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A B S T R A C T 

We describe a no v el splitting approach to numerical relativistic magnetohydrodynamics (RMHD) designed to expand its 
applicability to the domain of ultrahigh magnetization (high- σ ). In this approach, the electromagnetic field is split into the 
force-free component and its perturbation due to the plasma inertia. Accordingly, the system of RMHD equations is extended 

to include the subsystem of force-free degenerate electrodynamics and the subsystem go v erning the plasma dynamics and the 
perturbation of the force-free field. The combined system of conservation laws is integrated simultaneously, to which aim various 
numerical techniques can be used, and the force-free field is recombined with its perturbation at the end of every time-step. To 

explore the potential of this splitting approach, we combined it with a third-order weighted essentially non-oscillatory method, 
and carried out a variety of 1D and 2D test simulations. The simulations confirm the robustness of the splitting method in the 
high- σ regime, and also show that it remains accurate in the low- σ regime, all the way down to σ = 0. Thus, the method can be 
used for simulating complex astrophysical flows involving a wide range of physical parameters. The numerical resistivity of the 
code obeys a simple ansatz and allows fast magnetic reconnection in the plasmoid-dominated regime. The results of simulations 
involving thin and long current sheets agree very well with the theory of resistive magnetic reconnection. 

Key words: magnetic reconnection – MHD – plasmas – shock – methods: numerical. 
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 I N T RO D U C T I O N  

he strong gravity of astrophysical black holes and neutron stars
reates some of the most extreme physical conditions in the Universe
hich cannot be achieved in research laboratories. In particular,

hey naturally develop magnetospheres with extremely high plasma
agnetization. Highly relativistic winds and jets emerging from these
agnetospheres create spectacular structures on enormous scales,

rom parsecs (pulsar wind nebulae) to hundreds of kiloparsecs (jets of
ctive galactic nuclei). These flows transport huge amounts of energy
n the form of Poynting flux and the kinetic energy of the bulk motion,
nd drive the observed phenomena via magnetic reconnection and
hock interaction with the external plasma. For plasma flows on such
uge scales, relativistic magnetohydrodynamics (RMHD) is the most
uitable framework. 

The starting point of modern numerical schemes for compressible
ydrodynamics (HD) and magnetohydrodynamics (MHD) is their
ifferential equations written in the form of conservation laws, with
he aim of developing a numerical analogue of these laws which pro-
ides conservation of the scheme-specific numerical approximation
or the conserved quantities integrated over the volume of individual
omputational cells and the whole computational domain down to
he processor rounding (machine) error. This is mainly because of the
uperior ability of such schemes to accurately capture shock waves.
oth finite-volume and finite-difference schemes can be developed
long these lines. The schemes may differ in many other aspects, like
 E-mails: s.s.komissarov@leeds.ac.uk (SSK); david.phillips@fmi.fi (DP) 
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he type of Riemann solvers, the order of accuracy, etc. In terms of the
ntegration of the Faraday equation, the modern numerical schemes
or MHD and RMHD split into two major groups, those which use
he generalized method of Lagrange multiplier (GLM, Munz et al.
000 ; Dedner et al. 2002 ) and those that use the constrained transport
ethod (CT, Evans & Ha wle y 1988 ). 
In form, the Faraday equation of the MHD (and RMHD) system

an be written as a law describing the conservation of the magnetic
eld integrated over the volume. This approach allows to integrate the
araday equation in the same fashion as the other conservation laws,
hich is very convenient. Ho we ver, it makes impossible to ensure

hat the magnetic field remains di vergence-free, whate ver numerical
pproximation of the divergence is chosen, because this condition
nvolves not the volume integral of the magnetic field but its integral
magnetic flux) o v er a close surface. The uncontrolled deviation from
he divergence-free state is not just an error for the magnetic field
lone but may have severe implication for other flow parameters
Brackbill & Barnes 1980 ). For this reason, additional algorithms
ere developed to keep the magnetic field close to a divergence-free

tate. 
In the CT method, the Faraday equation is treated as the law

escribing the conservation of magnetic flux o v er a surface. As
he result, the normal components of the magnetic field have to
e defined at the faces of computational cells and the electric field
 v er their edges. This leads to the so-called staggered grid, where
ifferent physical parameters are defined at different points of the
rid making this approach rather involved (for the recent analysis and
omparison of various CT schemes, see Mignone & Del Zanna 2021 ).
oreo v er, since the energy (in Newtonian MHD) and the whole
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nergy-momentum vector (in RMHD) include the electromagnetic 
ontribution, integration of the corresponding conservation laws 
equires to define the magnetic field inside the computational cells 
s well. As a result, there are two numerical solutions for the
agnetic fields, one defined at the cell faces and advanced using

he surface form of the inte gral F araday equation, and one defined
nside the cells and advanced using the volume form of this equation.
he y may div erge o v er time, resulting in a rather uncomfortable
tate where the volume-based conserved variables like energy and 
omentum are inconsistent with the face-based magnetic field. In 

ighly magnetized regions, this may even lead to an unphysical state 
ith ne gativ e gas pressure. To prevent this, one may readjust the
olume-based magnetic field and hence the conserved variables, thus 
aking the numerical scheme not fully conserv ati ve. In Ne wtonian
HD, where out of all other conserved quantities the magnetic 

eld is present only in the total energy, this can be done by simply
emoving the energy contribution due to the volume-based magnetic 
eld and replacing it with the contribution due to the surface-base 
agnetic field (Balsara & Spicer 1999 ). This algorithm keeps the 

lasma contribution to the energy and hence the corresponding 
rimiti ve v ariables (velocity , density , and thermal pressure of plasma)
nchanged, thus making the deviation from the energy conservation 
uperficial. In RMHD, both the magnetic and the electric field 
ontribute to all the components of the total energy-momentum 

 ector. Ev en if the volume-based magnetic field is a conserved
ariable, the volume-based electric field is not and can be found 
nly via conversion of the conserved variables into the primitive 
nes (velocity , density , and thermal pressure of plasma) first, and
hen applying the perfect conductivity condition E = −v × B . As a 
esult, the direct replacement of the electromagnetic contribution to 
he energy-momentum like in Balsara & Spicer ( 1999 ) is impossible.
nstead, one is forced to carry out the ‘harmonization’ only after the
ariable conversion (Komissarov 1999 ). The same algorithm can 
e applied in Newtonian MHD, where it is equi v alent to that of
alsara & Spicer ( 1999 ). 
In the GLM method, the system of differential equations is 

xtended by (1) introducing new scalar-dependent variable and 
ence one more evolution equation, and (2) modifying the Faraday 
quation to couple the new variable and the magnetic field. As a
esult, ∇ ·B can be both transported away from the regions where 
t is generated, normally regions with large computational errors, 
nd diffused o v er the computational domain ef fecti vely dumping
ts spacial oscillation. Ho we ver, some residual divergence of the 
agnetic field remains. This method is very easy to implement, as

t does not require any modification of the computational grid, and 
ll the evolution equations are treated in the same way. At least in
deal Newtonian MHD, the GLM and CT methods provide similar 
ccuracy (Mignone, Tzeferacos & Bodo 2010 ). 

In contrast to Newtonian MHD, where it is sufficient to describe 
he plasma magnetization by the ratio of thermal and magnetic pres-
ures ( β = p/p m 

), relativistic plasma requires a different parameter 
= b 2 / 4 πw, where w = ε + p is the relativistic enthalpy of plasma

where the internal energy density ε includes the contribution due 
o the rest mass energy of plasma particles), and b 2 = B 

2 − E 

2 

s the Lorentz invariant equal to the squared strength of magnetic 
eld as measured in the rest frame of plasma. Direct extension of

he numerical methods developed for Newtonian MHD to RMHD 

as been quite successful in the lo w- σ regime. Ho we ver, the high-
regime has turned out to be very problematic, as these codes 

end to crash, resulting in conserved variables which cannot be 
onverted into physically meaningful set of primitive variables. In 
ultidimensional simulations, these schemes begin to fail when 
∼ 1. On the one hand, this is a very high magnetization, never
chieved in laboratory plasmas. On the other hand, it can be much
igher in many problems of relativistic astrophysics. For example, 
n the pulsar magnetospheres, σ can be as high as 10 3 − 10 6 . 

It has been suggested that the origin of this issue is the stiffness
f the conservation laws of RMHD in the high- σ regime (Komis-
arov 2006a ). Basically, when σ is high, the electromagnetic field 
ominates in the total energy and momentum. In this case, it is
easonable to expect that even small errors in the magnetic field,
ssociated with the numerical integration of the Faraday equation, 
ay lead to large errors in the plasma parameters, when they are

omputed from the conserved quantities. The quantitative analysis 
f the errors is rather complicated, ho we ver. To strengthen the
rgument, one may approach this problem from a different angle. 
he dynamics of electromagnetic field in highly rarefied plasma can 
e described using the approximation of the force-free degenerate 
lectrodynamics (FFDE, e.g. MacDonald & Thorne 1982 ; Uchida 
997 ; Gruzinov 1999 ; Komissarov 2002 ). Normally, it is formulated
s the Maxwell equations complimented with a constraint on the 
lectric four-current, which ensures vanishing Lorentz force. The 
ensity of electric charges required to satisfy this constraint is quite
mall and the corresponding energy-momentum density of plasma 
an be negligibly small compared to that of the electromagnetic 
eld. Alternatively, one may consider FFDE as RMHD in the 

imit σ → ∞ (Komissarov 2002 ). In this limit, the set of the
ifferential equations of RMHD reduces to the Faraday equation and 
he energy-momentum conservation laws for the electromagnetic 
eld, complemented with the two perfect conductivity conditions. 
o we ver, this system is overdetermined, with only two out of the four

omponents of the energy-momentum equation being independent. 
or the numerical integration, this implies that any error in the
omputed magnetic field makes it inconsistent with the computed 
nergy-momentum density. 

For adiabatic flows, one can eliminate the energy equation from 

he set of numerically integrated equations of RMHD and this 
elps to extend the range of manageable magnetization up to 
≈ 100 (Komissarov et al. 2007b ; Noble, Krolik & Ha wle y 2009 ).

he conversion of remaining conserved variables to the primitive 
ariables may still fail from time to time, becoming increasingly more 
evere for higher σ and requiring emergency fixes just to keep the
imulations going. None the less, these results support the stiffness
f RMHD equations as the reason for the high- σ failures, as the
mission of the energy equation reduces this stiffness. 
In their CT scheme for ideal RMHD, Mignone & Bodo ( 2006 )

pplied exactly the same energy correction as Balsara & Spicer 
 1999 ), before converting the conserved variables into the primitive
nes and replacing the cell-based magnetic field with the face-based 
ne. This allowed them to succeed with the cylindrical explosion 
est for B 0 = 1 (see Section 5.3 ), which w ould f ailed otherwise.

art ́ı ( 2015 ) went further and proposed an iterative algorithm for
orrecting the total energy-momentum vector, using the correction 
f Mignone & Bodo ( 2006 ) as a first step. This allowed them to
 v oid the conversion failure in the explosion test with B 0 = 100. The
orresponding plasma magnetization in this problem is extremely 
igh, with σ > 2 . 5 × 10 3 ! This is a remarkable achievement, but
ome caution is in order. First, these corrections of conserved 
 ariables are dif ferent to that of Balsara & Spicer ( 1999 ) as they
hange not only the energy-momentum of the electromagnetic field 
ut the energy-momentum of plasma as well. So, this is more
han just resetting the cell-based magnetic field using the face- 
entred magnetic field. Second, there is no analysis to justify these
orrections. The mathematical problem supposed to be solved by 
MNRAS 536, 1268–1302 (2025) 
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he iterative algorithm of Mart ́ı ( 2015 ) is actually not posed. Even a
ualitative understanding of why these corrections help to keep the
onserved variables in the physical part of their domain is missing.
s the result, it is not clear how robust these fixes are. A proper

nalytical and numerical investigation of this approach is required. 
In addition to the conversion failures, RMHD simulations of highly
agnetized flo ws suf fer from excessi ve artificial plasma heating due

o numerical resistivity. For this reason, the high- σ region is normally
xcluded when modelling black hole emission in simulations (e.g.
vent Horizon Telescope Collaboration 2021 ). 
In this paper, we propose an alternative to emergency fixes in the

orm of a radically new approach to computational RMHD which
llows to mitigate the stiffness of its equations in the high- σ limit.
n part, it was moti v ated by the method used by Tanaka ( 1994 ) for

HD simulations of the collision between the Earth’s magnetosphere
nd the solar wind. In this problem, the Earth’s magnetic field
ncreases by many orders of magnitude from the collision site to
he troposphere, where it is largely stationary and dipolar, whereas
he perturbation of this field remains of about the same magnitude
nd hence increasingly small relative to the undisturbed Earth’s field
n approach to the troposphere. If the total magnetic field is evolved
umerically, the truncation errors become large in comparison to
he perturbation amplitude and hence the numerical solution for
he perturbation becomes corrupted. To o v ercome this problem,
anaka ( 1994 ) proposed to separate the strong stationary dipolar
eld from its perturbation and hence to integrate only the non-linear
quations go v erning the perturbation. This approach has been pro v ed
o be very ef fecti ve, and no wadays it is widely used in numerical
odelling of planetary magnetospheres (e.g. Eggington et al. 2020 ).
Our problem is more complicated, ho we ver, as in the most interest-

ng astrophysical applications, the strong background magnetic field
s highly dynamic and cannot be considered as a known stationary
omponent. At the first sight, this could be handled by allowing it to
volve according to the evolution equations of FFDE (Komissarov
001 , 2006b ; McKinney 2006 ; Mahlmann et al. 2021 ). Ho we ver,
 v er time, the RMHD solution for the electromagnetic field could
ignificantly deviate from the FFDE solution, with the force-free
omponent and its perturbation having similar amplitudes. To keep
he electromagnetic perturbation small, one could reset the division of
he electromagnetic field into the strong force-free and perturbation
omponents. The simplest way of doing this is to recombine the
orce-free field and its perturbation into the ‘refreshed’ force-free
eld, and to nullify the perturbation at the same time. In sufficiently
imple problems, this could be done only so often. Ho we ver, in some
ther problems, the perturbation may grow very rapidly. For example,
onsider a stationary fast magnetosonic shock. Since the fast modes
f FFDE propagate with the speed of light, the FFDE solution will
trongly deviate from the RMHD solution already after one time-step
f numerical integration. This shows that to make the scheme robust,
ne has to invoke the resetting every time-step. 
Numerical integration of FFDE equations, either in the form of

he Maxwell equations with force-free current (Gruzinov 1999 )
r in the form of reduced RMHD equations (Komissarov 2002 ),
oes not conserve the electromagnetic energy-momentum and hence
he splitting approach cannot ensure the conservation of the total
nergy-momentum down to the processor rounding error. Ho we ver, a
eparture from this conservation seems inevitable for high- σ RMHD
nyway, because it is the attempt to ensure the full conservation that
eads to crashes. 

In this paper, we describe a successful attempt to develop the
plitting method based on these ideas. In Section 2 , we detail the key
rinciples of the splitting method. Section 3 describes the specifics of
NRAS 536, 1268–1302 (2025) 
ts numerical implementation. The 1D test simulations are presented
n Section 4 . In addition to the standard tests involving hyperbolic
aves of RMHD, this section also describes the investigation of

he scheme’s numerical resistivity and the possibility to control
he plasma heating via numerical magnetic dissipation. Section 5
escribes the test simulations for inherently 2D problems. These
nclude the investigation of the anisotropy of numerical resistivity,
nd a number of problems involving current sheets. The latter
onstitute a study focusing on the ability of ideal MHD codes to
apture fast magnetic reconnection, apparently the first study of
his kind. The whole study is summarized in Section 6 and the
ey conclusions are stated in Section 7 . Appendix A describes
he no v el third-order weighted essentially non-oscillatory (WENO)
nterpolation employed by our code, and Appendix B gives the
eri v ation of the key equations involved in the variable conversion
lgorithm. 

 T H E  K E Y  PRINCIPLES  

.1 Ideal relativistic magnetohydrodynamics 

or an inertial frame of Minkowski space–time, the system of ideal
MHD in consists of the Faraday equation 

 t B + ∇ × E = 0 , (1) 

he energy equation 

 t 

(
E 

2 + B 

2 

2 
+ wγ 2 − p 

)
+ ∇ ·( E × B + wγ 2 v ) = 0 , (2) 

he momentum equation 

∂ t 
(

E × B + wγ 2 v 
)

+ ∇ ·
[
−E ⊗ E − B ⊗ B + wγ 2 v ⊗ v + g 

(
E 

2 + B 

2 

2 
+ p 

)]
= 0 , 

(3) 

the continuity equation 

 t ( ργ ) + ∇ ·( ργ v ) = 0 , (4) 

he divergence-free condition for the magnetic field 

 · B = 0 , (5) 

nd the perfect conductivity condition 

E = −v × B . (6) 

ere, p is the thermodynamic pressure, ρ is the density of plasma
articles rest mass, g is the metric tensor of space, v is the fluid
elocity, γ is the corresponding Lorentz factor, B and E are the
ectors of electric and magnetic field, respectively, as measured in
he aforementioned inertial frame. w ( p , ρ) is the relativistic enthalpy
er unit volume. In what follows, we use the equation of state 

 = ρ + κp with κ = 

� 

� − 1 
, (7) 

here � is the ratio of specific heats. Here, we utilize the relativistic
nits where neither the speed of light no the geometric factor 1 / 4 π
ppear in the equations (for example σ = b 2 /w). We also agree that
or any three-vector of the space a , a 2 = a i a 

i , and a = 

√ 

a 2 , and for
n y four-v ector a ν of the space–time, a 2 = a νa 

ν , and use − + ++
ignature for the space–time. 

Let us now discuss how the errors in numerical integration of the
nergy-momentum equations can result in an unphysical state. Con-
ider the four-vector of energy-momentum density, 
 

μ = −T μνn ν ,
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here T μν is stress-energy-momentum tensor, and n ν is the four- 
elocity of the fiducial observer who measures the energy and 
omentum. When the observer is at rest in the space, n ν = −δt 

ν

nd 
 

ν = ( E , S ), where E and S are the energy and momentum
ensities, respectively. For the electromagnetic field, this is 

 

ν
em 

= 

(
E 

2 + B 

2 

2 
, E × B 

)
, where E = −v × B , (8) 

nd 

 

2 
em 

= −1 

4 

(
B 

2 
‖ + 

B 

2 
⊥ 

γ 2 

)2 

< 0 , (9) 

here B ‖ and B ⊥ 

are the components of the magnetic field parallel 
nd orthogonal to the v elocity, respectiv ely. Hence, 
 

ν
em 

is a time-
ike four-vector. For the plasma (fluid), 

 

ν

pl = ( w γ 2 − p , w γ 2 v ) , (10) 

nd 

 

2 
pl = γ 2 w (2 p − w ) − p 

2 . (11) 

or the physical range of specific heats, 1 < � < 2, and the combi-

ation 2 p − w = p 

� − 2 

� − 1 
− ρ is strictly ne gativ e. Hence , 
 

ν

pl is

lso a time-like four-v ector. F or the total energy-momentum vector 
 t = 
 em 

+ 
 pl , 

 

2 
t = 
 

2 
em 

+ 
 

2 
pl + 2( −E em 

E pl + ( S em 

·S pl )) < 0 (12) 

nd hence 
 

ν

t is also time-like (This is a particular case of the general
esult on the sum of future-directed time-like vectors of space–time.). 

Obviously, if the numerical integration results in a space-like 
 

ν

t , 
he conversion of conserved quantities into primitive ones will fail. 
o we ver, this is the same as in the numerical relativistic HD, and
ence the truncation errors arising in the numerical integration of 
he energy-momentum equations are unlikely to be the cause of 
he problems specific to the high- σ regime of RMHD. The source 
f errors specific only to RMHD is the Faraday equation. In the
est of this section, we demonstrate that sufficiently large errors in 
agnetic field can render the set of conserved variables unphysical 

y pushing the energy-momentum vector of plasma 
 

ν

pl into the 

pace-like domain. 
We start with a physical state with the magnetic field B 0 and 

he total energy-momentum 
 

ν

t,0 . Then, we analyse other states 

ith 
 

ν

t = 
 

ν

t,0 but B = B 0 + δB , where the small perturbation δB 

lays the role of the computational error. The aim is to determine how
arge this error can be before the energy-momentum vector of plasma 
 

ν

pl turns space-like. In general, the impact of this error is hard

o analyse. To simplify the analysis, we assume that δB ‖ B 0 and 
onsider only the cases where v 0 is either parallel or perpendicular 
o B 0 . Since the total momentum vector 

S t = ( B 

2 + wγ 2 ) v − ( v · B ) B , 

 will remain either parallel or perpendicular to B in the perturbed 
tate as well. We will also assume that the magnetic field strength
ncreases, B = B 0 + δB where δB > 0, as only this case is con-
training. 

