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ABSTRACT

We describe a novel splitting approach to numerical relativistic magnetohydrodynamics (RMHD) designed to expand its
applicability to the domain of ultrahigh magnetization (high-o). In this approach, the electromagnetic field is split into the
force-free component and its perturbation due to the plasma inertia. Accordingly, the system of RMHD equations is extended
to include the subsystem of force-free degenerate electrodynamics and the subsystem governing the plasma dynamics and the
perturbation of the force-free field. The combined system of conservation laws is integrated simultaneously, to which aim various
numerical techniques can be used, and the force-free field is recombined with its perturbation at the end of every time-step. To
explore the potential of this splitting approach, we combined it with a third-order weighted essentially non-oscillatory method,
and carried out a variety of 1D and 2D test simulations. The simulations confirm the robustness of the splitting method in the
high-o regime, and also show that it remains accurate in the low-o regime, all the way down to o = 0. Thus, the method can be
used for simulating complex astrophysical flows involving a wide range of physical parameters. The numerical resistivity of the
code obeys a simple ansatz and allows fast magnetic reconnection in the plasmoid-dominated regime. The results of simulations

involving thin and long current sheets agree very well with the theory of resistive magnetic reconnection.
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1 INTRODUCTION

The strong gravity of astrophysical black holes and neutron stars
creates some of the most extreme physical conditions in the Universe
which cannot be achieved in research laboratories. In particular,
they naturally develop magnetospheres with extremely high plasma
magnetization. Highly relativistic winds and jets emerging from these
magnetospheres create spectacular structures on enormous scales,
from parsecs (pulsar wind nebulae) to hundreds of kiloparsecs (jets of
active galactic nuclei). These flows transport huge amounts of energy
in the form of Poynting flux and the kinetic energy of the bulk motion,
and drive the observed phenomena via magnetic reconnection and
shock interaction with the external plasma. For plasma flows on such
huge scales, relativistic magnetohydrodynamics (RMHD) is the most
suitable framework.

The starting point of modern numerical schemes for compressible
hydrodynamics (HD) and magnetohydrodynamics (MHD) is their
differential equations written in the form of conservation laws, with
the aim of developing a numerical analogue of these laws which pro-
vides conservation of the scheme-specific numerical approximation
for the conserved quantities integrated over the volume of individual
computational cells and the whole computational domain down to
the processor rounding (machine) error. This is mainly because of the
superior ability of such schemes to accurately capture shock waves.
Both finite-volume and finite-difference schemes can be developed
along these lines. The schemes may differ in many other aspects, like
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the type of Riemann solvers, the order of accuracy, etc. In terms of the
integration of the Faraday equation, the modern numerical schemes
for MHD and RMHD split into two major groups, those which use
the generalized method of Lagrange multiplier (GLM, Munz et al.
2000; Dedner et al. 2002) and those that use the constrained transport
method (CT, Evans & Hawley 1988).

In form, the Faraday equation of the MHD (and RMHD) system
can be written as a law describing the conservation of the magnetic
field integrated over the volume. This approach allows to integrate the
Faraday equation in the same fashion as the other conservation laws,
which is very convenient. However, it makes impossible to ensure
that the magnetic field remains divergence-free, whatever numerical
approximation of the divergence is chosen, because this condition
involves not the volume integral of the magnetic field but its integral
(magnetic flux) over a close surface. The uncontrolled deviation from
the divergence-free state is not just an error for the magnetic field
alone but may have severe implication for other flow parameters
(Brackbill & Barnes 1980). For this reason, additional algorithms
were developed to keep the magnetic field close to a divergence-free
state.

In the CT method, the Faraday equation is treated as the law
describing the conservation of magnetic flux over a surface. As
the result, the normal components of the magnetic field have to
be defined at the faces of computational cells and the electric field
over their edges. This leads to the so-called staggered grid, where
different physical parameters are defined at different points of the
grid making this approach rather involved (for the recent analysis and
comparison of various CT schemes, see Mignone & Del Zanna 2021).
Moreover, since the energy (in Newtonian MHD) and the whole
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energy-momentum vector (in RMHD) include the electromagnetic
contribution, integration of the corresponding conservation laws
requires to define the magnetic field inside the computational cells
as well. As a result, there are two numerical solutions for the
magnetic fields, one defined at the cell faces and advanced using
the surface form of the integral Faraday equation, and one defined
inside the cells and advanced using the volume form of this equation.
They may diverge over time, resulting in a rather uncomfortable
state where the volume-based conserved variables like energy and
momentum are inconsistent with the face-based magnetic field. In
highly magnetized regions, this may even lead to an unphysical state
with negative gas pressure. To prevent this, one may readjust the
volume-based magnetic field and hence the conserved variables, thus
making the numerical scheme not fully conservative. In Newtonian
MHD, where out of all other conserved quantities the magnetic
field is present only in the total energy, this can be done by simply
removing the energy contribution due to the volume-based magnetic
field and replacing it with the contribution due to the surface-base
magnetic field (Balsara & Spicer 1999). This algorithm keeps the
plasma contribution to the energy and hence the corresponding
primitive variables (velocity, density, and thermal pressure of plasma)
unchanged, thus making the deviation from the energy conservation
superficial. In RMHD, both the magnetic and the electric field
contribute to all the components of the total energy-momentum
vector. Even if the volume-based magnetic field is a conserved
variable, the volume-based electric field is not and can be found
only via conversion of the conserved variables into the primitive
ones (velocity, density, and thermal pressure of plasma) first, and
then applying the perfect conductivity condition E = —vx B. As a
result, the direct replacement of the electromagnetic contribution to
the energy-momentum like in Balsara & Spicer (1999) is impossible.
Instead, one is forced to carry out the ‘harmonization’ only after the
variable conversion (Komissarov 1999). The same algorithm can
be applied in Newtonian MHD, where it is equivalent to that of
Balsara & Spicer (1999).

In the GLM method, the system of differential equations is
extended by (1) introducing new scalar-dependent variable and
hence one more evolution equation, and (2) modifying the Faraday
equation to couple the new variable and the magnetic field. As a
result, V- B can be both transported away from the regions where
it is generated, normally regions with large computational errors,
and diffused over the computational domain effectively dumping
its spacial oscillation. However, some residual divergence of the
magnetic field remains. This method is very easy to implement, as
it does not require any modification of the computational grid, and
all the evolution equations are treated in the same way. At least in
ideal Newtonian MHD, the GLM and CT methods provide similar
accuracy (Mignone, Tzeferacos & Bodo 2010).

In contrast to Newtonian MHD, where it is sufficient to describe
the plasma magnetization by the ratio of thermal and magnetic pres-
sures (8 = p/pm), relativistic plasma requires a different parameter
o = b?/4mw, where w = € + p is the relativistic enthalpy of plasma
(where the internal energy density € includes the contribution due
to the rest mass energy of plasma particles), and »*> = B> — E?
is the Lorentz invariant equal to the squared strength of magnetic
field as measured in the rest frame of plasma. Direct extension of
the numerical methods developed for Newtonian MHD to RMHD
has been quite successful in the low-o regime. However, the high-
o regime has turned out to be very problematic, as these codes
tend to crash, resulting in conserved variables which cannot be
converted into physically meaningful set of primitive variables. In
multidimensional simulations, these schemes begin to fail when
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o ~ 1. On the one hand, this is a very high magnetization, never
achieved in laboratory plasmas. On the other hand, it can be much
higher in many problems of relativistic astrophysics. For example,
in the pulsar magnetospheres, o can be as high as 103 — 109,

It has been suggested that the origin of this issue is the stiffness
of the conservation laws of RMHD in the high-o regime (Komis-
sarov 2006a). Basically, when o is high, the electromagnetic field
dominates in the total energy and momentum. In this case, it is
reasonable to expect that even small errors in the magnetic field,
associated with the numerical integration of the Faraday equation,
may lead to large errors in the plasma parameters, when they are
computed from the conserved quantities. The quantitative analysis
of the errors is rather complicated, however. To strengthen the
argument, one may approach this problem from a different angle.
The dynamics of electromagnetic field in highly rarefied plasma can
be described using the approximation of the force-free degenerate
electrodynamics (FFDE, e.g. MacDonald & Thorne 1982; Uchida
1997; Gruzinov 1999; Komissarov 2002). Normally, it is formulated
as the Maxwell equations complimented with a constraint on the
electric four-current, which ensures vanishing Lorentz force. The
density of electric charges required to satisfy this constraint is quite
small and the corresponding energy-momentum density of plasma
can be negligibly small compared to that of the electromagnetic
field. Alternatively, one may consider FFDE as RMHD in the
limit 0 — oo (Komissarov 2002). In this limit, the set of the
differential equations of RMHD reduces to the Faraday equation and
the energy-momentum conservation laws for the electromagnetic
field, complemented with the two perfect conductivity conditions.
However, this system is overdetermined, with only two out of the four
components of the energy-momentum equation being independent.
For the numerical integration, this implies that any error in the
computed magnetic field makes it inconsistent with the computed
energy-momentum density.

For adiabatic flows, one can eliminate the energy equation from
the set of numerically integrated equations of RMHD and this
helps to extend the range of manageable magnetization up to
o =~ 100 (Komissarov et al. 2007b; Noble, Krolik & Hawley 2009).
The conversion of remaining conserved variables to the primitive
variables may still fail from time to time, becoming increasingly more
severe for higher o and requiring emergency fixes just to keep the
simulations going. None the less, these results support the stiffness
of RMHD equations as the reason for the high-o failures, as the
omission of the energy equation reduces this stiffness.

In their CT scheme for ideal RMHD, Mignone & Bodo (2006)
applied exactly the same energy correction as Balsara & Spicer
(1999), before converting the conserved variables into the primitive
ones and replacing the cell-based magnetic field with the face-based
one. This allowed them to succeed with the cylindrical explosion
test for By = 1 (see Section 5.3), which would failed otherwise.
Marti (2015) went further and proposed an iterative algorithm for
correcting the total energy-momentum vector, using the correction
of Mignone & Bodo (2006) as a first step. This allowed them to
avoid the conversion failure in the explosion test with By = 100. The
corresponding plasma magnetization in this problem is extremely
high, with o > 2.5 x 103! This is a remarkable achievement, but
some caution is in order. First, these corrections of conserved
variables are different to that of Balsara & Spicer (1999) as they
change not only the energy-momentum of the electromagnetic field
but the energy-momentum of plasma as well. So, this is more
than just resetting the cell-based magnetic field using the face-
centred magnetic field. Second, there is no analysis to justify these
corrections. The mathematical problem supposed to be solved by
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the iterative algorithm of Marti (2015) is actually not posed. Even a
qualitative understanding of why these corrections help to keep the
conserved variables in the physical part of their domain is missing.
As the result, it is not clear how robust these fixes are. A proper
analytical and numerical investigation of this approach is required.

In addition to the conversion failures, RMHD simulations of highly
magnetized flows suffer from excessive artificial plasma heating due
to numerical resistivity. For this reason, the high-o region is normally
excluded when modelling black hole emission in simulations (e.g.
Event Horizon Telescope Collaboration 2021).

In this paper, we propose an alternative to emergency fixes in the
form of a radically new approach to computational RMHD which
allows to mitigate the stiffness of its equations in the high-o limit.
In part, it was motivated by the method used by Tanaka (1994) for
MHD simulations of the collision between the Earth’s magnetosphere
and the solar wind. In this problem, the Earth’s magnetic field
increases by many orders of magnitude from the collision site to
the troposphere, where it is largely stationary and dipolar, whereas
the perturbation of this field remains of about the same magnitude
and hence increasingly small relative to the undisturbed Earth’s field
on approach to the troposphere. If the total magnetic field is evolved
numerically, the truncation errors become large in comparison to
the perturbation amplitude and hence the numerical solution for
the perturbation becomes corrupted. To overcome this problem,
Tanaka (1994) proposed to separate the strong stationary dipolar
field from its perturbation and hence to integrate only the non-linear
equations governing the perturbation. This approach has been proved
to be very effective, and nowadays it is widely used in numerical
modelling of planetary magnetospheres (e.g. Eggington et al. 2020).

Our problem is more complicated, however, as in the most interest-
ing astrophysical applications, the strong background magnetic field
is highly dynamic and cannot be considered as a known stationary
component. At the first sight, this could be handled by allowing it to
evolve according to the evolution equations of FFDE (Komissarov
2001, 2006b; McKinney 2006; Mahlmann et al. 2021). However,
over time, the RMHD solution for the electromagnetic field could
significantly deviate from the FFDE solution, with the force-free
component and its perturbation having similar amplitudes. To keep
the electromagnetic perturbation small, one could reset the division of
the electromagnetic field into the strong force-free and perturbation
components. The simplest way of doing this is to recombine the
force-free field and its perturbation into the ‘refreshed’ force-free
field, and to nullify the perturbation at the same time. In sufficiently
simple problems, this could be done only so often. However, in some
other problems, the perturbation may grow very rapidly. For example,
consider a stationary fast magnetosonic shock. Since the fast modes
of FFDE propagate with the speed of light, the FFDE solution will
strongly deviate from the RMHD solution already after one time-step
of numerical integration. This shows that to make the scheme robust,
one has to invoke the resetting every time-step.

Numerical integration of FFDE equations, either in the form of
the Maxwell equations with force-free current (Gruzinov 1999)
or in the form of reduced RMHD equations (Komissarov 2002),
does not conserve the electromagnetic energy-momentum and hence
the splitting approach cannot ensure the conservation of the total
energy-momentum down to the processor rounding error. However, a
departure from this conservation seems inevitable for high-c RMHD
anyway, because it is the attempt to ensure the full conservation that
leads to crashes.

In this paper, we describe a successful attempt to develop the
splitting method based on these ideas. In Section 2, we detail the key
principles of the splitting method. Section 3 describes the specifics of
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its numerical implementation. The 1D test simulations are presented
in Section 4. In addition to the standard tests involving hyperbolic
waves of RMHD, this section also describes the investigation of
the scheme’s numerical resistivity and the possibility to control
the plasma heating via numerical magnetic dissipation. Section 5
describes the test simulations for inherently 2D problems. These
include the investigation of the anisotropy of numerical resistivity,
and a number of problems involving current sheets. The latter
constitute a study focusing on the ability of ideal MHD codes to
capture fast magnetic reconnection, apparently the first study of
this kind. The whole study is summarized in Section 6 and the
key conclusions are stated in Section 7. Appendix A describes
the novel third-order weighted essentially non-oscillatory (WENO)
interpolation employed by our code, and Appendix B gives the
derivation of the key equations involved in the variable conversion
algorithm.

2 THE KEY PRINCIPLES

2.1 Ideal relativistic magnetohydrodynamics

For an inertial frame of Minkowski space—time, the system of ideal
RMHD in consists of the Faraday equation

B+ VxE =0, (€))
the energy equation

E?+ B? ) )
d; T—i—wy —p|+V(ExB+wyv)=0, 2)

the momentum equation

0 (E><B + wyzv)

EZ Bz
+V~[7E®E7B®B+wyzv®v+g< + er)} =0,

2
3
the continuity equation

3 (py)+ V-(oyv) =0, “
the divergence-free condition for the magnetic field
V-B=0, (5)
and the perfect conductivity condition
E=-vxB. (6)

Here, p is the thermodynamic pressure, p is the density of plasma
particles rest mass, g is the metric tensor of space, v is the fluid
velocity, y is the corresponding Lorentz factor, B and E are the
vectors of electric and magnetic field, respectively, as measured in
the aforementioned inertial frame. w(p, p) is the relativistic enthalpy
per unit volume. In what follows, we use the equation of state
. r
w=p+kp with k= ——, @)
r—1

where I" is the ratio of specific heats. Here, we utilize the relativistic
units where neither the speed of light no the geometric factor 1/4x
appear in the equations (for example o = b?/w). We also agree that
for any three-vector of the space a, a> = a;a’, and a = ~/a2, and for
any four-vector a” of the space—time, a* = a,a’, and use — + ++
signature for the space—time.

Let us now discuss how the errors in numerical integration of the
energy-momentum equations can result in an unphysical state. Con-
sider the four-vector of energy-momentum density, [1* = —T*"n,,,
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where THV is stress-energy-momentum tensor, and »n, is the four-

velocity of the fiducial observer who measures the energy and
momentum. When the observer is at rest in the space, n, = —§/,
and T1" = (£, S), where £ and S are the energy and momentum
densities, respectively. For the electromagnetic field, this is

) E2+BZ
My = T,E><B , where E=—-vxB, (8)
and
1 B2\’
2 2 1
Moy =~ (BH—l—F) <0, ©)

where B and B, are the components of the magnetic field parallel
and orthogonal to the velocity, respectively. Hence, ITgy, is a time-
like four-vector. For the plasma (fluid),

pl =Wy = p,wyv), (10)
and
n;l =y2w?2p —w) — p*. (1)

For the physical range of specific heats, 1 <I" < 2 and the combi-

nation 2p — w = p; — p is strictly negative. Hence , l'[;)1 is
also a time-like four-vector. For the total energy-momentum vector
l_[t = Hem + le,

M = Mg + n;l +2(—Eem&p] + (Sem-Sp) < 0 (12)

and hence 1'[{ is also time-like (This is a particular case of the general
result on the sum of future-directed time-like vectors of space—time.).

Obviously, if the numerical integration results in a space-like ITY,
the conversion of conserved quantities into primitive ones will fail.
However, this is the same as in the numerical relativistic HD, and
hence the truncation errors arising in the numerical integration of
the energy-momentum equations are unlikely to be the cause of
the problems specific to the high-o regime of RMHD. The source
of errors specific only to RMHD is the Faraday equation. In the
rest of this section, we demonstrate that sufficiently large errors in
magnetic field can render the set of conserved variables unphysical
by pushing the energy-momentum vector of plasma H'I’)l into the

space-like domain.

