a symmetric matrix representing the information one can extract on parameters from the model outputs (i.e.,
the available measurements [76]). We choose to construct the FIM from the total order Sobol indices (equation 8) to
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account for the full non-linear effects which are present within the system and the impacts of the varying experimental
designs as done in poreviosu work [77, 23, 78].

3.5 Average Parameter Influence

The sensitivity vectors derived in section 3.3 only display the effects of an input parameter against a specific
measurement. In order to obtain an input parameter’s identifiability, we must assess an input parameter’s influence
across our chosen set of outputs. Li et al., [79], derived such a metric based upon the FIM F defined in equation (10).
To examine the global effect of input parameters through the FIM, we use principal component analysis (PCA) [80]
where the principal components (PC) are the eigenvectors of the FIM.

Let Q be the matrix of the ordered PC (eigenvectors of F ), in which the absolute value of each element Qij

reflects the contribution of the ith parameter to the variance of the jth output. We follow Li et al. [79], who measure an
overall effect for the ith parameter as:

Ei =

∑m

j=1 |µjQij |
∑m

j=1 |µj |
, (11)

where 0 ≤ Ei ≤ 1 and µj represents the non-zero eigenvalues of F . This measure reflects the difficulty in determining
the ith parameter when only a single factor is estimated. Parameter identifiability is associated with Ei - the larger the
value of Ei, the more identifiable the ith parameter is. We record the rank and the overall effect of every input parameter
greater than 0.01, a number which has been discussed as the lowest possible value that may have the possibility of
being identifiable in [23].

3.6 Sloppiness Analysis

In section 2.1.3, we explored the concept of sloppiness by examining the contour lines of the cost function. In order to
examine sloppiness in an n-dimensional input parameter space, we examine the eigenvalues of FIM (equation 10). The
eigenvalues of the FIM provide insight into the variation of parameters constrained by the available data. A model can
be regarded as sloppy if the eigenvalues of the FIM have a uniform spacing on a log scale spread over many orders of
magnitude [28, 61, 81, 82]. On the other hand, if the FIM eigenvalues have a non-uniform distribution, the model is
regarded as stiff. We can then identify stiff directions in the input parameter space which corresponds to a set of input
parameters where personalisation should take place.

One can interpret this analysis as follows, the eigenvalues of the FIM represents the variation that a model
parameter contributes the model outputs. In the case where a model is stiff we have a select subset of model parameters
with large eigenvalues compared to their complementary set. Thus when looking to calibrate model parameters this
stiff subset of input parameters denote rapidly varying directions on the response surface, thus one can more easily
obtain a personalised operating point of input parameters, due to the impact of varying input parameter sets been clear.
Conversely in the case of sloppy models these properties are not clear in the response surface thus choosing the correct
direction for personalisation more difficult.

3.7 Workflow

All the above sections define an iterative investigation in which we examine the effects of varying experimental designs
on input parameter’s influence and sloppiness. This can be encapsulated in the following steps and in figure 3.

1. Define an output set: As shown in section 3.2, we define the various sets of discrete, continuous and mixed
measurements, starting from the first and simplest output set.

2. Calculate ST : Form the total order sensitivity matrix for the input parameters and chosen output set.

3. Form the FIM: Utilising equation 10, the FIM represents all the information about the parameters constrained
by the specific measurement set.

4. Analyse parameter’s influence and sloppiness: Using methods in section 3.5 and 3.6, we record each input
parameter’s rank and influence value being greater than 0.01 and the distribution of eigenvalues.

5. Add a new measurement: Move to the next measurement set and repeat stages 2-4.
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Figure 3: Experimental Design Workflow: The process for how to analyse the input parameter influence and sloppiness
in the presence of changing experimental designs.

4 Results

Sections 4.1, 4.2 and 4.3 detail the average input parameter influence across all outputs for varying experimental design,
using the method presented in section 3.5. The average input parameter rank and values are displayed as tables. The
corresponding figure in each section displays the eigenvalues of the Fisher information matrix on a log10 scale, for
varying measurement sets (see sections 3.4 and 3.6). The sections below presents results for the varying discrete,
continuous and mixed measurement sets, respectively, as described in section 3.2.

4.1 Discrete Measures

Table 5 displays the rank of each input parameter and their corresponding influence value calculated using equation 11,
using discrete measurements. We note, from set 1 to set 3F, the resistance of the systemic vascular bed Rsvb and the
systemic arterial compliance Csa rank the highest, with the largest influence values, with the exception from set 2D in
which Eshift,ra ranks the most influential. This can be explained by the experimental design. The newest measurement
added for set 2D was the ejection fraction of the right atrium. Although in all the other cases, it appears Rsvb and Csa

still dominate. As more measurements are added to the experimental design, we observe more input parameters record
an influence score greater than 0.01. For case 3F where there are 11 outputs, 17 input parameters are recorded with an
influence score larger than 0.01. As the measurement set increases, the largest influential value decreases. In addition,
as more measurements are added, although more “influential" parameters are obtained, the majority have an influence
score in the range of hundredths.