When v 0 ‖ B 0 , the electromagnetic momentum S em,0 = 0 , and 
ence 

 

2 
t,0 = 
 

2 
em,0 + 
 

2 
pl,0 − 2 E em,0 E pl,0 , (13) 
nd 

 

2 
t = 
 

2 
em 

+ 
 

2 
pl − 2 E em 

E pl . (14) 

ince 
 

2 
t = 
 

2 
t,0 , this implies that 

 

2 
pl = 
 

2 
pl,0 − δ
 

2 
em 

+ 2( E em 

E pl − E em,0 E pl,0 ) , (15) 

here −δ
 

2 
em 

= −( 
 

2 
em 

− 
 

2 
em,0 ) = B 

3 
0 δB > 0. For 
 

ν

pl to be

ime-like, the whole expression on the right-hand side of this 
quation must be ne gativ e, which is the condition for the perturbed
tate to be physical. When E pl 
 E em 

, the term 
 

2 
pl,0 
 E em,0 E pl 

an be ignored. One may also ignore the small difference δE em 

etween E em 

and E em,0 . With these simplifications, the physicality 
ondition reads 

 E em,0 ( E pl − E pl,0 ) − δ
 

2 
em 

< 0 . (16) 

ince the last term in this expression is positive, this implies that the
lasma energy in the perturbed state must be lower than the one in
he original state. Moreo v er, this condition will not be satisfied by
ny E pl > 0 unless 

− δ
 

2 
em 

< 2 E em,0 E pl,0 . 

sing E em,0 = B 

2 
0 / 2, E pl,0 = w 0 γ

2 
0 − p 0 � w 0 γ

2 
0 , and utilizing

he fact that in this case b 2 = B 

2 , we finally arrive to the upper limit
n the maximum error in magnetic field 

δB 

B 0 
� 2 

γ 2 
0 

σ0 
. (17) 

hen v 0 ⊥ B 0 , the electromagnetic momentum does not vanish. 
ence, equation ( 15 ) is replaced with 

 

2 
pl = 
 

2 
pl,0 − δ
 

2 
em 

+ 2( E em 

E pl − E em,0 E pl,0 ) + 2(( S em,0 ·S pl,0 ) − ( S em 

·S pl )) , 

(18) 

here −δ
 

2 
em 

= B 

3 
0 δB/γ 4 

0 > 0, and equation ( 16 ) with 

 E em,0 δE pl − 2( S em,0 ·δS pl ) − δ
 

2 
em 

< 0 , (19) 

here E em,0 = B 

2 
0 (1 + v 2 0 ) / 2, S em,0 = B 

2 
0 v 0 , δE pl = E pl −

 pl,0 , and δS pl = S pl − S pl,0 . When v 0 , v 
 1, the second term in
quation ( 19 ) can be ignored, leading to the condition ( 17 ) with γ0 =
. When v 0 , v � 1, one may use the approximation δS pl � δE pl v 0 ,

hich yields 2( S em,0 ·δS pl ) � 2 B 

2 
0 v 

2 
0 δE pl . Substituting these into

quation ( 19 ), one obtains the simplified physicality condition 

B 

2 
0 δE pl 
γ 2 

0 
− δ
 

2 
em 

< 0 . 

hus, like in the parallel case, δE pl must be ne gativ e. Moreo v er, this
ondition will not be satisfied by any E pl > 0 unless 

− δ
 

2 
em 

< 

B 

2 
0 E pl,0 
γ 2 

0 
, 

hich leads to the upper limit on the error in magnetic field 

δB 

B 0 
� 

γ 2 
0 

σ0 
, (20) 

here we applied B 

2 = γ 2 b 2 . Interestingly, this limit differs from
he one obtained for the parallel case only by the factor of two,
uggesting that there is no strong dependence on the angle between
MNRAS 536, 1268–1302 (2025) 
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he velocity and magnetic field. The accuracy constraints may be
 ven more restricti ve than those we have derived. For example, we
id not take into account that the plasma energy of the perturbed
tate cannot fall below D = ρ0 γ0 , the conserved variable that has to
e preserved in the perturbed state as well. 
In the standard approach, one may try to tackle the issue of

onversion failures via increasing the accuracy of the magnetic field
ntegration. In the splitting approach, we seek to reduce the impact of
he errors in the magnetic field on the energy-momentum of plasma.

.2 Splitting equations of ideal RMHD into the electromagnetic 
eld and plasma components 

et us split the electromagnetic field into two components 

B = B (0) + B (1) , E = E (0) + E (1) , 

here the component with the suffix 0 satisfies the equations of
FDE. Here, we use the formulation of FFDE due to Komissarov
 2002 ) 

 t B (0) + ∇ × E (0) = 0 , (21) 

 t 

( 

E 

2 
(0) + B 

2 
(0) 

2 

) 

+ ∇ ·( E (0) × B (0) ) = 0 , (22) 

∂ t 
(

E (0) × B (0) 
) + ∇ ·

( 

−E (0) ⊗ E (0) − B (0) ⊗ B (0) + g 

( 

E 

2 
(0) + B 

2 
(0) 

2 

) ) 

= 0 ,

(23)

 · B (0) = 0 , (24) 

nd 

 E (0) · B (0) ) = 0 . (25) 

he last equation is one of the constraints imposed by the perfect
onductivity. The second one is 

 (0) > E (0) . (26) 

he energy-momentum equations can be considered as the cor-
esponding equations of RMHD in the limit of vanishing plasma
nertia. Equations ( 25 ) and ( 26 ) follow from the perfect conductivity
ondition E = −v × B . Conversely, equations ( 25 ) and ( 26 ) ensure
he existence of inertial frames where the electric field vanishes.
ne of these frames is the rest frame of plasma, the others mo v e

elative to it along the magnetic field. When conditions ( 25 ) and
 26 ) are satisfied, the FFDE system is hyperbolic, with a pair of fast
agnetosonic modes and a pair of Alfv ́en modes. There are seven

volution equations in the FFDE system, ( 21 )–( 23 ). Together with
he algebraic constraint ( 25 ) imposed by the prefect conductivity
ondition, this gives eight equations in total. 1 This exceeds by two
he number of dependent variables (components of B (0) and E (0) ).
his is because only two components of the energy-momentum equa-

ions are independent (Komissaro v 2002 ). F or numerical inte gration,
o we ver, this means that the system of equations is o v erdetermined,
nd in order to convert the energy-momentum density into the electric
eld, some of the components of the energy-momentum have to be

gnored, which can be done in many different ways. Our algorithm
NRAS 536, 1268–1302 (2025) 

ill be described later in Section 3.6 . 

 The divergence-free state of the magnetic field is preserved by the Faraday 
ondition and hence does not need to be counted. The condition E > B does 
ot affect the evolution, until it gets broken, and for this reason it is not 
ounted too. 

c

∂

w

The component with suffix 1 describes the correction (pertur-
ation) of the force-free field due to the plasma inertia. The
quations go v erning this component of the electromagnetic field,
nd at the same time the motion of plasma, are obtained from the full
ystem of RMHD by removing the terms cancelling each other via
quations ( 21 )–( 24 ). This yields 

 t B (1) + ∇ × E (1) = 0 , (27) 

∂ t 

( 

E (0) · E (1) + B (0) · B (1) + 

( E 

2 
(1) + B 

2 
(1) ) 

2 
+ wγ 2 − p 

) 

+ ∇ ·(E (0) × B (1) + E (1) × B (0) + E (1) × B (1) + wγ 2 v 
) = 0 , (28) 

∂ t 

(
E (0) × B (1) + E (1) × B (0) + E (1) × B (1) + wγ 2 v 

)
+ ∇ ·

(
− E (1) ⊗ E (0) − E (0) ⊗ E (1) − E (1) ⊗ E (1) 

−B (1) ⊗ B (0) − B (0) ⊗ B (1) − B (1) ⊗ B (1) 

+ g 
[ 

E (0) · E (1) + B (0) · B (1) + 

E 

2 
(1) + B 

2 
(1) 

2 

] 
+ w γ 2 v ⊗ v + g p 

)
= 0 , (29) 

 t ργ + ∇ ·ργ v = 0 , (30) 

 · B (1) = 0 , (31) 

E (1) = −v × B (1) − ( E (0) + v × B (0) ) . (32) 

he energy-momentum equations ( 28 )–() do not involve the terms
uadratic in B (0) and E (0) , which are dominant in problems with high
. As a result, the effect of the truncation error in calculations of B (0) 

n plasma parameters is reduced. The FFDE field still enters the
lasma equations via linear terms. These interaction terms describe
oth the effect of the electromagnetic field on the plasma motion, and
he effect plasma inertia on the evolution of the electromagnetic field.
he two components of the electromagnetic field are also coupled
ia the perfect conductivity equation ( 32 ). 

.3 Numerical splitting 

ach time-step of numerical integration consists of following three
ubsteps: 

(i) Given the solution at the time t n , including B 

n and E 

n , one
ntroduces 

B 

n 
(0) = B 

n , (33) 

E 

n 
(0) = E 

n , (34) 

B 

n 
(1) = 0 , (35) 

E 

n 
(1) = 0 . (36) 

(ii) The combined equations of the FFDE and perturbation subsys-
ems are integrated simultaneously to obtain the solution at the time
 

n + 1 = t n + �t . The evolution equations of the combined system are
onservation laws and can be written as a single vector equation 

 t q + ∇ · f = 0 , (37) 

here 

q = 

(
q (0) 

q (1) 

)
and f = 

(
f (0) 

f (1) 

)
, 
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re the vectors of conserved variables and their fluxes, respectively. 
he sub v ector of conserv ed FFDE variables is 

 (0) = 

⎛ 

⎝ 

B (0) 

E (0) 

S (0) 

⎞ 

⎠ , (38) 

here 

 (0) = 

E 

2 
(0) + B 

2 
(0) 

2 
, S (0) = E (0) × B (0) , (39) 

nd the sub v ector of conserved perturbation variables is 

 (1) = 

⎛ 

⎜ ⎜ ⎝ 

B (1) 

E (1) 

S (1) 

D 

⎞ 

⎟ ⎟ ⎠ 

, (40) 

here 

 (1) = ( E (0) · E (1) ) + ( B (0) · B (1) ) + 

( E 

2 
(1) + B 

2 
(1) ) 

2 
+ wγ 2 − p (41) 

S (1) = E (0) × B (1) + E (1) × B (0) + E (1) × B (1) + wγ 2 v (42) 

 = ργ . (43) 

(iii) The total electromagnetic field vectors at the time t n + 1 are 
omputed via 

B 

n + 1 = B 

n + 1 
(0) + B 

n + 1 
(1) , (44) 

E 

n + 1 = E 

n + 1 
(0) + E 

n + 1 
(1) . (45) 

Using simple conditional switches, the computer code based on 
his splitting scheme can be turned into a FFDE code and a standard
unsplit) RMHD code. To run it in the FFDE mode, one simply has to
ntegrate only the FFDE equations and keep B (1) = E (1) = 0. To run
t in the standard RMHD mode, one has bypass the splitting step (i),
ntegrate only the perturbation equations, and keep B (0) = E (0) = 0. 
his will be used later for testing the splitting approach against the
tandard one in the low- σ regime. 

.4 Controlled energy transfer 

n the splitting method, the energy-momentum of the force-free 
omponent of the electromagnetic field is separated from the energy- 
omentum of plasma. Thanks to this separation, the errors arising in 

he numerical integration of the Faraday equation for the this field can
o longer directly impact the state of plasma and result in a conversion
ailure. This is the main advantage of the separation approach. On 
he other hand, this separation also prohibits the plasma heating 
ia numerical resistivity. In some cases, this can be considered as
eneficial. Ho we ver, this may be detrimental in problems involving 
urrent sheets, where the magnetic dissipation and plasma heating 
re paramount. 

In ideal MHD simulations, the numerical resistivity arises via the 
ounding errors emerging in numerical integration of the Faraday 
quation. In ‘good’ schemes, it leads mostly to diffusion of the 
agnetic field through plasma and reduction of its spatial gradients. 
his smoothing out of the magnetic field is accompanied by reduc- 

ion (dissipation) of the magnetic energy. In standard conserv ati ve 
chemes for MHD, the total energy is conserved, which implies 
hat this reduction of magnetic energy is fully compensated by the 
ncrease of plasma energy. The rate of this numerical plasma heating 
s fixed implicitly by the algorithm for integration of the Faraday 
quation. This lack of control may lead to undesirable numerical 
eating of plasma. For example, the highly magnetized plasma in the
ccretion disc funnel emerging in numerical simulations of the black 
ole accretion gets heated to extremely high temperature for this 
ery reason (e.g. Event Horizon Telescope Collaboration 2021 ). The 
plitting approach, allows us to introduce control o v er the energy
ransfer between the electromagnetic field and plasma associated 
ith the rounding errors. 
At some point during the integration step (ii), the conserved quan-

ities are converted into the primitive ones. In particular, E n + 1 
(0) and

S n + 1 
(0) are converted into E 

n + 1 
(0) . Given the nominal overdeterminacy of 

he FFDE subsystem, this can be done only if we reduce the number
f equations used for the conversion. There are many ways of doing
his, each time departing from the computed conserved variables in 
ne way or another. Here, we follow Komissarov ( 2002 ) and compute
he electric field via 

E 

n + 1 
(0) = 

1 

B 

n + 1 
(0) 

2 S 
n + 1 
(0) × B 

n + 1 
(0) (46) 

f B 

n + 1 
(0) �= 0 , otherwise E 

n + 1 
(0) = 0 . Computing the electric field this

ay ensures the perfect conductivity condition E 

n + 1 
(0) · B 

n + 1 
(0) = 0. 

o we ver, the obtained electric field may exceed, especially at current
heets, the magnetic one, breaking the second perfect conductivity 
ondition ( 26 ). Whenever this takes place, the electric field E (0) is
educed some what belo w B (0) (in the test simulations to the level
 . 9999 B (0) ), or to zero if B (0) = 0. This amounts to dissipation of
he FFDE electromagnetic energy (e.g. Komissarov 2004 , 2006b ). 
ven without this rescaling of the electric field, the electromagnetic 
nergy density based on the obtained E 

n + 1 
(0) and B 

n + 1 
(0) , 

˜ 
 

n + 1 
(0) = ( E 

n + 1 
(0) 

2 + B 

n + 1 
(0) 

2 
) / 2 , (47) 

ill be different from E n + 1 
(0) obtained via integration of the energy

quation ( 22 ), giving rise to the energy difference 

E n + 1 
(0) = E n + 1 

(0) − ˜ E n + 1 
(0) . (48) 

hen δE n + 1 
(0) > 0, the electromagnetic energy dissipates. Transfer- 

ing the dissipated energy to the perturbation subsystem can only 
ecrease 
 

2 
pl and should not result in conversion failure. 

To further support this conclusion, consider unmagnetized fluid 
ith conserved variables D = ργ , S pl = wγ 2 v, E pl = w γ 2 − p ,

nd determine the response of the gas pressure δp to the energy
ariation δE pl under constant D and S. Straightforward calculations 
how that 

p = A δE pl , 

here 

 = 

w γ 2 + κp ( γ 2 − 1) 

ργ 2 ( κ − 1) + κp( γ 2 ( κ − 2) + 1) 
, 

= �/ ( � − 1), and � is the ratio of specific heats. For 1 < � < 2,
he proportionality coefficient A is positive, and hence δE and δp 

ave the same sign. This suggests that the transfer of δE n + 1 
(0) > 0 to

he perturbation system 

 

n + 1 
(1) → E n + 1 

(1) + δE n + 1 
(0) . (49) 

ill result in plasma heating. 
When δE n + 1 

(0) < 0, its transfer to the perturbation subsystem may
ncrease 
 

2 
pl and even make it positive, thus leading to the variable

onv ersion failure. To av ert the danger, in this case the energy transfer
s turned off. Our test simulations show that this allows to almost
MNRAS 536, 1268–1302 (2025) 
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ompletely eliminate the conversion failures even in problems with
xtremely high σ . 

In smooth regions away from current sheets, the numerical heating
f plasma can be undesirable. Thus, one may opt not to transfer
he numerically dissipated energy of the FFDE system to the
erturbation system even if δE n + 1 

(0) > 0. In such smooth regions,
E n + 1 

(0) is significantly smaller than in current sheets and this can
e used to design a suitable switch-off criterion. In our code, we
mplemented the energy transfer condition 

E n + 1 
(0) > αe E n + 1 

(0) , (50) 

here the switch-off parameter αe ≥ 0. When αe = 0, the transfer
akes place whenever δE n + 1 

(0) > 0, and when αe = 1, it is turned off
ompletely. In most of the test simulations, we used αe = 10 −3 . 

Finally, equation ( 46 ) ignores the component of S n + 1 
(0) aligned with

B 

n + 1 
(0) , emerging because of the computational errors. As the result,

he momentum density corresponding to B 

n + 1 
(0) and E 

n + 1 
(0) , obtained

ia the variables conversion algorithm, 

˜ S 
n + 1 
(0) = E 

n + 1 
(0) × B 

n + 1 
(0) , 

lso differs from the conserved variable S n + 1 
(0) , 

S n + 1 
(0) = S n + 1 

(0) − ˜ S 
n + 1 
(0) �= 0 . (51) 

hus, one may consider transferring not only energy but the momen-
um as well. We have not been able to find an suitable algorithm for
his transfer, though. 

 N U M E R I C A L  IMPLEMENTATION  

o integrate the conservation laws of the split RMHD, we used a
hird-order finite-difference scheme. In this, we closely followed
he scheme ECHO developed by Del Zanna et al. ( 2007 ) for unsplit
MHD equations. There are, ho we ver, fe w significant dif ferences:

1) use of the GLM approach instead of the CT method to enforce the
ifferential constraints ( 24 ) and ( 31 ). GLM delivers similar accuracy
o CT (Mignone et al. 2010 ) for ideal MHD, but it is much easier
o implement; (2) use of a no v el third-order WENO reconstruction
lgorithm; (3) switching the DER operator (Del Zanna et al. 2007 )
ff at shock waves to reduce numerical oscillations (see section 3.5
or details); and (4) new variables conversion algorithm adjusted to
he peculiarities of the split RMHD equations. 

.1 GLM approach 

o keep the magnetic field approximately divergence-free, we follow
he method called GLM (Munz et al. 2000 ; Dedner et al. 2002 ).
ence, we introduce two additional dependent variables � (0) and
 (1) , one per each subsystems, and replace the Faraday equations ( 21 )

nd ( 27 ) and the divergence-free conditions ( 24 ) and ( 31 ) with 

 t B (s) + ∇ × E (s) + ∇� (s) = 0 , (52) 

 t � (s) + ∇ · B (s) = −κ� (s) , (53) 

here s = 0 , 1. In the test simulation, we use κ = 0 . 2 /�t , making
he e-folding time for � (s) (in the case of vanishing ∇ · B (s) ) equal
o 5 integration time-steps �t . 

.2 Time integration 

ince this is a finite-difference scheme, the numerical solution q n i,j ,k 

escribes the values of variables q at the gridpoints with coordinates
NRAS 536, 1268–1302 (2025) 
 x i , y j , z k ) at the discrete time t n . Here, we utilize Cartesian coordi-
ates and uniform spatial grid with x i = x 1 + ( i − 1) �x, y j = y 1 +
 j − 1) �y, and z k = z 1 + ( k − 1) �z, where �x = �y = �z = h .
hese gridpoints can considered as central points of rectangular
omputational cells. The interfaces of these cells are located at
 i±1 / 2 = x i ± h/ 2, y j±1 / 2 = y j ± h/ 2, and z k±1 / 2 = z k ± h/ 2. The
ime grid is also uniform, t n = t 0 + �tn with �t = C h , where C is
he Courant number. 

The finite-difference equations have the form 

d Q 

d t 
= F ( Q ) , (54) 

here Q is a 1D, 2D, or 3D array, depending on the dimensionality
f the problem. Each entry of this array is the vector q at the
orresponding gridpoint. F is an array of the same dimension and
ize as Q . Each entry of this array is the numerical finite-difference
pproximation for −∇ · f + S Q 

at the corresponding gridpoint,
here S Q 

is the vector of source terms. In the case of Cartesian
oordinates, the source terms emerge only in the GLM equations. The
ystem of ODEs (55) is integrated using third-order strong stability
reserving version of the Runge–Kutta method (Shu & Osher 1988 ).
ence, 

 

n + 1 = Q 

n + 

�t 

6 
( k 1 + k 2 + 4 k 3 ) , (55) 

here 

 1 = F ( Q 

n ) , 

 2 = F ( Q 

n + �t k 1 ) , 

 3 = F 

(
Q 

n + 

�t 

4 
( k 1 + k 2 ) 

)
. 

The finite-difference approximation for ∇ · f is computed in the
ollowing steps: 

(i) Conserved variables are converted into the primitive variables.
his is needed because interpolating conserved variables may yield
n unphysical state. 

(ii) A third-order WENO interpolation is used to setup Riemann
roblems at the cell interfaces. 
(iii) HLL Riemann solver (Harten, Lax & van Leer 1983 ) is used

o find upwind flux densities f at the interfaces. 
(iv) Central quartic polynomial interpolation is used to reconstruct

he distribution of f in each coordinate direction and hence to find
he third-order approximation for ∇ · f (DER operation of Del Zanna
t al. 2007 ). This works fine for smooth solutions, but may introduce
scillations at shocks, often leading to crashes in high- σ regime. To
 v oid this, the computational domain is scanned for shock fronts and
 ‘safety zone’ is set around them. Within the safety zone, a second-
rder total variation diminishing (TVD) interpolation is used instead
f the WENO interpolation. 