We start with a physical state with the magnetic field By and
the total energy -momentum [T £0° Then, we analyse other states
with I[T{ = but B =B, + 6 B where the small perturbation § B
plays the role of the computational error. The aim is to determine how
large this error can be before the energy-momentum vector of plasma
l'[i’)1 turns space-like. In general, the impact of this error is hard

to analyse. To simplify the analysis, we assume that 6B || B( and
consider only the cases where v() is either parallel or perpendicular
to B(y. Since the total momentum vector

St = (B> +wy*)v—(v-B)B,

v will remain either parallel or perpendicular to B in the perturbed
state as well. We will also assume that the magnetic field strength
increases, B = By + 8 B where §B > 0, as only this case is con-
straining.

When v(y || By, the electromagnetic momentum Sem,O =0, and
hence

2 2 2
M0 = Mem,o + Mp1o — 2€em,06p1,0 - (13)
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and
1} = My + 1) — 2Eeméyp). (14)
Since T} = t o- this implies that
Moy = Mo — 8TMem + 2(EemEpl — £em,0€p1,0) (15)
where —8T13,, = —(I13), — H?:m,O) = B3sB > 0. For I, to be

time-like, the whole expression on the right-hand side of this
equation must be negative, which is the condition for the perturbed
state to be physical. When gpl < Eem, the term H%)l,O < 5em,05pl
can be ignored. One may also ignore the small difference §€em
between Eem and gy (- With these simplifications, the physicality
condition reads

2€em,0(Epl = €pl1,0) — 8Mgm < 0. (16)

Since the last term in this expression is positive, this implies that the
plasma energy in the perturbed state must be lower than the one in
the original state. Moreover, this condition will not be satisfied by
any gp] > 0 unless

- ‘Sném < 2gem,ngl,O

Using Eem 0 = B3/2. &, L0 = woYy — Po = woYg, and utilizing
the fact that in this case b2 B2, we finally arrive to the upper limit
on the maximum error in magnetic field
§B VO

S2—

17
B S0 (17

When vy L B), the electromagnetic momentum does not vanish.
Hence, equation (15) is replaced with

2 _ 2 2
My = 1) o — 8Mem
+2(EemEp] — Eem,0p1,0) + 2((Sem,0-Sp1,0) — (Sem-Sp))) »
(18)

where —(Sl'lém = 3883/]/8 > 0, and equation (16) with
2Eem,08Ep] — 2(Sem,0-8Sp1) — 8Ty <0, (19)

where  Eg 0 = B(Z)(l + v(z))/Z, Sem,0 = B(z)vo, 8Ep = Epl —
gpl,O’ and 55p1 = Spl — Spl,O- When vy, v < 1, the second term in
equation (19) can be ignored, leading to the condition (17) with yy =
1. When vg, v = 1, one may use the approximation SSPI ~ 88p1v0,
whicb yields 2(Sern,0'fsspl) :.2B6v(2)8€p1. Substituting .tl.wse into
equation (19), one obtains the simplified physicality condition
B28E
0°Pl sz <o0.

%
Thus, like in the parallel case, §&,] must be negative. Moreover, this
condition will not be satisfied by any 5p1 > 0 unless

B3Epl0
pLO

(0]

which leads to the upper limit on the error in magnetic field

— 83y, <

2
§<m’ (20)
B() ~ o0

where we applied B> = y2b?. Interestingly, this limit differs from
the one obtained for the parallel case only by the factor of two,
suggesting that there is no strong dependence on the angle between
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the velocity and magnetic field. The accuracy constraints may be
even more restrictive than those we have derived. For example, we
did not take into account that the plasma energy of the perturbed
state cannot fall below D = p()(), the conserved variable that has to
be preserved in the perturbed state as well.

In the standard approach, one may try to tackle the issue of
conversion failures via increasing the accuracy of the magnetic field
integration. In the splitting approach, we seek to reduce the impact of
the errors in the magnetic field on the energy-momentum of plasma.

2.2 Splitting equations of ideal RMHD into the electromagnetic
field and plasma components

Let us split the electromagnetic field into two components
B=Bo+ By, E=Eqg+Eq,

where the component with the suffix 0 satisfies the equations of
FFDE. Here, we use the formulation of FFDE due to Komissarov
(2002)

&Bo +VxEqg =0, @b
E% + B2
3 <(O)2(0)> + V-(EqxB@) =0, @2)
E) + B

% (EoyxBw) +V-| —E@o ® Eg — Bo)® Bo) + & —a )=
(23)

V.-Bop =0, @Y

and

(E@©)Bo)=0. 2

The last equation is one of the constraints imposed by the perfect
conductivity. The second one is

B(o) > E(()) . (26)

The energy-momentum equations can be considered as the cor-
responding equations of RMHD in the limit of vanishing plasma
inertia. Equations (25) and (26) follow from the perfect conductivity
condition E = —v x B. Conversely, equations (25) and (26) ensure
the existence of inertial frames where the electric field vanishes.
One of these frames is the rest frame of plasma, the others move
relative to it along the magnetic field. When conditions (25) and
(26) are satisfied, the FFDE system is hyperbolic, with a pair of fast
magnetosonic modes and a pair of Alfvén modes. There are seven
evolution equations in the FFDE system, (21)—(23). Together with
the algebraic constraint (25) imposed by the prefect conductivity
condition, this gives eight equations in total."! This exceeds by two
the number of dependent variables (components of By and E ).
This is because only two components of the energy-momentum equa-
tions are independent (Komissarov 2002). For numerical integration,
however, this means that the system of equations is overdetermined,
and in order to convert the energy-momentum density into the electric
field, some of the components of the energy-momentum have to be
ignored, which can be done in many different ways. Our algorithm
will be described later in Section 3.6.

I'The divergence-free state of the magnetic field is preserved by the Faraday
condition and hence does not need to be counted. The condition £ > B does
not affect the evolution, until it gets broken, and for this reason it is not
counted too.
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The component with suffix 1 describes the correction (pertur-
bation) of the force-free field due to the plasma inertia. The
equations governing this component of the electromagnetic field,
and at the same time the motion of plasma, are obtained from the full
system of RMHD by removing the terms cancelling each other via
equations (21)—(24). This yields

Bay+VxEq =0, (27
(E}) + Bjy)
" (E(0>'E<l> + B Boy+ — 2  Fwy? - p
+V (E(()) XB(]) + E([) X B(()) + E(])XB(]) =+ wy2v) = O, (28)

3 (E«» x By + Eqyx B+ Eqyx Bay + w)/zv)

+V. ( —En®Ep—-En®Eqn—En®Eq
—B1)® By — By ® By — By ® By

Ef) + BY)

+8 [E(O)'E(I) + B)- By + f]
+wy2v®v+gp> =0, (29)
dpy +V-pyv=0, (30)
V-Bu =0, (E2D)
Ej=—-vxBg —(Eqw+vxBq). 32)

The energy-momentum equations (28)—() do not involve the terms
quadratic in B ) and E ), which are dominant in problems with high
o. As aresult, the effect of the truncation error in calculations of B g,
on plasma parameters is reduced. The FFDE field still enters the
plasma equations via linear terms. These interaction terms describe
both the effect of the electromagnetic field on the plasma motion, and
the effect plasma inertia on the evolution of the electromagnetic field.
The two components of the electromagnetic field are also coupled
via the perfect conductivity equation (32).

2.3 Numerical splitting

Each time-step of numerical integration consists of following three
substeps:

(i) Given the solution at the time ¢", including B" and E", one
introduces

Bj,, = B, (33)
Ef, = E", (34
B{,) =0, (35)
Ef,, =0. (36)

(ii) The combined equations of the FFDE and perturbation subsys-
tems are integrated simultaneously to obtain the solution at the time
"1 = ¢" + At. The evolution equations of the combined system are
conservation laws and can be written as a single vector equation

oq+V-f=0, (37)

where

_ (Y0 _(fo
1= <‘1<1>) and S = (fa)) '
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are the vectors of conserved variables and their fluxes, respectively.
The subvector of conserved FFDE variables is

B
90=1| o |, (38)
S
where
E, + B
Lo =2 > Q. S0 =EqxBo. (39)

and the subvector of conserved perturbation variables is

B,

&
0= | g (40)

D
where

(E%) + B
Euy=(Eq-Eq)+ (B By + % + wy2 —p (@41
Say = ExBay + Eqyx By + Eqyx By + wy’v (42)
D=py. (43)
(iii) The total electromagnetic field vectors at the time ¢"*' are

computed via
B =B + B, (44)
E'"' = E'+ E}. (45)

Using simple conditional switches, the computer code based on
this splitting scheme can be turned into a FFDE code and a standard
(unsplit) RMHD code. To run it in the FFDE mode, one simply has to
integrate only the FFDE equations and keep B(;y = E(;) = 0. Torun
it in the standard RMHD mode, one has bypass the splitting step (i),
integrate only the perturbation equations, and keep B = E ) = 0.
This will be used later for testing the splitting approach against the
standard one in the low-o regime.

2.4 Controlled energy transfer

In the splitting method, the energy-momentum of the force-free
component of the electromagnetic field is separated from the energy-
momentum of plasma. Thanks to this separation, the errors arising in
the numerical integration of the Faraday equation for the this field can
no longer directly impact the state of plasma and result in a conversion
failure. This is the main advantage of the separation approach. On
the other hand, this separation also prohibits the plasma heating
via numerical resistivity. In some cases, this can be considered as
beneficial. However, this may be detrimental in problems involving
current sheets, where the magnetic dissipation and plasma heating
are paramount.

In ideal MHD simulations, the numerical resistivity arises via the
rounding errors emerging in numerical integration of the Faraday
equation. In ‘good’ schemes, it leads mostly to diffusion of the
magnetic field through plasma and reduction of its spatial gradients.
This smoothing out of the magnetic field is accompanied by reduc-
tion (dissipation) of the magnetic energy. In standard conservative
schemes for MHD, the total energy is conserved, which implies
that this reduction of magnetic energy is fully compensated by the
increase of plasma energy. The rate of this numerical plasma heating
is fixed implicitly by the algorithm for integration of the Faraday
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equation. This lack of control may lead to undesirable numerical
heating of plasma. For example, the highly magnetized plasma in the
accretion disc funnel emerging in numerical simulations of the black
hole accretion gets heated to extremely high temperature for this
very reason (e.g. Event Horizon Telescope Collaboration 2021). The
splitting approach, allows us to introduce control over the energy
transfer between the electromagnetic field and plasma associated
with the rounding errors.

At some point during the integration step (ii), the conserved quan-
tities are converted into the primitive ones. In particular, "O;rl and
Si" are converted into E{;'. Given the nominal overdeterminacy of
the FFDE subsystem, this can be done only if we reduce the number
of equations used for the conversion. There are many ways of doing
this, each time departing from the computed conserved variables in
one way or another. Here, we follow Komissarov (2002) and compute
the electric field via

1

n+1 __ n+1 n+1
Eqg = B,,+125(0> x B (46)

©0)

if B?OJ;' # 0, otherwise E E’J)'l = 0. Computing the electric field this
way ensures the perfect conductivity condition Efj' - Bjii' = 0.
However, the obtained electric field may exceed, especially at current
sheets, the magnetic one, breaking the second perfect conductivity
condition (26). Whenever this takes place, the electric field E ) is
reduced somewhat below By (in the test simulations to the level
0.9999Bp)), or to zero if By = 0. This amounts to dissipation of
the FFDE electromagnetic energy (e.g. Komissarov 2004, 2006b).
Even without this rescaling of the electric field, the electromagnetic
energy density based on the obtained E(”OYI and B(’f;)rl,

&n n+12 n+12

Et = (EG"+ B2, (47)
will be different from 5('6)“ obtained via integration of the energy
equation (22), giving rise to the energy difference

s = &o' = & (48)

When 85{};' > 0, the electromagnetic energy dissipates. Transfer-
ring the dissipated energy to the perturbation subsystem can only
decrease l'[z1 and should not result in conversion failure.

To further support this conclusion, consider unmagnetized fluid
with conserved variables D = py, Sp| = wy?v, Epl = wy? — p,
and determine the response of the gas pressure §p to the energy
variation §&€] under constant D and S. Straightforward calculations
show that

Sp=A 85p]
where
A wy? +kp(y>—1)

Py =D +ip(y?(c —2)+ 1)’
k =T/(I' = 1), and I' is the ratio of specific heats. For 1 < I" < 2,
the proportionality coefficient A is positive, and hence € and & p
have the same sign. This suggests that the transfer of 88{{;1 > 0to
the perturbation system

Et = Eentt gy (49)

will result in plasma heating.

When 85(’51 < 0, its transfer to the perturbation subsystem may
increase Hél and even make it positive, thus leading to the variable
conversion failure. To avert the danger, in this case the energy transfer
is turned off. Our test simulations show that this allows to almost
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completely eliminate the conversion failures even in problems with
extremely high o.

In smooth regions away from current sheets, the numerical heating
of plasma can be undesirable. Thus, one may opt not to transfer
the numerically dissipated energy of the FFDE system to the
perturbation system even if 86’('(‘);" > (. In such smooth regions,
88(’6;1 is significantly smaller than in current sheets and this can
be used to design a suitable switch-off criterion. In our code, we
implemented the energy transfer condition

SEG > el (50)
where the switch-off parameter e > 0. When ae = 0, the transfer
takes place whenever 88(’(’))“ > 0, and when ae = 1, it is turned off

completely. In most of the test simulations, we used ae = 1073,
Finally, equation (46) ignores the component of SE’OJ;I aligned with

BfJ; !, emerging because of the computational errors. As the result,

the momentum density corresponding to BE’J) and Eﬁ; !, obtained
via the variables conversion algorithm,

ot nl n+l1
So = Eo x By

also differs from the conserved variable S'(}j)' !

wntl
-8 #0. D
Thus, one may consider transferring not only energy but the momen-
tum as well. We have not been able to find an suitable algorithm for
this transfer, though.

n+1 __ gn+l
85(0) - S(O)

3 NUMERICAL IMPLEMENTATION

To integrate the conservation laws of the split RMHD, we used a
third-order finite-difference scheme. In this, we closely followed
the scheme ECHO developed by Del Zanna et al. (2007) for unsplit
RMHD equations. There are, however, few significant differences:
(1) use of the GLM approach instead of the CT method to enforce the
differential constraints (24) and (31). GLM delivers similar accuracy
to CT (Mignone et al. 2010) for ideal MHD, but it is much easier
to implement; (2) use of a novel third-order WENO reconstruction
algorithm; (3) switching the DER operator (Del Zanna et al. 2007)
off at shock waves to reduce numerical oscillations (see section 3.5
for details); and (4) new variables conversion algorithm adjusted to
the peculiarities of the split RMHD equations.

3.1 GLM approach

To keep the magnetic field approximately divergence-free, we follow
the method called GLM (Munz et al. 2000; Dedner et al. 2002).
Hence, we introduce two additional dependent variables &, and
®(y), one per each subsystems, and replace the Faraday equations (21)
and (27) and the divergence-free conditions (24) and (31) with

3,3(5) +V XE(S) + Vd)(s) =0, (52)

8,d>(s) + V-B(S) = —KCD(S) s (53)

where s = 0, 1. In the test simulation, we use k = 0.2/At, making
the e-folding time for Ds) (in the case of vanishing V-B (s)) equal
to 5 integration time-steps At.

3.2 Time integration

Since this is a finite-difference scheme, the numerical solution g7 ; ,
describes the values of variables ¢ at the gridpoints with coordinates
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(xi, yj, zx) at the discrete time #". Here, we utilize Cartesian coordi-
nates and uniform spatial grid with x; = x; + (i — DAx, y; = y; +
(j — DAy, and z; = z; + (k — 1)Az, where Ax = Ay = Az = h.
These gridpoints can considered as central points of rectangular
computational cells. The interfaces of these cells are located at
Xi+1/2 = Xi + h/2, Yix12 = Yj :l:h/2, and Zk+1/2 = Zk :l:h/2 The
time grid is also uniform, t" = #y + Atn with At = Ch, where C is
the Courant number.
The finite-difference equations have the form

dQ

il F(Q), (54)

where Q is a 1D, 2D, or 3D array, depending on the dimensionality
of the problem. Each entry of this array is the vector g at the
corresponding gridpoint. F is an array of the same dimension and
size as Q. Each entry of this array is the numerical finite-difference
approximation for —V. f + SQ at the corresponding gridpoint,
where SQ is the vector of source terms. In the case of Cartesian
coordinates, the source terms emerge only in the GLM equations. The
system of ODEs (55) is integrated using third-order strong stability
preserving version of the Runge—Kutta method (Shu & Osher 1988).
Hence,

At
ot =9" + ?(kl + ky + 4k3) , (55)
where
ky = F(Q"),

ky = ]:(Q" + Atky),
At
ky=F (Qn + 5k +k2)> .

The finite-difference approximation for V- f is computed in the
following steps:

(i) Conserved variables are converted into the primitive variables.
This is needed because interpolating conserved variables may yield
an unphysical state.

(i1) A third-order WENO interpolation is used to setup Riemann
problems at the cell interfaces.

(iii)) HLL Riemann solver (Harten, Lax & van Leer 1983) is used
to find upwind flux densities f at the interfaces.

(iv) Central quartic polynomial interpolation is used to reconstruct
the distribution of f in each coordinate direction and hence to find
the third-order approximation for V- f (DER operation of Del Zanna
et al. 2007). This works fine for smooth solutions, but may introduce
oscillations at shocks, often leading to crashes in high-o regime. To
avoid this, the computational domain is scanned for shock fronts and
a ‘safety zone’ is set around them. Within the safety zone, a second-
order total variation diminishing (TVD) interpolation is used instead
of the WENO interpolation.