The sloppy analysis result in figure 4 shows that the model cannot be regarded as sloppy, with a discrete output set.
With an increasing output set, we observe more input parameters are regarded as stiff. Even with the largest output set,
set 3F, the model still exhibits an eigenvalue spectrum of over 15 orders of magnitude.

4.2 Continuous Measures

With an increasing continuous measurement set, in figure 6, a much higher number of influential input parameters are
present, compared to the discrete case (figure 5). Even with just a single continuous measurement of the systemic
flow (Column 1A), 17 input parameters are regarded as influential. In set 4D, where there are 16 continuous output
measurements, 20 input parameters are recorded as influential. Here, the ranking of influential input parameters shows
much less consistency, compared to table 5. The most influential parameters appear to loosely correlate with the latest
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Measurement Sets
1 2A 2B 2C 2D

P E P E P E P E P E
Csa 0.80 Rsvb 0.44 Rsvb 0.34 Rsvb 0.26 Eshift,ra 0.24
Rsvb 0.60 Csa 0.43 Csa 0.33 Csa 0.26 Rsvb 0.10
τes,lv 0.04 Emax,lv 0.24 Emax,lv 0.18 Emax,lv 0.14 Csa 0.10

V0,lv 0.04 V0,lv 0.03 V0,lv 0.03 Emax,lv 0.06
τes,lv 0.02 Emax,rv 0.02 Emax,rv 0.02 Emax,ra 0.04

τes,lv 0.02 τes,lv 0.01 τep,rv 0.02
Emin,rv 0.01
Emax,rv 0.01
V0,lv 0.01

Measurement Sets
3A 3B 3C 3D 3E 3F

P E P E P E P E P E P E
Rsvb 0.22 Rsvb 0.20 Rsvb 0.19 Rsvb 0.17 Rsvb 0.15 Rsvb 0.13
Csa 0.20 Csa 0.18 Csa 0.17 Csa 0.15 Csa 0.13 Csa 0.11

Emax,lv 0.10 Emax,lv 0.09 Emax,lv 0.09 Emax,lv 0.09 Emax,lv 0.08 Eshift,ra 0.10
Eshift,ra 0.05 Eshift,ra 0.06 Eshift,ra 0.06 τes,lv 0.05 Eshift,ra 0.05 Emax,lv 0.07
Emin,lv 0.03 Emin,lv 0.03 Emin,lv 0.03 Eshift,ra 0.05 τes,lv 0.05 τes,lv 0.04
Emax,rv 0.02 Emax,rv 0.02 Cpa 0.03 Emin,lv 0.03 Emin,lv 0.05 Emin,lv 0.03
V0,lv 0.02 V0,lv 0.01 Rpvb 0.03 Emax,rv 0.02 Emax,rv 0.03 Emax,ra 0.03
Csv 0.01 Csv 0.01 Emax,rv 0.02 Emax,la 0.02 τes,rv 0.02 Emax,rv 0.03

Emax,la 0.01 Emax,la 0.01 Eshift,la 0.02 Eshift,la 0.02 Emax,la 0.02 τes,rv 0.03
Eshift,la 0.01 Eshift,la 0.01 Emax,la 0.02 Csv 0.01 Eshift,la 0.02 Emin,ra 0.02
τes,lv 0.01 Cpa 0.01 Csv 0.02 V0,lv 0.01 Csv 0.02 Csv 0.02
Rpvb 0.01 Rpvb 0.01 V0,lv 0.01 Cpa 0.01 Emin,rv 0.01 Eshift,la 0.02

Emin,rv 0.01 Emin,rv 0.01 Emin,rv 0.01 Emin,rv 0.01 V0,lv 0.01 Emax,la 0.02
τes,lv 0.01 τes,lv 0.01 Emax,ra 0.01 Rpvb 0.01 Cpa 0.01 Emin,rv 0.01

Rpvb 0.01 Rpvb 0.01 Rra 0.01
Cpa 0.01
Rpvb 0.01

Table 5: Input parameter ranking for discrete measurements: Averaging across all output space, the input parameter
rank and its respective influence value are displayed, for increasing discrete measurements. Here P represents the
parameter and E is the respective average influence value as defined in equation 11.

output added to the measurement list. For example, in set 3B, the left ventricular pressure and systemic arterial pressure
are new additions to the output set, and then the top ranking parameters are the minimal ventricular elastance Emin,lv

and the end pulse time for the left ventricle τep,lv . Where as in set 4C, pressures associated with the pulmonary system
have just been added, then the top ranking parameters are the right atrial activation time Eshift,ra and the minimal
elastance for the right ventricle Emin,rv . Despite the change in rankings, we note that a similar set of input parameters
are recorded as influential input parameters, with just minor changes when new output measurements are added. As
observed in the discrete measurement set, when more input parameters are regarded as influential, the concentration of
influence decreases and is more evenly spread between the input parameters with an influence value greater than 0.01.