.3 Third-order WENO interpolation 

ENO interpolation invokes linear combination of lower order
ubstencil polynomials to achieve a higher order accuracy in
mooth sections of numerical solution and lower order almost-non-
scillatory interpolation in rough sections (shocks, Liu, Osher &
han 1994 ; Shu 2020 ). This is achieved by making the weights of

he polynomials dependent on some quantitative roughness indica-
ors. WENO approach have enjoyed great success over the years,
specially after its efficient implementation by Jiang & Shu ( 1996 ).
ater, ho we ver, it was found that their non-linear weights have a
rawback, resulting in significant reduction of accuracy in smooth
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egions with critical points. Since realistic numerical models often 
nvolve local extrema in numerous locations, especially in the case 
f turbulent flows, this is a major disadvantage. Ha et al. ( 2020 )
roposed new weights for third-order WENO interpolation. Their 
est results look impressive, but the approach is not intuitive and 
ard to comprehend. Henrick, Aslam & Powers ( 2005 ) derived new
eights for fifth-order WENO interpolation via mapping the original 
eights of Jiang & Shu ( 1996 ) to the impro v ed set. Here, we adopt a

imilar strategy to derive an improved set of weights for a third-order
cheme. In particular, we start with the weights of the second-order 
VD scheme (Falle 1991 ), modify it to address the issue of critical
oints, and then use these TVD weights to produce 3rd-order WENO 

eights (see Appendix A ). 
Below, only the interpolation in the x-direction is considered, and 

ll other spatial indices are dropped for brevity. In the other directions, 
he procedure is the same. 

.4 Hyperbolic fluxes 

iven the left u 

l and right u 

r states at the interface, the flux density
ormal to the interface is computed using the approximate Riemann 
olver by Harten et al. ( 1983 ). Namely, 

f n = 

a + f l n + a − f r n 
a + + a −

− a + a −
q r − q l 

a + + a −
, (56) 

here f l,r n = f n ( u 

l,r ), q l,r = q ( u 

l,r ), and 

 

± = max (0 , ±λ±
n ( u 

l ) , ±λ±
n ( u 

r ) , (57) 

here λ±
n are the speeds of fastest hyperbolic modes moving relative 

o plasma in the positive and negative directions along the normal 
o the interface. We use separate wave speeds for the FFDE and
erturbation subsystems. For the FFDE subsystem, λ±

n = ±1. For 
he perturbation subsystem, we use the speeds of fast magnetosonic 
aves (as in unsplit RMHD equations). These are computed using 

he computationally cheap approximation 

±
n = 

(1 − a 2 ) v n ±
√ 

a 2 (1 − v 2 ) 
[
(1 − v 2 a 2 ) − (1 − a 2 ) v 2 n ) 

]
1 − v 2 a 2 

, 

(58) 

here 

 

2 = c 2 s + c 2 A 

− c 2 s c 
2 
A 

, (59) 

 s is the sound speed, c A 

is the Alfv ́en speed, and v n is the velocity
omponent normal to the interface (Gammie, McKinney & T ́oth 
003 ). The HLL solver is stable and dif fusi ve. Its dif fusi vity can
e a drawback, but it is also a strength. It helps to smoothout the
umerical solution in complex regions with non-monotonic spatial 
ariations of large amplitude, where large truncation errors may lead 
o an unphysical set of conserved variables. 

.5 Finite-differ ence appr oximation for the flux di v er gence 

iven the array of upwind fluxes at cell interfaces, we look for
 third-order accurate approximation for ∇ · f at the cell centres 
gridpoints). To simplify the presentation, consider a gridline aligned 
ith the x- direction, choose a particular gridpoint on this line, 

eset its index to zero, and measure the position of other points
elative to this one, so that x 0 = 0. Then, introduce the four-point
tencil S = { x −3 / 2 , x −1 / 2 , x 1 / 2 , x 3 / 2 } centred on this gridpoint, denote
he corresponding upwind fluxes in the direction of the gridline 
s { f −3 / 2 , f −1 / 2 , f 1 / 2 , f 3 / 2 } , and use the third-order interpolating
olynomial p ( x) = a 3 x 3 + a 2 x 2 + a 1 x + a 0 to reconstruct the dis-
ribution of f around x = 0. Its deri v ati ve d p / d x(0) = a 1 gives us
he require third-order approximation for ∂ x f 0 . It is easy to verify
hat the final results is 

 x f 0 = 

9 

8 

f 1 / 2 − f −1 / 2 

�x 
− 1 

8 

f 3 / 2 − f −3 / 2 

3 �x 
. (60) 

sing a somewhat different approach, Del Zanna et al. ( 2007 ) derived
his result (where it is called the DER step) in a different form.
estoring the normal cell indexation, it reads 

 x f i = 

( F i+ 1 / 2 − F i−1 / 2 ) 

�x 
, (61) 

here 

F i+ 1 / 2 = − 1 

24 
f i+ 3 / 2 + 

26 

24 
f i+ 1 / 2 −

1 

24 
f i−1 / 2 . (62) 

quation ( 61 ) is the same form as in finite-volume schemes for
onservation laws, where the place of F is taken by the interface flux
f at the cell interface. This tells us that this finite-difference scheme
ro vides an e xact conservation to the inte gral quantities computed
ia the second-order accurate approximation ∫ 
v 

q d V ≈
∑ 

i,j ,k 

q i,j ,k �V i,j ,k . (63) 

his approximation is neither upwind nor ENO/WENO, and hence 
ay, and does, introduce oscillations at strong shocks. In the high-
regime, these oscillations can be fatal, resulting in a failure of

he variable conv ersion. F or this reason, we implemented a strong-
hock-finder algorithm and, in a safety zone around them, replace 
 61 ) with 

 ∂ x f ) i = 

f i+ 1 / 2 − f i−1 / 2 

�x 
. (64) 

his is a step towards the second-order TVD scheme, like in
omissarov ( 1999 ), which allows to prevent the shock oscillations
lmost completely. 

The strong-shock identification algorithm is currently based on 
hese two criteria. 

(1) The central difference approximation is used to estimate the 
hree-divergence of u = γ v at the tested gridpoint. It is required to
e ne gativ e with 

 ∇ ·u | > αu u , 

here αu > 0 is a strength factor, and u is the amplitude of u at this
oint. 
(2) The same approximation is used to estimate the gradient of

otal pressure p tot = p + ( B 

2 + E 

2 ) / 2. It it required to satisfy the
ondition 

∇p tot | > αp p , 

here αp > 0 is another strength factor, and p is the value of gas
ressure at this point. The p tot variation pressure is compared against
he gas pressure p, because in the high- σ regime, the relative variation
f magnetic pressure can remain low even at strong shocks, where
ther flow parameters change significantly. In the test simulations, 
e use, αu = αp = 0 . 5. 
One can make one more step and replace even the WENO

nterpolation with the TVD interpolation in the safety zone. 

.6 Variables conversion 

or the FFDE subsystem, the conversion is relatively straightforward 
nd already described in Section 2.4 . For the perturbation subsystem,
MNRAS 536, 1268–1302 (2025) 
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 (1) and � (1) are both the primitive and conservative at the same time
nd do not need converting. Thus, we need to compute the primitive
ariables p, ρ, w, v , and E (1) given the conservative variables E (1) ,

S (1) , D, the values of B (1) , B (0) , and E (0) , the equation of state
 = w ( p , ρ), and the perfect conductivity equation ( 32 ). Using

he conductivity equation one can easily eliminate E (1) from the
et of unknowns. It is also relatively easy to eliminate one of the
hermodynamic variables using the equation of state ( 7 ). Then, one
an use the Newton–Raphson method to solve the remaining system
f five equations for the five unknowns, but it is rather slow due to
he high dimensionality of the problem. Ho we v er, we hav e found a
ay to reduce the number of equations. The key first step of this

lgorithm is the recombination of the conserved variables of the
FDE and perturbation system. This yields the conserved variables
f the unsplit RMHD system and hence allows to use any of the
xisting methods for the conversion of its variables. Here, we adapt
he approach described by Del Zanna et al. ( 2007 ). 

The recombination of conserved variables may have an adverse
ffect on the accuracy of the conversion, as in the high- σ regime this
nvolves the mixing of very large and very small terms. Ho we ver,
he induction equation ( 32 ) alone already reintroduces the terms
uadratic in B 

2 
(0) and E 

2 
(0) into the expressions for E (1) and S (1) ,

nd so the mixing issue exists in any case. So anyway, extra
are has to be taken in order to a v oid unnecessary loss accuracy
n conversion calculations. After lengthy calculations described in
ppendix B , the conversion problem is reduced to finding the root
f the transcendental equation 

 ( X , W ( X )) = 0 , (65) 

here X = u 

2 − u 

2 
0 , u 

2 = v 2 γ ( v) 2 , and u 

2 
0 = v 2 0 γ ( v 0 ) 2 , where v (0) =

E (0) × B (0) /B 

2 
(0) is the drift velocity of the FFDE subsystem, and

 = wγ 2 . The function F ( X, W ) is defined by the equation 

 ( X, W ) = W 

2 v 2 + 4 ̄E 1 W + 4( P ( W, X) − W ) 

(
W + 

B 

2 

2 

)
− A , (66) 

here 

 = S 2 (1) + 2( S (1) ·S (0) ) − 2 ̂  E 1 B 

2 − B 

2 
(0) v 

2 
0 ( B 

2 
(1) + 2( B (0) · B (1) )) , 

(67) 

¯
 1 = E (1) + 

E 

2 
(0) 

2 
− B 

2 
(1) 

2 
− ( B (0) · B (1) ) , (68) 

nd 

ˆ 
 1 = E (1) −

B 

2 
(1) 

2 
− ( B (0) · B (1) ) , (69) 

re constants, and 

 ( W , X) = 

1 

κ
( W /γ 2 − D/γ ) , (70) 

s the function describing the gas pressure as a function of the
nthalpy and flow speed. In these equations, B 

2 is the squared
agnitude of the total magnetic field B = B (0) + B (1) . 
The function W ( X) is defined as the positive root of the cubic

quation 

 

3 + a 2 ( X) W 

2 + a 0 = 0 , (71) 

here 

 2 ( X) = 

A 1 ( X) + A 2 

A 3 ( X) 
(72) 

here 

 1 ( X) = 

B 

2 
(0) X 

2(1 + u 

2 )(1 + u 

2 
(0) ) 

+ 

v 2 

2 
( B 

2 
(1) + B (0) · B (1) ) + 

D 

γ κ
, 
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 2 = −E (1) + 

B 

2 
(1) 

2 
+ B (0) · B (1) , 

 3 ( X) = 1 − 1 

γ 2 κ
, 

nd 

 0 = −1 

2 

( S (0) · B (1) + S (1) · B ) 2 

A 3 ( X) 
. (73) 

el Zanna et al. ( 2007 ) used W and v 2 as their iteration variables.
e opted for X = u 

2 − u 

2 
(0) ∈ [ −u 

2 
(0) , +∞ ) instead of v 2 , and hence

2 = γ 2 ( X) and u 

2 = u 

2 ( X), to increase the accuracy in computation
f the cubic coefficient a 2 . If we used v 2 , the calculations of A 1 ( v 2 )
ould involve the subtraction v 2 − v 2 (0) , resulting in a significant loss
f accuracy when v 2 ≈ v 2 (0) ≈ 1. In the high- σ regime, this error
ould further increase due to the multiplication by the large factor
 

2 
(0) . 
Since a 0 ≤ 0, this cubic equation al w ays has one non-ne gativ e

eal root. This root vanishes only when a 2 > 0 and a 0 = 0. When
 2 < 0, this is the only real root of the cubic. Obviously, finding
ccurate numerical value for the root is important for the accuracy
f the whole conversion algorithm. If a 2 < 0, it is sufficient to use
he modified Cardano’s method as described in Press et al. ( 1992 ),
hough one has to a v oid numerical subtraction of almost equal large
erms when computing the discriminant of the reduced cubic when
 a 0 /a 

3 
2 | 
 1. The first step of this method involves depression of

he cubic via introduction of the new variable Y = W + a 2 / 3. When
 2 > 0 and | a 0 /a 3 2 | 
 1, the positive root W 
 a 2 , and computing it
ia W = Y − a 2 / 3 involves significant loss of accuracy. In this case,
e follow Blinn ( 2006 ) and introduce another variable Ȳ = 1 /W ,
hich also reduces the cubic equation to the depressed form, but no

hift is involved. After this, the standard prescription is used again. 
Equation ( 65 ) is solved numerically via either the secant or

he Brent–Dekker method (Dekker 1969 ; Brent 1971 ). The secant
ethod is tried first, using the value of X in the solution at the

revious time-step as the initial guess. When σ is not extremely
arge, this method finds the root X ≥ −u 

2 
0 , provided it exists, down

o the rounding error (machine precision) after no more than 10
terations. When σ is very high, it may fail to converge, getting
rapped in an oscillation about the root. Whenever the secant method
 ails, the Brent–Dekk er method is tried instead. To start the method,
ne has to find an interval [ a, b], with a ≥ −u 

2 
0 , which includes the

oot, and hence F ( a) F ( b) < 0. We start with a reasonably narrow
nterval containing the initial guess first, and then, if it does not
ontain the root, exponentially decrease the distance between a and
u 

2 
0 and exponentially increase the distance between a and b. When

uch interval is found, the method al w ays converges to the root,
hough in extreme cases this may take up to 60 iterations to reach the
ounding-error level. 

To test the conversion algorithm, we used the Monte-Carlo method,
rst to set up the exact parameter state within the parameter space,
nd then to produce the initial guess. Fig. 1 shows the relative error
n the gas pressure against the magnetization σ , for one of such
ests. Giv en the e xtreme values of σ used in the test and not a single
ncident of convergence failure, we are almost 100 per cent certain
hat when the variables conversion fails in real simulations, this is not
ue to some deficiencies of the conversion algorithm, but because
he root X ≥ −u 

2 
0 does not exist. 

Once the root of equation ( 65 ) is found, the primiti ve v ariables are
omputed via 

 

2 = X + u 

2 
0 , v 2 = u 

2 / (1 + u 

2 ) , w = W ( X) /γ 2 (74) 
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Figure 1. Relative error of pressure in the variables conversion algorithm. 
The type of plotting marker describes the number of iterations n it required: 
green triangles when n it ≤ 5, blue crosses when 5 < n it ≤ 10, red circles 
when 10 < n it ≤ 20, and black diamonds when n it > 20. 
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= 

D 

γ
, (75) 

 = 

1 

κ
( w − ρ) , (76) 

 = 

S + ( S · B ) B /W 

B 

2 + W 

, (77) 

nd 

E (1) = −v × B − E (0) . (78) 

 1 D  TEST  SIM ULATIONS  

n the simulations, we use the EoS of ideal gas with the ratio of
pecific heats � = 4 / 3, even when the sound speed is well below the
peed of light. In all the simulations, the Courant number C = 0.5,
ith the exception of the Alfv ́en wave test where C = 0.4. 

.1 Alfv ́en wave. Convergency study 

n addition to being a fundamental wave in RMHD, the Alfv ́en
ave is a great option for testing the scheme conv ergenc y rate. It is
uite complex in structure due to the rotation of electromagnetic and 
elocity fields, quite simple to be describe analytically even without 
he assumption of small amplitude (Komissarov 1997 ), and allows 
olutions with continuous higher order deri v ati ves. In the Hoffmann–
eller frame (De Hoffmann & Teller 1950 ), the wave is stationary,
ith B 

2 , γ , p , ρ = const , E = 0, and 

 

i = ± 1 √ 

E 
B 

i , (79) 

here E = w + B 

2 , and the sign decides the direction of the wave
ector. 

For the test simulation, we set p = ρ = 1, and 

 

x = 0 . 3 B 0 , B 

y = B 0 cos φ , B 

z = B 0 sin φ , (80) 

here the phase variable 

= arcsin ( a sin ( kx)) . 

o set the wave in motion, we use the Lorentz transformation to the
ab frame moving with the speed v = 0 . 5 in the positive x -direction.
he wavenumber k in the Hoffmann–Teller frame is set to yield
he wavelength λ = 2 in the lab frame. We set the phase variation
mplitude to a = 0 . 3, to ensure that the Lorentz factor does not
ecome e xcessiv ely high ev en for the model with the highest explored
agnetization. The simulations run from t = 0 to 2, by which time

he wave shifts to the left by exactly one half of its wavelength, and
n the exact solution the profile of B 

y coincides with the initial one.
he Courant number is set to C = 0.4 to ensure that in all runs of

he conv ergenc y study the final time t = 2 is a whole number of
ime-steps. 

Fig. 2 shows the results for the model with B 0 = 50, p = ρ = 1,
ith the corresponding magnetization σ = 545. Table 1 shows the 

esults of conv ergenc y study based on this model. One can see that
he scheme shows third-order behaviour already at the very low 

esolution. For the resolution n x = 20, the characteristic variation 
ength-scale for B 

y is only five cells. 
By varying the value of B 0 , it s found that L 1 ( B 

y ) ∝ 

√ 

σ and
 1 ( ρ) , L 1 ( p) ∝ σ when σ � 1. 

.2 Harris current sheet. Mechanisms of numerical plasma 
eating 

he numerical resistivity determines the evolution of current sheets 
n ideal RMHD simulations, which makes this test particularly 
mportant for studying the possibility to control the numerical plasma 
eating associated with the resistivity as described in Section 2.4 . 
In the initial solution, the magnetic field B = (0 , B 

y ( x) , 0) has no
uide component, and 

 

y ( x) = B 0 tanh ( x/a) , (81) 

here a is the characteristic width of the sheet and B 0 is the
symptotic field strength. The electric field E = 0 and the magnetic
ressure is balanced by the gas pressure 

( x) = p 0 + 

B 

2 
0 

2 
(1 − tanh 2 ( x/a)) . (82) 

n the test problem, B 0 = 500, p 0 = 1, and a = 0 . 02. The plasma
ass density is uniform ρ( x ) = ρ0 , with ρ0 = 1. The corresponding

symptotic (as x → ∞ ) magnetization σ = 54500. The compu-
ational domain is ( −5 , 5) with 500 gridpoints. This makes the
urrent sheet approximately four computational cells wide, so it 
s resolved but only just. Such thin current sheets do emerge in the
D simulations described in Section 5 . To explore the impact of the
nergy transfer on the solution we made few runs with different values
f the energy transfer parameter αe . Here, the results for αe = 0,
.001, and 1 are presented. In many respects, they are surprisingly
imilar. Ho we ver, there are some revealing differences concerning 
he energy balance. 

Initially, the numerical resistivity is too high for the solution to
aintain the pressure balance. Both the magnetic and total pressures 

n the middle of sheet reduce, and this triggers f ast raref action w aves
oving out at almost the speed of light. These waves initiate plasma
ow into the current sheet. Inside the current sheet, the plasma gets
eated to very high temperatures, and soon the total pressure balance
cross the current sheet is restored. This active phase last up to
 = 0 . 15, by which time the current sheet thickness increases to
bout six cells. This phase is followed by the phase of slow diffusive
preading, and by the end of the simulations, at t = 5, the current
heet thickness is still only about 10 cells (see Fig. 3 ). 

The right panel of Fig. 3 shows the total electric field E 

z =
 

z 
(0) + E 

z 
(1) and its force-free and perturbation components at t = 5.

he force-free component has the sign consistent with the flow of
MNRAS 536, 1268–1302 (2025) 
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M

Figure 2. Alfv ́en wave test. The solid lines show the exact solution and markers show the numerical solution for the model with B 0 = 50 ( σ = 545) with the 
resolution n x = 40 at t = 2. 

Table 1. Conv ergenc y test with Alfv ́en wav e simulations. Here, n x is the 
number of gridpoints (the resolution), n t is the number of time-steps from 

the start of the run, L 1 ( A ) is the L 1-error of the variable A , r is the two-point 
estimate of the order of accuracy based on the errors for the current and 
previous resolutions. 

n x n t L 1 ( B 

y ) r L 1 ( ρ) r L 1 ( p) r 

20 50 0.358e −1 – 0.388e + 0 – 0.107e + 1 –
40 100 0.307e −2 3.5 0.572e −1 2.8 0.133e + 0 3.0 
80 200 0.355e −3 3.1 0.755e −2 2.9 0.171e −1 2.9 
160 400 0.447e −4 3.0 0.950e −3 3.0 0.214e −2 3.0 
320 800 0.536e −5 3.1 0.119e −3 3.0 0.268e −3 3.0 
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lectromagnetic energy into the current sheet. In the pure FFDE
umerical solution to this problem, E (0) ≈ B (0) , and the electro-
agnetic energy flows into the current sheet at the speed of light.

nside the current sheet, it disappears at the central discontinuity via
nforcement of the condition B > E, In the split-RMHD simulations,
he FFDE electric field E 

z 
(0) is checked by the perturbation field E 

z 
(1) ,

nd the total electric field E 

z almost vanishes. 
Fig. 4 shows the entropy s = ln ( p/ρ� ), for the models with

e = 0, 0.001, and 1 at t = 4. The most conspicuous feature of
hese plot is the central peak. It manifests the plasma heating in
he current sheet itself. In all three models, the peak has almost the
ame height and width. The plots also show weak ‘wings’, most
ronounced in the model with αe = 0, which spread out by �x = 4
n the both directions. This is the w ak e left by the fast rarefaction
ave emitted by the current sheet at the start of the simulations.
he left panel of Fig. 5 shows the energy transfer rate per time-
tep for the run with αe = 0 at t = 4 . 5. The central peak is the
urrent sheet, where the numerical plasma heating continues in the
entral six cells. Moreo v er, there are additional regions of numerical
eating, which are clustered around the raref action w av es. The y are
esponsible for the entropy wings in Fig. 4 . The irregular structure
f plasma heating in the rarefaction waves shows that the sign of
E n + 1 

(0) fluctuates there. One may argue that like at shock waves,
he numerical heating in current sheets imitates the proper physical
rocesses known to operate there. On the contrary, its is hard to see
ow the numerical heating at raref action w aves can be anything but
n unwelcome numerical artefact. Fortunately, it can be suppressed
y setting αe slightly abo v e zero. The middle panel of Fig. 5 shows
hat in the run with αe = 0 . 001 the energy transfer operates only in
he current sheet. 
NRAS 536, 1268–1302 (2025) 
Table 2 shows the variation of the total energy E tot = E em 

+
 pl and its components for the whole system o v er the whole run
up to t = 4 . 5). The integrals are computed using the conserv ati ve
pproximation (64), 

 = 

n x ∑ 

i= 1 

E i , (83) 

here E i is the energy density at the ith gridpoint (the cell-length
actor is ignored). In the standard conserv ati ve RMHD mode of
he code, the total energy of the system would remain unchanged,
E tot = 0 down to the rounding error, because by t = 4 . 5 the
aref action w a ves ha ve not reached the domain boundaries. The
plitting scheme is not fully conserv ati ve, ho we ver, and a non-
anishing δE tot is expected. 