3.3 Third-order WENO interpolation

WENO interpolation invokes linear combination of lower order
substencil polynomials to achieve a higher order accuracy in
smooth sections of numerical solution and lower order almost-non-
oscillatory interpolation in rough sections (shocks, Liu, Osher &
Chan 1994; Shu 2020). This is achieved by making the weights of
the polynomials dependent on some quantitative roughness indica-
tors. WENO approach have enjoyed great success over the years,
especially after its efficient implementation by Jiang & Shu (1996).
Later, however, it was found that their non-linear weights have a
drawback, resulting in significant reduction of accuracy in smooth
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regions with critical points. Since realistic numerical models often
involve local extrema in numerous locations, especially in the case
of turbulent flows, this is a major disadvantage. Ha et al. (2020)
proposed new weights for third-order WENO interpolation. Their
test results look impressive, but the approach is not intuitive and
hard to comprehend. Henrick, Aslam & Powers (2005) derived new
weights for fifth-order WENO interpolation via mapping the original
weights of Jiang & Shu (1996) to the improved set. Here, we adopt a
similar strategy to derive an improved set of weights for a third-order
scheme. In particular, we start with the weights of the second-order
TVD scheme (Falle 1991), modify it to address the issue of critical
points, and then use these TVD weights to produce 3rd-order WENO
weights (see Appendix A).

Below, only the interpolation in the x-direction is considered, and
all other spatial indices are dropped for brevity. In the other directions,
the procedure is the same.

3.4 Hyperbolic fluxes

Given the left u' and right u” states at the interface, the flux density
normal to the interface is computed using the approximate Riemann
solver by Harten et al. (1983). Namely,

1 — pr r 1
afytafy -4 -4

= , 56

! at+a- at+a- (56)
where ffq" = f,@"), ¢"" = q@""), and

a* = max(0, £ "), +AF@W"), (57)

where AF are the speeds of fastest hyperbolic modes moving relative
to plasma in the positive and negative directions along the normal
to the interface. We use separate wave speeds for the FFDE and
perturbation subsystems. For the FFDE subsystem, A¥ = £1. For
the perturbation subsystem, we use the speeds of fast magnetosonic
waves (as in unsplit RMHD equations). These are computed using
the computationally cheap approximation

e Va1 =) [(1 = v2a?) — (1 —a2n2)]

A s
" 1 —v2a?
(58)
where
a’=ct+ 62 - cszcz , (59)

¢y is the sound speed, c A is the Alfvén speed, and v, is the velocity
component normal to the interface (Gammie, McKinney & Té6th
2003). The HLL solver is stable and diffusive. Its diffusivity can
be a drawback, but it is also a strength. It helps to smoothout the
numerical solution in complex regions with non-monotonic spatial
variations of large amplitude, where large truncation errors may lead
to an unphysical set of conserved variables.

3.5 Finite-difference approximation for the flux divergence

Given the array of upwind fluxes at cell interfaces, we look for
a third-order accurate approximation for V- f at the cell centres
(gridpoints). To simplify the presentation, consider a gridline aligned
with the x- direction, choose a particular gridpoint on this line,
reset its index to zero, and measure the position of other points
relative to this one, so that xo = 0. Then, introduce the four-point
stencil § = {x_3/2, X_1,2, X1,2, X3,2} centred on this gridpoint, denote
the corresponding upwind fluxes in the direction of the gridline
as {f_3/2: f_12» f12> 32}, and use the third-order interpolating
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polynomial p(x) = a3x> + a>x> + a,x + a to reconstruct the dis-

tribution of f around x = 0. Its derivative dp/dx(0) = a; gives us

the require third-order approximation for 9, f',. It is easy to verify

that the final results is

o f :gfl/Z_f—l/Z _lfa/z_f73/2.
© 8 Ax 8 3Ax

Using a somewhat different approach, Del Zanna et al. (2007) derived

this result (where it is called the DER step) in a different form.
Restoring the normal cell indexation, it reads

(Fiz12—Fi_yp2)

(60)

of, = Ax ; (61)
where

1 26 1
Fi+l/2:_ﬂfi+3/2+ﬂfi+l/2_ ﬂfi—l/Z' (62)

Equation (61) is the same form as in finite-volume schemes for
conservation laws, where the place of F is taken by the interface flux
[ at the cell interface. This tells us that this finite-difference scheme
provides an exact conservation to the integral quantities computed
via the second-order accurate approximation

[aav >3 a8V (63)
v i,j.k

This approximation is neither upwind nor ENO/WENO, and hence
may, and does, introduce oscillations at strong shocks. In the high-
o regime, these oscillations can be fatal, resulting in a failure of
the variable conversion. For this reason, we implemented a strong-
shock-finder algorithm and, in a safety zone around them, replace
(61) with

@, 4), = T~ Jon A_xf S

This is a step towards the second-order TVD scheme, like in
Komissarov (1999), which allows to prevent the shock oscillations
almost completely.

The strong-shock identification algorithm is currently based on
these two criteria.

(1) The central difference approximation is used to estimate the
three-divergence of u = y v at the tested gridpoint. It is required to
be negative with

(64)

|V-u| > a,u,

where o, > 0 is a strength factor, and u is the amplitude of u at this
point.

(2) The same approximation is used to estimate the gradient of
total pressure pior = p + (B> + E?)/2. It it required to satisfy the
condition

IVpiotl > e,p,

where ), > 0 is another strength factor, and p is the value of gas
pressure at this point. The p¢q¢ variation pressure is compared against
the gas pressure p, because in the high-o regime, the relative variation
of magnetic pressure can remain low even at strong shocks, where
other flow parameters change significantly. In the test simulations,
we use, o, = a, = 0.5.

One can make one more step and replace even the WENO
interpolation with the TVD interpolation in the safety zone.

3.6 Variables conversion

For the FFDE subsystem, the conversion is relatively straightforward
and already described in Section 2.4. For the perturbation subsystem,
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B(1y and @ ;) are both the primitive and conservative at the same time
and do not need converting. Thus, we need to compute the primitive
variables p, p, w, v, and E ;) given the conservative variables &,
Say, D, the values of B}y, B, and E(y, the equation of state
w = w(p, p), and the perfect conductivity equation (32). Using
the conductivity equation one can easily eliminate E(;) from the
set of unknowns. It is also relatively easy to eliminate one of the
thermodynamic variables using the equation of state (7). Then, one
can use the Newton—Raphson method to solve the remaining system
of five equations for the five unknowns, but it is rather slow due to
the high dimensionality of the problem. However, we have found a
way to reduce the number of equations. The key first step of this
algorithm is the recombination of the conserved variables of the
FFDE and perturbation system. This yields the conserved variables
of the unsplit RMHD system and hence allows to use any of the
existing methods for the conversion of its variables. Here, we adapt
the approach described by Del Zanna et al. (2007).

The recombination of conserved variables may have an adverse
effect on the accuracy of the conversion, as in the high-o regime this
involves the mixing of very large and very small terms. However,
the induction equation (32) alone already reintroduces the terms
quadratic in Bg, and Eg, into the expressions for &y and S,
and so the mixing issue exists in any case. So anyway, extra
care has to be taken in order to avoid unnecessary loss accuracy
in conversion calculations. After lengthy calculations described in
Appendix B, the conversion problem is reduced to finding the root
of the transcendental equation

F(X,W(X)) =0, (65)

where X = u? — u?, u? = v’y (v)%, and u} = v2y(vp)*, where vy =

E ) x B/ B, is the drift velocity of the FFDE subsystem, and
W = wy?. The function F(X, W) is defined by the equation

2

F(X, W)= W>0> +4E,W + 4P(W, X) — W) <W+ 37) —A, (66)
where
A =S} + 280y Sw) — 261 B* — By w3 (BY) + 2(Boy-B(1y) .,

(67)
_ E? B?
& =&+ % - % —(Bwo)-Bw), (68)
and
N B3,
&r=¢&n— - (Bo)'B), (69)

are constants, and
1
P(W,X)=—(W/y* = D/y), (70)

is the function describing the gas pressure as a function of the
enthalpy and flow speed. In these equations, B> is the squared
magnitude of the total magnetic field B = B + B()).

The function W(X) is defined as the positive root of the cubic
equation

W3 + apy(X)W2 +ay =0, (71)
where
A(X A
ar(X) = M (72)
A3(X)
where
B(ZO)X v?

A(X) = +

D
— 9 B3 + B -B —,
20 +udd +idy) | 2 (B + By Bay) + o
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BZ
0
Ay =—-En+ -+ Bo By,
1
M) =1-——,
YK
and

1 (S0 By + Sa)-B)

2 A3(X) 7

ag =

Del Zanna et al. (2007) used W and v as their iteration variables.
We opted for X = u® — ug, € [—uf,, +00) instead of v?, and hence
y? = y*(X)and u? = u?*(X), to increase the accuracy in computation
of the cubic coefficient a,. If we used v?, the calculations of A, (v?)
would involve the subtraction v*> — v, resulting in a significant loss
of accuracy when v* & vf, ~ 1. In the high-o regime, this error
would further increase due to the multiplication by the large factor
B2,

Since ap < 0, this cubic equation always has one non-negative
real root. This root vanishes only when a, > 0 and ay = 0. When
a, < 0, this is the only real root of the cubic. Obviously, finding
accurate numerical value for the root is important for the accuracy
of the whole conversion algorithm. If a, < 0, it is sufficient to use
the modified Cardano’s method as described in Press et al. (1992),
though one has to avoid numerical subtraction of almost equal large
terms when computing the discriminant of the reduced cubic when
|a0/a§| <& 1. The first step of this method involves depression of
the cubic via introduction of the new variable Y = W + a,/3. When
a, > 0and |a0/a§ | < 1, the positive root W « a,, and computing it
via W =Y — a,/3 involves significant loss of accuracy. In this case,
we follow Blinn (2006) and introduce another variable ¥ = 1/W,
which also reduces the cubic equation to the depressed form, but no
shift is involved. After this, the standard prescription is used again.

Equation (65) is solved numerically via either the secant or
the Brent—Dekker method (Dekker 1969; Brent 1971). The secant
method is tried first, using the value of X in the solution at the
previous time-step as the initial guess. When o is not extremely
large, this method finds the root X > —u%, provided it exists, down
to the rounding error (machine precision) after no more than 10
iterations. When o is very high, it may fail to converge, getting
trapped in an oscillation about the root. Whenever the secant method
fails, the Brent—Dekker method is tried instead. To start the method,
one has to find an interval [a, b], with a > —u(z), which includes the
root, and hence F(a)F(b) < 0. We start with a reasonably narrow
interval containing the initial guess first, and then, if it does not
contain the root, exponentially decrease the distance between a and
—u3 and exponentially increase the distance between a and b. When
such interval is found, the method always converges to the root,
though in extreme cases this may take up to 60 iterations to reach the
rounding-error level.

To test the conversion algorithm, we used the Monte-Carlo method,
first to set up the exact parameter state within the parameter space,
and then to produce the initial guess. Fig. 1 shows the relative error
in the gas pressure against the magnetization o, for one of such
tests. Given the extreme values of o used in the test and not a single
incident of convergence failure, we are almost 100 per cent certain
that when the variables conversion fails in real simulations, this is not
due to some deficiencies of the conversion algorithm, but because
the root X > —u2 does not exist.

Once the root of equation (65) is found, the primitive variables are
computed via
w=W(X)/y’ (74)

=X —l—u(z), v = uz/(l + uz),
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Figure 1. Relative error of pressure in the variables conversion algorithm.
The type of plotting marker describes the number of iterations njt required:
green triangles when nj; < 5, blue crosses when 5 < nj; < 10, red circles
when 10 < njt < 20, and black diamonds when nj; > 20.

D
p— (75)
14
1
=—(w—p)), (76)
K
_ S+ (S-B)B/W -
S B2+ wW
and
E(l) =—vXB — E(O) . (78)

4 1D TEST SIMULATIONS

In the simulations, we use the EoS of ideal gas with the ratio of
specific heats I' = 4/3, even when the sound speed is well below the
speed of light. In all the simulations, the Courant number C =0.5,
with the exception of the Alfvén wave test where C = 0.4.

4.1 Alfvén wave. Convergency study

In addition to being a fundamental wave in RMHD, the Alfvén
wave is a great option for testing the scheme convergency rate. It is
quite complex in structure due to the rotation of electromagnetic and
velocity fields, quite simple to be describe analytically even without
the assumption of small amplitude (Komissarov 1997), and allows
solutions with continuous higher order derivatives. In the Hoffmann—
Teller frame (De Hoffmann & Teller 1950), the wave is stationary,
with B2,y , p,p =const, E =0, and

. 1 .
vV =+—B", 79
NG 79

where £ = w + B2, and the sign decides the direction of the wave
vector.
For the test simulation, we set p = p = 1, and

B*=0.3B),, B’=Bycos¢p, B*= Bjysing, (80)
where the phase variable
¢ = arcsin(a sin(kx)) .

To set the wave in motion, we use the Lorentz transformation to the
lab frame moving with the speed v = 0.5 in the positive x-direction.
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The wavenumber k in the Hoffmann—Teller frame is set to yield
the wavelength A = 2 in the lab frame. We set the phase variation
amplitude to a = 0.3, to ensure that the Lorentz factor does not
become excessively high even for the model with the highest explored
magnetization. The simulations run from ¢ = 0 to 2, by which time
the wave shifts to the left by exactly one half of its wavelength, and
in the exact solution the profile of B coincides with the initial one.
The Courant number is set to C = 0.4 to ensure that in all runs of
the convergency study the final time ¢+ = 2 is a whole number of
time-steps.

Fig. 2 shows the results for the model with By =50, p = p =1,
with the corresponding magnetization o = 545. Table 1 shows the
results of convergency study based on this model. One can see that
the scheme shows third-order behaviour already at the very low
resolution. For the resolution n, = 20, the characteristic variation
length-scale for B is only five cells.

By varying the value of By, it s found that L,(B”) « 4/o and
Li(p), Li(p) xo wheno > 1.

4.2 Harris current sheet. Mechanisms of numerical plasma
heating

The numerical resistivity determines the evolution of current sheets
in ideal RMHD simulations, which makes this test particularly
important for studying the possibility to control the numerical plasma
heating associated with the resistivity as described in Section 2.4.

In the initial solution, the magnetic field B = (0, BY(x), 0) has no
guide component, and

BY(x) = Bytanh(x/a), (1)

where a is the characteristic width of the sheet and B, is the
asymptotic field strength. The electric field E = 0 and the magnetic
pressure is balanced by the gas pressure

BZ
p(x) = po + 7‘)(1 — tanh®(x/a)) . (82)

In the test problem, By = 500, po = 1, and a = 0.02. The plasma
mass density is uniform p(x) = pg, with py = 1. The corresponding
asymptotic (as x — 00) magnetization o = 54500. The compu-
tational domain is (—5,5) with 500 gridpoints. This makes the
current sheet approximately four computational cells wide, so it
is resolved but only just. Such thin current sheets do emerge in the
2D simulations described in Section 5. To explore the impact of the
energy transfer on the solution we made few runs with different values
of the energy transfer parameter oe. Here, the results for ae = 0,
0.001, and 1 are presented. In many respects, they are surprisingly
similar. However, there are some revealing differences concerning
the energy balance.

Initially, the numerical resistivity is too high for the solution to
maintain the pressure balance. Both the magnetic and total pressures
in the middle of sheet reduce, and this triggers fast rarefaction waves
moving out at almost the speed of light. These waves initiate plasma
flow into the current sheet. Inside the current sheet, the plasma gets
heated to very high temperatures, and soon the total pressure balance
across the current sheet is restored. This active phase last up to
t = 0.15, by which time the current sheet thickness increases to
about six cells. This phase is followed by the phase of slow diffusive
spreading, and by the end of the simulations, at + = 5, the current
sheet thickness is still only about 10 cells (see Fig. 3).

The right panel of Fig. 3 shows the total electric field E* =
Ef, + Ef) and its force-free and perturbation components at t = 5.
The force-free component has the sign consistent with the flow of
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Figure 2. Alfvén wave test. The solid lines show the exact solution and markers show the numerical solution for the model with By = 50 (¢ = 545) with the

resolution n, = 40 att = 2.

Table 1. Convergency test with Alfvén wave simulations. Here, n, is the
number of gridpoints (the resolution), n, is the number of time-steps from
the start of the run, L(A) is the L1-error of the variable A, r is the two-point
estimate of the order of accuracy based on the errors for the current and
previous resolutions.

ny ny Ly(BY) r Li(p) r Li(p) r
20 50 0.358e—1 - 0388¢+0 - 0.107e+1 -
40 100 0.307e—2 3.5 0.572¢e—1 2.8 0.133¢+0 3.0
80 200 0.355¢e—3 3.1 0.755¢—2 29 0.17le—1 2.9
160 400 0.447e—4 3.0 0.950e—3 3.0 0214e—2 3.0
320 800 0.536e—5 3.1 0.119e—3 3.0 0.268¢e—3 3.0

electromagnetic energy into the current sheet. In the pure FFDE
numerical solution to this problem, E) & B(), and the electro-
magnetic energy flows into the current sheet at the speed of light.
Inside the current sheet, it disappears at the central discontinuity via
enforcement of the condition B > E, In the split-RMHD simulations,
the FFDE electric field £, is checked by the perturbation field E(;,,
and the total electric field E* almost vanishes.