Figure 5 shows that for any continuous measurement set, the system can be regarded as sloppy. When increasing the
output measurements, the set of sloppiness decreases, with the eigenvalue spectra decreasing from a range of 10−16 to
10−6. Compared to the discrete sloppy analysis (figure 4), input parameters in the stiff direction exhibit larger values
than observed previously.

4.3 Mixed Measures

When combing both discrete and continuous measurements, the results in table 7 show a similar structure to that
observed when only continuous measurements are utilised. When only BPN is the only output, all input parameters
record an influence greater than 0.01, despite the noise, there are still clear influence parameters (Csa, Rsvb and τes,lv)
which could be regarded as biomarkers. However, when we introduce the noise free BP, the influence values associated
with the biomarkers increase largely. At set 4A, the first continuous measurement is introduced alongside the previous
discrete ones, as a consequence we observe the number of input parameters with influence greater than 0.01 grows from
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Measurement Sets

1A 1B 1C 1D 1E 1F

P E P E P E P E P E P E

Emin,lv 0.57 Emin,lv 0.32 τes,lv 0.38 Eshift,la 0.21 Eshift,la 0.19 Eshift,la 0.11
Rsvb 0.26 Eshift,la 0.16 Emin,lv 0.14 τep,lv 0.18 τep,lv 0.15 Eshift,ra 0.1
Csa 0.23 Rsvb 0.16 Rsvb 0.1 Emin,lv 0.07 Emin,lv 0.06 τep,lv 0.08
τes,lv 0.16 Cpa 0.14 Csa 0.06 τes,lv 0.06 τes,lv 0.05 Emin,lv 0.04
Cpv 0.15 Csv 0.12 Emax,lv 0.06 Rsvb 0.03 τes,rv 0.05 τes,rv 0.04

Eshift,la 0.13 Csa 0.11 Eshift,la 0.05 Cpa 0.03 Rsvb 0.03 τes,lv 0.03
Emax,lv 0.13 Rpvb 0.11 Csv 0.04 Emin,la 0.03 Cpa 0.03 τep,rv 0.03
Csv 0.12 τes,rv 0.1 Cpa 0.04 Csv 0.02 Emin,la 0.02 Rsvb 0.02

Eshift,ra 0.08 Cpv 0.1 Cpv 0.04 Emax,la 0.02 Csv 0.02 Cpa 0.02
Emax,la 0.08 Emax,lv 0.09 Rpvb 0.03 Rpvb 0.02 Emax,la 0.02 Csv 0.02
Emin,rv 0.08 τes,lv 0.09 Eshift,ra 0.03 τes,rv 0.02 Rpvb 0.02 Rpvb 0.01
Emax,rv 0.07 Eshift,ra 0.07 τes,rv 0.03 Csa 0.01 Csa 0.02 Emin,la 0.01
Cpa 0.07 Emin,rv 0.07 Emin,rv 0.03 Emax,lv 0.01 Emax,lv 0.02 Emin,rv 0.01
Rpvb 0.04 Emax,la 0.06 τep,lv 0.02 Cpv 0.01 Cpv 0.01 Emax,la 0.01

Emax,ra 0.03 Emax,rv 0.05 Emax,la 0.02 Eshift,ra 0.01 Emin,rv 0.01 Emax,lv 0.01
Rsv 0.02 τep,lv 0.04 Emin,rv 0.01 Eshift,ra 0.01 Csa 0.01

Emin,la 0.02 Emin,la 0.03 Cpv 0.01
Emax,ra 0.02

Measurement Sets

2A 2B 2C 2D 3A 3B

P E P E P E P E P E P E

τep,lv 0.18 τep,lv 0.12 Eshift,la 0.11 Eshift,ra 0.16 τep,lv 0.12 Emin,lv 0.1
Eshift,la 0.06 Eshift,ra 0.1 τep,lv 0.1 Eshift,la 0.06 Emin,lv 0.09 τep,lv 0.08
Emin,lv 0.04 Eshift,la 0.06 Emin,lv 0.08 Emin,lv 0.05 Eshift,ra 0.08 Rsvb 0.08
Eshift,ra 0.04 Emin,lv 0.05 Eshift,ra 0.06 τep,lv 0.04 Eshift,la 0.07 Eshift,ra 0.07
τes,lv 0.03 τes,rv 0.03 Emin,la 0.05 Emin,rv 0.03 Emin,la 0.04 Eshift,la 0.07