In the run with fully suppressed energy transfer ( αe = 1), the
otal energy of the system decreases by about 1 per cent. Some
ecrease is expected because the numerical resistivity reduces the
nergy of the FFDE system, and this reduction is not compensated
ia the energy transfer algorithm. Interestingly, the plasma energy of
he system still increases. Because in these simulations the bulk

otion energy of plasma is very small compared to its thermal
nergy, this increase indicates the existence of numerical heating
echanism unrelated to the energy transfer algorithm. To understand

his mechanism, recall that the conserved energy of the perturbation
ystem E (1) contains not only the plasma energy E pl = w γ 2 − p , but
lso the interaction energy E int = ( E (0) · E (1) ) + ( B (0) · B (1) ) and the
nergy of the electromagnetic perturbation E per = ( E 

2 
(1) + B 

2 
(1) ) / 2

see equation 41 ). Hence, the plasma energy itself is not conserved.
t the start of ( n + 1)th time-step, E 

n 
(1) ,i = B 

n 
(1) ,i = 0, and hence

 E int ) 
n 
i + ( E per ) n i = 0, ( E (1) ) n i = ( E pl ) 

n 
i . By the end of the time-

tep, ( E (1) ) 
n + 1 
i , ( B (1) ) 

n + 1 
i �= 0, ( E int ) 

n + 1 
i + ( E per ) 

n + 1 
i �= 0, and as a

esult, the plasma energy changes by −( E int ) 
n + 1 
i − ( E per ) 

n + 1 
i . The

orresponding change of the plasma energy for the whole system
uring the time-step is 

˜ E n + 1 
pl = −

n x ∑ 

i= 1 

(
( E int ) 

n + 1 
i + ( E per ) 

n + 1 
i 

)
, (84) 

here the summation is taken o v er the whole grid. Over the whole
un, this yields 

˜ E pl = 

n t ∑ 

n = 2 

δ ˜ E n pl . (85) 
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Figure 3. 1D current sheet test. Left panel: the total magnetic field B 

y at t = 0 and 5 and its perturbation component B 

y 
(1) at t = 5. Middle panel: the gas 

pressure p, the magnetic pressure p m 

and the total pressure p tot = p + p m 

at t = 5. Right panel: the total electric field E 

z , its FFDE component E 

z 
(0) and its 

perturbation E 

z 
(1) at t = 5. The energy transfer parameter is αe = 1. In the models with αe = 0 and 0.001, the results are very similar. 

Figure 4. 1D current sheet test. The plasma entropy in the runs the energy transfer parameter αe = 0, 10 −3 , and 1. The dashed lines show the initial solution 
and the solid lines show the solution at t = 4. 

Figure 5. 1D current sheet test. Left and middle panels: plasma heating per one integration time-step at t = 4 for the runs with αe = 0 (left panel) and αe = 0 . 01 
(middle panel). Right panel: E int + E per (solid line and filled squares), E per (dashed line and crosses), ( B (0) · B (1) ) (the dash–dotted line and stars), and ( E (0) · E (1) ) 
(dotted line and circles) at t = 2 for the run with αe = 1. 
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he value of δ ˜ E pl is shown in the last column of Table 2. For the

un with αe = 1, δ ˜ E pl = δE pl , confirming that in this run the plasma
eating is entirely via this mechanism. 
In the run with full energy transfer ( αe = 0), the solution is

loser to the perfect energy conserv ation. No w δE tot v aries by about
.09 per cent only, and, in contrast to the run with αe = 1, the total
nergy of the system increases. The increase of E tot in this run is
 xpected because an y deficit of E (0) is fully compensated via increase
f E (1) , but the occasional surplus of E (0) is not compensated via
ecrease of E (1) . The energy transfer accounts for about 47 per cent
MNRAS 536, 1268–1302 (2025) 
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Table 2. 1D current sheet test. Integral energy variation by t = 4 . 5 for runs 
with different energy transfer parameter αe . E em 

, E pl , and E tot are the 
electromagnetic energy, the plasma energy, and the total energy , respectively . 
δ ˜ E pl is the contribution of the interaction terms to the plasma energy variation. 

The total energy at the start is E tot,0 = 6 . 30 × 10 7 . 

αe δE tot δE em 

δE pl δ ˜ E pl 

1.0 −7 . 81 × 10 5 −1 . 874 × 10 6 1 . 098 × 10 6 1 . 098 × 10 6 

10 −2 −9 . 72 × 10 4 −1 . 315 × 10 6 1 . 223 × 10 6 0 . 748 × 10 6 

10 −3 4 . 34 × 10 4 −1 . 224 × 10 6 1 . 273 × 10 6 0 . 690 × 10 6 

0.0 5 . 04 × 10 4 −1 . 222 × 10 6 1 . 294 × 10 6 0 . 689 × 10 6 
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f the plasma heating. For the run with αe = 0 . 001, the numbers are
imilar, with a slight impro v ement of the total energy conservation.
or αe = 0 . 01, E tot decreases again and its v ariation gro ws in
mplitude. 

In summary, the energy transfer is not the only channel of plasma
eating in the splitting scheme. Ho we ver, it helps to impro v e the
nergy conservation and then accounts for up to 50 per cent of plasma
eating in current sheets. To suppress the lo w-le vel parasitic heating
way from current sheets, it helps to introduce a threshold on the
ransferred energy, and in the rest of the test simulations, we use the
hreshold parameter αe = 10 −3 as a default value. 

.3 Degenerate Alfv ́en wave. The study of numerical resistivity 

n the MHD approximation, basic theories of magnetic reconnection
ntroduce diffusion of magnetic field lines through plasma using the
odel of scalar (isotropic) resistivity η, which is properly justified

nly for collisional plasma. It yields a relatively simple relation
etween the electric field and the electric current. In the 3 + 1
ramework of resistive RMHD, this relation reads 

j = 

γ

η
( E + v × B − ( E ·v ) v ) + q v , (86) 

here q is the electric charge density of plasma (e.g. Komissarov
007 ). For electrically neutral plasma with the flow speed v 
 1,
his reduces to 

j = 

1 

η
( E + v × B ) , 

hich further reduces to E = η j when v = 0. When η is constant,
he magnetic field evolves according to the equation (

∂ 2 B 

∂t 2 
− ∇ 

2 B 

)
+ 

(
∂ B 

∂t 
− ∇ ×( v × B ) 

)
= 0 . (87) 

hen L / T 
 1, where L and T the characteristic length- and time-
cales of the problem, the second deri v ati ve term can be ignored and
e obtain the equation of Newtonian MHD 

∂ B 

∂t 
− ∇ ×( v × B ) − η∇ 

2 B = 0 . (88) 

enote as T η the time-scale introduced by the resistivity. Then, from
quation ( 88 ), it follows that 

 η = η−1 L 

2 . (89) 

ince we solve equations of ideal RMHD, the only kind of resistivity
vailable in our simulations and controlling the magnetic reconnec-
ion is the numerical one. The numerical resistivity, like the numerical
iffusion and viscosity, emerges from the truncation errors of the
umerical scheme. For a Runge–Kutta scheme with temporal and
patial accuracies of the same order r , the rounding error R 1 after
NRAS 536, 1268–1302 (2025) 
ne time-step scales with the resolution n x = L/�x, where L is the
omain size, as 

 

1 = O ( n x ) 
−( r+ 1) as n x → ∞ , 

ssuming a smooth solution (Shu & Osher 1988 ). Ho we ver, this error
s local, and for a feature of the characteristic length-scale L 
 L ,
he size of the domain does not matter. What matters is n L 

= L /�x,
he number of gridpoints per L . Hence, the local error 

 

1 
L 

∝ n 
−( r+ 1) 
L 

for n L 

� 1 . 

he number of time-steps required to reach the resistive time-scale
 η is n η = T η/�t and the total error accumulated by this time is 

 

n η
L 

∝ n η( n L 

) −( r+ 1) = 

L 

2 

η�t 
( n L 

) −( r+ 1) for n L 

� 1 . 

his accumulated error is the o v erall δB/B on the resistive time-
cale, and hence a constant which does not depend of the particular
alues of �x, �t , and L . Hence, 

num 

= A η

L 

2 

�t 

(
�x 

L 

)r+ 1 

= A η

�x 

�t 
L 

(
�x 

L 

)r 

, (90) 

here A η is the normalization factor, and we replaced η with ηnum 

o stress the fact this is the expression for the numerical resistivity. In
his deri v ation, we assumed that the rounding error emerging in the
umerical integration of the Faraday equation has the effect similar
o that of the discretized diffusion term η∇ 

2 B . A proper analytical
tudy of this issue is beyond the scope of this paper, and here we
nly check this via computer simulations. For our scheme r = 3,
nd, given the maximum wave speed being equal to the speed of
ight, �x / �t = C 

−1 . 
The result ( 90 ) is almost identical to the special case of the ansatz

roposed by Rembiasz et al. ( 2017 ), who based it on a mixture
f physical and numerical reasons. Rembiasz et al. ( 2017 ) tried to
etermine the normalization factors of their ansatz by studying the
ecay of Alfv ́en and magnetosonic waves. The decay of these waves
epends both on the numerical viscosity and resistivity, which makes
he computations rather involv ed. Curiously, the y reported ne gativ e
esistivity for their numerical scheme. 

Here, we simplify the procedure by studying the problem which
nvolves only the numerical resistivity and hence no decoupling is
eeded. Namely, we consider the 1D initial value problem, where
n the initial solution v = 0, p = p 0 , ρ = ρ0 , and the magnetic field
B = B 0 (0 , cos k x, sin k x) rotates with x at a constant rate. In ideal

MHD, this configuration is magnetostatic due to uniform magnetic
nd total pressures. It may be described as a degenerate limit of the
lfv ́en wave, when the wave vector k is orthogonal to the magnetic
eld. In resistive RMHD with constant scalar resistivity, the magnetic
eld decays and this decay is accompanied by plasma heating.
o we ver, because of the translational symmetry of the problem, the

ate of decay and heating is independent on x and the configuration
emains magnetostatic. 

When v = 0, the magnetic field evolves according to the telegraph
quation 

∂ 2 B 

∂t 2 
+ 

∂ B 

∂t 
− η

∂ 2 B 

∂x 2 
= 0 . (91) 

hen ηk 
 1, it allows the separable solution 

B ( t) = B 0 (0 , cos k x, sin k x) exp ( −ωt) , (92) 

here ω = ηk 2 is the decay rate of the magnetic field [This is the
ame as in the Newtonian limit, where the first term in equation ( 91 )
rops out.]. Thus, if the rounding errors of our scheme do indeed
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mount to numerical resistivity, one expects the magnetic field to 
ecay exponentially, in which case the value of numerical resistivity 
an be found as ηnum 

= ω/k 2 . In the test simulations, the initial
olution has p 0 = ρ0 = 1, and B (0) = 50. The domain is (0,1) with
eriodic boundary conditions and C = 0 . 5. 
The left panel of Fig. 6 shows the evolution of the magnetic

eld for the model with k = 2 π . As e xpected, the wav e decays
eeping its shape intact. To measure the decay rate, we use the total
agnetic energy of the system, computed via equation ( 83 ), which

s expected to decay exponentially at the rate 2 ω = 2 ηnum 

k 2 . It is
ndeed exponential, as illustrated in the middle panel of Fig. 6 . Table 3
hows that the decay rate, and the value of ηnum 

, decrease with the
umerical resolution as n −3 

x for sufficiently large n x , in agreement 
ith equation ( 90 ). 
The characteristic length-scale L is based on the equation 

d 2 B 

d x 2 
= 

B 

L 

2 
, (93) 

nd for this problem it yields L = 1 /k, independent of the location.
hen, equation ( 90 ) predicts ω ∝ k 4 , which is indeed the case as

llustrated in the right panel of Fig. 6 . 
Table 3 also shows the values of the normalization constant A η

btained in the simulations with k = 2 π . One can see that for n x �
0, A η ≈ 0 . 031 independently of the resolution as e xpected. F or
 = 10, A η it is almost twice as high. Ho we ver, in this case the
umber of gridpoints per the length-scale n L 

is only about 1.6 and
 strong deviation from equation ( 90 ) is expected. The numerical
agnetic Reynolds number of the wave problem, 

e m 

= 

cL 

ηnum 

. (94) 

.4 Self-similar rarefaction waves 

elf-similar (simple) rarefaction wav es pro vide v ery useful non- 
inear test problems. Although no analytic solutions for these waves 
xist, the problem of finding exact numerical solutions is reduced 
o solving numerically a system of first-order ordinary differential 
quations (e.g. Komissarov 1999 ). These wave are not particularly 
uitable for the conv ergenc y testing because of the loss of smoothness
n the exact solutions at the leading (trailing) wavefronts, where 
lready the first spatial deri v ati ve is discontinuous. Since we have
lready verified the order of accuracy of our code, this is no longer
equired and just a visual comparison with the exact numerical 
olution is sufficient. Here, we present the results for a switch-off
 ast raref action and a slow raref action w aves propagating through the
ame high- σ state. 

.4.1 Fast switch-off wave 

his wave connects two uniforms states with the parameters p = 1,
= 0 . 01, u = (0 , 0 , 0), and B = (10 , 5 , 0) for the left state, and
 = 0 . 630, ρ = 0 . 7076 × 10 −2 , u = (0 . 232 , −0 . 577 , 0), and B =

10 , 0 , 0) for the right state. The magnetization σ ≈ 30 in both the
eft and the right states. The wave moves to the left, with the wave
peeds of the leading and trailing fronts being v l = −0 . 9856 and
 t = −0 . 9705, respectively. These are so close because in high- σ
lasma the fast speed is very close to the speed of light, and the
eduction of the tangential component of the magnetic field has little 
ffect on the magnetization when there is a strong normal component. 
nother interesting property of the wave is its limited strength in 

erms of the gas pressure variation. This is partly due to the fact
hat the fast rarefaction terminates as soon as the tangential magnetic
eld vanishes. The initial ( t R 

= 0) discontinuity of the associated
iemann problem is set at x = 0, whereas the initial ( t = t R 

− 1 =
) solution for the computer simulations is the exact solution to
his Riemann problem at t R 

= 1. The domain is ( −2 . 20 , −0 . 90)
ith 800 gridpoints. Fig. 7 shows the exact numerical solution (solid

ines) versus the results of computer simulations (markers) at the time
 = 1 ( t R 

= 2). One can see that agreement between the solutions is
uite good, apart from the vicinity of the leading and trailing fronts.
he loss of accuracy near the fronts is expected due to the lack of
ontinuity in the first spatial deri v ati ves there. 

.4.2 Slow switch-on wave 

his wave connects two uniforms states with the parameters p =
, ρ = 0 . 01, u = (0 , 0 , 0), and B = (10 , 5 , 0) for the left state
nd p = 0 . 001, ρ = 0 . 562 × 10 −5 , u = (8 . 856 , 4 . 479 , 0), and B =
10 , 5 . 048 , 0) for the right state. The magnetization σ ≈ 30 in the
eft state and σ ≈ 3 × 10 4 in the right state. The wave moves to
he left, with the wave speeds of the leading and trailing fronts
eing v l = −0 . 516 and v t = 0 . 876, respectively. Thus, relative to
he computational grid, the trailing front now mo v es to the right. The
reat contrast with the f ast raref action in this regard is due to the fact
hat the sound speed, c s ≈ 1 / 

√ 

3 everywhere, is much lower than
he speed of light, and so the speed of the slow mode is strongly
nfluenced by the value of v x . Another contrasting feature is the large
ecrease of the gas pressure as the solution can be continued towards
 = 0 without limit. 
The initial ( t R 

= 0) discontinuity of the associated Riemann
roblem is set at x = 0, whereas the initial ( t = t R 

− 1 = 0) solution
or the computer simulations is the exact solution to this Riemann
roblem at t R 

= 1. The domain is ( −3 , 5) with 100 gridpoints. This
ow resolution is sufficient because of the rapid spreading of the
ave, in contrast to the fast wave where the spreading is very slow.
ig. 8 shows the exact numerical solution (solid lines) versus the
esults of computer simulations (markers) at the time t = 3( t R 

= 4).
gain, there is a good agreement between the solutions everywhere, 

part from the vicinity of the leading and trailing fronts. The loss of
ccuracy near the trailing front is higher due to the higher jumps of
he first deri v ati ves there. 

.5 Shock waves 

agnetosonic shock waves present the most challenging type of 
MHD solutions for standard unsplit numerical schemes in the high- 
regime. The huge variation of the spatial gradients of physical 

arameters at shocks even with a well-resolved numerical structure 
ields large numerical errors, and this increases the chance for 
he computed conserved variables to escape from the physically 

eaningful domain. The same applies to the splitting scheme. 
oreo v er, there may be no FFDE shock solution which can be

onsidered as a good first approximation to an RMHD shock. For
xample, f ast w aves of FFDE propagate in all directions with the
peed of light, whereas for an RMHD shock on can al w ays find a
rame where it is stationary. This makes the perturbation component 
f the electromagnetic field ( B (1) , E (1) ) comparable to its FFDE
omponent ( B (0) , E (0) ), particularly the electric field. 

We tested numerical shock solutions obtained with our scheme 
gainst the exact solutions, obtained by solving numerically the shock 
quations as described in Majorana & Anile ( 1987 ). Here, the results
f some of the tests are described. The corresponding solutions of
he shock equations are given in Table 4. 
MNRAS 536, 1268–1302 (2025) 
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Figure 6. Degenerate Alfv ́en wave. Left panel: B 

y at t = 0 (crosses), t = 30 (circles), and t = 100 (filled squares) in the run with n x = 20 and k = 2 π . Middle 
panel: evolution of the total electromagnetic energy E em 

in the run with n x = 40 and k = 2 π . Right panel: the wave decay rate ω = ηk 2 against k for the models 
with the resolution n x = 80. 

Table 3. Degenerate Alfv ́en wave simulations. n x is the number of grid- 
points, r is the two-point estimate of the scheme order of accuracy, η is the 
numerical resistivity, Re m is the magnetic Reynolds number based on the 
numerical resistivity, and A η is the coefficient in the ansatz ( 90 ). The wave 
used for the simulations has k = 2 π . 

n x 10 20 40 80 

2 ω 0.39 0 . 26 × 10 −1 0 . 30 × 10 −2 0 . 38 × 10 −3 

ηnum 

0 . 49 × 10 −2 0 . 33 × 10 −3 0 . 38 × 10 −4 0 . 48 × 10 −5 

r – 3.75 3.1 3 
A η 0.063 0.034 0.031 0.031 
Re m 0 . 32 × 10 2 0 . 48 × 10 3 0 . 42 × 10 4 0 . 33 × 10 5 
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.5.1 FS7. Fast shock in weakly magnetized plasma 

e start with the case of fast shock in low- σ plasma. This case
s selected to demonstrate the very good performance of splitting
cheme performance in the lo w- σ regime, e ven if it was designed
pecifically with the high- σ regime in mind. In addition, this case
llows us to illustrate the inner workings of the splitting approach
ithout resorting to sophisticated plotting techniques. 
In the upstream (left) state, p = 10 −2 , ρ = 1, and σ = 10 −3 . The

orresponding sound and Alfv ́en speeds are c s = 0 . 11 and c A 

=
 . 022, respectively. In the rest frame of the upstream state, the shock
o v es in the ne gativ e x -direction with the fast magnetosonic Mach

umber M f = 5, where 

 f = 

γs v s 

γf v f 
, 

 s is the shock speed, v f is the fast magnetosonic speed along the
hock normal, and γs and γf are the corresponding Lorentz factors.
he angle between the shock normal and the magnetic field αB 

=
5 ◦. For the test simulations, the shock is setup in the inertial frame
here it mo v es in the positiv e x -direction with the speed v ′ s = 0 . 1.
he domain is ( −0 . 5 , 1 . 5) with 100 gridpoints. Initially, the shock is

ocated at x = 0. Fig. 9 illustrates the solution at t = 10, when the
hock is expected to reach x = 1. In its plots, the solid lines show the
xact solution, and the markers show the simulation results obtained
ith the splitting scheme. 
One can see that the shock is captured very well, both in terms of

he shock speed and the jumps of the fluid parameters. The bottom-
eft panel shows the jump in the total magnetic field B 

y and its
erturbation components B 

y 

(1) , which vanishes in the upstream and
NRAS 536, 1268–1302 (2025) 
ownstream uniform states and remains quite lo w e ven at the shock
ront. The bottom-centre panel, shows the total electric field E 

z , its
FDE component E 

z 
(0) , and the perturbation components E 

z 
(1) . The

erturbation component vanishes in the upstream and downstream
niform states, where E 

z = E 

z 
(0) . Ho we ver in the shock layer, E 

z 
(0) 

trongly deviates from E 

z and develops a conspicuous upward ‘spur’.
he perturbation component also has a spur there but in the opposite
irection, thus keeping the total electric field E 

z close to the exact
olution. The behaviour of E 

z 
(0) is consistent with the pure FFDE

olution to the Riemann problem with the same electromagnetic
eft and right states. The bottom-right panel of Fig. 9 illustrates
his solution at t = 0 . 5. In involves tw o f ast w av es mo ving with
he speed of light in the opposite directions, and a uniform state
n between, where E 

z 
(0) > 0. The FFDE component of the splitting

cheme attempts to evolve the total electromagnetic field in the same
irection, but the perturbation component prevents it from getting
here. 