Fig. 4 shows the entropy s = In(p/p"), for the models with
ae =0, 0.001, and 1 at + = 4. The most conspicuous feature of
these plot is the central peak. It manifests the plasma heating in
the current sheet itself. In all three models, the peak has almost the
same height and width. The plots also show weak ‘wings’, most
pronounced in the model with ae = 0, which spread out by Ax =4
in the both directions. This is the wake left by the fast rarefaction
wave emitted by the current sheet at the start of the simulations.
The left panel of Fig. 5 shows the energy transfer rate per time-
step for the run with e =0 at t = 4.5. The central peak is the
current sheet, where the numerical plasma heating continues in the
central six cells. Moreover, there are additional regions of numerical
heating, which are clustered around the rarefaction waves. They are
responsible for the entropy wings in Fig. 4. The irregular structure
of plasma heating in the rarefaction waves shows that the sign of
65(’};1 fluctuates there. One may argue that like at shock waves,
the numerical heating in current sheets imitates the proper physical
processes known to operate there. On the contrary, its is hard to see
how the numerical heating at rarefaction waves can be anything but
an unwelcome numerical artefact. Fortunately, it can be suppressed
by setting ae slightly above zero. The middle panel of Fig. 5 shows
that in the run with e = 0.001 the energy transfer operates only in
the current sheet.

MNRAS 536, 1268-1302 (2025)

Table 2 shows the variation of the total energy Eiot = Eem +
&p1 and its components for the whole system over the whole run
(up to t = 4.5). The integrals are computed using the conservative
approximation (64),

&= "ZX& , (83)
i=1

where &; is the energy density at the ith gridpoint (the cell-length
factor is ignored). In the standard conservative RMHD mode of
the code, the total energy of the system would remain unchanged,
8&0t =0 down to the rounding error, because by tr = 4.5 the
rarefaction waves have not reached the domain boundaries. The
splitting scheme is not fully conservative, however, and a non-
vanishing 8¢ is expected.

In the run with fully suppressed energy transfer (¢e = 1), the
total energy of the system decreases by about 1 percent. Some
decrease is expected because the numerical resistivity reduces the
energy of the FFDE system, and this reduction is not compensated
via the energy transfer algorithm. Interestingly, the plasma energy of
the system still increases. Because in these simulations the bulk
motion energy of plasma is very small compared to its thermal
energy, this increase indicates the existence of numerical heating
mechanism unrelated to the energy transfer algorithm. To understand
this mechanism, recall that the conserved energy of the perturbation
system &y contains not only the plasma energy gpl = wy? — p,but
also the interaction energy Eint = (E()- E1y) + (B()- B(1)) and the
energy of the electromagnetic perturbation Eper = (E(21> + B(zl))/Z
(see equation 41). Hence, the plasma energy itself is not conserved.
At the start of (n + 1)th time-step, E{},; = Bf;,; = 0, and hence
(Eint)f + Eper)} =0, Eny)i = (5p1)f'- By the end of the time-
step, (Eqy)! ' (Bay)i™ #0, Ein)i ™ + (Eper)j ™' #0, and as a
result, the plasma energy changes by —(Ein)j "' — (Eper)!*'. The
corresponding change of the plasma energy for the whole system
during the time-step is

SEH! = =D (En0i ™ + Epeni ™) . (84)
i=1

where the summation is taken over the whole grid. Over the whole
run, this yields

bEp1 =D 08y (85)
n=2
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Figure 3. 1D current sheet test. Left panel: the total magnetic field BY at + =0 and 5 and its perturbation component B(vl) at t = 5. Middle panel: the gas
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pressure p, the magnetic pressure pm and the total pressure pyor = p + pm at t = 5. Right panel: the total electric field E<, its FFDE component E, and its
perturbation E(Zl) att = 5. The energy transfer parameter is «e = 1. In the models with «e = 0 and 0.001, the results are very similar.
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Figure 5. 1D current sheet test. Left and middle panels: plasma heating per one integration time-step at # = 4 for the runs with ag = 0 (left panel) and ¢e = 0.01
(middle panel). Right panel: Eine 4 Eper (solid line and filled squares), Eper (dashed line and crosses), (B (o) - B(1)) (the dash—dotted line and stars), and (E () - E (1))
(dotted line and circles) at t = 2 for the run with e = 1.

The value of 85p1 is shown in the last column of Table 2. For the

run withoe = 1,8 gpl =4 Epl, confirming that in this run the plasma
heating is entirely via this mechanism.

In the run with full energy transfer (we = 0), the solution is
closer to the perfect energy conservation. Now §&q¢ varies by about

0.09 per cent only, and, in contrast to the run with ae = 1, the total
energy of the system increases. The increase of &gt in this run is
expected because any deficit of &) is fully compensated via increase
of &u), but the occasional surplus of &g, is not compensated via
decrease of £). The energy transfer accounts for about 47 per cent
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Table 2. 1D current sheet test. Integral energy variation by ¢ = 4.5 for runs
with different energy transfer parameter we. Eem, gpl’ and &iop are the
electromagnetic energy, the plasma energy, and the total energy, respectively.
5‘€pl is the contribution of the interaction terms to the plasma energy variation.

The total energy at the start is gtot,O =6.30 x 107,

e Sgtot 85@[}1 (SSPI (Sgpl

1.0 —7.81 x10° —1.874x 10° 1.098 x 10°  1.098 x 10°
1072 —9.72x 10* —1.315x10° 1.223 x 10°  0.748 x 10°
1073 434 x 10 —1.224 x10° 1.273 x 10°  0.690 x 10°
0.0 5.04 x 104 —1.222x 10 1.294 x 10°  0.689 x 10°

of the plasma heating. For the run with ee = 0.001, the numbers are
similar, with a slight improvement of the total energy conservation.
For ae = 0.01, ot decreases again and its variation grows in
amplitude.

In summary, the energy transfer is not the only channel of plasma
heating in the splitting scheme. However, it helps to improve the
energy conservation and then accounts for up to 50 per cent of plasma
heating in current sheets. To suppress the low-level parasitic heating
away from current sheets, it helps to introduce a threshold on the
transferred energy, and in the rest of the test simulations, we use the
threshold parameter e = 1073 as a default value.

4.3 Degenerate Alfvén wave. The study of numerical resistivity

In the MHD approximation, basic theories of magnetic reconnection
introduce diffusion of magnetic field lines through plasma using the
model of scalar (isotropic) resistivity n, which is properly justified
only for collisional plasma. It yields a relatively simple relation
between the electric field and the electric current. In the 3 + 1
framework of resistive RMHD, this relation reads

j:%(E+va—(E-v)v)+qv» (86)

where ¢ is the electric charge density of plasma (e.g. Komissarov
2007). For electrically neutral plasma with the flow speed v < 1,
this reduces to

1
j=—-(E+vxB),
n

which further reduces to E = nj when v = 0. When 7 is constant,
the magnetic field evolves according to the equation

8’B V’B 0B \Y B)) =0 87
n(W— )-l-(?— X (v x )>— . 87)

When £L/T <« 1, where £ and T the characteristic length- and time-
scales of the problem, the second derivative term can be ignored and
we obtain the equation of Newtonian MHD

oB

W—VX(va)—nszzo. (88)

Denote as 7, the time-scale introduced by the resistivity. Then, from
equation (88), it follows that

T,=n"L". (89)

Since we solve equations of ideal RMHD, the only kind of resistivity
available in our simulations and controlling the magnetic reconnec-
tion is the numerical one. The numerical resistivity, like the numerical
diffusion and viscosity, emerges from the truncation errors of the
numerical scheme. For a Runge—Kutta scheme with temporal and
spatial accuracies of the same order r, the rounding error R after
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one time-step scales with the resolution n, = L/Ax, where L is the
domain size, as

R'=0(n,) ™" as n, - o0,

assuming a smooth solution (Shu & Osher 1988). However, this error
is local, and for a feature of the characteristic length-scale £ <« L,
the size of the domain does not matter. What mattersisn, = £/Ax,
the number of gridpoints per £. Hence, the local error

RL ocn "t for ng > 1.

The number of time-steps required to reach the resistive time-scale
T, is n, = T,/ At and the total error accumulated by this time is

; L?
RZ [e's n,,(nﬁ)_(’“) = E(nﬁ)_““) for np>1.

This accumulated error is the overall §B/B on the resistive time-
scale, and hence a constant which does not depend of the particular
values of Ax, At, and £. Hence,

£/ Ax\"! Ax Ax\"
Inum A7 ( I ) n At£< T ) s (90)

where A, is the normalization factor, and we replaced n with npum
to stress the fact this is the expression for the numerical resistivity. In
this derivation, we assumed that the rounding error emerging in the
numerical integration of the Faraday equation has the effect similar
to that of the discretized diffusion term nV>B. A proper analytical
study of this issue is beyond the scope of this paper, and here we
only check this via computer simulations. For our scheme r = 3,
and, given the maximum wave speed being equal to the speed of
light, Ax/At = CL.

The result (90) is almost identical to the special case of the ansatz
proposed by Rembiasz et al. (2017), who based it on a mixture
of physical and numerical reasons. Rembiasz et al. (2017) tried to
determine the normalization factors of their ansatz by studying the
decay of Alfvén and magnetosonic waves. The decay of these waves
depends both on the numerical viscosity and resistivity, which makes
the computations rather involved. Curiously, they reported negative
resistivity for their numerical scheme.

Here, we simplify the procedure by studying the problem which
involves only the numerical resistivity and hence no decoupling is
needed. Namely, we consider the 1D initial value problem, where
in the initial solution v = 0, p = py, p = po, and the magnetic field
B = By(0, cos kx, sin kx) rotates with x at a constant rate. In ideal
RMHD, this configuration is magnetostatic due to uniform magnetic
and total pressures. It may be described as a degenerate limit of the
Alfvén wave, when the wave vector k is orthogonal to the magnetic
field. In resistive RMHD with constant scalar resistivity, the magnetic
field decays and this decay is accompanied by plasma heating.
However, because of the translational symmetry of the problem, the
rate of decay and heating is independent on x and the configuration
remains magnetostatic.

When v = 0, the magnetic field evolves according to the telegraph
equation

3B 3B
Torr T T Tax2
When nk < 1, it allows the separable solution
B(t) = By(0, cos kx, sinkx) exp(—wt), 92)

9’B
=0. 91)

where w = nk? is the decay rate of the magnetic field [This is the
same as in the Newtonian limit, where the first term in equation (91)
drops out.]. Thus, if the rounding errors of our scheme do indeed
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amount to numerical resistivity, one expects the magnetic field to
decay exponentially, in which case the value of numerical resistivity
can be found as npum = w/kz. In the test simulations, the initial
solution has py = pp = 1, and By = 50. The domain is (0,1) with
periodic boundary conditions and C = 0.5.

The left panel of Fig. 6 shows the evolution of the magnetic
field for the model with k = 2w. As expected, the wave decays
keeping its shape intact. To measure the decay rate, we use the total
magnetic energy of the system, computed via equation (83), which
is expected to decay exponentially at the rate 2w = 2npumk>. It is
indeed exponential, as illustrated in the middle panel of Fig. 6. Table 3
shows that the decay rate, and the value of npum, decrease with the
numerical resolution as n* for sufficiently large n,, in agreement
with equation (90).

The characteristic length-scale L is based on the equation
d’B B
dx2 — L2
and for this problem it yields £ = 1/k, independent of the location.
Then, equation (90) predicts @ o k*, which is indeed the case as
illustrated in the right panel of Fig. 6.

Table 3 also shows the values of the normalization constant A,
obtained in the simulations with k = 27. One can see that for n, >
20, A, ~ 0.031 independently of the resolution as expected. For
n =10, A, it is almost twice as high. However, in this case the
number of gridpoints per the length-scale n, is only about 1.6 and
a strong deviation from equation (90) is expected. The numerical
magnetic Reynolds number of the wave problem,

cl

93)

(94)

4.4 Self-similar rarefaction waves

Self-similar (simple) rarefaction waves provide very useful non-
linear test problems. Although no analytic solutions for these waves
exist, the problem of finding exact numerical solutions is reduced
to solving numerically a system of first-order ordinary differential
equations (e.g. Komissarov 1999). These wave are not particularly
suitable for the convergency testing because of the loss of smoothness
in the exact solutions at the leading (trailing) wavefronts, where
already the first spatial derivative is discontinuous. Since we have
already verified the order of accuracy of our code, this is no longer
required and just a visual comparison with the exact numerical
solution is sufficient. Here, we present the results for a switch-off
fast rarefaction and a slow rarefaction waves propagating through the
same high-o state.

4.4.1 Fast switch-off wave

This wave connects two uniforms states with the parameters p = 1,
p =0.01, u=1(0,0,0), and B = (10, 5, 0) for the left state, and
p = 0.630, p =0.7076 x 1072, u = (0.232, —0.577,0), and B =
(10, 0, 0) for the right state. The magnetization o ~ 30 in both the
left and the right states. The wave moves to the left, with the wave
speeds of the leading and trailing fronts being v; = —0.9856 and
v, = —0.9705, respectively. These are so close because in high-o
plasma the fast speed is very close to the speed of light, and the
reduction of the tangential component of the magnetic field has little
effect on the magnetization when there is a strong normal component.
Another interesting property of the wave is its limited strength in
terms of the gas pressure variation. This is partly due to the fact

Splitting method for RMHD 1281

that the fast rarefaction terminates as soon as the tangential magnetic
field vanishes. The initial (fg = 0) discontinuity of the associated
Riemann problem is set at x = 0, whereas the initial (t =g — 1 =
0) solution for the computer simulations is the exact solution to
this Riemann problem at fg = 1. The domain is (—2.20, —0.90)
with 800 gridpoints. Fig. 7 shows the exact numerical solution (solid
lines) versus the results of computer simulations (markers) at the time
t =1 (tg = 2). One can see that agreement between the solutions is
quite good, apart from the vicinity of the leading and trailing fronts.
The loss of accuracy near the fronts is expected due to the lack of
continuity in the first spatial derivatives there.

4.4.2 Slow switch-on wave

This wave connects two uniforms states with the parameters p =
1, p=0.01, u =(0,0,0), and B = (10, 5,0) for the left state
and p = 0.001, p = 0.562 x 107>, u = (8.856, 4.479,0), and B =
(10, 5.048, 0) for the right state. The magnetization o ~ 30 in the
left state and o & 3 x 10* in the right state. The wave moves to
the left, with the wave speeds of the leading and trailing fronts
being v; = —0.516 and v, = 0.876, respectively. Thus, relative to
the computational grid, the trailing front now moves to the right. The
great contrast with the fast rarefaction in this regard is due to the fact
that the sound speed, ¢, & 1/+/3 everywhere, is much lower than
the speed of light, and so the speed of the slow mode is strongly
influenced by the value of v,. Another contrasting feature is the large
decrease of the gas pressure as the solution can be continued towards
p = 0 without limit.

The initial (g = 0) discontinuity of the associated Riemann
problemis setat x = 0, whereas the initial ( = tg — 1 = 0) solution
for the computer simulations is the exact solution to this Riemann
problem at tg = 1. The domain is (=3, 5) with 100 gridpoints. This
low resolution is sufficient because of the rapid spreading of the
wave, in contrast to the fast wave where the spreading is very slow.
Fig. 8 shows the exact numerical solution (solid lines) versus the
results of computer simulations (markers) at the time ¢ = 3(tg = 4).
Again, there is a good agreement between the solutions everywhere,
apart from the vicinity of the leading and trailing fronts. The loss of
accuracy near the trailing front is higher due to the higher jumps of
the first derivatives there.

4.5 Shock waves

Magnetosonic shock waves present the most challenging type of
RMHD solutions for standard unsplit numerical schemes in the high-
o regime. The huge variation of the spatial gradients of physical
parameters at shocks even with a well-resolved numerical structure
yields large numerical errors, and this increases the chance for
the computed conserved variables to escape from the physically
meaningful domain. The same applies to the splitting scheme.
Moreover, there may be no FFDE shock solution which can be
considered as a good first approximation to an RMHD shock. For
example, fast waves of FFDE propagate in all directions with the
speed of light, whereas for an RMHD shock on can always find a
frame where it is stationary. This makes the perturbation component
of the electromagnetic field (B(, E(;)) comparable to its FFDE
component (B ), E ), particularly the electric field.

We tested numerical shock solutions obtained with our scheme
against the exact solutions, obtained by solving numerically the shock
equations as described in Majorana & Anile (1987). Here, the results
of some of the tests are described. The corresponding solutions of
the shock equations are given in Table 4.
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Figure 6. Degenerate Alfvén wave. Left panel: BY att = 0 (crosses), t = 30 (circles), and + = 100 (filled squares) in the run with n, = 20 and k = 27. Middle
panel: evolution of the total electromagnetic energy Eem in the run with n, = 40 and k = 27r. Right panel: the wave decay rate w = nk? against k for the models

with the resolution n,, = 80.

Table 3. Degenerate Alfvén wave simulations. n, is the number of grid-
points, r is the two-point estimate of the scheme order of accuracy, 7 is the
numerical resistivity, Re, is the magnetic Reynolds number based on the
numerical resistivity, and A, is the coefficient in the ansatz (90). The wave
used for the simulations has k = 2.

Ty 10 20 40 80
2w 0.39 026 x 1071 030x 1072  0.38 x 1073
Nnum 049x 1072 033x1073 038x10* 048 x 1073
r - 3.75 3.1 3

A, 0.063 0.034 0.031 0.031
Re,, 0.32 x 102 0.48 x 103 0.42 x 10* 0.33 x 10°

4.5.1 FS7. Fast shock in weakly magnetized plasma

We start with the case of fast shock in low-o plasma. This case
is selected to demonstrate the very good performance of splitting
scheme performance in the low-o regime, even if it was designed
specifically with the high-o regime in mind. In addition, this case
allows us to illustrate the inner workings of the splitting approach
without resorting to sophisticated plotting techniques.