Emax,lv 0.02 τes,lv 0.03 Emax,lv 0.03 Emin,la 0.03 τes,lv 0.03 τes,lv 0.07
τes,rv 0.02 τep,rv 0.03 τes,lv 0.02 τep,rv 0.03 Emax,lv 0.03 Emin,la 0.04
Rsvb 0.02 Emax,lv 0.02 Csv 0.02 Csv 0.02 Csv 0.02 Emax,lv 0.03
Csv 0.02 Csv 0.02 τes,rv 0.02 Emin,ra 0.02 Emin,rv 0.02 Csv 0.03
Cpa 0.01 Rsvb 0.02 Rsvb 0.02 τes,rv 0.02 Rsvb 0.02 Emin,rv 0.03
Csa 0.01 Emax,rv 0.02 Emax,la 0.02 Emax,rv 0.02 Emax,rv 0.02 Csa 0.03

Emin,la 0.01 Cpa 0.01 Emax,rv 0.02 Emax,lv 0.02 Cpv 0.02 Cpv 0.03
Cpv 0.01 Emin,rv 0.01 Cpa 0.02 Rsvb 0.02 Csa 0.02 Emax,rv 0.02

Emin,rv 0.01 Csa 0.01 Csa 0.02 Emax,ra 0.02 τes,rv 0.02 Emax,la 0.02
Cpv 0.01 Cpv 0.02 Cpa 0.01 Cpa 0.02 Cpa 0.02

Emin,la 0.01 Emin,rv 0.02 τes,lv 0.01 Emax,la 0.01 τes,rv 0.02
τep,rv 0.01 Cpv 0.01 τep,rv 0.01 τep,rv 0.01
Rpvb 0.01 Emax,la 0.01 Emin,ra 0.01 Emin,ra 0.01

Csa 0.01 Emax,ra 0.01 Emax,ra 0.01

Measurement Sets

4A 4B 4C 4D

P E P E P E P E

Emin,lv 0.09 Emin,lv 0.09 Eshift,ra 0.18 Eshift,ra 0.16
Eshift,ra 0.08 Eshift,ra 0.09 Emin,rv 0.05 Emin,lv 0.08
Rsvb 0.07 Rsvb 0.07 Emin,lv 0.05 Emin,rv 0.05
τep,lv 0.06 τep,lv 0.06 Rsvb 0.04 Rsvb 0.04

Eshift,la 0.06 Eshift,la 0.05 Csv 0.03 Eshift,la 0.04
Emin,rv 0.04 Emin,rv 0.04 Eshift,la 0.03 Csv 0.03
τes,lv 0.03 Csv 0.04 Emin,ra 0.03 τep,lv 0.03

Emin,la 0.03 Emin,la 0.03 τep,rv 0.03 Emin,la 0.03
Csv 0.03 τes,lv 0.03 τep,lv 0.02 Emin,ra 0.03

Emax,lv 0.03 Emax,lv 0.03 Emax,rv 0.02 Emax,rv 0.03
τep,rv 0.02 τes,rv 0.03 τes,rv 0.02 Emax,lv 0.02
τes,rv 0.02 τep,rv 0.03 Emax,ra 0.02 τep,rv 0.02

Emax,rv 0.02 Emax,rv 0.02 Emin,la 0.02 τes,rv 0.02
Csa 0.02 Cpv 0.02 Emax,lv 0.01 Cpv 0.02
Cpv 0.01 Csa 0.01 Cpv 0.01 Emax,ra 0.02
Cpa 0.01 Cpa 0.01 Cpa 0.01 τes,lv 0.02

Emin,ra 0.01 Rpvb 0.01 τes,lv 0.01 Csa 0.02
Emax,la 0.01 Emin,ra 0.01 Rpvb 0.01 Cpa 0.02
Emax,ra 0.01 Emax,ra 0.01 Csa 0.01 Rpvb 0.01

Emax,la 0.01 Emax,la 0.01

Table 6: Input parameter rankings for continuous measurements: Averaging across all output space, we display the
input parameter rankings and its respective influence value for increasing continuous measurements.
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Figure 4: Discrete measures - sloppy analysis: The eigenvalues of the Fisher information matrix for increasing discrete
measurements are displayed on a log10 scale.

9 in set 3D to 17 in set 4A. In set 7D which contains all discrete and continuous measurements, the exact same ranking
as set 4D in table 6 displays, although the values of influence vary slightly. This indicates that continuous measurements
dominate, when obtaining influential input parameters for a set of measurements. This pattern is also present in figure
6, where once continuous measurements are introduced to the output list, sloppiness appears and the eigenvalues
are greater than 100 with an eigen-spectrum ranging from 10−12 for set 4B decreasing down to 10−6 for set 7D. In
sets 5A to 5D, the maximum flow in each chamber compartment was added to the optimisation process as a discrete
measurement. Despite the number of discrete measurements outnumbering the number of continuous measurements,
the addition of these discrete values had no influence on the ranking or sensitivity of the most influential parameters. It
is important to note, however, that the maximum value of flow is contained in the continuous measurement so in affect
no new information is provided to the solver, rather a weighting on the maxima of the flow is applied.
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Figure 5: Continuous measures - sloppy analysis: The eigenvalues of the Fisher information matrix for increasing
continuous measurements are displayed on a log10 scale.
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Measurement Sets

