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ABSTRACT

Motion representation plays an important role in video under-
standing and has many applications including action recogni-
tion, robot and autonomous guidance or others. Lately, trans-
former networks, through their self-attention mechanism ca-
pabilities, have proved their efficiency in many applications.
In this study, we introduce a new two-stream transformer
video classifier, which extracts spatio-temporal information
from content and optical flow representing movement infor-
mation. The proposed model identifies self-attention features
across the joint optical flow and temporal frame domain and
represents their relationships within the transformer encoder
mechanism. The experimental results show that our proposed
methodology provides excellent classification results on three
well-known video datasets of human activities.

Index Terms— Video Transformer, Optical Flow, Two-
Stream video processing, Video Action Classification.

1. INTRODUCTION

Video action classification is an active research area with
many applications related to improving the society well-being
and security. So far video processing and understanding re-
lied on applying Convolutional Neural Networks (CNNs) to
various tasks. Good video classification results have been
obtained by multi-stream video processing networks such
as the Slow-Fast model [8] where RestNet [14] was used
as the backbone for extracting multi-stream data, as well as
the Busy-Quiet model [17]. However, recently transformers
have emerged as a powerful deep learning network relying
to their self-attention mechanism. Current state-of-the-art
transformers [6, 24, 39] achieve better results than CNNs on
standard video benchmark databases such as UCF101 [31]
and HMDB51 [21], Kinetic-400 dataset [19], and Something-
Something V2 [13]. Multi-view transformers was lately have
shown their efficiency in [39].

Video action recognition, when compared to image clas-
sification, raises many additional challenges posed by the un-
certainty with respect to the video capturing conditions, be-
cause of the variability of the environment or of the captur-
ing parameters. Moreover, video classification also requires

additional training resources including training examples and
computational resources. The traditional two-stream archi-
tectures [2, 11, 17, 27, 32, 40], consider training separate
network branches decomposing the video into two different
streams. Lately, neural networks are increasingly being used
for optical flow estimation. The performance of the neural op-
tical flow model is excellent when compared with the output
of hand-crafted methods as shown in several studies [5, 34].

This research study develops a model for efficiently ex-
tracting and using representation features for video classifica-
tion. Transformers are shown to be able to intrinsically detect
the similarities in data. A transformer-based architecture fus-
ing scene and movement features from video through a self-
attention mechanism by a video transformer, is proposed in
this research study for video classification. The transformer
self-attention mechanism is shown to jointly model efficiently
video features from the content defined by sets of frames and
the movement from the corresponding optical flow.

The rest of the paper is organized as follows. In Section 2
we provide an overview of the related work on video action
recognition using deep network architectures. In Section 3
we introduce the proposed two-stream video transformer
processing approach. The video action classification perfor-
mance is evaluated in Section 4 followed by the discussion of
the results and comparisons with other models. The conclu-
sions are drawn in Section 5.

2. RELATED WORK

Traditional video classification research has been successful
at developing video descriptors encoding both appearance and
motion information [2, 11, 27, 30, 32, 33, 38, 40]. Prior
approaches [30] employ two-stream convolution neural net-
works for action recognition in videos. They show that their
network combines single spatial features and temporal optical
flow features then using class score fusion for video recogni-
tion. Non-local video operators have been studied in [16]. In
[11] presents the study of fusion features between the single
spatial and temporal optical flow feature.Moreover, in [32]
the effectiveness by using the optical flow for motion repre-
sentation was shown. With the optical flow guidance, they
can achieve the video action classification. Traditional opti-



Fig. 1: The two-stream temporal transformer. The raw frames
and optical flow are fed as inputs into the transformer neu-
ral network. The extracted features are then processed by
the transformer encoder. Finally, a Multi-Layer Perceptron
(MLP) is used to classify the video classes.

cal flow such as [15] is used to extract motion features and
CNNs neural network is a neural network for learning both
spatial and temporal features. MoNet [33] also provides the
optical flow prediction without the heavy optical flow com-
putation and improves the video classification performance.
The authors of [29] also applied optical flow features together
with the spatial features and the Long Short-Term Memory
(LSTM) CNN [44] were used to achieve video action recog-
nition. In addition, the Slow-Fast model [8] approach em-
ploys local appearance and movement information using var-
ious features, which are then fused to produce a global video-
level descriptor.