In the upstream (left) state, p = 1072, p = 1, and o = 107>, The
corresponding sound and Alfvén speeds are ¢, = 0.11 and cp =
0.022, respectively. In the rest frame of the upstream state, the shock
moves in the negative x-direction with the fast magnetosonic Mach
number My = 5, where
Vs Us
vrvr '
vy is the shock speed, v is the fast magnetosonic speed along the
shock normal, and y; and y are the corresponding Lorentz factors.
The angle between the shock normal and the magnetic field ag =
45°. For the test simulations, the shock is setup in the inertial frame
where it moves in the positive x-direction with the speed v; = 0.1.
The domain is (—0.5, 1.5) with 100 gridpoints. Initially, the shock is
located at x = 0. Fig. 9 illustrates the solution at # = 10, when the
shock is expected to reach x = 1. In its plots, the solid lines show the
exact solution, and the markers show the simulation results obtained
with the splitting scheme.

One can see that the shock is captured very well, both in terms of
the shock speed and the jumps of the fluid parameters. The bottom-
left panel shows the jump in the total magnetic field BY and its
perturbation components B(";), which vanishes in the upstream and

My =
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downstream uniform states and remains quite low even at the shock
front. The bottom-centre panel, shows the total electric field E*?, its
FFDE component E(,, and the perturbation components E¢. The
perturbation component vanishes in the upstream and downstream
uniform states, where E* = E,. However in the shock layer, E§,
strongly deviates from E* and develops a conspicuous upward ‘spur’.
The perturbation component also has a spur there but in the opposite
direction, thus keeping the total electric field E* close to the exact
solution. The behaviour of E, is consistent with the pure FFDE
solution to the Riemann problem with the same electromagnetic
left and right states. The bottom-right panel of Fig. 9 illustrates
this solution at ¢+ = 0.5. In involves two fast waves moving with
the speed of light in the opposite directions, and a uniform state
in between, where E(, > 0. The FFDE component of the splitting
scheme attempts to evolve the total electromagnetic field in the same
direction, but the perturbation component prevents it from getting
there.

4.5.2 FS9. Subrelativistic fast shock

In this case, both the plasma temperature and magnetization are lower
than in FS7, allowing to describe it as a subrelativistic problem.
The results of this test show that the splitting scheme can be used
to simulate such plasmas without significant decrease of accuracy.
This is important as in many astrophysical applications both the
ultrarelativistic and subrelativistic plasmas coexist, e.g. an accretion
disc or interstellar gas next to a relativistic jet.

In the upstream (left) state, p = 107%, p =1, 0 = 1073, and the
non-relativistic magnetization parameter 8 = p/pm = 2. The corre-
sponding sound and Alfvén speeds are ¢, = 0.011 and co = 0.0071,
respectively. The shock moves through this state in the negative x-
direction with the fast magnetosonic Mach number M = 5. The
angle between the shock normal and the magnetic field ag = 45°.
The test simulations are setup in the rest frame of the upstream
state. In this frame, the shock speed vy, = —0.0705. The domain is
(—0.35, 0.05) with 100 gridpoints. Initially, the shock is located at
x = 0. The left panel of Fig. 10 illustrates the solution at ¢t = 3,
when the shock is expected to reach x = —0.212. In the plot, the
solid lines show the prediction based of the shock speed of the exact
solution, and the markers show the numerical solution obtained with
the splitting scheme.
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Table 4. Parameters of shock wave tests. In all the tests, the left state is the shock upstream state. o is the magnetization of the upstream state, My and Ms are,
respectively, the relativistic fast- and slow-magnetosonic Mach numbers of the shock, and vg}, is the shock speed relative to the grid.

Test Left state Right state Other parameters
FS5 v = (0.99968283E + 00, 0, 0) v = (0.99768146E + 00, vgp = —0.5
0.17248747E—01, 0)
B = (50, 0.19853866E + 04, 0) B = (50, 0.19886156E + 04, 0) Mg=2
E =(0,0, —0.19847569E + 04) E =(0,0, —0.19831425E + 04) o =10

p=10,p=1.0

FS5A v =(0,0,0)
B = (50, 50, 0)
E =(0,0,0)

p=10,p=10

FS7 v = (0.57368310E + 00, 0, 0)

B = (0.22803509E—01,
0.27840482E—01, 0)
E = (0,0, —0.15971614E—01)
p=001,p=10

FS9 v =(0,0,0)

B = (0.70724819E—02,
0.70724819E—02, 0)
E =(0,0,0)
p=10"%p=10

SS1 v = (0.19953950E + 00, 0, 0)
B = (50, 0.51026147E + 02, 0)

E =(0,0,—-0.10181732E + 02)
p=10,p=1.0

p =0.44243911E + 01, p
= 0.26176303E + 01
v = (—0.75954175E+00,

0.16485693E + 00, 0) vgh = —0.99989427E + 00

B = (50, 0.24230060E + 03, 0) Mg=2
E =(0,0,0.19228027E + 03) o =103
p = 0.44243911E + 01, p

= 0.26176303E + 01

v = (0.19727530E + 00, vgp = 0.1
0.34774998E—02, 0)

B = (0.22803509E—01, Mp=5
0.13638473E + 00, 0)

E = (0,0, —0.26826038E—01) o =103

p = 0.28341867E + 00, p
= 0.58282475E + 01

v = (—0.57243160E-01,
0.31963724E—02, 0)

vgh = —0.70530352E—01

B = (0.70724819E—02, Mp=5
0.39243124E-01, 0)
E = (0,0, 0.22690067E—02) o=10""
p =0.34131551E-02, p
= 0.52994146E + 01.
v = (—0.42122856E+00, vgh = —0.5

—0.63382468E + 00, 0)
B = (50, 0.50825161E + 02, 0)
E = (0,0, —0.10282225E + 02)
p = 0.14412306E + 02, p
= 0.58792375E + 01

Mg = 2.101839785
o =10

Il
-2 —1.98 -1.98

1
-1.96

Il
-1.94

X X

Figure 7. Fast switch-off rarefaction wave test. The continuous lines show the exact solution, and the markers show the numerical solution at the integration
time ¢t = 1, corresponding to the time 7R = 2, since the resolution of the initial discontinuity.

4.5.3 FS5. Fast shock in highly magnetized plasma

This is an example of fast shock in highly magnetized plasma. In
the rest frame of the upstream state, p = p = 1 and o = 10°. The
shock moves through this state in the negative x-direction with the
fast magnetosonic Mach number M = 2. The shock speed in this
frame is v; = —0.99968, and the angle between the shock normal
and the magnetic field ag = 45°. The test simulations are setup
in the frame where the shock speed is v; = —0.5. The domain is
(—5.5,0.5) with 300 gridpoints. Initially, the shock is located at

x = 0. The middle panel of Fig. 10 illustrates the solution at t = 10,
when the shock is expected to reach x = —5.0. In the plot, the solid
lines show the exact solution, and the markers show the results of
computer simulations. Once again both the shock speed and its jumps
are well captured by the splitting scheme. When the energy transfer
algorithm is turned off, the errors increase. In particular, the gas
pressure is about 20 percent lower. The plot also shows a slight
shift of the numerical solution relative to the exact one, implying the
possibility of a small error in the shock speed. However, this shift is
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1284  S. S. Komissarov and D. Phillips

Figure 8. Slow rarefaction wave test. The continuous lines show the exact solution, and the markers show the numerical solution at the integration time ¢ = 3,
corresponding to ¢ = 4, since the resolution of the associated Riemann discontinuity. The middle panel also shows the exact solution at the Riemann time ¢t = 1,

which served as an initial solution for this test.
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Figure 9. Fast shock FS7 of weak magnetization. = 10. The bottom-right panel shows the FF electrodynamic solution at # = 0.5 for the same initial conditions.

already seen at r = 2, where it has the same size. This suggests that
the shift is more likely a property of the numerical shock structure.

4.5.4 SS. Slow shock in highly magnetized plasma

This is an example of slow shock in highly magnetized plasma.
The upstream state is exactly the same as the FS5 example. The
shock moves through this state in the negative x-direction with the
slow magnetosonic Mach number M; = 2.1, the shock speed in this
frame is v, = —0.63. The test simulations consider the flow in the rest

MNRAS 536, 1268-1302 (2025)

frame where the shock speedis v, = —0.5. The domainis (—1.5, 0.5)
with 100 gridpoints. Initially, the shock is located at x = 0. The right
panel of Fig. 10 illustrates the solution at + = 10, when the shock
is expected to reach x = —5.0. In the plot, the solid lines show
the prediction based of the shock speed of the exact solution, and
the markers show the numerical solution obtained with the splitting
scheme. One can see that this shock is also well captured. The small
‘separation’ between the curves of the exact and numerical solutions
does not increase with time and seems to have the same origin as in
the case FS5.
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Figure 10. Left panel: subrelativistic shock FS9 at t = 3. Middle panel: fast shock FS5 of strong magnetization at # = 10. Right panel: slow shock SS of strong

magnetization at # = 2. All these shocks are initially located at x = 0.

4.5.5 FS5A. Fast shock in highly magnetized plasma

This is a problematic case where the numerical solution suffers from
large computational errors. The shock is the same as FS5 but now
the simulations are set in the rest frame of its upstream state.

The results are illustrated by Fig. 11. As far as the electromagnetic
field is concerned the numerical solution is quite accurate, with the
shock speed and jumps across the shock being captured quite well
(see the left panel of Fig. 11). The plasma parameters, however, show
very large errors. As one can see in the middle panel of Fig. 11, the
gas pressure of the numerical solution overshoots the pressure of the
exact solution by more than 10 times.

One probable reason for the large errors is the very large shock
speed, vy = —0.99968. At such a speed, the non-linear steepening
is extremely slow and hence not as efficient at balancing the
magnetic field diffusion due to numerical resistivity as in slower
shocks. As a result, the shock structure keeps spreading out until
the numerical diffusion becomes sufficiently reduced. The spreading
is accompanied by excessive numerical heating of plasma, which
explains the high gas pressure of shocked plasma. This interpretation
is consistent with the fact that the heating is particularly intense
at the start of the simulation when the shock is just beginning to
develop its numerical structure. Moreover, switching off the energy
transfer allows to reduce the amount of numerical heating, which
also supports this interpretation. The latter does not cure the problem,
however, because the energy transfer is not the only mechanism of
plasma heating (see Section 4.2). Using smooth shock profile in the
initial solution does not help much either.

In addition to the extremely fast motion relative to the grid, the
FSS5A shock is characterized by much stronger jump of the tangential
component of the magnetic field across the shock than in the FS5
shock. If in the FS5 case, ABY ~ 3, inthe FS5Aitis ABY ~ 2 x 102,
leading to about 100 times stronger numerical magnetic dissipation.

Summarizing the results of our 1D shock wave tests, the splitting
method captures strong shocks quite well, especially in the low-o
regime. However, in the high-o regime, very fast shocks with large
jumps of magnetic field are problematic.

5 2D TEST SIMULATIONS

We used some of the 1D tests problems described in Section 4 in
setups aligned with the x- and y-directions to make sure that the
results of 1D tests are reproduced with the 2D code. These tests do not

reveal anything new and their results are not described in this section,
where only the results of inherently 2D problems are presented. All
the 2D simulations are carried out in Cartesian coordinates.

5.1 Magnetic rope

Lundquist’s magnetic rope is a steady-state axisymmetric force-free
magnetic configuration, where the magnetic pressure and tension
perfectly balance each other (Lundquist 1950). In our simulations of
a stationary rope, the force-free equilibrium is preserved, subject to
slow numerical diffusion and magnetic dissipation. Here, we present
the results of a more challenging problem, where the rope moves
along the x- direction with a relativistic speed.
In the rest frame of the rope, its magnetic field is given by

p
a (ai> , (95)
r ro

~ r
B* = B()Jo (O{*) 5

Bx

I
|
jos]
S
N =
=~
/N
Q
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N————

o
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I
o]
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where r( is the rope radius. In these equations, J, are Bessel’s
functions, « is the first root of Ji, and r = /X2 + 7?2 is the radial
distance from the rope axis (Lundquist 1950). Outside of the rope,
for r > ro, B = (0,0, BypJo(«)). The gas pressure and density are
uniform.

The initial solution for the rope moving with the speed v in
the x-direction, is obtained using the Lorentz transformation for
the electromagnetic field {E, B} and the Lorentz length contrac-
tion x = X¥/y. The model parameters of the test simulations are
By=100,r0=1, p=1, p=1, and v = 0.8. The corresponding
magnetization reaches o =~ 2000 in the centre of the rope. The
domain is (—2, 2) x (—2,2) with 200 uniformly spaced gridpoints
in each direction. The periodic boundary conditions are used at both
the x and y boundaries.

Fig. 12 compares the numerical solution with the exact solution
at t = 5, by which time the rope has crossed the domain twice and
returned to its initial position. In the left panel, the colour map
shows the distribution of ¢ at = 5. The plot also includes two sets
of contour lines of the magnetic flux function, one set for t = 0 and
another for r = 5. These are indistinguishable in the plot. The middle
panel shows the pressure distribution at + = 5. Here, one can clearly
see the numerical errors, which in places reach eight per cent. In the

MNRAS 536, 1268-1302 (2025)

G20z Arenuer zo uo 1sanb Aq 992/06./892 1/2/9€SG/2I01HE/SEIUW/WOod"dNo"dlWapeo.//:Sd)y WOy papeojumod



1286  S. S. Komissarov and D. Phillips

a - - 4
- .q'._,-_ :
o[ ] ]
(=} - -
SL d
IS ]
] & ]
> 2—0 - . 4
s R 1 T
g ]
o 1 .-'-— -'.-
er b 1 w .-
I+ 4
1wl - ]
| F 4
o UL 1 1 PR 1 1 1 1 1 | I 1 1 1 1
-1.5 -1 -05 0 0.5 -1.5 -1 -0.5 0 0.5 -15 -1 -0.5 0 0.5

Figure 11. Fast shock FSSA of strong magnetization at = 1. The plots the solutions for B” (left panel), gas pressure p (middle panel), and u* (right panel).
The solid lines show the exact solutions and the marker show the numerical solution.
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Figure 12. Magnetic rope. Left panel: magnetization parameter o and magnetic field lines. The image shows ¢ at t = 5. Superimposed are two sets of five
magnetic field lines, one for # = 0 and another for + = 5. They are indistinguishable. Middle panel: gas pressure p at t = 5. Right panel: magnetic field along
the line y = 0. The markers show the numerical solution, and the solid lines show the exact solution at r = 5.

right panel, the magnetic field in the numerical solution along the
line y = 0 (markers) is compared to the magnetic field in the exact
solution. Here, the errors are hardly visible.

5.2 Oblique degenerate Alfvén wave. Anisotropy of numerical
resistivity

Here, we return to the problem of Section 4.3 and consider the case
where the wave vector points at 45° to the x-axis. The aim is to
evaluate the anisotropy of the numerical resistivity relative to the
computational grid. For such an obliqueness, the solution (92) reads

B(t) = By <—% cos p(x, y, k), % cos p(x, y, k), sing(x, y, k))

x exp(—wt) (96)

where ¢ = (k/~/2)(x + y) and @ = k2.

In the test simulations, the domain is (0, 1) x (0, 1), with equal
resolutions in the x- and y-directions, and the periodic boundary
conditions. These boundary conditions are satisfied only for the
wavenumbers k, = 24/27n, n € Z. The model parameters are the
same as in the 1D simulations, By =50, v =0, p=1,and p = 1.
Table 5 shows the results obtained for the wave with k = 2+/27 and

MNRAS 536, 1268-1302 (2025)

Table 5. Oblique degenerate Alfvén wave simulations. n, = n, is the nu-
merical resolution, 7 is the numerical resistivity, and A, is the normalization
factor in equation (97).

ny = ny 10 20 40 80
2nk? 0.39 0.026 0.0030 0.00038
Nnum 0.50x 1072 033 x1073 038x10™* 048 x 107>
A, 0.064 0.034 0.031 0.031

the same resolution as in the 1D test. Comparing these results with
the 1D results for the wave with k = 27, given in Table 3, one can see
that the resistivities are exactly the same. Since 7 k2, this means
that for the same wavenumber the resistivity in the oblique case is
smaller by the factor of 2.

Clearly, the resistivity must be a smooth periodic function f(6) of
the angle 6 between the wave vector k and the unit vector e, of the
x-direction, with the period of /2. Moreover, it must be symmetric
with respect to the angles 6, = nmw/4, n € Z, so that f(6, +a) =
f(6; — a). The simplest function satisfying these conditions is

Tnum = %(3 + cos46). ©7)

where 7 is given by equation (90).
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Figure 13. Anisotropy of numerical resistivity. Entropy distribution in the
simulations of stationary magnetic rope at ¢ = 10.

To explore this issue a little bit further, we inspected the results
of the stationary magnetic rope simulations (see Section 5.1) for
the signs of anisotropic resistivity. The entropy s = In p/p" of the
exact solution is uniform. However, the plasma heating associated
with the numerical resistivity is expected to yield a non-uniform
distribution s(r, 8), which is periodic in 6 and peaks along the x-
and y-axes. This is exactly what is observed in these simulations (see
Fig. 13.)

5.3 Cylindrical explosion in uniform magnetic field

This is now a standard test problem for RMHD codes (e.g. Komis-
sarov 1999; Leismann et al. 2005; Mignone & Bodo 2006; Del Zanna
et al. 2007). In the initial solution of this problem, a cylindrical
volume filled with plasma of very high pressure and temperature
(the result of an explosion) is surrounded by plasma of low pressure
and density. To make the problem more interesting, the whole space
is threaded with a uniform magnetic field directed perpendicular
to the cylinder, which breaks the axial symmetry of the problem.
Although there is no exact analytic solution to this problem, one
can compare the results of simulations to the solutions obtained with
other numerical methods.