1 2 3A 3B 3C 3D 4A 4B 4C 4D 4E 4F 5A

P E P E P E P E P E P E P E P E P E P E P E P E P E

Csa 0.22 Csa 0.80 Csa 0.44 Rsvb 0.34 Rsvb 0.26 Eshift,ra 0.24 Emin,lv 0.44 Emin,lv 0.27 τes,lv 0.38 τep,lv 0.25 τep,lv 0.20 τep,lv 0.11 τep,lv 0.11
Rsvb 0.21 Rsvb 0.60 Rsvb 0.43 Csa 0.33 Csa 0.26 Rsvb 0.10 Rsvb 0.29 Cpa 0.16 Emin,lv 0.11 Eshift,la 0.16 Eshift,la 0.14 Eshift,la 0.09 Eshift,la 0.09
τes,lv 0.17 τes,lv 0.04 Emax,lv 0.24 Emax,lv 0.18 Emax,lv 0.14 Csa 0.10 Csa 0.23 Rsvb 0.16 Rsvb 0.09 Emin,lv 0.06 τes,rv 0.05 Eshift,ra 0.09 Eshift,ra 0.09

A
llinputparam

eters
register

E
>

0.01

V0,lv 0.04 V0,lv 0.03 V0,lv 0.03 Emax,lv 0.06 Csv 0.22 Eshift,la 0.16 Csv 0.06 τes,lv 0.05 Emin,lv 0.05 τes,rv 0.05 τes,rv 0.05
τes,lv 0.02 Emax,rv 0.02 Emax,rv 0.02 Emax,ra 0.04 τes,lv 0.17 Csv 0.14 Emax,lv 0.06 Cpa 0.03 τes,lv 0.04 Emin,lv 0.04 Emin,lv 0.04

τes,lv 0.02 τes,lv 0.02 τep,rv 0.02 Eshift,ra 0.13 τes,rv 0.12 Csa 0.05 Rsvb 0.02 Cpa 0.03 τep,rv 0.03 τep,rv 0.03
Emin,rv 0.02 Emax,lv 0.13 Rpvb 0.11 Eshift,la 0.05 Csv 0.02 Rsvb 0.02 τes,lv 0.03 τes,lv 0.03
Emax,rv 0.01 Emin,rv 0.12 Csa 0.10 Cpa 0.04 Emin,la 0.02 Csv 0.02 Cpa 0.02 Cpa 0.02
V0,lv 0.01 Cpv 0.11 Eshift,ra 0.09 Eshift,ra 0.03 τes,rv 0.02 Emin,la 0.02 Rsvb 0.02 Rsvb 0.02

Eshift,la 0.10 Emax,lv 0.08 Emin,rv 0.03 Rpvb 0.02 Rpvb 0.02 Csv 0.02 Csv 0.02
Emax,rv 0.08 Emin,rv 0.08 Cpv 0.03 Emax,la 0.02 Emax,la 0.01 Emin,rv 0.01 Emin,rv 0.01
Emax,la 0.06 Cpv 0.08 Rpvb 0.03 Emax,lv 0.01 Emax,lv 0.01 Rpvb 0.01 Rpvb 0.01
Emax,ra 0.04 τes,lv 0.07 τes,rv 0.03 Eshift,ra 0.01 Emin,rv 0.01 Emin,la 0.01 Emin,la 0.01
Rsv 0.04 Emax,rv 0.05 Emax,rv 0.02 Emin,rv 0.01 Eshift,ra 0.01 Emax,lv 0.01 Emax,lv 0.01
Cpa 0.03 Emax,la 0.04 Emax,la 0.02 Csa 0.01 Csa 0.01 Emax,la 0.01 Emax,la 0.01
Rpvb 0.03 τep,lv 0.04 τep,lv 0.01 Cpv 0.01 Cpv 0.01

Emin,la 0.01 Emax,ra 0.03 Emax,ra 0.01
Rsv 0.03 Rsv 0.01

Emin,la 0.03

Measurement Sets

5B 5C 5D 5E 5F 5G 5H 6A 6B 7A 7B 7C 7D

P E P E P E P E P E P E P E P E P E P E P E P E P E
τep,lv 0.11 τep,lv 0.11 τep,lv 0.11 τep,lv 0.17 τep,lv 0.11 Eshift,la 0.11 Eshift,ra 0.16 τep,lv 0.12 Emin,lv 0.10 Emin,lv 0.09 Emin,lv 0.09 Eshift,ra 0.18 Eshift,ra 0.16