Currently, the transformer model [36] is increasingly em-
ployed in various video classification tasks [6, 24, 26, 39].
The recent successes of the transformer approach for video
classification in the multi-scale vision transformer version 1
[6] and the corresponding improved processing time version
2 [24] by using a transformer for encoding video patches
into a deep scale data representation have opened an entire
new area of applications for deep networks. The multi-view
transformer [39] uses different frame frequencies for different
input views. In addition, [12] also uses a two-stream spatio-
temporal convolutional network employing a spatial-based
transformer as well as a temporal transformer which feeds
into a separate MLP. Then, both MLPs are merged for the
final video classification output. However, no attempts have
been made through using a transformer for identifying self-
attention similarities in the content and movement and for
optimally fusing motion information and temporal features
for characterizing video information. Moreover, a neural
network model such as the FlowFormer [18] and RAFT

[34], have shown significant improvements in optical flow
estimation over classical hand-crafted movement estimation
algorithms.

3. METHODOLOGY

In this study, we aim to classify videos by using two data
streams representing both static scene and movement rep-
resentations as inputs. The scene content is indicated by a
series of image frames, obtained by temporally sub-sampling
the videos, thus reducing the information being processed,
while the movement is represented by the corresponding
optical flow. We propose to use an efficient transformer back-
bone which enables the extraction of video features from
selected frames and their corresponding optical flows. The
transformer encoder finds self-similarities in such features
spanning both fused content and movement latent spaces and
fuses such features eventually enabling data characteristics
recognition. We present the overview of our proposed model
in Fig 1.

3.1. Optical flow as movement representation

First, we consider a neural network for predicting the optical
flow instead of using a classical handcraft extraction. In gen-
eral, the flow will indicate the displacement of every single
pixel, or of groups of pixels, between a pair of images. Given
a pair of consecutive RGB images, I1, I2, the model will es-
timate a dense displacement field (f1,f2) which maps each
pixel (u, v) in I1 to its corresponding coordinates in I2 as in
the following :

(u′, v′) = (u+ f1(u), v + f2(v)) (1)

In the first stage, of preparing the training data, we sample
a sequence of image frames from each given video sequence.
Two consecutive frames will be used as a pair for predicting
the flow. We consider RGB images for visualizing the opti-
cal flow, where the colour indicates the direction of the local
movement vector. Examples of various optical flow repre-
sentations are illustrated in Fig 2b,d,f for the corresponding
frames from Fig 2a,c,e, respectively. This demonstrated the
clear movement of objects. Consequently, we can apply the
process of the movement data in the same way as the sampled
video frames.

3.2. Video Transformer

In this section, we describe the video transformer operation,
which is used to model the self-attention mechanisms within
an increasing spatio-temporal resolution representation of
video frames and corresponding movement flow. Both RGB
and optical flow inputs are of size T × H × W × C, where
T corresponds to the number of frames H corresponds to
the height W corresponds to the width and C corresponds



(a) UCF101 Input image (b) UCF101 Optical flow image

(c) HMDB51 Input image (d) HMDB51 Optical flow image

(e) SSv2 Input image (f) SSv2 Optical flow image

Fig. 2: Examples of frames and their corresponding optical
flow prediction, where the optical flow is estimated by the
RAFT model [34] on videos from UCF101, HMDB51, and
SSv2 dataset. Each direction in the flow is mapped to a RGB
color, according to the vector orientation.

to the number of channels. After flattening each image and
corresponding optical flow. Segmented spatio-temporal ten-
sor defined patches X ∈ RT×H×W×C are then processed
by the transformer. Following the attention mechanism,
the transformer projects the input X into the query tensor
Q ∈ RT×H×W×C , key tensor K ∈ RT×H×W×C , and value
tensor V ∈ RT×H×W×C . The input of the transformer
consists of query and keys of dimension dk, and values of di-
mension dv . Then compute the dot products of the query with
all keys, divide each by

√
dk, and apply a softmax function to

obtain the weights on the values as described in :

Attn(Q,K,V) = softmax

(
QKT

√
dk

)
V. (2)

The self-attention mechanism of the transformer is de-
ployed in the spatio-temporal representation of the video
space, using pooling operations in order to reduce the latent
tensor dimension instead of considering reducing the input
pixel tensor dimension. Reducing the latent tensor dimension
speeds up the video processing. Finally, the transformer en-
codes each input into a certain feature vector. Various types

of transformers are considered in the experimental results
including the Multi-scale vision transformer (MViTv2) [24]
and the video Swin transformer [26], each achieving remark-
able successes according to their original research studies.