.5.2 FS9. Subrelativistic fast shock 

n this case, both the plasma temperature and magnetization are lower
han in FS7, allowing to describe it as a subrelativistic problem.
he results of this test show that the splitting scheme can be used

o simulate such plasmas without significant decrease of accuracy.
his is important as in many astrophysical applications both the
ltrarelati vistic and subrelati vistic plasmas coexist, e.g. an accretion
isc or interstellar gas next to a relativistic jet. 
In the upstream (left) state, p = 10 −4 , ρ = 1, σ = 10 −3 , and the

on-relativistic magnetization parameter β = p/p m 

= 2. The corre-
ponding sound and Alfv ́en speeds are c s = 0 . 011 and c A 

= 0 . 0071,
espectively. The shock moves through this state in the negative x -
irection with the fast magnetosonic Mach number M f = 5. The
ngle between the shock normal and the magnetic field αB 

= 45 ◦.
he test simulations are setup in the rest frame of the upstream
tate. In this frame, the shock speed v s = −0 . 0705. The domain is
 −0 . 35 , 0 . 05) with 100 gridpoints. Initially, the shock is located at
 = 0. The left panel of Fig. 10 illustrates the solution at t = 3,
hen the shock is expected to reach x = −0 . 212. In the plot, the

olid lines show the prediction based of the shock speed of the exact
olution, and the markers show the numerical solution obtained with
he splitting scheme. 
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Table 4. Parameters of shock wave tests. In all the tests, the left state is the shock upstream state. σ is the magnetization of the upstream state, M f and M s are, 
respectively, the relativistic fast- and slow-magnetosonic Mach numbers of the shock, and v sh is the shock speed relative to the grid. 

Test Left state Right state Other parameters 

FS5 v = (0.99968283E + 00, 0, 0) v = (0.99768146E + 00, 
0.17248747E −01, 0) 

v sh = −0.5 

B = (50, 0.19853866E + 04, 0) B = (50, 0.19886156E + 04, 0) M f = 2 
E = (0, 0, −0.19847569E + 04) E = (0, 0, −0.19831425E + 04) σ = 10 3 

p = 1.0, ρ = 1.0 p = 0.44243911E + 01, ρ
= 0.26176303E + 01 

FS5A v = (0, 0, 0) v = ( −0.75954175E + 00, 
0.16485693E + 00, 0) v sh = −0.99989427E + 00 

B = (50, 50, 0) B = (50, 0.24230060E + 03, 0) M f = 2 
E = (0, 0, 0) E = (0, 0, 0.19228027E + 03) σ = 10 3 

p = 1.0, ρ = 1.0 p = 0.44243911E + 01, ρ
= 0.26176303E + 01 

FS7 v = (0.57368310E + 00, 0, 0) v = (0.19727530E + 00, 
0.34774998E −02, 0) 

v sh = 0.1 

B = (0.22803509E −01, 
0.27840482E −01, 0) 

B = (0.22803509E −01, 
0.13638473E + 00, 0) 

M f = 5 

E = (0, 0, −0.15971614E −01) E = (0, 0, −0.26826038E −01) σ = 10 −3 

p = 0.01, ρ = 1.0 p = 0.28341867E + 00, ρ
= 0.58282475E + 01 

FS9 v = (0, 0, 0) v = ( −0.57243160E −01, 
0.31963724E −02, 0) 

v sh = −0.70530352E −01 

B = (0.70724819E −02, 
0.70724819E −02, 0) 

B = (0.70724819E −02, 
0.39243124E −01, 0) 

M f = 5 

E = (0, 0, 0) E = (0, 0, 0.22690067E −02) σ = 10 −4 

p = 10 −4 , ρ = 1.0 p = 0.34131551E −02, ρ
= 0.52994146E + 01. 

SS1 v = (0.19953950E + 00, 0, 0) v = ( −0.42122856E + 00, 
−0.63382468E + 00, 0) 

v sh = −0.5 

B = (50, 0.51026147E + 02, 0) B = (50, 0.50825161E + 02, 0) M s = 2 . 101839785 
E = (0, 0, −0.10181732E + 02) E = (0, 0, −0.10282225E + 02) σ = 10 3 

p = 1.0, ρ = 1.0 p = 0.14412306E + 02, ρ
= 0.58792375E + 01 

Figure 7. Fast switch-off rarefaction wave test. The continuous lines show the exact solution, and the markers show the numerical solution at the integration 
time t = 1, corresponding to the time t R 

= 2, since the resolution of the initial discontinuity. 
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.5.3 FS5. Fast shock in highly magnetized plasma 

his is an example of fast shock in highly magnetized plasma. In
he rest frame of the upstream state, p = ρ = 1 and σ = 10 3 . The
hock mo v es through this state in the ne gativ e x -direction with the
ast magnetosonic Mach number M f = 2. The shock speed in this
rame is v s = −0 . 99968, and the angle between the shock normal
nd the magnetic field αB 

= 45 ◦. The test simulations are setup
n the frame where the shock speed is v ′ s = −0 . 5. The domain is
 −5 . 5 , 0 . 5) with 300 gridpoints. Initially, the shock is located at
 = 0. The middle panel of Fig. 10 illustrates the solution at t = 10,
hen the shock is expected to reach x = −5 . 0. In the plot, the solid

ines show the exact solution, and the markers show the results of
omputer simulations. Once again both the shock speed and its jumps
re well captured by the splitting scheme. When the energy transfer
lgorithm is turned off, the errors increase. In particular, the gas
ressure is about 20 per cent lower. The plot also shows a slight
hift of the numerical solution relative to the exact one, implying the
ossibility of a small error in the shock speed. Ho we ver, this shift is
MNRAS 536, 1268–1302 (2025) 
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Figure 8. Slow rarefaction wave test. The continuous lines show the exact solution, and the markers show the numerical solution at the integration time t = 3, 
corresponding to t = 4, since the resolution of the associated Riemann discontinuity. The middle panel also shows the exact solution at the Riemann time t = 1, 
which served as an initial solution for this test. 

Figure 9. Fast shock FS7 of weak magnetization. t = 10. The bottom-right panel shows the FF electrodynamic solution at t = 0 . 5 for the same initial conditions. 
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lready seen at t = 2, where it has the same size. This suggests that
he shift is more likely a property of the numerical shock structure. 

.5.4 SS. Slow shock in highly magnetized plasma 

his is an example of slow shock in highly magnetized plasma.
he upstream state is exactly the same as the FS5 example. The
hock mo v es through this state in the ne gativ e x -direction with the
low magnetosonic Mach number M f = 2 . 1, the shock speed in this
rame is v s = −0 . 63. The test simulations consider the flow in the rest
NRAS 536, 1268–1302 (2025) 
rame where the shock speed is v ′ s = −0 . 5. The domain is ( −1 . 5 , 0 . 5)
ith 100 gridpoints. Initially, the shock is located at x = 0. The right
anel of Fig. 10 illustrates the solution at t = 10, when the shock
s expected to reach x = −5 . 0. In the plot, the solid lines show
he prediction based of the shock speed of the exact solution, and
he markers show the numerical solution obtained with the splitting
cheme. One can see that this shock is also well captured. The small
separation’ between the curves of the exact and numerical solutions
oes not increase with time and seems to have the same origin as in
he case FS5. 
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Figure 10. Left panel: subrelativistic shock FS9 at t = 3. Middle panel: fast shock FS5 of strong magnetization at t = 10. Right panel: slow shock SS of strong 
magnetization at t = 2. All these shocks are initially located at x = 0. 
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.5.5 FS5A. Fast shock in highly magnetized plasma 

his is a problematic case where the numerical solution suffers from
arge computational errors. The shock is the same as FS5 but now
he simulations are set in the rest frame of its upstream state. 

The results are illustrated by Fig. 11 . As far as the electromagnetic
eld is concerned the numerical solution is quite accurate, with the 
hock speed and jumps across the shock being captured quite well 
see the left panel of Fig. 11 ). The plasma parameters, ho we ver, sho w
ery large errors. As one can see in the middle panel of Fig. 11 , the
as pressure of the numerical solution o v ershoots the pressure of the
xact solution by more than 10 times. 

One probable reason for the large errors is the very large shock
peed, v s = −0 . 99968. At such a speed, the non-linear steepening
s extremely slow and hence not as efficient at balancing the 
agnetic field diffusion due to numerical resistivity as in slower 

hocks. As a result, the shock structure keeps spreading out until 
he numerical diffusion becomes sufficiently reduced. The spreading 
s accompanied by e xcessiv e numerical heating of plasma, which 
xplains the high gas pressure of shocked plasma. This interpretation 
s consistent with the fact that the heating is particularly intense 
t the start of the simulation when the shock is just beginning to
evelop its numerical structure. Moreover, switching off the energy 
ransfer allows to reduce the amount of numerical heating, which 
lso supports this interpretation. The latter does not cure the problem, 
o we ver, because the energy transfer is not the only mechanism of
lasma heating (see Section 4.2 ). Using smooth shock profile in the
nitial solution does not help much either. 

In addition to the extremely fast motion relative to the grid, the
S5A shock is characterized by much stronger jump of the tangential 
omponent of the magnetic field across the shock than in the FS5
hock. If in the FS5 case, �B 

y ≈ 3, in the FS5A it is �B 

y ≈ 2 × 10 2 ,
eading to about 100 times stronger numerical magnetic dissipation. 

Summarizing the results of our 1D shock wave tests, the splitting
ethod captures strong shocks quite well, especially in the low- σ

egime. Ho we ver, in the high- σ regime, very fast shocks with large
umps of magnetic field are problematic. 

 2 D  TEST  SIM ULATIONS  

e used some of the 1D tests problems described in Section 4 in
etups aligned with the x - and y -directions to make sure that the
esults of 1D tests are reproduced with the 2D code. These tests do not
ev eal an ything new and their results are not described in this section,
here only the results of inherently 2D problems are presented. All

he 2D simulations are carried out in Cartesian coordinates. 

.1 Magnetic rope 

undquist’s magnetic rope is a steady-state axisymmetric force-free 
agnetic configuration, where the magnetic pressure and tension 

erfectly balance each other (Lundquist 1950 ). In our simulations of
 stationary rope, the force-free equilibrium is preserved, subject to 
lo w numerical dif fusion and magnetic dissipation. Here, we present
he results of a more challenging problem, where the rope mo v es
long the x - direction with a relativistic speed. 

In the rest frame of the rope, its magnetic field is given by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˜ B 

x = −B 0 
y 

r 
J 1 

(
α

r 

r 0 

)
, 

˜ B 

y = B 0 
x 

r 
J 1 

(
α

r 

r 0 

)
, 

˜ B 

z = B 0 J 0 

(
α

r 

r 0 

)
, 

(95) 

here r 0 is the rope radius. In these equations, J n are Bessel’s
unctions, α is the first root of J 1 , and r = 

√ 

˜ x 2 + ˜ y 2 is the radial
istance from the rope axis (Lundquist 1950 ). Outside of the rope,
or r > r 0 , B = (0 , 0 , B 0 J 0 ( α)). The gas pressure and density are
niform. 
The initial solution for the rope moving with the speed v in

he x -direction, is obtained using the Lorentz transformation for 
he electromagnetic field { E , B } and the Lorentz length contrac-
ion x = ˜ x /γ . The model parameters of the test simulations are
 0 = 100, r 0 = 1, p = 1, ρ = 1, and v = 0 . 8. The corresponding
agnetization reaches σ ≈ 2000 in the centre of the rope. The 

omain is ( −2 , 2) × ( −2 , 2) with 200 uniformly spaced gridpoints
n each direction. The periodic boundary conditions are used at both
he x and y boundaries. 

Fig. 12 compares the numerical solution with the exact solution 
t t = 5, by which time the rope has crossed the domain twice and
eturned to its initial position. In the left panel, the colour map
hows the distribution of σ at t = 5. The plot also includes two sets
f contour lines of the magnetic flux function, one set for t = 0 and
nother for t = 5. These are indistinguishable in the plot. The middle
anel shows the pressure distribution at t = 5. Here, one can clearly
ee the numerical errors, which in places reach eight per cent. In the
MNRAS 536, 1268–1302 (2025) 
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Figure 11. Fast shock FS5A of strong magnetization at t = 1. The plots the solutions for B 

y (left panel), gas pressure p (middle panel), and u x (right panel). 
The solid lines show the exact solutions and the marker show the numerical solution. 

Figure 12. Magnetic rope. Left panel: magnetization parameter σ and magnetic field lines. The image shows σ at t = 5. Superimposed are two sets of five 
magnetic field lines, one for t = 0 and another for t = 5. They are indistinguishable. Middle panel: gas pressure p at t = 5. Right panel: magnetic field along 
the line y = 0. The markers show the numerical solution, and the solid lines show the exact solution at t = 5. 
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Table 5. Oblique degenerate Alfv ́en wave simulations. n x = n y is the nu- 
merical resolution, η is the numerical resistivity, and A η is the normalization 
factor in equation ( 97 ). 

n x = n y 10 20 40 80 

2 ηk 2 0.39 0.026 0.0030 0.00038 
ηnum 

0 . 50 × 10 −2 0 . 33 × 10 −3 0 . 38 × 10 −4 0 . 48 × 10 −5 

A η 0.064 0.034 0.031 0.031 
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ight panel, the magnetic field in the numerical solution along the
ine y = 0 (markers) is compared to the magnetic field in the exact
olution. Here, the errors are hardly visible. 

.2 Oblique degenerate Alfv ́en wave. Anisotropy of numerical 
esistivity 

ere, we return to the problem of Section 4.3 and consider the case
here the wave vector points at 45 ◦ to the x -axis. The aim is to
 v aluate the anisotropy of the numerical resistivity relative to the
omputational grid. For such an obliqueness, the solution ( 92 ) reads 

B ( t) = B 0 

(
− 1 √ 

2 
cos φ( x , y , k) , 

1 √ 

2 
cos φ( x , y , k) , sin φ( x , y , k) 

)
× exp ( −ωt) , (96

here φ = ( k/ 
√ 

2 )( x + y) and ω = ηk 2 . 
In the test simulations, the domain is (0 , 1) × (0 , 1), with equal

esolutions in the x - and y -directions, and the periodic boundary
onditions. These boundary conditions are satisfied only for the
avenumbers k n = 2 

√ 

2 πn , n ∈ Z. The model parameters are the
ame as in the 1D simulations, B 0 = 50, v = 0 , p = 1, and ρ = 1.
able 5 shows the results obtained for the wave with k = 2 

√ 

2 π and
NRAS 536, 1268–1302 (2025) 
he same resolution as in the 1D test. Comparing these results with
he 1D results for the wave with k = 2 π , given in Table 3, one can see
hat the resistivities are exactly the same. Since η ∝ k 2 , this means
hat for the same wavenumber the resistivity in the oblique case is
maller by the factor of 2. 

Clearly, the resistivity must be a smooth periodic function f ( θ ) of
he angle θ between the wave vector k and the unit vector e x of the
 -direction, with the period of π/ 2. Moreo v er, it must be symmetric
ith respect to the angles θs = nπ/ 4, n ∈ Z, so that f ( θs + a) =
 ( θs − a). The simplest function satisfying these conditions is 

num 

= 

η0 

4 
(3 + cos 4 θ) . (97) 

here η0 is given by equation ( 90 ). 
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Figure 13. Anisotropy of numerical resistivity. Entropy distribution in the 
simulations of stationary magnetic rope at t = 10. 
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To explore this issue a little bit further, we inspected the results
f the stationary magnetic rope simulations (see Section 5.1 ) for
he signs of anisotropic resistivity. The entropy s = ln p/ρ� of the 
xact solution is uniform. Ho we ver, the plasma heating associated 
ith the numerical resistivity is expected to yield a non-uniform 

istribution s( r, θ ), which is periodic in θ and peaks along the x -
nd y -axes. This is exactly what is observed in these simulations (see
ig. 13 .) 

.3 Cylindrical explosion in uniform magnetic field 

his is now a standard test problem for RMHD codes (e.g. Komis-
arov 1999 ; Leismann et al. 2005 ; Mignone & Bodo 2006 ; Del Zanna
t al. 2007 ). In the initial solution of this problem, a cylindrical
olume filled with plasma of very high pressure and temperature 
the result of an explosion) is surrounded by plasma of low pressure
nd density. To make the problem more interesting, the whole space 
s threaded with a uniform magnetic field directed perpendicular 
o the cylinder, which breaks the axial symmetry of the problem. 
lthough there is no exact analytic solution to this problem, one 

an compare the results of simulations to the solutions obtained with 
ther numerical methods. 
F ollowing Komissaro v ( 1999 ), the density and pressure of the

urrounding plasma are set to ρe = 10 −4 and p e = 3 × 10 −5 . The
ot cylinder is centred on the z -axis and has the radius r 0 = 0 . 9. Its
ensity and pressure are set to ρ0 = 10 −2 and p 0 = 1, respectively.
he initial jumps of both the gas pressure and its density are soften
ith the same tanh -profile 

 ( r) = 

1 

2 
[( f 0 − f e ) tanh (( r − r 0 ) /�r) + ( f 0 + f e )] , (98) 

here �r = 0 . 03. The simulation domain is ( −6 , 6) × ( −6 , 6), with
00 uniformly spaced gridpoints in each direction. We explored four 
odels with B 0 = 0 . 01, 0.1, 1.0, and 10 3 . 
The top row of Fig. 14 illustrates the solution for the model with

he magnetic field strength B 0 = 0 . 01 at t = 4. The corresponding
agnetization is σ0 = 2 . 5 × 10 −5 inside the cylinder and σe = 0 . 45

n its surroundings. The magnetic pressure is very low compared to 
he gas pressure in the cylinder, with β0 = 2 × 10 4 , and for some
ime the magnetic field has little influence on the solution. This is
anifested in the central symmetry of the images in this figure. 
s

ne can spot the slightly lo wer flo w Lorentz factor and the slightly
ower density of the shocked shell along the y -axis, indicating that
he magnetic field is beginning to have a noticeable effect on the
olution at t = 4. The second row of Fig. 14 illustrates the solution
or the model with B 0 = 0 . 1. The corresponding magnetization is
0 = 2 . 5 × 10 −3 ( β0 = 2 × 10 2 ) inside the cylinder, and σe = 45 . 0

n its surrounding. In this model, the magnetic field is sufficiently
trong to have a pronounced effect on the solution, slowing down the
ow expansion in the y -direction. This leads to the spectacular mor-
hology reminiscent of an eye, which was seen in the test simulations
y many other research groups. The third row illustrates the solution
or the model with B 0 = 1. The corresponding magnetization is
0 = 2 . 5 × 10 −1 ( β0 = 2) inside the cylinder and σe = 4 . 5 × 10 3 

n its surroundings. Now the magnetic is so strong that it prevents
he hot plasma from expanding in the y -direction and the explosion
roceeds almost entirely along the magnetic field lines. The weak 
ast shock, ho we ver, still has a cylindrical shape, thanks to the fast
peed being very close to the speed of light in all directions. One can
lso see that the magnetic are still a bit distorted by the explosion.
he bottom row shows the solution for B 0 = 10 3 . The corresponding
agnetization is σ0 = 2 . 5 × 10 5 ( β0 = 2 × 10 −6 ) inside the cylinder

nd σe = 4 . 5 × 10 9 in its surroundings. In this case, the distortion
f magnetic field lines is so weak that it cannot be seen with a naked
ye, and to visualize the fast shock we had to plot not the magnetic
ressure p m 

, but p m 

− p m,0 , where p m,0 = 5 × 10 5 is the initial
agnetic pressure. For this model, a couple of first time-step had to

e done with a smaller Courant number, C = 0 . 1. This was needed
or the shock identification subroutine to capture the forward shock 
efore the errors associated with the DER step became too high.
e also run a model with B 0 = 10 4 . There we had to use even

maller C and for a larger number of time-steps before switching
ack to the standard C = 0 . 5. The results for this model were almost
ndistinguishable from the results for B 0 = 10 3 . 