Eshift,la 0.09 Eshift,la 0.09 Eshift,la 0.09 Eshift,la 0.06 Eshift,ra 0.10 τep,lv 0.09 Eshift,la 0.06 Emin,lv 0.09 τep,lv 0.08 Eshift,ra 0.09 Eshift,ra 0.09 Emin,rv 0.05 Emin,lv 0.08
Eshift,ra 0.09 Eshift,ra 0.09 Eshift,ra 0.09 Emin,lv 0.05 Eshift,la 0.06 Emin,lv 0.07 Emin,lv 0.05 Eshift,ra 0.08 Rsvb 0.08 Rsvb 0.07 Rsvb 0.07 Emin,lv 0.05 Emin,rv 0.05
τes,rv 0.05 τes,rv 0.05 τes,rv 0.05 Eshift,ra 0.04 Emin,lv 0.05 Eshift,ra 0.06 τep,lv 0.04 Eshift,la 0.07 Eshift,ra 0.07 τep,lv 0.06 τep,lv 0.05 Rsvb 0.04 Rsvb 0.04
Emin,lv 0.04 Emin,lv 0.04 Emin,lv 0.04 τes,lv 0.03 τes,rv 0.03 Emin,la 0.05 Emin,rv 0.03 Emin,la 0.04 Eshift,la 0.06 Eshift,la 0.06 Eshift,la 0.05 Csv 0.03 Eshift,la 0.04
τep,rv 0.03 τep,rv 0.03 τep,rv 0.03 Emax,lv 0.02 τep,rv 0.03 Emax,lv 0.03 Emin,la 0.03 τes,lv 0.03 τes,lv 0.04 Emin,rv 0.04 Emin,rv 0.04 Emin,ra 0.03 Csv 0.03
τes,lv 0.03 τes,lv 0.03 τes,lv 0.03 τes,rv 0.02 τes,lv 0.03 τes,lv 0.03 τep,rv 0.03 Emax,lv 0.03 Emin,la 0.03 τes,lv 0.03 Csv 0.03 Eshift,la 0.03 τep,lv 0.03
Cpa 0.02 Cpa 0.02 Cpa 0.02 Rsvb 0.02 Emax,lv 0.02 Csv 0.02 Csv 0.03 Csv 0.02 Emax,lv 0.03 Emin,la 0.03 Emin,la 0.03 τep,rv 0.02 Emin,la 0.03
Rsvb 0.02 Rsvb 0.02 Rsvb 0.02 Csv 0.02 Rsvb 0.02 τes,rv 0.02 Emin,ra 0.02 Emin,rv 0.02 Csv 0.03 Csv 0.03 τes,lv 0.03 τes,lv 0.02 Emin,ra 0.02
Csv 0.02 Csv 0.02 Csv 0.02 Cpa 0.01 Csv 0.02 Rsvb 0.02 τes,rv 0.02 Rsvb 0.02 Emin,rv 0.02 Emax,lv 0.03 Emax,lv 0.03 Emax,rv 0.02 Emax,rv 0.02

Emin,rv 0.01 Emin,rv 0.01 Emin,rv 0.01 Csa 0.01 Emax,rv 0.02 Emax,la 0.02 Emax,rv 0.02 Emax,rv 0.02 Csa 0.02 τep,rv 0.02 τes,rv 0.03 τes,rv 0.02 Emax,lv 0.02
Rpvb 0.01 Rpvb 0.01 Rpvb 0.01 Emin,la 0.01 Cpa 0.02 Emax,rv 0.02 Emax,lv 0.02 τes,rv 0.02 Cpv 0.02 τes,rv 0.02 τep,rv 0.02 Emax,ra 0.02 τep,rv 0.02

Emin,la 0.01 Emin,la 0.01 Emin,la 0.01 Cpv 0.01 Emin,rv 0.02 Cpa 0.02 Rsvb 0.02 Cpv 0.02 Emax,rv 0.02 Emax,rv 0.02 Emax,rv 0.02 Emin,la 0.02 τes,rv 0.02
Emax,lv 0.01 Emax,lv 0.01 Emax,lv 0.01 Emin,rv 0.01 Csa 0.01 Csa 0.02 Emax,ra 0.02 Csa 0.02 Emax,la 0.02 Csa 0.02 Cpv 0.02 Emax,lv 0.02 Cpv 0.02
Emax,la 0.01 Emax,la 0.01 Emax,la 0.01 Cpv 0.01 Cpv 0.02 τes,lv 0.02 Emax,la 0.01 τes,rv 0.01 Cpv 0.02 Csa 0.02 Cpv 0.01 Emax,ra 0.02

Emin,la 0.01 Emin,rv 0.01 Cpa 0.02 Cpa 0.01 Cpa 0.01 Cpa 0.02 Cpa 0.02 Cpa 0.01 τes,lv 0.02
τep,rv 0.01 Cpv 0.01 τep,rv 0.01 Emin,ra 0.01 Emin,ra 0.02 Rpvb 0.02 τes,lv 0.01 Csa 0.02
Rpvb 0.01 Emax,la 0.01 Emin,ra 0.01 τep,rv 0.01 Emax,ra 0.01 Emin,ra 0.02 Rpvb 0.01 Cpa 0.02

Csa 0.01 Emax,ra 0.01 Emax,ra 0.01 Emax,ra 0.01 Emax,ra 0.01 Csa 0.01 Rpvb 0.01
Emax,ra 0.01 Emax,la 0.01

Table 7: Input parameter ranking for mixed measurements: The input parameter ranking and its respective influence value, averaging across all outputs, for
increasing mixed measurements.
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Figure 6: Mixed measures - sloppy analysis: The eigenvalues of the Fisher information matrix for every other
increasing mixed measurements are displayed on a log10 scale.