3.3. Two-Stream Fusion and Classification

Unlike in other applications, such as when using CNN net-
works, the transformer encoder enables the self-attention
mechanism on fused features instead of simply concatenat-
ing them into a single vector. The two-stream architecture
encodes RGB frame and optical flow frame into output fea-
tures vectors Or and Of , respectively. Each output vector
considers a Do dimensional output tensor O of length Lo,
Or ∈ RLo×Do , Of ∈ RLo×Do . The output vector with the
extra class learnable vector Xclass ∈ RLo×Do is mapped
with the positional embedding Epos for the transformer input
like in the ViT [4] and described in the following :

X = [Xclass;O
1
rE;O2

fE; ] +Epos. (3)

Where E ∈ RLo×Do , Epos ∈ R(N+1)×Do , and N is the
number of inputs equal to 2. Considers a D dimensional in-
put tensor X of sequence length L, X ∈ RL×D. Instead
of performing a single attention function with D-dimensional
keys, values, and queries, we apply the Multi-Head Attention
(MHA) in order to linearly project the queries, keys, and val-
ues h times with different, learned linear projections to dk,
dk and dv dimensions, respectively. Following the MHA, we
project the input X into the query tensor Q ∈ RL×D, key ten-
sor K ∈ RL×D, and value tensor V ∈ RL×D. On each of the
projected versions of query, keys, and values we then perform
the attention function in parallel, yielding dv output values.
These are concatenated and once again projected, resulting in
the final values given by :

MHA(Q,K,V) = Concat(head1, ..., headh)W
o

headi = Attn(QWQ
i ,KWK

i ,VWV
i )

(4)

where WQ
i ∈ RL×D, WK

i ∈ RL×D, WV
i ∈ RL×D, and

Wo ∈ Rhdv×D. In this work, we employ h = 8 parallel at-
tention layers, or heads. For each of these, we use dk = dv =
D/h = 96. For the classification module, we apply the MLP
network consisting of three layers starting with a normaliza-
tion layer followed by a dropout layer. Then the final layer is
a fully-connected linear layer for the classifier.

4. EXPERIMENTAL RESULTS

In this section, we first discuss the details of the datasets
UCF101, HMDB51, and Something-Something V2 used in
the experiments. Then we discuss the implementation details
followed by the experimental results and their discussion.



4.1. Datasets and Tasks

We evaluate our proposed framework on UCF101 [31] and
HMDB51 [21] which are standard datasets for action recog-
nition tasks. The UCF101 dataset consists of 13,320 videos
from 101 classes and provides three splits of training, valida-
tion, and testing datasets. We randomly select 10% of each
training set as the validation set. The HMDB51 dataset con-
sists of 6,766 video examples from 51 action classes and also
provides three splits for training and testing datasets. We aver-
age the classification accuracy over all three splits to evaluate
the video classification results on either UCF101 or HMDB51
dataset. Meanwhile, Something-Something V2 dataset is a
large-scale dataset, which contains 220,847 video examples
in total from 174 action classes. We consider 168,913 videos
for training and 27,157 for testing, while 24,777 videos rep-
resent the validation set. Something-Something V2 is char-
acterized by a diversity of movement information, including
movements that are rather specific to specialized activities.
The information about the three databases used in the experi-
ments is provided in Table 1.

Datasets Video Per Task
Train Val Test

HMDB51 Fold-1,2,3 3,570 1,666 1,530
UCF101 Fold-1 7,629 1,908 3,783
UCF101 Fold-2 7,668 1,918 3,734
UCF101 Fold-3 7,699 1,925 3,696
Something-Something V2 168,913 24,777 27,157

Table 1: Data Statistics. We consider 7 splits for video clas-
sification tests.