In the models with B 0 = 0 . 01 and 0.1, the magnetization is
uf ficiently lo w to be handled with the standard RMHD codes. The
ase with B 0 = 0 . 1 is a particularly popular test. On visual inspection,
he results obtained for this test with the splitting scheme look indis-
inguishable from those obtained with standard conserv ati ve schemes 
reviously (e.g. Komissarov 1999 ; Leismann et al. 2005 ; Mignone &
odo 2006 ; Del Zanna et al. 2007 ). For a more detailed comparison,
nd to compare like with like, we run this model in the standard
MHD mode of our code (see Section 2.3 ). The results are illustrated

n the middle panel of Fig. 15 which shows the distributions of B 

x 

long the line x = 0, with the line corresponding to the solution
btained in the standard mode and markers to the solution obtained
n the splitting mode. They are so close that one may think that both
he line and the markers show the same solution. The same applies
o other parameters. We did the same comparison for the model with
 0 = 0 . 01. This case is interesting, because the magnetic field is very
eak and far from being in a force-free configuration. Given the fact

hat the splitting approach involves advancing the electromagnetic 
omponent using the FFDE approximation, one could anticipate large 
rrors in B . Ho we ver, this is not the case, as illustrated in the left panel
f Fig. 15 . The solution obtained using the splitting approach is still
lmost indistinguishable from solution obtained with the standard 
pproach. 

The model with B 0 = 1 seems to be at the border line or already
eyond the capabilities of the standard approach. Although one of 
s presented results for this model in the past (Komissarov 1999 ),
hich actually look quite similar to what is shown in Fig. 14 , they
ere unable to reproduce this result later on request, indicating some
nusual undocumented tweaking of the code. The simulations in the 
tandard mode of the current code also crashed. 
MNRAS 536, 1268–1302 (2025) 
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Figure 14. Cylindrical explosion. From top to bottom, solutions for the models with B 0 = 0 . 01, 0.1, 1.0, and 1000 at t = 4. Left panels: log 10 ρ; middle panels: 
Lorentz factor γ ; and right panels: the magnetic field lines and log 10 p m 

for B 0 = 0 . 01 and 0.1, p m 

for B 0 = 1 and δp m 

= p m 

− 5 × 10 5 for B 0 = 1000. 
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Figure 15. Cylindrical explosion. Splitting approach versus standard RMHD scheme. Left panel: B 

x along the line x = 0 at t = 4 solutions for model with 
B 0 = 0 . 01. The solid line shows the solution obtained with the standard approach and the markers show the solution obtained with the splitting approach. Middle 
panel: B 

x along the line x = 0 at t = 4 for the model with B 0 = 0 . 1. The solid line shows the solution obtained with the standard approach and the markers 
show the solution obtained with the splitting approach. Right panel: log 10 ρ along the line y = 0 at t = 4 for the model with B 0 = 1000. Markers show the 2D 

solution obtained with the splitting approach and the solid line shows the solution for unmagnetized 1D flow in the problem with the same initial distribution of 
flow parameters along the x -axis. 
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The model with B 0 = 1000 is much more extreme than the one
ith B 0 = 1, and the simulations in the standard mode expectedly

ailed. Ho we ver, because the magnetic field of this model remains
ighly uniform, a comparison with the solution of a different kind 
uggests itself. Since the flow is basically 1D, one may check 
t against the Cartesian 1D HD ( B = 0) solution with the same
nitial distribution of pressure and density. This 1D HD solution is
articularly close to the 2D solution along the y = 0. The symmetry
f the 2D problem implies that y = 0 is a magnetic field line, and
ence both the magnetic and electric forces along it vanish. Thus, the
ow along this line is driven solely by the gas pressure force. The

wo solutions are compared in the right panel of Fig. 15 , showing the
istribution of ρ along the line y = 0. As e xpected, the y look almost
ndistinguishable from each other. 

Following Del Zanna et al. ( 2007 ), we used the B 0 = 0 . 1 model
n the 200 × 200 grid to benchmark the performance of our code. It
as compiled with gfortran using the O optimization option, which 
oes not allow automatic parallelization, and was run on a single core
f the Apple M2 3.49GHz processor. It took 24 cpu seconds (134
ime-steps) to reach t = 4. In the standard RMHD mode, the code
as only about 20 per cent faster. At t = 4, the variable conversion

akes about 36 per cent of the computational time. 

.4 Tearing instability of Harris current sheet 

n this test, the initial solution describes a Harris current sheet, with
he B = ( B 

x , 0 , 0), where 

 

x = B 0 tanh 
y 

a 
, (99) 

nd the gas pressure 

 = p 0 + 

B 

2 
0 

2 

(
1 − tanh 2 

y 

a 

)
, (100) 

here a is the half-thickness of the current sheet, and p 0 and
 0 are the asymptotic values (as y → ±∞ ) of the B 

x and p,
espectively. In addition, ρ = ρ0 and v = 0 . The computational 
omain is ( −1 , 1) × ( −1 , 1) with 400 uniformly spaced gridpoints in
he both directions, periodic boundary conditions in the x -direction 
nd zero-gradient boundary conditions in the y -directions. The zero- 
radient boundary conditions result in artefacts near the y boundaries, 
hich become noticeable in log-scale plots towards the end of the
imulations. Ho we v er the y remain at suf ficiently lo w amplitude and
o not influence the sheet dynamics. 
The parameters used in the simulations are p 0 = ρ0 = 1, B 0 =

00, and a = 0 . 01. The corresponding asymptotic value of plasma
agnetization σ0 = 5 × 10 4 . The selection of the very small value

or a is determined by the intention of setting as thin current sheet
s allowed by the numerical resistivity. The value of numerical 
esistivity in the current sheet can be estimated using equation ( 90 ).
he corresponding length-scale, as determined by equation (94), 

 = 

a √ 

2 
cosh 

x 

a 
, 

ow depends on the location. At x = a, L ≈ 0 . 009, and with
 η = 0 . 034, equation ( 90 ) yields ηnum 

≈ 10 −4 . The corresponding
esistive time-scale τη = a 2 /η ≈ 1, whereas the Alfv ́en time-scale 
ased on the half-length L = 1 of the current sheet, τA 

= L/c = 1.
iven that τη ∝ a 4 , even a moderately smaller value of a would result

n rapid thickening of the sheet. 

.4.1 Linear phase 

he equilibrium is perturbed by introducing the vertical component 
f magnetic field 

 

y = 

20 ∑ 

j= 1 

A j sin 

(
πj 

L 

x + 2 πr j 

)
, (101) 

here A j = 10 −5 B 0 , and 0 < r j < 1 is a random number. 
The right panel of Fig. 16 shows the function B 

y 
max ( t) obtained in

he simulations. Using the expected exponential growth of a single 
igenmode B 

y 
max ( t) ∝ e ωt , we find ω ≈ 2 . 7 for 0 < t < 1, ω ≈ 2 . 0

or 1 < t < 2, and ω ≈ 1 . 7 for 2 < t < 3. The variation could be
elated to the thickening of the current sheet from a = 0 . 01 at t = 0
o a ≈ 0 . 013 at t = 0 . 5, a ≈ 0 . 015 at t = 1 . 5, and a ≈ 0 . 016 at
 = 2 . 5 (see the middle panel of Fig. 16 ). According to the theory
f tearing instability, the maximum growth rate occurs for the mode
ith the wavenumber k m 

, given by the equation 

 m 

a ≈ 1 . 4 S ∗−1 / 4 
, (102) 
MNRAS 536, 1268–1302 (2025) 
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Figure 16. Tearing instability of Harris current sheet. Left panel: maximal value of B 

y o v er the whole domain as a function of time during the linear phase. 
The dashed line shows the exponential function ∝ e 2 t for comparison. Middle panel: diffusive spreading of the sheet during the linear phase. The lines show 

B 

x along the line x = 0 at t = 0 , 0 . 5 , 1 . 5 and 2.5 (from the narrowest to the widest of the profiles, respectively). Right panel: gas pressure in the middle of the 
current sheet ( y = 0) near the end of the linear phase, at t = 3. 
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nd it has the value 

 m 

τ ∗
A 

≈ 0 . 63 S ∗−1 / 2 
, (103) 

here 

 

∗ = 

ac A 

η
, (104) 

s the Lundquist number, and 

∗
A 

= a/c A 

, (105) 

s the Alfv ́en time-scale of the current sheet based on the sheet
hickness (Furth, Killeen & Rosenbluth 1963 ). Since the number of
lasmoids emerging in the simulations (see the right panel of Fig. 16 )
s n p = 6 the fastest growing mode in the simulations has λ = 0 . 33
nd k m 

= 6 π , which is inside the range set by the perturbation
see equation 101 ). Hence, one may use the abo v e equations to
stimate S ∗ due to the numerical resistivity, assuming domination
f the fastest mode. Substituting the measured values of ω m 

and a 
nto equation ( 103 ) yields 320 < S ∗ < 480, where the lower limit
orresponds to the data for 0 < t < 1 and the upper limit for 2 <
 < 3. For 0 < t < 1, the corresponding resistivity is η ≈ 4 × 10 −5 ,
hich is only 2.5 times lower than the initial numerical resistivity

stimated via equation ( 90 ). The corresponding Lundquist number
ased on the half-length of the current sheet 

 = 

Lc A 

η
≈ 3 × 10 4 . 

ext, one can use equation ( 102 ) to check if the value of S ∗ based on
he growth rate is consistent with the number of emerged plasmoids.
ubstituting the values of S ∗ and a into equation ( 102 ) yields
 . 25 < λm 

< 0 . 36, where again where the lower limit corresponds
o the data for 0 < t < 1 and the upper limit for < 2 t < 3. Some-
hat surprisingly, the observed value λ = 0 . 33 fits perfectly this

heoretical prediction. 
For further comparison with the results of analytical and numerical

tudies of the tearing instability in the framework of resistive
HD, we also run a model with a single sinusoidal perturbation
 

y = 10 −4 sin 6 πx . Fig. 17 illustrates the profiles of the key flow
arameters across the current sheet along the line x = 1 / 12, where
 

y is maximum. These vary very little during the linear phase and
ave almost the same shape along all other lines x = const. So,
ne may call them numerical ‘eigenmodes’. Qualitativ ely, the y are
NRAS 536, 1268–1302 (2025) 
imilar to the eigenmodes found in the resistive RMHD simulations
y Del Zanna et al. ( 2016 ), though there are some differences too.
 or e xample, the central dip in the profile of B 

y in not as deep, the
ncrease of | v y | prior to vanishing at x = 0 is not as strong, and the
entral peak of v x is surrounded by a broad depression not seen in
he resistive data. 

Ov erall, giv en the fact that the numerical resistivity is more
omplex than the uniform scalar resistivity used in the theory of
earing instability, the agreement between this theory and the results
f our simulations is quite remarkable. 

.4.2 Non’-linear phase 

nce the multiple plasmoids developed in the current sheet, its
ubsequent evolution proceeds in the plasmoid-dominated regime.
maller plasmoids merge to form larger ones, the sections of the
urrent sheet between them lengthen and suffer secondary tearing
nstability. Secondary plasmoids emerge and merge with the larger
lasmoids or other secondary plasmoids (see Fig. 18 ), trying to
stablish a hierarchy of scales (Uzdensky, Loureiro & Schekochihin
010 ). The plasma of the current sheet gets heated up to very high
emperature, typically ζ = kT /mc 2 = 10 5 . This is consistent with
he magnetic energy per particle ζB = B 

2 / 8 πnmc 2 = 1 . 25 × 10 5 in
he external plasma. In places, the Lorentz factor of the flow in the
urrent sheet reaches γ = 3, and the collisions of the fast moving
lasma with plasmoids drive shock waves. 
Gi ven the ef ficient heating of plasma in the current sheet, the

lobal reconnection rate can be derived from the rate of increase of
he total plasma energy in the computational domain. This energy is
ominated by the thermal energy of plasma in the current sheet. The
eft panel of Fig. 19 shows the total plasma energy E pl ( t) computed
ia equation 

 pl = 

n x ∑ 

i= 1 

n y ∑ 

j= 1 

E i,j pl , (106) 

here the cell volume factor is ignored. Up to t = 4 its increase
s associated with the resistive spreading of the current sheet, and
hereafter with the magnetic reconnection. The total increase of the
lasma energy for 4 ≤ t ≤ 10 is � E pl = 0 . 475 × 10 10 . The total

nitial electromagnetic energy in the domain E em 

= 0 . 197 × 10 11 .
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Figure 17. Tearing instability of Harris current sheet. Numerical ‘eigenmodes’ in the case of single perturbation with k = 6 π . 
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gnoring the residual magnetic energy of plasmoids, 

 E pl = 

E em 

L 

〈 v r 〉 �t , (107) 

here 〈 v r 〉 is the average speed of the electromagnetic energy inflow.
or the above measurements, this equation yields 〈 v r 〉 = 0 . 04. 
The middle panel of Fig. 19 shows the solution at t = 9 around

he x-point near the largest plasmoid of the current sheet at this
tage. Based on the velocity field, the x-point is located at ( x , y ) ≈
 −0 . 56 , 0). The right panel of this figure shows v y ( y) along the line
 = −0 . 56. One can see that the plasma (and the magnetic field)
o ws to wards the x-point with the speed ≈ 0 . 05, in agreement with

he abo v e estimate of the global reconnection rate. This reconnection
ate is only slightly below the ‘universal’ maximal reconnection 
ate R ≈ 0 . 1 found in resistive MHD, Hall-MHD, and particle-in-
ell (PIC) simulations, and in the observations of Earth and Solar 
agnetospheres (see the references in Liu et al. 2017 ). 
This is another test problem where the DER step had to be switched

ff in order to a v oid conversion failures at shocks. The same applies
o the remaining tests described further down. 

.5 ABC grid of magnetic ropes 

he double-periodic 2D ABC configuration of magnetic ropes is 
nteresting because it is unstable and involves developing of current 
heets at the non-linear phase of the instability via collapse of x-
oints (e.g. Parker 1983 ; East et al. 2015 ; Lyutikov et al. 2017 ). Its
agnetic field is force-free with ⎧ ⎨ 

⎩ 

B 

x = −B 0 sin ( ky) , 
B 

y = B 0 sin ( kx) , 
B 

z = B 0 ( cos ( kx) + cos ( ky)) . 
(108) 

he ropes with B 

z > 0 are located at ( x i , y j ) = (2 π/k)( i, j ), the
opes with B 

z < 0 at ( x i , y j ) = ( π/k)(1 + 2 i, 1 + 2 j ), and the x-
oints (out-of-plane x-lines) at ( x i , y j ) = ( π/k)(2 i + 1 , 2 j ) and
 x i , y j ) = ( π/k)(2 i, 2 j + 1), where i, j ∈ Z. 

In the test simulations, B 0 = 100, k = 2 /π , and p = ρ = 1. The
agnetization varies from σ = 0 at the x-points to σ = 2 × 10 3 in

he centre of the magnetic ropes (islands). The domain is ( −1 , 1) ×
 −1 , 1) with 400 uniformly spaced gridpoints in each direction, and
eriodic boundary conditions. The initial equilibrium is perturbed by 
mposing the velocity field 

 ( x , y ) = 

v 0 √ 

2 

(
− cos 

k 

2 
( x + y ) , cos 

k 

2 
( x + y ) , 0 

)
, (109) 
ith v 0 = 0 . 01. Such a perturbation is expected to trigger the shear-
ype mode of the instability (Lyutikov et al. 2017 ). 

The global dynamics of the ABC grid is illustrated in Fig. 20 .
nitially, the speed of global motion set by the perturbation ( 109 )
ncreases, reaching the maximum value of v ≈ 0 . 35 at about t = 2 . 5.
t this point, the ropes of the same polarity (the same sign of B z ) form
 linear chain running at the angle of 45 ◦ to the x-axis, for the first
ime. The high value of the speed shows that the initial perturbation
ay be considered as small. At around t = 3 . 5, there is a turning

oint, when the ropes start moving in the opposite direction. The
ubsequent global motion is a decaying oscillation about the state 
ith the 45 ◦-alignment. In the ideal model, this state is a stable

quilibrium (Lyutikov et al. 2017 ). 
On approach to the oblique alignment, the x-points collapse into 

urrent sheets separating ropes of the same polarity (see the top-
iddle panel of Fig. 20 ). These current sheets appear to suffer the

earing instability, and very soon a single plasmoid emerges in the
iddle of each sheet (the top-right panel of Fig. 20 ). Fig. 21 zooms

nto the current sheet located around the point ( x , y ) = ( −0 . 5 , 0).
s one can see, the current sheet is not yet developed at t = 1 . 0.
t t = 1 . 5, it appears as a vertical linear structure, whose length is

pproximately 3.5 times shorter than its ultimate length. At t = 2 . 0,
ts length increases approximately by a factor of 2 and its orientation
n space changes, reflecting the relative motion of the flux ropes. At
 = 2 . 5, the current sheet is inclined at about 45 ◦ to the y -axis, and
n the middle of it there is a bulge visible with a naked eye. Thus, the
lasmoid had only time �t ≈ 1 to grow from perturbation. 
This current sheet is as thin as the initial current sheet in the

earing instability simulations described in Section 5.4 , both in terms
f the number of cells, approximately four, and in terms of the linear
ize, a ≈ 0 . 013. Hence, based on the numerical resistivity Lundquist
umber is also approximately the same, S ∗ ≈ 300. The total length
f the current sheet is 2 L ≈ 0 . 45, leading to the aspect ratio a/L ≈
 . 045. The aspect ratio of Sweet–Parker’s equilibrium current sheet,
 a/L ) SP 

� S −1 / 2 = 1 /S ∗ (Parker 1957 ; Sweet 1958 ), corresponding
o the same value of S ∗ is much smaller, ( a/L ) SP 

≈ 0 . 003. Taking
nto account the reduction of the numerical resistivity for current 
heets inclined at 45 ◦ by the factor of 2 would make this estimate
 ven lo wer. Therefore one may ignore the flow inside the current
heet and apply the results of Furth et al. ( 1963 ) on the growth of the
earing instability (cf. Del Zanna et al. 2016 ). Equation ( 102 ) then
iv es the wav elength of the fastest growing mode λm 

≈ 0 . 25, which
s consistent with the fact that only one plasmoid emerges in this
MNRAS 536, 1268–1302 (2025) 
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Figure 18. Non-linear phase of the tearing instability. Gas pressure at t = 4 , 4 . 5 , . . . , 8 . 5 (from left to right and from top to bottom). 
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Pucci & Velli ( 2014 ) argued that current sheets are unable to reach
he Sweet–Parker equilibrium because they get fragmented by the
earing instability before reaching ( a/L ) SP 

. They also proposed the
urrent sheets scaling ( a/L ) PV 

= S −1 / 3 = S ∗−1 / 2 , where ( a/L ) PV 

an be interpreted as the lower limit on the aspect ratio of non-
ragmented current sheets. For S ∗ = 300, this yields ( a/L ) PV 

≈
 . 057, which is similar to the ultimate aspect ratio of the current
heets in our ABC simulations. The Pucci–Velli scaling can be
upported with a simple causality argument. The minimum time
equired to form a current of the half-length L is its Alfv ́en time

A 

� L/c A 

. The e -folding time τm 

= 1 /ω m 

of the fastest growing
nstable mode cannot be much shorter than τA 

, as otherwise the
urrent sheet fragments already during its formation. Hence, for the
ongest non-fragmented current sheet, ω m 

τA 

∼ 1. Equation ( 103 )
or the growth rate of the fastest mode can be conveniently written
NRAS 536, 1268–1302 (2025) 
s 

a 

L 

≈
(

0 . 63 

ω m 

τA 

)2 / 3 

S −1 / 3 , (110) 

hich yields the Pucci–Velli scaling when ω m 

τA 

∼ 1. 
For S ∗ = 300 and a/L = 0 . 045, equation ( 110 ) yields ω m 

τA 

≈
 . 81, consistent with the current sheets just braking the fragmentation
hreshold. Given the observed τA 

≈ 0 . 22, the estimated value of ω m 

ields τm 

≈ 0 . 27. Because the plasmoids emerge on the time-scale
t ≈ 1, this implies that their amplitude could grow only by the

actor ≈ exp (1 / 0 . 27) ≈ 40. This is a small growth compared to what
s normally achieved in the numerical studies of instabilities, which
tart with very small perturbations. Ho we ver, the current sheets in
he ABC simulations are highly dynamic from the start and hence
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Figure 19. Non-linear phase of the tearing instability. Left panel: total plasma energy in the domain as function of time. Middle panel: the image shows the 
v y component of velocity near the large plasmoid at t = 9. The contours show the magnetic field lines and the arrows are the v elocity v ectors. Right panel: the 
inflow velocity of magnetic field along the line x = −0 . 56, where the velocity field shown in the middle panel indicates an x-point in the current sheet. 

Figure 20. ABC grid. The image shows B 

z , the contours show the magnetic field lines, and the arrows show the velocity field v . From left to right, t = 1.0, 2.0, 
and 3.0 in the top row, and t = 3.5, 4.0, and 4.5 in the bottom row. 
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ot expected to be near to such an almost perfect balance at any point
n their evolution. 

We also run this problem at the doubled resolution, and found a
ery similar evolution, especially at the early phase. In particular, 
he plasmoids emerge on the same time-scale (see the bottom row of
ig. 21 ). There is still only one plasmoid per current sheet, but the
econdary current sheets have approximately the same aspect ratio 
s the primary current sheet at the lower resolution, suggesting that
econdary plasmoids may emerge when the resolution is increased 
urthermore. 