Following Komissarov (1999), the density and pressure of the
surrounding plasma are set to pe = 10™* and pe = 3 x 107> The
hot cylinder is centred on the z-axis and has the radius ro = 0.9. Its
density and pressure are set to pg = 1072 and py = 1, respectively.
The initial jumps of both the gas pressure and its density are soften
with the same tanh-profile

1
fr)y= 5[(fo — fe) tanh((r —ro)/Ar) + (fo + fe)l, (98)

where Ar = 0.03. The simulation domain is (—6, 6) x (—6, 6), with
400 uniformly spaced gridpoints in each direction. We explored four
models with By = 0.01, 0.1, 1.0, and 103.

The top row of Fig. 14 illustrates the solution for the model with
the magnetic field strength By = 0.01 at + = 4. The corresponding
magnetization is oy = 2.5 x 107 inside the cylinder and oe = 0.45
in its surroundings. The magnetic pressure is very low compared to
the gas pressure in the cylinder, with 8y = 2 x 10*, and for some
time the magnetic field has little influence on the solution. This is
manifested in the central symmetry of the images in this figure.

Splitting method for RMHD 1287

One can spot the slightly lower flow Lorentz factor and the slightly
lower density of the shocked shell along the y-axis, indicating that
the magnetic field is beginning to have a noticeable effect on the
solution at ¢+ = 4. The second row of Fig. 14 illustrates the solution
for the model with By = 0.1. The corresponding magnetization is
o9 = 2.5 x 1073 (By = 2 x 10?) inside the cylinder, and oe = 45.0
in its surrounding. In this model, the magnetic field is sufficiently
strong to have a pronounced effect on the solution, slowing down the
flow expansion in the y-direction. This leads to the spectacular mor-
phology reminiscent of an eye, which was seen in the test simulations
by many other research groups. The third row illustrates the solution
for the model with By = 1. The corresponding magnetization is
09 =2.5 x 107" (By = 2) inside the cylinder and oe = 4.5 x 103
in its surroundings. Now the magnetic is so strong that it prevents
the hot plasma from expanding in the y-direction and the explosion
proceeds almost entirely along the magnetic field lines. The weak
fast shock, however, still has a cylindrical shape, thanks to the fast
speed being very close to the speed of light in all directions. One can
also see that the magnetic are still a bit distorted by the explosion.
The bottom row shows the solution for By = 10°. The corresponding
magnetization is og = 2.5 X 10° (By = 2 x 107%) inside the cylinder
and oe = 4.5 x 10 in its surroundings. In this case, the distortion
of magnetic field lines is so weak that it cannot be seen with a naked
eye, and to visualize the fast shock we had to plot not the magnetic
pressure pm, but pm — Pm,0- where Pm0 = 5 x 10° is the initial
magnetic pressure. For this model, a couple of first time-step had to
be done with a smaller Courant number, C = 0.1. This was needed
for the shock identification subroutine to capture the forward shock
before the errors associated with the DER step became too high.
We also run a model with By = 10*. There we had to use even
smaller C and for a larger number of time-steps before switching
back to the standard C = 0.5. The results for this model were almost
indistinguishable from the results for By = 10°.

In the models with By = 0.01 and 0.1, the magnetization is
sufficiently low to be handled with the standard RMHD codes. The
case with By = 0.1 is a particularly popular test. On visual inspection,
the results obtained for this test with the splitting scheme look indis-
tinguishable from those obtained with standard conservative schemes
previously (e.g. Komissarov 1999; Leismann et al. 2005; Mignone &
Bodo 2006; Del Zanna et al. 2007). For a more detailed comparison,
and to compare like with like, we run this model in the standard
RMHD mode of our code (see Section 2.3). The results are illustrated
in the middle panel of Fig. 15 which shows the distributions of B*
along the line x = 0, with the line corresponding to the solution
obtained in the standard mode and markers to the solution obtained
in the splitting mode. They are so close that one may think that both
the line and the markers show the same solution. The same applies
to other parameters. We did the same comparison for the model with
By = 0.01. This case is interesting, because the magnetic field is very
weak and far from being in a force-free configuration. Given the fact
that the splitting approach involves advancing the electromagnetic
component using the FFDE approximation, one could anticipate large
errors in B. However, this is not the case, as illustrated in the left panel
of Fig. 15. The solution obtained using the splitting approach is still
almost indistinguishable from solution obtained with the standard
approach.

The model with By = 1 seems to be at the border line or already
beyond the capabilities of the standard approach. Although one of
us presented results for this model in the past (Komissarov 1999),
which actually look quite similar to what is shown in Fig. 14, they
were unable to reproduce this result later on request, indicating some
unusual undocumented tweaking of the code. The simulations in the
standard mode of the current code also crashed.
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Figure 14. Cylindrical explosion. From top to bottom, solutions for the models with By = 0.01, 0.1, 1.0, and 1000 at t = 4. Left panels: log, p; middle panels:
Lorentz factor y; and right panels: the magnetic field lines and log,y pm for By = 0.01 and 0.1, pm for Bp = 1 and 6pm = pm — 5 X 10° for By = 1000.
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Figure 15. Cylindrical explosion. Splitting approach versus standard RMHD scheme. Left panel: B* along the line x = 0 at # = 4 solutions for model with
By = 0.01. The solid line shows the solution obtained with the standard approach and the markers show the solution obtained with the splitting approach. Middle
panel: B* along the line x = 0 at t = 4 for the model with By = 0.1. The solid line shows the solution obtained with the standard approach and the markers
show the solution obtained with the splitting approach. Right panel: log; p along the line y = 0 at ¢ = 4 for the model with By = 1000. Markers show the 2D
solution obtained with the splitting approach and the solid line shows the solution for unmagnetized 1D flow in the problem with the same initial distribution of

flow parameters along the x-axis.

The model with By = 1000 is much more extreme than the one
with By = 1, and the simulations in the standard mode expectedly
failed. However, because the magnetic field of this model remains
highly uniform, a comparison with the solution of a different kind
suggests itself. Since the flow is basically 1D, one may check
it against the Cartesian 1D HD (B = 0) solution with the same
initial distribution of pressure and density. This 1D HD solution is
particularly close to the 2D solution along the y = 0. The symmetry
of the 2D problem implies that y = 0 is a magnetic field line, and
hence both the magnetic and electric forces along it vanish. Thus, the
flow along this line is driven solely by the gas pressure force. The
two solutions are compared in the right panel of Fig. 15, showing the
distribution of p along the line y = 0. As expected, they look almost
indistinguishable from each other.

Following Del Zanna et al. (2007), we used the By = 0.1 model
on the 200 x 200 grid to benchmark the performance of our code. It
was compiled with gfortran using the O optimization option, which
does not allow automatic parallelization, and was run on a single core
of the Apple M2 3.49GHz processor. It took 24 cpu seconds (134
time-steps) to reach t = 4. In the standard RMHD mode, the code
was only about 20 per cent faster. At t = 4, the variable conversion
takes about 36 per cent of the computational time.

5.4 Tearing instability of Harris current sheet

In this test, the initial solution describes a Harris current sheet, with
the B = (B*, 0, 0), where

B* = Bytanh 2 . (99)
a

and the gas pressure

2

B
P=Po+f°(l—tanhzz),
2 a

where a is the half-thickness of the current sheet, and p, and
By are the asymptotic values (as y — %o00) of the B* and p,
respectively. In addition, p = py and v = 0. The computational
domainis (—1, 1) x (-1, 1) with 400 uniformly spaced gridpoints in
the both directions, periodic boundary conditions in the x-direction
and zero-gradient boundary conditions in the y-directions. The zero-
gradient boundary conditions result in artefacts near the y boundaries,

(100)

which become noticeable in log-scale plots towards the end of the
simulations. However they remain at sufficiently low amplitude and
do not influence the sheet dynamics.

The parameters used in the simulations are py = pp = 1, By =
500, and a = 0.01. The corresponding asymptotic value of plasma
magnetization 6p = 5 x 10*. The selection of the very small value
for a is determined by the intention of setting as thin current sheet
as allowed by the numerical resistivity. The value of numerical
resistivity in the current sheet can be estimated using equation (90).
The corresponding length-scale, as determined by equation (94),

V2

now depends on the location. At x =a, £~ 0.009, and with
A, = 0.034, equation (90) yields npum = 10~*. The corresponding
resistive time-scale 7, = a®/n &~ 1, whereas the Alfvén time-scale
based on the half-length L = 1 of the current sheet, 7o = L/c = 1.
Given that 7, & a*, even a moderately smaller value of @ would result
in rapid thickening of the sheet.

x
L= cosh —,
a

5.4.1 Linear phase

The equilibrium is perturbed by introducing the vertical component
of magnetic field

20

B’ = ZAJ- sin (ﬂfjx +27rrj) ,

j=1

(101)

where A; = 103 By, and 0 < rj < 1is arandom number.

The right panel of Fig. 16 shows the function B, . (¢) obtained in
the simulations. Using the expected exponential growth of a single
eigenmode B, (1) x e”, we find w ~ 2.7 for0 <t <1, w ~ 2.0
for 1 <t <2, and w~ 1.7 for 2 <t < 3. The variation could be
related to the thickening of the current sheet froma = 0.01 att =0
to a ~0.013 at 1 = 0.5, a = 0.015 at r = 1.5, and a =~ 0.016 at
t = 2.5 (see the middle panel of Fig. 16). According to the theory
of tearing instability, the maximum growth rate occurs for the mode

with the wavenumber km, given by the equation

kma ~ 1.4 874, 102)
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Figure 16. Tearing instability of Harris current sheet. Left panel: maximal value of B over the whole domain as a function of time during the linear phase.
The dashed line shows the exponential function o e for comparison. Middle panel: diffusive spreading of the sheet during the linear phase. The lines show
B* along the line x =0 atz = 0,0.5, 1.5 and 2.5 (from the narrowest to the widest of the profiles, respectively). Right panel: gas pressure in the middle of the

current sheet (y = 0) near the end of the linear phase, at t = 3.

and it has the value

omT) ~0.63 571/, (103)

where

5= LA (104)
n

is the Lundquist number, and

rj&:a/cA, (105)

is the Alfvén time-scale of the current sheet based on the sheet
thickness (Furth, Killeen & Rosenbluth 1963). Since the number of
plasmoids emerging in the simulations (see the right panel of Fig. 16)
is n, = 6 the fastest growing mode in the simulations has A = 0.33
and km = 67, which is inside the range set by the perturbation
(see equation 101). Hence, one may use the above equations to
estimate S* due to the numerical resistivity, assuming domination
of the fastest mode. Substituting the measured values of wm and a
into equation (103) yields 320 < S* < 480, where the lower limit
corresponds to the data for 0 < ¢ < 1 and the upper limit for 2 <
t <3.For0 < t < 1, the corresponding resistivity is  ~ 4 x 1073,
which is only 2.5 times lower than the initial numerical resistivity
estimated via equation (90). The corresponding Lundquist number
based on the half-length of the current sheet

s=EA x50,
n
Next, one can use equation (102) to check if the value of S* based on
the growth rate is consistent with the number of emerged plasmoids.
Substituting the values of S* and a into equation (102) yields
0.25 < Am < 0.36, where again where the lower limit corresponds
to the data for 0 < ¢ < 1 and the upper limit for < 2¢ < 3. Some-
what surprisingly, the observed value A = 0.33 fits perfectly this
theoretical prediction.

For further comparison with the results of analytical and numerical
studies of the tearing instability in the framework of resistive
MHD, we also run a model with a single sinusoidal perturbation
BY = 10"*sin 67rx. Fig. 17 illustrates the profiles of the key flow
parameters across the current sheet along the line x = 1/12, where
BY is maximum. These vary very little during the linear phase and
have almost the same shape along all other lines x = const. So,
one may call them numerical ‘eigenmodes’. Qualitatively, they are
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similar to the eigenmodes found in the resistive RMHD simulations
by Del Zanna et al. (2016), though there are some differences too.
For example, the central dip in the profile of BY in not as deep, the
increase of |v”| prior to vanishing at x = 0 is not as strong, and the
central peak of v, is surrounded by a broad depression not seen in
the resistive data.

Overall, given the fact that the numerical resistivity is more
complex than the uniform scalar resistivity used in the theory of
tearing instability, the agreement between this theory and the results
of our simulations is quite remarkable.

5.4.2 Non’-linear phase

Once the multiple plasmoids developed in the current sheet, its
subsequent evolution proceeds in the plasmoid-dominated regime.
Smaller plasmoids merge to form larger ones, the sections of the
current sheet between them lengthen and suffer secondary tearing
instability. Secondary plasmoids emerge and merge with the larger
plasmoids or other secondary plasmoids (see Fig. 18), trying to
establish a hierarchy of scales (Uzdensky, Loureiro & Schekochihin
2010). The plasma of the current sheet gets heated up to very high
temperature, typically ¢ = kT /mc? = 10°. This is consistent with
the magnetic energy per particle {3 = B?/8mnmc? = 1.25 x 10° in
the external plasma. In places, the Lorentz factor of the flow in the
current sheet reaches y = 3, and the collisions of the fast moving
plasma with plasmoids drive shock waves.

Given the efficient heating of plasma in the current sheet, the
global reconnection rate can be derived from the rate of increase of
the total plasma energy in the computational domain. This energy is
dominated by the thermal energy of plasma in the current sheet. The
left panel of Fig. 19 shows the total plasma energy Epl(t) computed
via equation

E1=2_D & - (106)
i=1 j=1

where the cell volume factor is ignored. Up to ¢t = 4 its increase

is associated with the resistive spreading of the current sheet, and

thereafter with the magnetic reconnection. The total increase of the

plasma energy for 4 <t < 10 is Aé’p] = 0.475 x 10'°, The total

initial electromagnetic energy in the domain Eem = 0.197 x 10'L.
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Figure 17. Tearing instability of Harris current sheet. Numerical ‘eigenmodes’ in the case of single perturbation with k = 6.

Ignoring the residual magnetic energy of plasmoids,

&
AEp = %(v,mt,

(107)
where (v, ) is the average speed of the electromagnetic energy inflow.
For the above measurements, this equation yields (v,) = 0.04.

The middle panel of Fig. 19 shows the solution at t = 9 around
the x-point near the largest plasmoid of the current sheet at this
stage. Based on the velocity field, the x-point is located at (x, y) &~
(—0.56, 0). The right panel of this figure shows v¥(y) along the line
x = —0.56. One can see that the plasma (and the magnetic field)
flows towards the x-point with the speed ~ 0.05, in agreement with
the above estimate of the global reconnection rate. This reconnection
rate is only slightly below the ‘universal’ maximal reconnection
rate R ~ 0.1 found in resistive MHD, Hall-MHD, and particle-in-
cell (PIC) simulations, and in the observations of Earth and Solar
magnetospheres (see the references in Liu et al. 2017).

This is another test problem where the DER step had to be switched
off in order to avoid conversion failures at shocks. The same applies
to the remaining tests described further down.

5.5 ABC grid of magnetic ropes

The double-periodic 2D ABC configuration of magnetic ropes is
interesting because it is unstable and involves developing of current
sheets at the non-linear phase of the instability via collapse of x-
points (e.g. Parker 1983; East et al. 2015; Lyutikov et al. 2017). Its
magnetic field is force-free with

B* = —Bysin(ky),

BY = Bysin(kx),
B* = By(cos(kx) + cos(ky)) .

(108)

The ropes with B* > 0 are located at (x;, y;) = (27w /k)(i, j), the
ropes with B* < 0 at (x;, y;) = (w/k)(1 +2i, 1+ 2j), and the x-
points (out-of-plane x-lines) at (x;, y;) = (w/k)(2i +1,2j) and
(xi,y)) = (/k)(2i,2j + 1), where i, j € Z.

In the test simulations, By = 100, k = 2/m,and p = p = 1. The
magnetization varies from ¢ = 0 at the x-points to o = 2 x 10° in
the centre of the magnetic ropes (islands). The domain is (—1, 1) x
(=1, 1) with 400 uniformly spaced gridpoints in each direction, and
periodic boundary conditions. The initial equilibrium is perturbed by
imposing the velocity field

Vo

v(x,y) = 7 (— cos g(x + ), cos g(x + ), O) R (109)

with vg = 0.01. Such a perturbation is expected to trigger the shear-
type mode of the instability (Lyutikov et al. 2017).

The global dynamics of the ABC grid is illustrated in Fig. 20.
Initially, the speed of global motion set by the perturbation (109)
increases, reaching the maximum value of v & 0.35 at about r = 2.5.
At this point, the ropes of the same polarity (the same sign of B;) form
a linear chain running at the angle of 45° to the x-axis, for the first
time. The high value of the speed shows that the initial perturbation
may be considered as small. At around ¢ = 3.5, there is a turning
point, when the ropes start moving in the opposite direction. The
subsequent global motion is a decaying oscillation about the state
with the 45°-alignment. In the ideal model, this state is a stable
equilibrium (Lyutikov et al. 2017).

On approach to the oblique alignment, the x-points collapse into
current sheets separating ropes of the same polarity (see the top-
middle panel of Fig. 20). These current sheets appear to suffer the
tearing instability, and very soon a single plasmoid emerges in the
middle of each sheet (the top-right panel of Fig. 20). Fig. 21 zooms
into the current sheet located around the point (x, y) = (—0.5, 0).
As one can see, the current sheet is not yet developed at r = 1.0.
At t = 1.5, it appears as a vertical linear structure, whose length is
approximately 3.5 times shorter than its ultimate length. At ¢t = 2.0,
its length increases approximately by a factor of 2 and its orientation
in space changes, reflecting the relative motion of the flux ropes. At
t = 2.5, the current sheet is inclined at about 45° to the y-axis, and
in the middle of it there is a bulge visible with a naked eye. Thus, the
plasmoid had only time At ~ 1 to grow from perturbation.