5 Discussion

Our study aims to assess the impact of experimental design on the input parameter influence and the system sloppiness.
Overall, the results largely agree with previous work: continuous measurements lead to a larger selected subset of
input parameters as prime candidates for personalisation in a cardiovascular DT [53, 43, 56]. When only discrete
measurements are used, there is a smaller and more concentrated subset of identifiable input parameters. Perhaps
surprising is the quantitative extent of this disparity. Only when the largest discrete measurement set, 3F, is examined,
we obtain the same number of input parameters with a value greater than 0.01, compared to the first continuous
measurement set 1A.

We also observe that as the size of the output set increases, the influence between input parameters appears
to become more evenly distributed. For example, for the discrete measurements results shown in table 5, the systemic
vascular bed resistance Rsvb and arterial compliance Csa rank as the most influential parameters for all measurement
sets except 2D. In set 1, Csa and Rsvb have influence values of 0.8 and 0.6 respectively. However, in set 3F, when the
dimensionality of output space increases to 11, these two parameters’ influence values decrease to 0.11 and 0.13.

The first sloppy analysis of this cardiovascular model indicates that discrete measurements do not introduce
sloppiness into the system, whereas for continuous measurements, the system begins to exhibit sloppy behaviour.
Through the perspective of creating DTs, the stiff input parameters are clearly identified using discrete measurements
which would lead to easier identification of a personalised global minimum parameter set. When using the combination
of both the continuous and discrete measurement sets, as they increase in size, the number of stiff input parameters
which can be considered as prime candidates for personalisation increases. Sloppiness provides a view into the structure
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of the input parameter space and an insight for why more “influential" input parameters appear when the dimensionality
of the output grows. As more measurements are added, there is a noticeable change in the structure of the response
surface, providing more guidance towards the personalisable global minimum. It should be noted that as more and more
continuous signals are added, more outputs of the model are constrained. Therefore the increasing number of equally
significant parameters is unsurprising. For specific use cases, this suggests that, where multiple data are available, a
weighting of the most important clinical features may be required in the optimisation function to identify the required
biomarkers.

When creating a virtual representation of a patient, it is still an open question whether the DT should be per-
sonalised to a specific condition or encapsulate the full physiological envelope of a patient [21, 8, 2]. Our experiments
and analysis provides an insight to this question: if one wishes to capture a full physiological envelope through
the DT, a number of continuous measurements are essential. This is due to the larger number of influential input
parameters, along with the higher values of stiff eigenvalues, when compared to the discrete measurement setting. This
approach brings practical problems of course, because of the invasive nature associated with obtaining some continuous
measurements (for example, ventricular pressure). A patient would have to be subject to a series of invasive tests with
associated risks, in order to generate the data to for a personalised DT. Alongside this, continuous measurements have
shown a higher set of sloppiness, indicating that a computationally expensive optimisation routine may have to be
utilised to generate the virtual patient representation. Conversely, if the purpose of a DT is to target specific conditions,
a set of non-invasive discrete measurements poses as an alternative. Although there is a smaller number of identifiable
input parameters in this case, the influence is concentrated strongly around the biomarkers relevant to the discrete
metrics. In addition, because the system does not exhibit sloppy behaviour, the personalisation process using discrete
measurements may be more efficient than its continuous counterparts. Additionally, continuous measurements taken
clinically are also susceptible to noise from several sources, including equipment accuracy and differences in method
between operators. In the case of time series data, noise can be present at varying sets at each time step, and therefore
it is expected that noise in continuous data will have an increased effect on model sloppiness and parameter identifiability.

One problem of the sloppy analysis is the subjectivity in diagnosing whether sloppiness is present within a
system. In this work, we have used the common definition of evenly spaced eigenvalues on a log scale, distributed over a
minimum range of 106 orders of magnitude [59, 61]. The lack of sloppiness is clear in the discrete measurements setting
(see figure 4). In the case of continuous measurements, when the measurement set increases, the distribution of eigen-
values (figure 5), while still evenly spaced, reduces from a spread of 1016 to just 106 (i.e., more input parameters are in
the stiff direction than before). But does this change in an apparent reduction in sloppiness actually align with intuition?
Given the increase of parameters in the stiff direction, one would assume more accurate optimisation of the input pa-
rameters when compared to set 1. However, this remains an open question and requires an additional study to investigate.