4.2. Implementation Details

We consider the RAFT optical flow model [34] for predict-
ing the movement between two images from a sequence of
video frames. We treat the data of the optical flow as the
same as the RGB frame. We map the optical flow into RGB
representation by using the flow to image function provided
by the torchvision utility. Moreover, we consider the Mul-
tiscale Vision Transformers for Classification and Detection
(MViTv1) [6], Improved Multiscale Vision Transformers for
Classification and Detection (MViTv2) [24] or the Video
Swin Transformer (Swin) [26], as the backbone for temporal
feature extraction. These video transformers are pre-trained
on Kinetic-400 dataset [19]. For all transformer architec-
tures, for the sake of using lower computational resources,
we decided to use the smallest model architecture called
MViTV1-B, MViTV2-S, and Swin-S. Because these trans-
former models are designed for a small dataset their operation
processing is rather quick. These three models use as input
videos of 16 frames of size 224 × 224 × 3. The video input

and optical flow input are compressed at the final layer of the
channel encoder to 768 channel features.

For the data pre-processing, we follow the protocol for
each transformer. For the MViT transformer, we consider a
random crop video of 224×224 pixels. Then the pixel values
are re-scaled to [0, 1]. After that, the values are normalized
using the mean=[0.45, 0.45, 0.45] and standard deviation as
std=[0.225, 0.225, 0.225]. For the video Swin transformer, we
follow the pre-processing by normalized using mean=[0.485,
0.456, 0.406] and std=[0.229, 0.224, 0.225]. We implement
our models using PyTorch with a single GPU Tesla V100
32G on a POWER9 architecture. For each dataset, we train
a neural network for a maximum of 200 epochs with a small
batch size of 8. We optimize the model using Adam [20]
with a learning rate of 0.0002 and dropout at 0.5. A single
global transformer encoder will set the number of heads at
8 while the dimension of the feedforward network model is
set at 1024. For training, we consider the Cross-entropy loss
function. In addition, to avoid over-fitting the model, we ap-
ply the early stopping strategy to monitor the validation loss
rate. If the validation loss rate does not improve for 10 epochs
we would stop the training and start the evaluation.

4.3. Video classification results

In this section, we present the experimental results of our pro-
posed video action classification. For the evaluation results,
we consider the Top-1 Accuracy (Top-1 ACC) representing
the classification accuracy of the model. We present the re-
sults on UCF101, HMDB51, and Something-Something V2
which are the standard action recognition datasets.

Baselines We retrain and evaluate three widely used
state-of-the-art methods as baselines including MViTv1 [6],
MViTv2 [24] and Swin-S [26] in the same environment with-
out any data augmentation. We compare these three baseline
training scenarios with our proposed method. Moreover, we
also compare with other two-stream based video classification
models, which splits the given data in the same manner.

4.3.1. Video classification performance on UCF101 and
HMDB51

First, we report the results on the UCF101 and HMDB51
datasets as these two databases are extensively used in
video action classification benchmarks. The average results
across three splits when considering training on UCF101 and
HMDB51 are provided in Table 2, where we compare with
baselines and state-of-the-art video classification models. In
Table 2 we group the methods used in the tests according to
the database used for pre-training the model. We found that
our proposed method shows a significant improvement when
compared to the baselines and equivalent to the state-of-the-
art models on the UCF101 dataset. Moreover, the results
on the HMDB51 dataset show that our model has the best



accuracy when compared with other methods. Our model
can achieve up to 10.9% increase when considering UCF101,
and up to 25.92% increase when considering HMDB51, com-
pared to the nearest baseline.

Classifier Pre-trained Average Top-1 Acc
UCF101 HMDB51

Two-Stream CNNs [30] ImageNet 88.00% 59.40%
OFF [32] - 96.00% 74.20%
Two-Stream CNNs [11] ImageNet 93.50% 69.20%
Two-Stream I3D [2] - 93.40% 66.40%
Two-Stream I3D [2] Imagenet+Kinetics 400 98.00% 80.70%
Two-Stream+LSTM [40] - 88.60% -
Two-Stream C3D [27] - 91.40% -
Two-Stream TSN [38] - 94.00% 68.50%
Three-Stream TSN [38] - 94.20% 69.40%
TDD+iDT [37] - 91.50% 65.90%
LTC+iDT [35] - 91.70% 64.80%
ST-ResNet + IDT [10] - 94.60% 70.30%
MViTv1-B finetune (our baseline)[6] Kinetics-400 89.66% 66.75%
MViTv2-S finetune (our baseline) [24] Kinetics-400 92.11% 73.59%
Swin-S finetune (our baseline)[26] Kinetics-400 82.64% 57.47%
Our (MViTv2-S based) Kinetics-400 93.54% 83.39%

Table 2: Video classification results on UCF-101 and
HMDB-51, representing the average over 3 splits.