This current sheet is as thin as the initial current sheet in the
tearing instability simulations described in Section 5.4, both in terms
of the number of cells, approximately four, and in terms of the linear
size, a =~ 0.013. Hence, based on the numerical resistivity Lundquist
number is also approximately the same, §* & 300. The total length
of the current sheet is 2L = (.45, leading to the aspect ratio a/L ~
0.045. The aspect ratio of Sweet—Parker’s equilibrium current sheet,
(a/L)gp ~ S~Y2 = 1/5* (Parker 1957; Sweet 1958), corresponding
to the same value of $* is much smaller, (a/L)gp ~ 0.003. Taking
into account the reduction of the numerical resistivity for current
sheets inclined at 45° by the factor of 2 would make this estimate
even lower. Therefore one may ignore the flow inside the current
sheet and apply the results of Furth et al. (1963) on the growth of the
tearing instability (cf. Del Zanna et al. 2016). Equation (102) then
gives the wavelength of the fastest growing mode Am ~ 0.25, which
is consistent with the fact that only one plasmoid emerges in this
current sheet.
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Figure 18. Non-linear phase of the tearing instability. Gas pressure at t = 4, 4.5, ..., 8.5 (from left to right and from top to bottom).

Pucci & Velli (2014) argued that current sheets are unable to reach
the Sweet—Parker equilibrium because they get fragmented by the
tearing instability before reaching (a/L)gp. They also proposed the
current sheets scaling (a/L)py = §~1/3 = §*71/2 where (a/L)py
can be interpreted as the lower limit on the aspect ratio of non-
fragmented current sheets. For §* = 300, this yields (a/L)py ~
0.057, which is similar to the ultimate aspect ratio of the current
sheets in our ABC simulations. The Pucci—Velli scaling can be
supported with a simple causality argument. The minimum time
required to form a current of the half-length L is its Alfvén time
TpA = L/cp. The e-folding time tm = 1/wm of the fastest growing
unstable mode cannot be much shorter than 7, as otherwise the
current sheet fragments already during its formation. Hence, for the
longest non-fragmented current sheet, wmz ~ 1. Equation (103)
for the growth rate of the fastest mode can be conveniently written
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as

23
Eg( 0.63 ) / §-13
L CL)m'L’A

which yields the Pucci—Velli scaling when wmzp ~ 1.

For §* =300 and a/L = 0.045, equation (110) yields omtp ~
0.81, consistent with the current sheets just braking the fragmentation
threshold. Given the observed 5 ~ 0.22, the estimated value of wm
yields tm =~ 0.27. Because the plasmoids emerge on the time-scale
At ~ 1, this implies that their amplitude could grow only by the
factor ~ exp(1/0.27) ~ 40. This is a small growth compared to what
is normally achieved in the numerical studies of instabilities, which
start with very small perturbations. However, the current sheets in
the ABC simulations are highly dynamic from the start and hence

(110)
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Figure 19. Non-linear phase of the tearing instability. Left panel: total plasma energy in the domain as function of time. Middle panel: the image shows the

v¥ component of velocity near the large plasmoid at # = 9. The contours show the magnetic field lines and the arrows are the velocity vectors. Right panel: the

inflow velocity of magnetic field along the line x = —0.56, where the velocity field shown in the middle panel indicates an x-point in the current sheet.
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Figure 20. ABC grid. The image shows B?, the contours show the magnetic field lines, and the arrows show the velocity field v. From left to right, r =1.0, 2.0,

and 3.0 in the top row, and ¢ =3.5, 4.0, and 4.5 in the bottom row.

not expected to be near to such an almost perfect balance at any point
in their evolution.

We also run this problem at the doubled resolution, and found a
very similar evolution, especially at the early phase. In particular,
the plasmoids emerge on the same time-scale (see the bottom row of
Fig. 21). There is still only one plasmoid per current sheet, but the

secondary current sheets have approximately the same aspect ratio
as the primary current sheet at the lower resolution, suggesting that
secondary plasmoids may emerge when the resolution is increased
furthermore.

The PIC simulations of this problem (Lyutikov et al. 2017) show a
similar dynamics, but with some quantitative differences. In these
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Figure 21. ABC grid. From left to right, the total electric current density for the current sheet emerging near the point (x, y) = (=0.5,0) at r = 1.0, 1.5, 2.0,
and 2.5 respectively. The bottom row shows the solution obtained with the doubled resolution.

simulations, the ABC grid has the same linear scales, and the
Alvfén speed is also very close to the speed of light. Hence, no
time rescaling is required. The initial plateau phase in the PIC
simulations continues up to# = 4,not¢ = 1.5 like in our simulations.
However, this difference is attributable to the amplitude and nature
of the initial perturbation of the ABC grid and simply requires us
to shift the timing of the PIC simulations back by about At = 2.5
for comparison with our results. With this shift applied, by r = 10
the total electromagnetic energy in the PIC simulations is reduced
by about 40 per cent, compared to the 18 per cent found here. This
implies an approximately twice as fast reconnection rate in the PIC
simulations compared to ours. Moreover, by this time the initial
periodic structure of the ABC grid is erased, with the ropes of
single polarity merged into larger structures (see fig. 8 in Lyutikov
et al. 2017), whereas in our simulations the individual ropes are still
identifiable. This is also consistent with the higher reconnection rate
of the PIC simulations. According to fig. 8 in Lyutikov et al. (2017),
the plasmoids are not seen at + = 1.5 and 2.5, but fully formed at
t = 3.5. Thus, they emerge on approximately the same time-scale
as in our simulations. This suggests that the timing is dictated by
the macroscopic dynamics of the system rather than by the details
of the microphysics. The number of plasmoids is also about one
per current sheet. (However in other PIC runs, which yields thicker
current sheets, the plasmoids do not emerge at all. See the discussion
around equation 112.)

5.6 Magnetic field errors in the 2D simulations

In our implementation of the splitting approach we used the GLM
method to keep the magnetic field near, but not exactly in, the
divergence-free state. The deviation from the divergence-free state
originates due to the truncation errors in the numerical integration
of the Faraday equation and this allows us to estimate the errors in
the magnetic field. This can be used to assess the potential impact of
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such errors on the conversion failures when the same problems are
attempted in the standard mode of our code.

According to the analysis of Section 2.1 (see equations 17 and
20), in order not to cause the conversion failures, the relative error in
magnetic field must satisfy the condition

2

SBl v
B|™ o

To apply this result, we first estimate the relative error in the magnetic

field as

éB ~ i i J J
5= ((Bi+1,j =B )+ (B — Bi,j—l)) /Bl
ij

and then compute the error parameter

8B
Er=|—
B

o

Y2

When Er 2 1, the error is sufficiently large to result in an unphysical
state and hence cause a failure of the variable conversion. When
Er < 1, the error is below the safety limit. Since the analysis leading
to these expectations is not comprehensive but confined to simple
special cases, some caution needs to be exercised here.

Fig. 22 shows the error parameter for the magnetic rope, cylindrical
explosion, and tearing instability tests. At the start of the magnetic
rope test, Er reaches the values significantly exceeding unity near
the rope surface (see the top-left panel of Fig. 22). Based on these
values, we anticipated the simulations run in the standard mode of
the code to crash at the very start, and they did even for the Courant
number as small as C = 0.01. By ¢ = 5, the maximum value of Er
reduces to & 0.36, suggesting that it may be possible to continue the
simulations from this point in the standard mode. This was indeed the
case, but only with the Courant number reduced down to C = 0.4.

The bottom-left panel of Fig. 22 shows Er for the explosion test
with By = 1 at t = 4. Even at this time it remains about unity at the
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Figure 22. The error parameter Er. Top-left panel: the magnetic rope test with Bp = 100 at + = 0.02. Top-right panel: the magnetic rope test with By = 100
att = 5. Bottom-left panel: the cylindrical explosion test with By = 1 at t = 4. The high residuals colocate with the transient shock waves associated with the
oscillations in the direction normal to the magnetic field. Bottom-right panel: the tearing instability test with Bp = 500 at t = 7.5.

external fast shock, and reaches Er &~ 4 in the vicinity of the point
(x, ¥) = (0, 1.3), where reverberation of the magnetic field appears to
have triggered a secondary shock wave. As already stated in Section
5.3, our attempt to run this test in the standard mode of the code has
failed. For the test with By = 0.1, the error parameter is much lower,
Er < 0.3, reaching the maximum at the external shock. These low
values are consistent with the fact that for this value of By the test
can be run with the standard code from the start to the finish.

In the tearing instability test, Er is small at the linear phase, but
then strongly increases in the non-linear phase. As one can see in
the bottom-right panel of Fig. 22, the error parameter can reach the
values Er ~ 20 in the vicinity of the current sheet. Although §B/B
itself is higher inside the current sheet, where the magnetic field is
highly distorted, leading to a stronger departure from the divergence-
free state, the magnetization o is significantly lower there, due to the
presence of very hot plasma. In the outskirts of the current sheet, o
is very high and the magnetic field is still strongly distorted by the
plasmoids. Our attempts to continue the simulations from this point
in the standard mode have failed.

Overall, the data support the conclusion that the errors in magnetic
field are responsible for failures of standard schemes in the high-o

regime. In principle, an increase of the accuracy in the numerical
integration of the Faraday equation may help to extend the applica-
bility of standard schemes. In this regard, schemes utilizing the CT
approach may be more robust as they eliminate the errors associated
with the V- B = 0 constraint. Other errors, however, will remain and
may still be too high. Increasing the order of scheme’s accuracy could
help too. This is expected to be very effective in regions with smooth
magnetic field, but not at discontinuities.

6 SUMMARY AND DISCUSSION

The main goal of this study was to find a new approach to numerical
RMHD in the high-magnetization regime, where the standard con-
servative schemes turned out to be highly unreliable. Its direction
was motivated by the understanding that the most attractive feature
of such schemes, the conservation of total energy-momentum, is also
the main reason for their failures in the high-o regime. For such a
high magnetization, the energy-momentum tensor is dominated by
the electromagnetic field, and even relatively small errors emerging
in the numerical integration of the Faraday equation can render the
set of conserved variables unphysical. This understanding invited us
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to search for a way of breaking the strict link between the energy-
momentums of plasma and electromagnetic field imposed by the
total energy-momentum conservation and enforced in the standard
conservative schemes. Moreover, in this regime the electromagnetic
field is largely force-free, and its evolution is well approximated by
the equations of FFDE, which can be considered as a singular limit
of RMHD when ¢ — oo. This invited us to study the potential
of the perturbation approach, where the electromagnetic field is
evolved mostly as force-free, and the plasma introduces only a
small perturbation to the FFDE solution, with ¢ ~! playing the role
of a small parameter. However, the standard asymptotic expansion
approach is complicated, with higher order terms needed for accuracy
in the case of moderate o. Moreover, it is not suitable for o < 1,
significantly limiting the area of application.

Instead, we opted for a generalization of the approach proposed
by Tanaka (1994), where the perturbation is governed the RMHD
equations with the energy-momentum tensor modified via explicit
subtraction of the energy-momentum tensor of the force-free field.
In contrast to Tanaka (1994), where the strong force-free background
field is stationary, in our approach it is dynamic. So, we enlarge the
system of differential equations, which is now composed of two
linked subsystems: the FFDE system for the electromagnetic field,
and the perturbation system for the plasma. The latter has the same
number of equations as the original RMHD. These subsystems are
linked via the interaction terms in the perturbation system and the
perfect conductivity condition. This approach delivers a numerical
scheme which can be applied in both the high- and low-o regimes.

The equations of the enlarged system are integrated simultane-
ously, and at the end of each time-step the electromagnetic field
of the FFDE system and its perturbation are recombined. Thus,
the final result is a splitting scheme, which is similar in spirit to
operator-splitting schemes, but different in form. Like in the operator-
splitting method, we separate processes of different nature and do
this to bypass the stiftness of differential equations. However, if
the operator-splitting method is focused on the stiffness arising
due to the very different time-scales associated with the involved
differential operators (processes), our splitting scheme deals with the
stiffness arising due to the significant difference in the magnitude
of contributions to the conserved quantities from components of
different nature. If the operator-splitting method involves successive
integration of simplified versions of differential equations, where
some of the operators are dropped, we solve the whole system of
equations simultaneously. This simplifies development of higher
order schemes.

Both the subsystems of split RMHD can be written as conservation
laws, and hence can be numerically integrated using the standard
methods developed for such laws. We adopted the third-order WENO
approach similar to that of Del Zanna et al. (2007), with some
modifications. In particular, (1) we developed a new third-order
WENO interpolation, which allows rapid transition to the third-order
scaling of computational errors at low resolution and does not result
in a loss of accuracy at turning points; (2) the code required a new
variable conversion algorithm; (3) we used the GLM method (Dedner
et al. 2002) to keep the magnetic field nearly divergence free; and (4)
we developed a simple algorithm to locate strong shocks in order to
switch off the DER step of Del Zanna et al. (2007) at their locations.
The latter is needed to suppress the spurious oscillations capable of
causing conversion failures at high-o shocks.

Only the momentum density is used for the variable conversion
of the FFDE subsystem. As a result, the energy of the FFDE
subsystem and hence the total energy are not conserved. This break
of conservation is at the centre of our splitting method. One can
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compute the difference between the energy density of the FFDE
subsystem based on the energy conservation law and the one based
on the updated E and By, and transfer it to the perturbation
subsystem, thus enforcing the total energy conservation. Such energy
exchange between plasma and electromagnetic field implicitly occurs
in standard conservative schemes, where it facilitates plasma heating
in current sheets. However, it is also responsible for their failures
in the high-o regime. Hence in the splitting approach, the energy
transfer must be conditional, filtering out the cases where this may
lead to a crash. A simple analysis shows that the energy transfer is
safe when the transferred energy is positive. In this case, the energy
transfer amounts to plasma heating via the numerical dissipation of
the electromagnetic energy. When the positivity is the only condition,
plasma is also heated by weak waves generated in active regions. By
setting positive lower limits on the transferred energy, this low-level
heating can be suppressed. In the splitting approach, there is another,
now uncontrollable mechanism of plasma heating, which involves
the interaction terms of the perturbation equations. This mechanism
accounts for about 50 per cent of heating in current sheets.

The 1D and 2D test simulations of continuous hyperbolic and
associated shock waves have shown that the splitting method remains
robust and accurate when applied to problems with very high o. This
is particularly true for continuous waves. Shock waves are more
problematic, and in some cases the code can fail to deliver accurate
values for the plasma parameters. Our test results suggest that this
occurs when the tangential component of magnetic field experiences
large jumps across the shock, leading to excessive plasma heating via
the uncontrollable numerical dissipation of electromagnetic energy.
As aresult, the shock fails to develop monotonic structure. Although
such shocks do exist, they are unlikely to be common. For example,
in the 2D simulations of explosions in strong uniform magnetic field,
the variation of the tangential magnetic field is much smaller.

The splitting approach delivers accurate solutions not only for
high-o problems, but also for problems with low magnetization, as
illustrated by the shock tests FS7 and FS9, where the magnetization
of the upstream state is only & = 1073, and by the blast wave sim-
ulations with oy ~ 1073. Moreover, as the magnetization decreases,
the shock solutions become progressively more accurate. In fact, for
unmagnetized plasma, the splitting scheme reduces to the standard
conservative scheme for relativistic HD. For subrelativistic problems,
the splitting approach also performs very well, as demonstrated by
the FS9 test where the sound speed ¢, =~ 0.01 and the Alfvén speed
ca ~ 0.007. Thus, the splitting approach can be applied to many
complex astrophysical problem involving states with vastly different
parameters, like active galactic nuclei, where the low-o accretion
disc coexists with the high-o magnetosphere of the central black
hole.

Our test simulations of problems involving current sheets have
demonstrated that the splitting approach can capture the active phe-
nomena of plasma astrophysics involving fast magnetic reconnection.
The fast reconnection plays an important part in many astrophysical
phenomena, resulting in explosive dynamics, plasma heating, and
acceleration of non-thermal particles responsible for high-energy
emission. The latter is particularly important for high-o relativistic
plasmas, where PIC simulations of collisionless shocks revealed
their low efficiency in particle acceleration (Sironi & Spitkovsky
2009, 2011). The reconnection events are preceded by the formation
of current sheets, which can emerge spontaneously in quasi-static
configurations, or forced by plasma motion in highly dynamic
conditions (e.g. Pontin & Priest 2022).

The detailed structure and evolution of current sheets depends on
the microphysics responsible for the deviation from the magnetic flux
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freezing approximation of ideal MHD. Interestingly, most numerical
methods for ideal MHD also break the flux freezing because of
the truncation errors of numerical algorithms. This phenomena is
called the numerical resistivity. Although magnetic reconnection
has been seen in ideal MHD simulations (see e.g. Laitinen et al.
2005; Ripperda et al. 2022; Fryer et al. 2023; Berta et al. 2024, for
more recent examples), this has been treated with a great deal of
scepticism. However, in the plasmoid-dominated regime the overall
dynamics of current sheets and the reconnection rate do not seem
to be that sensitive to the incorporated microphysics (e.g. Liu et al.
2017; Pontin & Priest 2022). This is even more so in the theory of
turbulent reconnection, where the reconnection rate does not depend
on the microphysics altogether (Lazarian & Vishniac 1999; Lazarian
et al. 2020). This motivated us to include problems involving current
sheets in the suite of test simulations.