The study of sloppiness is common practice in most other areas of systems biology, however, this is not the
case for cardiovascular models. The concept of sloppiness provides an important insight for examining the
personalisability of cardiovascular models. By assessing the stiff and sloppy directions generated from the input
parameters, sloppy analysis provides an alternative approach to identify optimal subsets for personalisation, compared
to other methods such as profile likelihood and combining sensitivity and orthogonality [83, 56, 77]. This is an
interesting area which should be explored in future research. When attempting to personalise a DT, there are several
stages and sloppy analysis belongs to the vital off-line stage in which prime candidates for personalisation are identified.
This off-line stage enables us to identify biomarkers for which can be personalised to produce the virtual representation
of a patient. The off-line stage is vital because once patient data are introduced, any additional issues occurring during
personalisation can then be attributed to issues within the clinical data. If we examine the parameters in figures 4-6 we
observe that the rankings obtained by the analysing their influence (tables 5-7) are the same rankings obtained through
the sloppy analysis. So in the discrete setting the systemic vascular bed resistance Rsvb and the arterial compliance Csa

exhibit the largest eigenvalues making them the stiffest parameters in that setting. Thus these parameters are prime
candidates for personlisation.

For the personalisation of cardiovascular DTs, the process in which this happens must operate on a multi-
dimensional input parameter space in which some points give accurate representation of a patient’s physiological and
pathophysiological state. Currently, much analysis on the input parameter space and the identification of the optimal
parameter subset for personalisation are conducted on a local basis [23, 84, 85]. For example, it is still the norm to form
the sensitivity matrices through local methods when analysing system sloppiness [34, 33]. If sloppy analysis is to
be utilised more in the identification of biomarkers, local analysis should not be adopted for larger, more complex
circulatory models. Personalisation is a global process, therefore it is vital to understand and quantify the global
behaviour and the structure present within the input parameter space. This is why we have conducted our sloppiness
analysis using the global sensitivity analysis outcomes in this work.
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In order to perform such an extensive study, the associated computational expense is another important fac-
tor to consider. In total, we have tested 48 individual experimental designs, for each of which a sensitivity analysis has
been performed with 75,000 samples to ensure convergence [73]. As our chosen global sensitivity method is Sobol
indices [77, 23, 51], this means for each experimental design, 75000× (36 + 2) = 2.85× 106 model evaluations are
required. Thus for 48 independent experimental designs, we have solved the 4-chamber model 136.8 million times.
This study has only been made feasible due to the superior computational speed exhibited by DifferentialEquations.jl
within Julia in solving the dynamical system for a single model run including 30 cycles took 0.060246(s). When
personalising DTs, computationally efficient and accurate tools should be utilised where possible, for the most effective
allocation of computational resources for all stages of DT development. Of further interest in the development of
LPMs in clinical use is the ability to validate the results of the model. Validation must be suitable for the context of
use [86], and therefore also plays a key factor in experimental design, defining the clinical measurements taken and
the choice of model output. Experimental design is therefore constricted not only by model behaviour as analysed
here, but by clinical requirements. The requirement for testing in the context of use is one of the limitations of general
cardiovascular models, as each use case must be included in the validation.

Alongside LPMs, there is also extensive research in higher dimensional (e.g. 1D, 2D and 3D) cardiovascular
models which can be utilised as DTs [7, 87, 88]. The set of physiological details in these models is usually far superior
to what can be established in LPMs. The main drawback or compromise, is the lack of ability to simulate global
haemodynamics because of the astronomical computational cost. If we were able to create a full cardiovascular
circulation representation, which could adapt to pathophysiological states, we would then be able to observe and predict
other circulatory diseases, on top of the one in which the current condition occurs. Physiologically detailed models of a
single piece of vessel or a compartment are of course of great importance, to further biological understanding where
invasive clinical assessments are inappropriate or unethical. One promising area of the cardiovascular digital twin
development is in the creation of multi-scale, multi-modal models, combining both LPMs and physiologically detailed
higher dimensional representations of specific vessels or valves [44, 89]. This approach combines the advantages
of both modelling domains and forms an attractive avenue for future research in cardiovascular personalisation and
building DTs.

6 Conclusion

Our study highlights the importance of the experimental design for the quantification of input parameter influence and
the associated sloppiness, for a lumped parameter personalised cardiovascular digital twin. Using a realistic 4-chamber
36-parameter LPM as a test bench, we investigated 48 independent experimental designs. The most significant findings,
corresponding to the ones identified in Section 2.3, are: (i) Input parameter identifiability is not consistent when
subject to varied measurement data and depends on the chosen experimental design. (ii) Sloppiness is present in LPMs,
when the chosen experimental design contains continuous measurements. (iii) The personalisation of a digital twin to
encompass a person’s complete physiological envelope necessitates invasive tests to obtain continuous measurements.
Although this approach offers an increased number of identifiable parameters with potentials to be biomarkers, it comes
at the expense of a sloppy system which in turn increases the difficulty in parameter identification. Conversely, discrete
metrics may provide a simpler personalisation approach, yielding less identifiable but more targeted biomarkers, due to
the absence of sloppiness in the system.
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