The PIC simulations of this problem (Lyutikov et al. 2017 ) show a
imilar dynamics, but with some quantitati ve dif ferences. In these
MNRAS 536, 1268–1302 (2025) 
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Figure 21. ABC grid. From left to right, the total electric current density for the current sheet emerging near the point ( x , y ) = ( −0 . 5 , 0) at t = 1 . 0, 1.5, 2.0, 
and 2.5 respectively. The bottom row shows the solution obtained with the doubled resolution. 
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imulations, the ABC grid has the same linear scales, and the
lvf ́en speed is also very close to the speed of light. Hence, no

ime rescaling is required. The initial plateau phase in the PIC
imulations continues up to t = 4, not t = 1 . 5 like in our simulations.
o we ver, this dif ference is attributable to the amplitude and nature
f the initial perturbation of the ABC grid and simply requires us
o shift the timing of the PIC simulations back by about �t = 2 . 5
or comparison with our results. With this shift applied, by t = 10
he total electromagnetic energy in the PIC simulations is reduced
y about 40 per cent, compared to the 18 per cent found here. This
mplies an approximately twice as fast reconnection rate in the PIC
imulations compared to ours. Moreo v er, by this time the initial
eriodic structure of the ABC grid is erased, with the ropes of
ingle polarity merged into larger structures (see fig. 8 in Lyutikov
t al. 2017 ), whereas in our simulations the individual ropes are still
dentifiable. This is also consistent with the higher reconnection rate
f the PIC simulations. According to fig. 8 in Lyutikov et al. ( 2017 ),
he plasmoids are not seen at t = 1 . 5 and 2.5, but fully formed at
 = 3 . 5. Thus, they emerge on approximately the same time-scale
s in our simulations. This suggests that the timing is dictated by
he macroscopic dynamics of the system rather than by the details
f the microphysics. The number of plasmoids is also about one
er current sheet. (Ho we ver in other PIC runs, which yields thicker
urrent sheets, the plasmoids do not emerge at all. See the discussion
round equation 112 .) 

.6 Magnetic field errors in the 2D simulations 

n our implementation of the splitting approach we used the GLM
ethod to keep the magnetic field near, but not exactly in, the

ivergence-free state. The deviation from the divergence-free state
riginates due to the truncation errors in the numerical integration
f the Faraday equation and this allows us to estimate the errors in
he magnetic field. This can be used to assess the potential impact of
NRAS 536, 1268–1302 (2025) 
uch errors on the conversion failures when the same problems are
ttempted in the standard mode of our code. 

According to the analysis of Section 2.1 (see equations 17 and
0 ), in order not to cause the conversion failures, the relative error in
agnetic field must satisfy the condition ∣∣∣∣ δB 

B 

∣∣∣∣ � 

γ 2 

σ
. 

o apply this result, we first estimate the relative error in the magnetic
eld as (
δB 

B 

)
ij 

� 

(
( B 

i 
i+ 1 ,j − B 

i 
i−1 ,j ) + ( B 

j 

i,j+ 1 − B 

j 

i,j−1 ) 
)

/ || B i,j || , 

nd then compute the error parameter 

r = 

∣∣∣∣ δB 

B 

∣∣∣∣ σ

γ 2 
. 

hen Er � 1, the error is sufficiently large to result in an unphysical
tate and hence cause a failure of the variable conversion. When
r < 1, the error is below the safety limit. Since the analysis leading

o these expectations is not comprehensive but confined to simple
pecial cases, some caution needs to be e x ercised here. 

Fig. 22 shows the error parameter for the magnetic rope, cylindrical
xplosion, and tearing instability tests. At the start of the magnetic
ope test, Er reaches the values significantly exceeding unity near
he rope surface (see the top-left panel of Fig. 22 ). Based on these
alues, we anticipated the simulations run in the standard mode of
he code to crash at the very start, and they did even for the Courant
umber as small as C = 0 . 01. By t = 5, the maximum value of Er
educes to ≈ 0 . 36, suggesting that it may be possible to continue the
imulations from this point in the standard mode. This was indeed the
ase, but only with the Courant number reduced down to C = 0 . 4. 

The bottom-left panel of Fig. 22 shows Er for the explosion test
ith B 0 = 1 at t = 4. Even at this time it remains about unity at the
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Figure 22. The error parameter Er . Top-left panel: the magnetic rope test with B 0 = 100 at t = 0 . 02. Top-right panel: the magnetic rope test with B 0 = 100 
at t = 5. Bottom-left panel: the c ylindrical e xplosion test with B 0 = 1 at t = 4. The high residuals colocate with the transient shock waves associated with the 
oscillations in the direction normal to the magnetic field. Bottom-right panel: the tearing instability test with B 0 = 500 at t = 7 . 5. 
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xternal fast shock, and reaches Er ≈ 4 in the vicinity of the point
 x , y ) = (0 , 1 . 3), where reverberation of the magnetic field appears to
ave triggered a secondary shock wave. As already stated in Section 
.3 , our attempt to run this test in the standard mode of the code has
ailed. For the test with B 0 = 0 . 1, the error parameter is much lower,
r � 0 . 3, reaching the maximum at the external shock. These low
alues are consistent with the fact that for this value of B 0 the test
an be run with the standard code from the start to the finish. 

In the tearing instability test, Er is small at the linear phase, but
hen strongly increases in the non-linear phase. As one can see in
he bottom-right panel of Fig. 22 , the error parameter can reach the
alues Er ≈ 20 in the vicinity of the current sheet. Although δB /B 

tself is higher inside the current sheet, where the magnetic field is
ighly distorted, leading to a stronger departure from the divergence- 
ree state, the magnetization σ is significantly lower there, due to the 
resence of very hot plasma. In the outskirts of the current sheet, σ
s very high and the magnetic field is still strongly distorted by the
lasmoids. Our attempts to continue the simulations from this point 
n the standard mode have failed. 

Overall, the data support the conclusion that the errors in magnetic 
eld are responsible for failures of standard schemes in the high- σ
 s
egime. In principle, an increase of the accuracy in the numerical
ntegration of the Faraday equation may help to extend the applica-
ility of standard schemes. In this regard, schemes utilizing the CT
pproach may be more robust as they eliminate the errors associated
ith the ∇ ·B = 0 constraint. Other errors, ho we ver, will remain and
ay still be too high. Increasing the order of scheme’s accuracy could

elp too. This is expected to be very ef fecti ve in regions with smooth
agnetic field, but not at discontinuities. 

 SUMMARY  A N D  DI SCUSSI ON  

he main goal of this study was to find a new approach to numerical
MHD in the high-magnetization regime, where the standard con- 

erv ati ve schemes turned out to be highly unreliable. Its direction
as moti v ated by the understanding that the most attractive feature
f such schemes, the conservation of total energy-momentum, is also 
he main reason for their failures in the high- σ re gime. F or such a
igh magnetization, the energy-momentum tensor is dominated by 
he electromagnetic field, and e ven relati vely small errors emerging
n the numerical integration of the Faraday equation can render the
et of conserved variables unphysical. This understanding invited us 
MNRAS 536, 1268–1302 (2025) 
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o search for a way of breaking the strict link between the energy-
omentums of plasma and electromagnetic field imposed by the

otal energy-momentum conservation and enforced in the standard
onserv ati v e schemes. Moreo v er, in this re gime the electromagnetic
eld is largely force-free, and its evolution is well approximated by

he equations of FFDE, which can be considered as a singular limit
f RMHD when σ → ∞ . This invited us to study the potential
f the perturbation approach, where the electromagnetic field is
volved mostly as force-free, and the plasma introduces only a
mall perturbation to the FFDE solution, with σ−1 playing the role
f a small parameter. Ho we ver, the standard asymptotic expansion
pproach is complicated, with higher order terms needed for accuracy
n the case of moderate σ . Moreo v er, it is not suitable for σ ≤ 1,
ignificantly limiting the area of application. 

Instead, we opted for a generalization of the approach proposed
y Tanaka ( 1994 ), where the perturbation is go v erned the RMHD
quations with the energy-momentum tensor modified via explicit
ubtraction of the energy-momentum tensor of the force-free field.
n contrast to Tanaka ( 1994 ), where the strong force-free background
eld is stationary, in our approach it is dynamic. So, we enlarge the
ystem of differential equations, which is now composed of two
inked subsystems: the FFDE system for the electromagnetic field,
nd the perturbation system for the plasma. The latter has the same
umber of equations as the original RMHD. These subsystems are
inked via the interaction terms in the perturbation system and the
erfect conductivity condition. This approach delivers a numerical
cheme which can be applied in both the high- and low- σ regimes. 

The equations of the enlarged system are integrated simultane-
usly, and at the end of each time-step the electromagnetic field
f the FFDE system and its perturbation are recombined. Thus,
he final result is a splitting scheme, which is similar in spirit to
perator -splitting schemes, b ut different in form. Like in the operator -
plitting method, we separate processes of different nature and do
his to bypass the stiffness of differential equations. However, if
he operator-splitting method is focused on the stiffness arising
ue to the very different time-scales associated with the involved
ifferential operators (processes), our splitting scheme deals with the
tiffness arising due to the significant difference in the magnitude
f contributions to the conserved quantities from components of
ifferent nature. If the operator-splitting method involves successive
ntegration of simplified versions of differential equations, where
ome of the operators are dropped, we solve the whole system of
quations simultaneously. This simplifies development of higher
rder schemes. 
Both the subsystems of split RMHD can be written as conservation

aws, and hence can be numerically integrated using the standard
ethods developed for such laws. We adopted the third-order WENO

pproach similar to that of Del Zanna et al. ( 2007 ), with some
odifications. In particular, (1) we developed a new third-order
ENO interpolation, which allows rapid transition to the third-order

caling of computational errors at low resolution and does not result
n a loss of accuracy at turning points; (2) the code required a new
ariable conversion algorithm; (3) we used the GLM method (Dedner
t al. 2002 ) to keep the magnetic field nearly divergence free; and (4)
e developed a simple algorithm to locate strong shocks in order to

witch off the DER step of Del Zanna et al. ( 2007 ) at their locations.
he latter is needed to suppress the spurious oscillations capable of
ausing conversion failures at high- σ shocks. 

Only the momentum density is used for the variable conversion
f the FFDE subsystem. As a result, the energy of the FFDE
ubsystem and hence the total energy are not conserved. This break
f conservation is at the centre of our splitting method. One can
NRAS 536, 1268–1302 (2025) 
ompute the difference between the energy density of the FFDE
ubsystem based on the energy conservation law and the one based
n the updated E (0) and B (0) , and transfer it to the perturbation
ubsystem, thus enforcing the total energy conservation. Such energy
xchange between plasma and electromagnetic field implicitly occurs
n standard conserv ati ve schemes, where it facilitates plasma heating
n current sheets. Ho we ver, it is also responsible for their failures
n the high- σ regime. Hence in the splitting approach, the energy
ransfer must be conditional, filtering out the cases where this may
ead to a crash. A simple analysis shows that the energy transfer is
afe when the transferred energy is positive. In this case, the energy
ransfer amounts to plasma heating via the numerical dissipation of
he electromagnetic energy. When the positivity is the only condition,
lasma is also heated by weak waves generated in active regions. By
etting positi ve lo wer limits on the transferred energy, this lo w-le vel
eating can be suppressed. In the splitting approach, there is another,
ow uncontrollable mechanism of plasma heating, which involves
he interaction terms of the perturbation equations. This mechanism
ccounts for about 50 per cent of heating in current sheets. 

The 1D and 2D test simulations of continuous hyperbolic and
ssociated shock waves have shown that the splitting method remains
obust and accurate when applied to problems with very high σ . This
s particularly true for continuous waves. Shock waves are more
roblematic, and in some cases the code can fail to deliver accurate
alues for the plasma parameters. Our test results suggest that this
ccurs when the tangential component of magnetic field experiences
arge jumps across the shock, leading to e xcessiv e plasma heating via
he uncontrollable numerical dissipation of electromagnetic energy.
s a result, the shock fails to develop monotonic structure. Although

uch shocks do e xist, the y are unlikely to be common. For example,
n the 2D simulations of explosions in strong uniform magnetic field,
he variation of the tangential magnetic field is much smaller. 

The splitting approach delivers accurate solutions not only for
igh- σ problems, but also for problems with low magnetization, as
llustrated by the shock tests FS7 and FS9, where the magnetization
f the upstream state is only σ = 10 −3 , and by the blast wave sim-
lations with σ0 ∼ 10 −5 . Moreo v er, as the magnetization decreases,
he shock solutions become progressively more accurate. In fact, for
nmagnetized plasma, the splitting scheme reduces to the standard
onserv ati ve scheme for relativistic HD. For subrelativistic problems,
he splitting approach also performs very well, as demonstrated by
he FS9 test where the sound speed c s ≈ 0 . 01 and the Alfv ́en speed
 A 

≈ 0 . 007. Thus, the splitting approach can be applied to many
omplex astrophysical problem involving states with vastly different
arameters, like active galactic nuclei, where the low- σ accretion
isc coexists with the high- σ magnetosphere of the central black
ole. 
Our test simulations of problems involving current sheets have

emonstrated that the splitting approach can capture the active phe-
omena of plasma astrophysics involving fast magnetic reconnection.
he fast reconnection plays an important part in many astrophysical
henomena, resulting in e xplosiv e dynamics, plasma heating, and
cceleration of non-thermal particles responsible for high-energy
mission. The latter is particularly important for high- σ relativistic
lasmas, where PIC simulations of collisionless shocks revealed
heir low efficiency in particle acceleration (Sironi & Spitkovsky
009 , 2011 ). The reconnection events are preceded by the formation
f current sheets, which can emerge spontaneously in quasi-static
onfigurations, or forced by plasma motion in highly dynamic
onditions (e.g. Pontin & Priest 2022 ). 

The detailed structure and evolution of current sheets depends on
he microphysics responsible for the deviation from the magnetic flux
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reezing approximation of ideal MHD. Interestingly, most numerical 
ethods for ideal MHD also break the flux freezing because of

he truncation errors of numerical algorithms. This phenomena is 
alled the numerical resistivity. Although magnetic reconnection 
as been seen in ideal MHD simulations (see e.g. Laitinen et al.
005 ; Ripperda et al. 2022 ; Fryer et al. 2023 ; Berta et al. 2024 , for
ore recent examples), this has been treated with a great deal of

cepticism. Ho we ver, in the plasmoid-dominated regime the overall 
ynamics of current sheets and the reconnection rate do not seem 

o be that sensitive to the incorporated microphysics (e.g. Liu et al.
017 ; Pontin & Priest 2022 ). This is even more so in the theory of
urbulent reconnection, where the reconnection rate does not depend 
n the microphysics altogether (Lazarian & Vishniac 1999 ; Lazarian 
t al. 2020 ). This moti v ated us to include problems involving current
heets in the suite of test simulations. 

We started by studying the properties of numerical resistivity 
n our scheme, using as a guide the ansatz of Rembiasz et al.
 2017 ). The 1D simulations of degenerate Alfv ́en waves (Section 4.3 )
re in agreement with the simple prescription for the numerical 
esistivity ( 90 ) based on the value of the rounding error. They
onfirm the dependence of numerical resistivity on the scheme’s 
rder of accuracy, numerical resolution, and the characteristic length- 
cale of the magnetic field variation L . Since equation ( 90 ) states
num 

∝ L 

−2 , the numerical resistivity is similar to the so-called 
nomalous resistivity, with η ∝ j 2 , used in resistive MHD simu-
ations to achieve fast magnetic reconnection (e.g. Yokoyama & 

hibata 1994 ; Syntelis, Priest & Chitta 2019 ; Færder, N ́obrega-
iverio & Carlsson 2023 ). In our 2D simulations, the corresponding 
agnetic Reynolds number varies from Re m 

∼ 10 2 for current 
heets which are only few cells wide, to Re m 

∼ 10 8 on the domain
cale. Thus, the numerical resistivity has little effect on the large- 
cale dynamics but very important in ‘paper-thin’ current sheets. 
s expected, the numerical resistivity is anisotropic. Our initial 

nvestigation of this issue suggests that it is highest when magnetic 
eld is aligned with the gridlines and reduces by the factor of 2 when

he magnetic field is at the angle of 45 ◦ to the gridlines. 
In Section 5.4 , we described the simulations of the tearing 

nstability for the case of a very long and thin, only few grid
ells across, Harris current sheet aligned with the computational 
rid. Quite remarkably, the results of these simulations are in 
ood agreement with the key conclusions of the basic theory 
f this instability developed within the framework of Newtonian 
esistive MHD with constant scalar resistivity (Furth et al. 1963 ) 
Although the theory of the tearing instability was developed in the 
e wtonian frame work, the relati vistic results are basically identical 

Komissaro v, Barko v & Lyutikov 2007a ; Del Zanna et al. 2016 ).]. In
articular, the wavelength of the fastest growing mode and its growth 
ate agree with the theoretical values obtained with the numerical 
esistivity (in place of the actual η) assuming L ≈ a, where a is its
alf-width of the current sheet. This result is somewhat surprising, 
s the theory predicts the existence of a narrow resistive (tearing) 
ublayer (boundary layer) in the middle of the current sheet. The 
hickness of this sublayer is 

 sub ≈ 1 . 5 S ∗−1 / 4 (111) 

Furth et al. 1963 ). For the consistent with the simulations value
 

∗ ≈ 400, the corresponding a sub ≈ 0 . 3 a = 3 × 10 −3 , whereas the
ell size �y = 5 × 10 −3 , and hence the sublayer is not resolved.
n fact, it is collapsed into a discontinuity (see the right panel of
ig. 19 ). On the other hand, it has been claimed that many properties
f reconnection are largely determined by the ideal MHD dynamics 
utside of the sublayer and only weakly depend on its microphysics 
Liu et al. 2017 ; Pontin & Priest 2022 ). This is especially clear in the
ase of forced reconnection, where the reconnection rate is set by the
xternally determined rate of plasma inflow into the current sheet. 
t the non-linear phase of our ideal MHD simulations, the dynamics
f the current sheet is also very similar to what in seen in resistive
HD and PIC simulations, including the development of primary 

lasmoids, their merger, the emergence of secondary plasmoids in 
econdary current sheets etc. (e.g. Bhattacharjee et al. 2009 ; Del
anna et al. 2016 ; Petropoulou & Sironi 2018 ). The estimated global

econnection rate is about 0.04. 
The simulations of the unstable ABC grid of magnetic ropes 

Section 5.5 ) allowed us to study the case where the current sheets
re not present in the initial solution, but develop as a result
f the x-point collapse. These current sheets produced solitary 
lasmoids on the time-scale which is only few times longer than
heir ultimate Alfv ́en time-scale. These results are in agreement with
he conclusion reached by Pucci & Velli ( 2014 ) that current sheets
ecome fragmented by the tearing instability well before they reach 
he Sweet–Parker equilibrium, thus making studies of Sweet–Parker 
urrent sheets a matter of purely academic interest. 

It is quite interesting that the PIC simulations of the ABC problem
or electron–positron plasma (Lyutikov et al. 2017 ) yield very similar
esults in terms of the time-scale of the current sheet fragmentation,
he number of emerging plasmoids, and the reconnection rate. As 
oted in Lyutikov et al. ( 2017 ), the half-thickness of the collisional
urrent sheets emerging in the PIC simulations is set by the Larmor
adius of the plasma particles heated in the sheet, a ∼ r L,h . For
elativistic plasma, this is approximately 

 L,h = σ0 γt,0 r L,0 , (112) 

here σ0 = B 

2 
0 / 4 πw 0 is the magnetization of the inflowing plasma,

t,0 is the thermal Lorentz factor of its particles, and r L,0 =
 e c 2 /eB 0 . The y hav e also found that the emergence of plasmoids

epends on the parameter r L,h /D, where D is the wavelength of the
BC grid. Namely, the y be gin to emerge when D/r L,h > 126. Since

he half-length of the current sheets L ≈ D/ 3, this can be written as

r L,h 
L 

< 0 . 02 . 

hus, even the fragmentation threshold is similar to what is found in
ur ideal RMHD simulations. 
The results of our study of current sheets suggest that in principle

he fast reconnection events can be captured in simulations even 
ith ideal RMHD and MHD codes. Although the development of 
lasmoids and e xplosiv e reconnection has already been reported in
he ideal RMHD simulations of neutron-star magnetospheres (Buc- 
iantini et al. 2006 ) and black hole accretion (Ripperda et al. 2022 ),
ur study seems to be the first one where the plasmoid-dominated
egime of magnetic reconnection is studied more or less system- 
tically (a more advanced study is under way), and an agreement
ith the resistive MHD theory is found. This warrants a closer look

t the numerical resistivity and its properties in different numerical 
chemes. It is quite possible that its properties are close to those of the
roper resistivity only in some schemes and drastically different in 
thers. F or e xample, Rembiasz et al. ( 2017 ) found ne gativ e resistivity
or their scheme. It is possible that the peculiarities of the splitting
pproach play a role too. Especially the fact that in the ideal FFDE
pproximation current sheets collapse into discontinuities, with the 
orresponding reconnection rate approaching the speed of light. 