4.3.2. Video classification performance on SSv2

Second, we have assessed the proposed methodology on the
Something-Something V2 as this dataset is far more complex
than the others used in video action classification. The re-
sults are provided in Table 3 where we compare with base-
lines and state-of-the-art models. The methods are grouped
according to the database used for pre-training the model. We
can observe that the proposed method provides a significant
improvement when compared to the baselines and can achieve
up to 6.82% increase in the classification performance when
compared to the baseline without any data augmentation.

Classifier Pre-trained Top-1 Acc
SSv2

TimeSformer-HR [1] ImageNet-21K 62.5%
SlowFast R101, 8×8 [9] Kinetics-400 63.1%
TSM-RGB [25] ImageNet-1K+K400 63.3%
MSNet [22] ImageNet-1K 64.7%
TEA [23] ImageNet-1K 65.1%
ViT-B-TimeSformer [1] ImageNet-21K 62.5%
ViT-B ImageNet-21K 63.5%
MViTv1-B, 16×4 [6] Kinetics-400 64.7%
MViTv2-S, 16×4 [24] Kinetics-400 68.2%
Swin-B [26] Kinetics-400 69.6%
bLResNet, 32x2 [7] SSv2 67.1%
MViTv1-B finetune (our baseline)[6] Kinetics-400 50.31%
MViTv2-S finetune (our baseline) [24] Kinetics-400 53.36%
Swin-S finetune (our baseline)[26] Kinetics-400 49.56%
Our (MViTv2-S based) Kinetics-400 56.38%

Table 3: Video classification performance comparison to
baseline and the state-of-the-art methods on Something-
Something V2.

4.4. Discussions

4.4.1. Data augmentaion

To observe that the performance of the proposed method
relies on limited resources, such as employing the smallest
video processing architecture available without using any
data augmentation strategy in both the baseline model and
our two-stream model. The results show that our proposed
method can achieve better video accuracy when compared
with the baseline in all datasets. However, in future studies,
our proposed model will require a data augmentation strategy
when considering learning complex data as same as described
in the state-of-the-art techniques [8, 6, 24, 26] such as flip-
ping, Mixup [42] with CutMix [41], Random Erasing [3],and
Random Augment [43].

4.4.2. Optical flow

We produce the optical-flow prediction based on a neural net-
work model instead of hand-crafted prediction. The model
trained on FlyingChairs [5] + FlyingThings3D [28] dataset.
Both datasets are synthetic and not realistic, actually far in
thir appearance from human activity video. A good optical
flow prediction can be shown in Fig 2 with a clear moving
object direction and position when mapped into RGB color.
This is clear that the optical flow model learned from the syn-
thetic data can perform well on realistic activity data. How-
ever, we found some weaknesses in the optical flow prediction
such as producing noisy flow images in some cases. Thus, a
better movement estimation could improve the classification
results. Moreover, the computational cost for estimation opti-
cal flow by neural network model is rather high and we have
to balance the accuracy of the optical flow and the processing
computation required.

5. CONCLUSION

In this paper, we propose a two-stream transformer architec-
ture for video classification. A multi-scale video transformer
is used to extract self-attention features from combining sam-
pled image frames and corresponding optical flow. For the
two-stream fusion, we apply a pre-trained transformer en-
coder to learn the relation between the original frame and
the optical flow frame. By using a powerful transformer
architecture the proposed approach can harness the power
of defining well the inter-relationships among the spatio-
temporal features from the original image frame and optical
flow frame. The experimental results indicate significant
improvement when compared with the baselines and other
two-stream video processing models. We plan to use this
architecture for video continual learning which has many
potential applications.
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