Our results show that for the thinnest current sheets allowed by the
ode, only few cells wide, the current sheets should be at least ∼100
ells long for the tearing instability to trigger fast reconnection on the
lfv ́en time-scale. Very long current sheet are know to exist in stellar
agnetospheres, including the high- σ magnetospheres of black holes 
MNRAS 536, 1268–1302 (2025) 
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nd neutron stars. Ho we ver in other astrophysical problems, current
heets may be much smaller compared to the dynamical scales of
nterest. F or e xample, the size of reconnection sites responsible for
he gamma-ray flares in the Crab nebula is only about one light
ay, whereas the size of the nebula is about 10 light years. For such
roblems, code’s ability to efficiently resolve small thin structures
ecomes paramount. 
Somewhat paradoxically, the ideal MHD codes might end up being
ore suitable than the resistive codes for large-scale problems of

strophysical interest (cf. Del Zanna et al. 2024 , for the simulations
f MHD turbulence). First, the actual resistivity of resistive codes has
o be much higher than the numerical one to make its introduction
eaningful. This w ould mak e current sheets significantly thick er and

ence they would have to be much longer to allow fast reconnection.
econd, uniform scalar resistivity will have strong effect on the
agnetic field, and hence the plasma dynamics, outside current

heets, leading to much lower magnetic Reynolds numbers on the
arge scales compared to what it would be with an ideal code (Mattia
t al. 2023 , 2024 ). In principle, this can be mitigated with anomalous
esistivity, which depends of the strength of the electric current.
inally, the resistive codes are great for verifying the analytical results
f resistive MHD and exploring their non-linear regime, but since
he astrophysical plasma is mostly collisionless, the actual benefits
f the resistive model in astrophysics are not that obvious. 
For RMHD, the fact that the numerical resistivity is not Lorentz-

nvariant is likely to be an issue for the simulations involving fast
elati vistic flo ws. As can be seen in equation ( 86 ), for such flo ws the
esistivity reduces like γ −1 , whereas the numerical resistivity does
ot. One rele v ant example of such flo ws is the striped pulsar wind,
here the time-dilation effect may prevent the reconnection of stripes

ill the wind passes through its termination shock (Lyubarsky &
irk 2001 ). Ho we ver, direct numerical simulations of such wind in

he pulsar frame are extremely challenging and require significant
implification anyway. 

Over the last decade, the kinetic approach based on the PIC method
as successfully applied to numerical simulations of pulsar and black
ole magnetospheres (e.g. Philippov & Spitko vsk y 2014 ; P arfre y,
hilippov & Cerutti 2019 ; Crinquand et al. 2020 ; Soudais, Cerutti &
ontopoulos 2024 ). This approach has no difficulty in dealing with
ighly magnetized plasma but suffers from the scale-separation issue.
IC simulations must resolve the microphysics scales, which severely

imits the accessible macroscopic scale and makes the method
omputationally e xpensiv e. Although the most recent studies show
hat the macroscopic size of some astrophysical problems can be
caled down towards the microscopic scales, without the large-scale
ynamics being ‘contaminated’ by the microphysics, in general the
ssue is here to stay. One approach to mitigating this issue is the use
f hybrid schemes, where PIC computations are limited in extent and
arried out only where they are una v oidable, for example to compute
he non-thermal radiation (e.g. Soudais et al. 2024 ). Another option is
ot to use PIC simulations directly altogether, but to incorporate the
IC predictions on particle acceleration and non-thermal emission
t the subgrid level of fluid simulations. This requires accurate
reatment of plasma in the high- σ regime, including the value of

itself, and this is where the splitting approach to numerical RMHD
romises to be most useful. 

 C O N C L U S I O N S  

n this work, we developed a novel numerical method for integrating
MHD equations, which allows to extend the applicability domain

nto the regime of extremely high magnetization (high- σ ) typical to
NRAS 536, 1268–1302 (2025) 
he magnetospheres of neutron stars and black holes, and expected in
he magnetized relativistic outflows from them as well. The method
s based on splitting the RMHD equations into interacting (linked)
ubsystems, one go v erning the electromagnetic field, and another
o v erning the motion of plasma. The splitting breaks the stiffness
f RMHD equations in the high- σ regime, where the total energy-
omentum tensor is largely dominated by the electromagnetic field.
he method sacrifices the total energy-momentum conservation of
tandard conserv ati ve schemes for RMHD, and this does not allo w
he small numerical errors in magnetic field to result in catastrophic
rrors for the plasma parameters. Both the subsystems have the form
f conservation laws, which allows to combine the splitting method
ith various numerical methods developed for such laws. In the

urrent code, we applied the third-order accurate WENO approach. 
The suitability of the splitting method to high- σ problems has been

onfirmed by a variety of 1D and 2D test simulations presented in
his paper. Moreo v er, the code remains accurate for low- σ problems,
ncluding the unmagnetized regime ( σ = 0), and the subrelativistic
roblems. Thus, the splitting method can be used for numerical
imulations of complex astrophysical phenomena, which involve
omponents with vastly different physical parameters, with no need
or development of hybrid codes. 

Given the importance of fast magnetic reconnection in high-energy
strophysics, particular attention has been paid to determining the
umerical resistivity of the code and to test problems involving long
nd thin current sheets. Studying the numerical decay of periodic
e generate Alfv ́en wav es, we v erified and calibrated a simple model
f numerical resistivity, and found it to be similar to the anomalous
esistivity. In the 2D simulations of the tearing instability in a long
arris current sheet, we found the results to be in good agreement
ith the basic theory by Furth et al. ( 1963 ) when the resistivity
roper is replaced with the numerical resistivity. At the non-linear
hase, the simulations exhibited the typical properties of the fast
agnetic reconnection in the plasmoid-dominated regime. The 2D

imulations of the ABC grid of magnetic ropes allowed us to study
he dynamics of current sheets emerging via x-point collapse. These
urrent sheets became fragmented by tearing instability on Alfv ́enic
ime-scale before they could reach the aspect ratio of the Sweet–
arker sheets, in agreement with the analytical results by Pucci &
elli ( 2014 ). These results suggest that ideal RMHD codes, at least

hose based on the splitting method, may be applicable to problems
nvolving fast magnetic reconnection. 
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PPENDI X  A :  T H I R D - O R D E R  W E N O  

NTERPOLATI ON  

elow, only the interpolation in the x-direction is considered, and all
ther spatial indices are dropped for brevity. In the other directions,
he procedure is the same. 

1 Modified second-order TVD weights 

onsider a three-point stencil S = { x i−1 , x i , x i+ 1 } and its two subs-
encils S − = { x i−1 , x i } and S + 

= { x i , x i+ 1 } . Each of the substencils
ields a linear polynomial for interpolation to the ith cell interfaces
 i+ 1 / 2 = x i + �x/ 2 and x i−1 / 2 = x i − �x/ 2 on a uniform grid, 

 −( x) = u i + 

( u i − u i−1 ) 

�x 
( x − x i ) , (A1) 

nd 

 + 

( x) = u i + 

( u i+ 1 − u i ) 

�x 
( x − x i ) . (A2) 

ny linear combination of these interpolants ensures second-order 
patial accuracy in smooth regions of numerical solution. Falle ( 1991 )
sed a TVD slope limiter which is equi v alent 2 using following linear
ombination of the polynomials P ±

 ( x) = w −P −( x) + w + 

P + 

( x) , (A3) 
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Figure A1. Left panel: mapping polynomials p n ( x). Right panel: non-linear WENO weights for P 

r ( x) obtained with α( x) = p 4 ( x). 
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here 

 − = 

β+ 

β+ 

+ β−
, w + 

= 

β−
β+ 

+ β−
, (A4) 

re the weights and 

− = ( u i − u i−1 ) 
2 , β+ 

= ( u i+ 1 − u i ) 
2 (A5) 

re the ‘roughness’ indicators. Incidentally, these indicators are the
ame as in Jiang & Shu ( 1996 ) for a third-oder WENO interpolation.
he weights ( A4 ) satisfy the constraint 

 − + w + 

= 1 . (A6) 

t is clear that not the absolute values of β+ 

and β− but their ratio
etermines the weights: 

(i) w −, w + 

→ 1 / 2 as β−/β+ 

→ 1 ; 
(ii) w − → 1 and w + 

→ 0 as β−/β+ 

→ 0 ; 
(iii) w − → 0 and w + 

→ 1 as β+ 

/β− → 0 . 

This combination fa v ours the interpolant with smaller gradient,
hus reducing oscillations at regions with rapid variation of the
umerical solution, such as shock wav es. F or e xample, suppose that
 i+ 1 = u i , like in the upstream state of a shock, whereas u i−1 �= u i 

s a point of numerical shock structure. Then, β+ 

= w − = 0 and
 ( x i ) = P + 

( x) = u i . 
Interestingly, these weights treat critical points of smooth solutions

lmost on the same footing as shocks. To illustrate this, suppose
hat a local maxima is located exactly between x i and x i+ 1 , so
hat u i+ 1 = u i . Then, like in the shock example, β+ 

= w − = 0 and
 ( x) = P + 

( x) = u i . Generalizing, any weights based on the ratios
f the roughness indicators do not differentiate between shocks and
ritical points. This applies to the WENO weights proposed by
iang & Shu ( 1996 ), which results in a loss of accuracy in the vicinity
f critical points. 
To remo v e this confusion, we propose the modified smoothness

ndicators 

± = ( u i − u i±1 ) 
2 + U 

2 

(
�x 

L 

)2 

+ ε , (A7) 

here 

 = max ( | u i+ 1 | , | u i | , | u i−1 | ) , (A8) 

s the maximal magnitude of u on the stencil, L � �x is the
inimal characteristic length-scale of what can be considered as a

omputationally smooth solution, and ε is a small number, introduced
o a v oid division by zero when u i = u i−1 = u i+ 1 = 0. Hence, 
NRAS 536, 1268–1302 (2025) 
(i) in smooth regions away from local extrema, 

 u i±1 − u i ) 
2 ≈

(
∂u 

∂x 

)2 

i 

�x 2 ≤ U 

2 

(
�x 

L 

)2 

. 

ence, β−/β+ 

≈ 1 and w ± ≈ 1 / 2, like in the original TVD scheme.
(ii) At strong shocks, either 

 u i+ 1 − u i ) 
2 ≈ U 

2 � U 

2 

L 

2 
�x 2 , 

r 

 u i−1 − u i ) 
2 ≈ U 

2 � U 

2 

L 

2 
�x 2 , 

r the both of them. In any of the cases, the new terms introduced in
quation ( A7 ) have a little impact on w ±. 

(iii) Near the critical of points of smooth solutions, 

 u i±1 − u i ) 
2 ≈

(
∂ 2 u 

∂x 2 

)2 

i 

�x 4 ≈ U 

2 

(
�x 

L 

)4 


 U 

2 

(
�x 

L 

)2 

. 

ence, β−/β+ 

≈ 1 and w ± ≈ 1 / 2, like at any other point of smooth
olutions. 

As to the value of L , it is reasonable to use L = n sm 

�x, with 5 �
 sm 

� 10, leading to the final expression for the modified weights 

− = ( u i − u i−1 ) 
2 + 

U 

2 

n 2 sm 

+ ε , (A9) 

+ 

= ( u i+ 1 − u i ) 
2 + 

U 

2 

n 2 sm 

+ ε . (A10) 

or the test simulations described in this paper, we set n s = 10 and
= 10 −25 . 

2 Third-order WENO weights 

hird-order WENO interpolation utilizes the fact that the linear
nterpolation ( A3 ) yields the same value at x = x i+ 1 / 2 as the quadratic
nterpolation based on the all three points of the stencil S if w − = 1 / 4
nd w + 

= 3 / 4, and the same value at x = x i−1 / 2 if w − = 3 / 4 and
 + 

= 1 / 4. Thus, two linear interpolants of the form ( A3 ), one per
ach interface of the cell, can be used to achieve third-order accurate
nterpolation to the both interfaces. γa = 1 / 4 and γb = 3 / 4 are
nown as the ideal or linear weights. We denote the interpolant
sed for the interpolation to the x i−1 / 2 interface of ith cell as 

 

l ( x) = w 

l 
−P −( x) + w 

l 
+ 

P + 

( x) , (A11) 
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nd the interpolant used for the interpolation to the x i+ 1 / 2 as 

 

r ( x) = w 

r 
−P −( x) + w 

r 
+ 

P + 

( x) . (A12) 

heir weights satisfy exactly the same constraint as before 

 

l 
− + w 

l 
+ 

= 1 , w 

r 
− + w 

r 
+ 

= 1 . (A13) 

ne may put w 

r 
+ 

= w 

l 
− = γb and w 

l 
+ 

= w 

r 
− = γa , but this will lead

o violent oscillations at shocks. Instead, WENO weights are non- 
inear, reducing to the ideal weights only on very smooth solutions. At 
hocks, the linear interpolant with lower gradient should dominate. 
ince the second-order TVD interpolation, described earlier, is also 
ased on the three-point stencil S, has exactly the same form as
he third-order WENO interpolants, and already has the required 
ehaviour at shocks, a mapping of the TVD weights, which is closed
o the identity mapping at shocks but yields ideal weights on smooth
olutions, suggests itself. 

So, we look for the mapping w + 

→ { w 

l 
+ 

, w 

r 
+ 

} such that 

 

l 
+ 

→ γa , w 

r 
+ 

→ γb as w + 

→ 0 . 5 , (A14) 

 

r 
+ 

, w 

l 
+ 

→ w + 

as w + 

→ 0 or w + 

→ 1 . (A15) 

t also makes sense to require the functions w 

l 
+ 

( w + 

) and w 

r 
+ 

( w + 

) to
e monotonic. Hence, if 

 

r 
+ 

= γb α( w + 

) , (A16) 

hen α( x), x ∈ [0 , 1], must be a monotonic function of x satisfying
he conditions 

(0) = 0 , α(0 . 5) = 1 , α(1) = 1 /γb . (A17) 

n addition, it is desirable to have a reasonably wide region near x
 0.5 where α( x) remains close to 1. Hence, one may also require
 number of its low-order derivatives to vanish at x = 0.5. For
 ∈ [0 , 0 . 5], these conditions are satisfied by the polynomials 

 n ( x) = 1 − (1 − 2 x) n , (A18) 

here n ≥ 2. The first three examples of such polynomials are shown
n the left panel of Fig. A1 . 

To determine α( x) for x ∈ [0 . 5 , 1], we require the function
 

r 
−( w −) to be the same as w 

r 
+ 

( w + 

), apart from γb replaced by γa ,
nd write 

 

r 
− = γa α( w −) . (A19) 

iven the constraints ( A6 ) and ( A13 ), one can write this equation as

 

r 
+ 

= 1 − γa α(1 − w + 

) . 

his allows us to fully specify w 

r 
+ 

( w + 

) and w 

r 
−( w + 

), 

 

r 
+ 

( w + 

) = 

{
γb p n ( w + 

) , 0 ≤ w + 

≤ 0 . 5 , 
1 − γa p n (1 − w + 

) , 0 . 5 < w + 

≤ 1 , 
(A20) 

 

r 
−( w + 

) = 1 − w 

r 
+ 

( w + 

) . (A21) 

imilarly, one finds 

 

l 
+ 

( w + 

) = 

{
γa p n ( w + 

) , 0 ≤ w + 

≤ 0 . 5 , 
1 − γb p n (1 − w + 

) , 0 . 5 < w + 

≤ 1 , 
(A22) 

 

l 
−( w + 

) = 1 − w 

l 
+ 

( w + 

) . (A23) 

ig. A1 shows the non-linear weights based on p 4 ( x). 

3 Downgrading to second-order TVD interpolation at strong 
hocks 

trong shocks in high- σ regime may still exhibit residual numerical 
scillations of the flow parameters. To remo v e them completely, one
an switch to the second-order TVD interpolation in the safety zone
round such shocks (see Section 3.5 ). 

PPENDI X  B:  VARI ABLES  C O N V E R S I O N  

he conserved variables of the perturbation system are mass density 

 = ργ , (B1) 

nergy density 

 (1) = E − E (0) = E (0) · E (1) + B (0) · B (1) + 

E 

2 
(1) + B 

2 
(1) 

2 
+ wγ 2 − p 

(B

here 

 = 

E 

2 + B 

2 

2 
+ wγ 2 − p , (B3) 

 (0) = 

E 

2 
(0) + B 

2 
(0) 

2 
, (B4) 

omentum density 

S (1) = S − S (0) = E (0) × B (1) + E (1) × B (0) + E (1) × B (1) + wγ 2 v , 

(B5

here 

S = E × B + wγ 2 v , (B6) 

S (0) = E (0) × B (0) . (B7) 

n addition, we have the perfect conductivity condition is 

E = −v × B , (B8) 

hich can also be written as 

E (1) = −E (0) − v × B . (B9) 

nd the polytropic equation of state 

 = ( ρ + κp) , (B10) 

here κ = �/ ( � − 1). 
Equation ( B8 ) leads to 

E × B = B ×( v × B ) = B 

2 v − ( v · B ) B 

nd hence 

S = ( B 

2 + W ) v − ( B ·v ) B , (B11) 

here W = wγ 2 . From the last equation, it follows that 

 B ·v ) = 

( S · B ) 

W 

. (B12) 

ubstituting this back in equation ( B11 ), we obtain 

 = 

S + (( S · B ) /W ) B 

B 

2 + W 

. (B13) 

his equation shows that v depends solely on the unknown W . From
his result, it follows that 

 

2 = ( B 

2 + W ) 2 v 2 − (2 W + B 

2 ) 
( S · B ) 2 

W 

2 
. (B14) 

hus, we have an equation for only two unknowns, W and v 2 .
o we ver, this equation is not immediately suitable for the high
agnetization case as it involves terms of the order B 

4 , that results
n large computational errors for the hydrodynamic variables. As we 
how later, these terms cancel out. 
MNRAS 536, 1268–1302 (2025) 
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Next, we use the perfect conductivity condition ( B9 ) to eliminate
E (1) from the expression ( B2 ) for E (1) . To this end, we first find that 

E (0) · E (1) = −E 

2 
(0) − E (0) ·( v × B ) , 

nd 

 

2 
(1) = E 

2 
(0) + 2 E (0) ·( v × B ) + || v × B || 2 , 

nd hence 

E (0) · E (1) + 

E 

2 
(1) 

2 
= −E 

2 
(0) 

2 
+ || v × B || 2 . 

his can be reduced further using 

| v × B || 2 = ( v × B ) · ( v × B ) 

= v · ( B ×( v × B )) 

= v · ( v B 

2 − B ( v · B )) 

= v 2 B 

2 − ( v · B ) 2 . 

ubstituting the last two results into equation ( B2 ), we obtain 

 (1) = 

1 

2 
( B 

2 v 2 − ( v · B ) 2 ) + W − p − E 

2 
(0) 

2 
+ 

B 

2 
(1) 

2 
+ B (0) · B (1) . 

(B15) 

he last three terms of the right-hand side are already known. To
eflect this, we introduce 

¯
 1 = E (1) + 

E 

2 
(0) 

2 
− B 

2 
(1) 

2 
− B (0) · B (1) , (B16) 

nd write equation ( B15 ) as 

¯
 1 = 

1 

2 
B 

2 v 2 + W − p − 1 

2 

( S · B ) 2 

W 

2 
, (B17) 

here we have also applied equation ( B12 ). This equation contains
he unknowns v 2 , W , and p. Using EOS ( B10 ) and equation ( B1 ),
e find that 

 = 

1 

κ
( W (1 − v 2 ) − D(1 − v 2 ) 1 / 2 ) , (B18) 

hich allows to eliminate p from equation ( B17 ) and obtain the
ubic equation 

 3 ( v 
2 ) W 

3 + a 2 ( v 
2 ) W 

2 + a 0 = 0 , (B19) 

here 

 3 = 1 − 1 − v 2 

κ
, (B20) 

 2 = 

1 

2 
B 

2 v 2 − Ē 1 + D 

(1 − v 2 ) 1 / 2 

κ
, (B21) 
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 0 = −1 

2 
( S · B ) 2 . (B22) 

hus, we have obtained two equations ( B14 ) and ( B19 ), for the
nknowns W and v 2 . This system is to be solved numerically. 
Obviously, one can further reduce the system to just one equation,

ither for v 2 or W . Following the reasonable argument of Del Zanna
t al. ( 2007 ), it is preferable to eliminate W by solving the cubic
quation (12) analytically. This allows us to control the condition
 ≤ v 2 < 1 during the numerical iterations of the Newton method
or its secant version) for the resultant equation. 

The fully expanded expression for the coefficient a 2 is 

 2 = 

1 

2 
( B 

2 v 2 − E 

2 
(0) ) − E (1) + 

B 

2 
(1) 

2 
+ B (0) · B (1) + D 

(1 − v 2 ) 1 / 2 

κ
. 

he first two terms of this expression constitute the difference
etween B 

2 v 2 / 2 and E 

2 
(0) . These non-ne gativ e terms can be very large

nd their difference can be a source of large error in computations of
 2 in the case of high magnetization. 
Introducing the drift velocity of force-free approximation 

 (0) = 

E (0) × B (0) 

B 

2 
(0) 

. 

ne can write 

 

2 v 2 − E 

2 
(0) = B 

2 v 2 − B 

2 
(0) v 

2 
(0) = B 

2 
(0) ( v 

2 − v 2 (0) ) + ( B 

2 
(1) + B (0) · B (1
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Computations of the term S · B may also involve subtraction of
arge numbers and hence results in large errors. This can be a v oided
f we note that S (0) · B (0) = 0 and write 

S · B = S (0) · B (1) + S (1) · B . 

Substituting ( S · B ) 2 /W 

2 from equation ( B17 ) into equation ( B14 )
nd cancelling out terms of the order B 
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