We started by studying the properties of numerical resistivity
in our scheme, using as a guide the ansatz of Rembiasz et al.
(2017). The 1D simulations of degenerate Alfvén waves (Section 4.3)
are in agreement with the simple prescription for the numerical
resistivity (90) based on the value of the rounding error. They
confirm the dependence of numerical resistivity on the scheme’s
order of accuracy, numerical resolution, and the characteristic length-
scale of the magnetic field variation £. Since equation (90) states
Nnum o< £72, the numerical resistivity is similar to the so-called
anomalous resistivity, with 7 « j2, used in resistive MHD simu-
lations to achieve fast magnetic reconnection (e.g. Yokoyama &
Shibata 1994; Syntelis, Priest & Chitta 2019; Ferder, Nobrega-
Siverio & Carlsson 2023). In our 2D simulations, the corresponding
magnetic Reynolds number varies from Rem ~ 10? for current
sheets which are only few cells wide, to Remy ~ 10% on the domain
scale. Thus, the numerical resistivity has little effect on the large-
scale dynamics but very important in ‘paper-thin’ current sheets.
As expected, the numerical resistivity is anisotropic. Our initial
investigation of this issue suggests that it is highest when magnetic
field is aligned with the gridlines and reduces by the factor of 2 when
the magnetic field is at the angle of 45° to the gridlines.

In Section 5.4, we described the simulations of the tearing
instability for the case of a very long and thin, only few grid
cells across, Harris current sheet aligned with the computational
grid. Quite remarkably, the results of these simulations are in
good agreement with the key conclusions of the basic theory
of this instability developed within the framework of Newtonian
resistive MHD with constant scalar resistivity (Furth et al. 1963)
[Although the theory of the tearing instability was developed in the
Newtonian framework, the relativistic results are basically identical
(Komissarov, Barkov & Lyutikov 2007a; Del Zanna et al. 2016).]. In
particular, the wavelength of the fastest growing mode and its growth
rate agree with the theoretical values obtained with the numerical
resistivity (in place of the actual 1) assuming £ ~ a, where a is its
half-width of the current sheet. This result is somewhat surprising,
as the theory predicts the existence of a narrow resistive (tearing)
sublayer (boundary layer) in the middle of the current sheet. The
thickness of this sublayer is

S*—l/4

agyh ~ 1.5 (111)

(Furth et al. 1963). For the consistent with the simulations value
§* 2 400, the corresponding ag,, ~ 0.3a = 3 x 10~3, whereas the
cell size Ay =5 x 1073, and hence the sublayer is not resolved.
In fact, it is collapsed into a discontinuity (see the right panel of
Fig. 19). On the other hand, it has been claimed that many properties
of reconnection are largely determined by the ideal MHD dynamics
outside of the sublayer and only weakly depend on its microphysics
(Liu et al. 2017; Pontin & Priest 2022). This is especially clear in the
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case of forced reconnection, where the reconnection rate is set by the
externally determined rate of plasma inflow into the current sheet.
At the non-linear phase of our ideal MHD simulations, the dynamics
of the current sheet is also very similar to what in seen in resistive
MHD and PIC simulations, including the development of primary
plasmoids, their merger, the emergence of secondary plasmoids in
secondary current sheets etc. (e.g. Bhattacharjee et al. 2009; Del
Zanna et al. 2016; Petropoulou & Sironi 2018). The estimated global
reconnection rate is about 0.04.

The simulations of the unstable ABC grid of magnetic ropes
(Section 5.5) allowed us to study the case where the current sheets
are not present in the initial solution, but develop as a result
of the x-point collapse. These current sheets produced solitary
plasmoids on the time-scale which is only few times longer than
their ultimate Alfvén time-scale. These results are in agreement with
the conclusion reached by Pucci & Velli (2014) that current sheets
become fragmented by the tearing instability well before they reach
the Sweet—Parker equilibrium, thus making studies of Sweet—Parker
current sheets a matter of purely academic interest.

It is quite interesting that the PIC simulations of the ABC problem
for electron—positron plasma (Lyutikov et al. 2017) yield very similar
results in terms of the time-scale of the current sheet fragmentation,
the number of emerging plasmoids, and the reconnection rate. As
noted in Lyutikov et al. (2017), the half-thickness of the collisional
current sheets emerging in the PIC simulations is set by the Larmor
radius of the plasma particles heated in the sheet, a ~ rp . For
relativistic plasma, this is approximately

TL,h = %0%,0"L,0 > (112)

where op = BZ /4wy is the magnetization of the inflowing plasma,
7,0 is the thermal Lorentz factor of its particles, and rp o=
mec?/eBy. They have also found that the emergence of plasmoids
depends on the parameter "Lh /D, where D is the wavelength of the
ABC grid. Namely, they begin to emerge when D/rp j > 126. Since
the half-length of the current sheets L ~ D /3, this can be written as
ILh < 0.02.

L
Thus, even the fragmentation threshold is similar to what is found in
our ideal RMHD simulations.

The results of our study of current sheets suggest that in principle
the fast reconnection events can be captured in simulations even
with ideal RMHD and MHD codes. Although the development of
plasmoids and explosive reconnection has already been reported in
the ideal RMHD simulations of neutron-star magnetospheres (Buc-
ciantini et al. 2006) and black hole accretion (Ripperda et al. 2022),
our study seems to be the first one where the plasmoid-dominated
regime of magnetic reconnection is studied more or less system-
atically (a more advanced study is under way), and an agreement
with the resistive MHD theory is found. This warrants a closer look
at the numerical resistivity and its properties in different numerical
schemes. It is quite possible that its properties are close to those of the
proper resistivity only in some schemes and drastically different in
others. For example, Rembiasz et al. (2017) found negative resistivity
for their scheme. It is possible that the peculiarities of the splitting
approach play a role too. Especially the fact that in the ideal FFDE
approximation current sheets collapse into discontinuities, with the
corresponding reconnection rate approaching the speed of light.

Our results show that for the thinnest current sheets allowed by the
code, only few cells wide, the current sheets should be at least ~100
cells long for the tearing instability to trigger fast reconnection on the
Alfvén time-scale. Very long current sheet are know to exist in stellar
magnetospheres, including the high-o magnetospheres of black holes
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and neutron stars. However in other astrophysical problems, current
sheets may be much smaller compared to the dynamical scales of
interest. For example, the size of reconnection sites responsible for
the gamma-ray flares in the Crab nebula is only about one light
day, whereas the size of the nebula is about 10 light years. For such
problems, code’s ability to efficiently resolve small thin structures
becomes paramount.

Somewhat paradoxically, the ideal MHD codes might end up being
more suitable than the resistive codes for large-scale problems of
astrophysical interest (cf. Del Zanna et al. 2024, for the simulations
of MHD turbulence). First, the actual resistivity of resistive codes has
to be much higher than the numerical one to make its introduction
meaningful. This would make current sheets significantly thicker and
hence they would have to be much longer to allow fast reconnection.
Second, uniform scalar resistivity will have strong effect on the
magnetic field, and hence the plasma dynamics, outside current
sheets, leading to much lower magnetic Reynolds numbers on the
large scales compared to what it would be with an ideal code (Mattia
et al. 2023, 2024). In principle, this can be mitigated with anomalous
resistivity, which depends of the strength of the electric current.
Finally, the resistive codes are great for verifying the analytical results
of resistive MHD and exploring their non-linear regime, but since
the astrophysical plasma is mostly collisionless, the actual benefits
of the resistive model in astrophysics are not that obvious.

For RMHD, the fact that the numerical resistivity is not Lorentz-
invariant is likely to be an issue for the simulations involving fast
relativistic flows. As can be seen in equation (86), for such flows the
resistivity reduces like y~!, whereas the numerical resistivity does
not. One relevant example of such flows is the striped pulsar wind,
where the time-dilation effect may prevent the reconnection of stripes
till the wind passes through its termination shock (Lyubarsky &
Kirk 2001). However, direct numerical simulations of such wind in
the pulsar frame are extremely challenging and require significant
simplification anyway.

Over the last decade, the kinetic approach based on the PIC method
was successfully applied to numerical simulations of pulsar and black
hole magnetospheres (e.g. Philippov & Spitkovsky 2014; Parfrey,
Philippov & Cerutti 2019; Crinquand et al. 2020; Soudais, Cerutti &
Contopoulos 2024). This approach has no difficulty in dealing with
highly magnetized plasma but suffers from the scale-separation issue.
PIC simulations must resolve the microphysics scales, which severely
limits the accessible macroscopic scale and makes the method
computationally expensive. Although the most recent studies show
that the macroscopic size of some astrophysical problems can be
scaled down towards the microscopic scales, without the large-scale
dynamics being ‘contaminated’ by the microphysics, in general the
issue is here to stay. One approach to mitigating this issue is the use
of hybrid schemes, where PIC computations are limited in extent and
carried out only where they are unavoidable, for example to compute
the non-thermal radiation (e.g. Soudais et al. 2024). Another option is
not to use PIC simulations directly altogether, but to incorporate the
PIC predictions on particle acceleration and non-thermal emission
at the subgrid level of fluid simulations. This requires accurate
treatment of plasma in the high-o regime, including the value of
o itself, and this is where the splitting approach to numerical RMHD
promises to be most useful.

7 CONCLUSIONS

In this work, we developed a novel numerical method for integrating
RMHD equations, which allows to extend the applicability domain
into the regime of extremely high magnetization (high-o) typical to
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the magnetospheres of neutron stars and black holes, and expected in
the magnetized relativistic outflows from them as well. The method
is based on splitting the RMHD equations into interacting (linked)
subsystems, one governing the electromagnetic field, and another
governing the motion of plasma. The splitting breaks the stiffness
of RMHD equations in the high-o regime, where the total energy-
momentum tensor is largely dominated by the electromagnetic field.
The method sacrifices the total energy-momentum conservation of
standard conservative schemes for RMHD, and this does not allow
the small numerical errors in magnetic field to result in catastrophic
errors for the plasma parameters. Both the subsystems have the form
of conservation laws, which allows to combine the splitting method
with various numerical methods developed for such laws. In the
current code, we applied the third-order accurate WENO approach.

The suitability of the splitting method to high-o problems has been
confirmed by a variety of 1D and 2D test simulations presented in
this paper. Moreover, the code remains accurate for low-o problems,
including the unmagnetized regime (o = 0), and the subrelativistic
problems. Thus, the splitting method can be used for numerical
simulations of complex astrophysical phenomena, which involve
components with vastly different physical parameters, with no need
for development of hybrid codes.

Given the importance of fast magnetic reconnection in high-energy
astrophysics, particular attention has been paid to determining the
numerical resistivity of the code and to test problems involving long
and thin current sheets. Studying the numerical decay of periodic
degenerate Alfvén waves, we verified and calibrated a simple model
of numerical resistivity, and found it to be similar to the anomalous
resistivity. In the 2D simulations of the tearing instability in a long
Harris current sheet, we found the results to be in good agreement
with the basic theory by Furth et al. (1963) when the resistivity
proper is replaced with the numerical resistivity. At the non-linear
phase, the simulations exhibited the typical properties of the fast
magnetic reconnection in the plasmoid-dominated regime. The 2D
simulations of the ABC grid of magnetic ropes allowed us to study
the dynamics of current sheets emerging via x-point collapse. These
current sheets became fragmented by tearing instability on Alfvénic
time-scale before they could reach the aspect ratio of the Sweet—
Parker sheets, in agreement with the analytical results by Pucci &
Velli (2014). These results suggest that ideal RMHD codes, at least
those based on the splitting method, may be applicable to problems
involving fast magnetic reconnection.
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APPENDIX A: THIRD-ORDER WENO
INTERPOLATION

Below, only the interpolation in the x-direction is considered, and all
other spatial indices are dropped for brevity. In the other directions,
the procedure is the same.

A1 Modified second-order TVD weights

Consider a three-point stencil S = {x;_1, x;, x;41} and its two subs-
tencils S_ = {x;_1, x;} and S = {x;, x;+1}. Each of the substencils
yields a linear polynomial for interpolation to the ith cell interfaces
Xiy12 =X + Ax/2 and x;_;» = x; — Ax/2 on a uniform grid,

(i —ui—y)
P(x)=u + ——(x —x;), (A1)
Ax
and
Py =y 4 L T (A2)
Ax

Any linear combination of these interpolants ensures second-order
spatial accuracy in smooth regions of numerical solution. Falle (1991)
used a TVD slope limiter which is equivalent? using following linear
combination of the polynomials Py

P(x) =w_P_(x) + wy Py(x), (A3)

2Falle (1991) also use the polynomial Py(x) = u;, for the case where B+ f_ <
0.
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Figure Al. Left panel: mapping polynomials p,(x). Right panel: non-linear WENO weights for P"(x) obtained with ar(x) = pa4(x).

where

w,=ﬁ7+, w+='377, (A%)
B+ + B- B+ B-

are the weights and

Bo= (i —ui1), Be = (uig —u;) (A5)

are the ‘roughness’ indicators. Incidentally, these indicators are the
same as in Jiang & Shu (1996) for a third-oder WENO interpolation.
The weights (A4) satisfy the constraint

w_+wy=1. (A6)

It is clear that not the absolute values of S, and B_ but their ratio
determines the weights:

1) w_,wy — 1/2asB_/By = 1;
(i) w. - landwy — Oas B_/B+ — O;
(iii)) w— — Oand wy — las B./B- — 0.

This combination favours the interpolant with smaller gradient,
thus reducing oscillations at regions with rapid variation of the
numerical solution, such as shock waves. For example, suppose that
u;+1 = u;, like in the upstream state of a shock, whereas u;_; # u;
is a point of numerical shock structure. Then, 8, = w_ = 0 and
P(x;) = Pr(x) = u;.

Interestingly, these weights treat critical points of smooth solutions
almost on the same footing as shocks. To illustrate this, suppose
that a local maxima is located exactly between x; and x;4;, soO
that u; 1 = u;. Then, like in the shock example, B, = w_ = 0 and
P(x) = P.(x) = u;. Generalizing, any weights based on the ratios
of the roughness indicators do not differentiate between shocks and
critical points. This applies to the WENO weights proposed by
Jiang & Shu (1996), which results in a loss of accuracy in the vicinity
of critical points.

To remove this confusion, we propose the modified smoothness
indicators

Ax\?
Be = (i — uiz1)’ + U? (T) +e, (A7)
where
U = max(Ju;y1l, [u;il, [ui—1]), (AB)

is the maximal magnitude of u on the stencil, L > Ax is the
minimal characteristic length-scale of what can be considered as a
computationally smooth solution, and € is a small number, introduced
to avoid division by zero when u#; = u;_; = u;;+; = 0. Hence,
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(1) in smooth regions away from local extrema,

u\? Ax\?
2 2 2
vl —u) R~ — A <U —_ .
iy = i) (8x>i * (L)

Hence, _/B+ ~ 1 and wy ~ 1/2, like in the original TVD scheme.
(ii) At strong shocks, either

X _ '2NU2 UZA 2
(Uit1 u;)” ~ >>ﬁ X7,

or
U2
Wiy — ) ~U* > FAX2,
or the both of them. In any of the cases, the new terms introduced in
equation (A7) have a little impact on w.
(iii) Near the critical of points of smooth solutions,

2 4 2
(s — u;)? ~ BZJ Axt &~ U? ﬂ < U2 ﬂ
! ! 9x2 L L ‘

Hence, f_/B+ ~ 1 and wy =~ 1/2, like at any other point of smooth
solutions.

As to the value of L, it is reasonable to use L = ng,, Ax, with 5 <
nsm < 10, leading to the final expression for the modified weights

U2
ﬂ—:(ui_ui—l)z‘f'nT'f‘E, (A9)

UZ
B+ = (Wiy1 —Mi)2+nT+€-

sm

(A10)

For the test simulations described in this paper, we set ny; = 10 and
€ =10"%.

A2 Third-order WENO weights

Third-order WENO interpolation utilizes the fact that the linear
interpolation (A3) yields the same value at x = x;,, as the quadratic
interpolation based on the all three points of the stencil Sifw_ = 1/4
and w, = 3/4, and the same value at x = x;_y;; if w_ =3/4 and
w; = 1/4. Thus, two linear interpolants of the form (A3), one per
each interface of the cell, can be used to achieve third-order accurate
interpolation to the both interfaces. ya = 1/4 and y, = 3/4 are
known as the ideal or linear weights. We denote the interpolant
used for the interpolation to the x;_;, interface of ith cell as

P'(x) = w' P_(x) + w' Py(x), (A11)
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and the interpolant used for the interpolation to the x; 4/ as

P'(x) = w_ P_(x) + w’ Pr(x). (A12)
Their weights satisfy exactly the same constraint as before

whtwh =1, w 4w, =1. (A13)
One may put w', = wh = ¥p and wi = w’ = y,, but this will lead

to violent oscillations at shocks. Instead, WENO weights are non-
linear, reducing to the ideal weights only on very smooth solutions. At
shocks, the linear interpolant with lower gradient should dominate.
Since the second-order TVD interpolation, described earlier, is also
based on the three-point stencil S, has exactly the same form as
the third-order WENO interpolants, and already has the required
behaviour at shocks, a mapping of the TVD weights, which is closed
to the identity mapping at shocks but yields ideal weights on smooth
solutions, suggests itself.
So, we look for the mapping wy — {wﬂr, w’, } such that

wﬁr - Ya, wj— 7y as wi— 0.5, (A14)

(A15)

It also makes sense to require the functions wi(er) and w', (wy) to
be monotonic. Hence, if

wiow, > w, as wy—>0 or wy—>1.

w, = ypa(wy), (A16)

then a(x), x € [0, 1], must be a monotonic function of x satisfying
the conditions

a(0)=0, a05=1, ad)=1/py,. (A17)

In addition, it is desirable to have a reasonably wide region near x
= 0.5 where o(x) remains close to 1. Hence, one may also require
a number of its low-order derivatives to vanish at x = 0.5. For
x € [0, 0.5], these conditions are satisfied by the polynomials

pa(x)=1-(1-2x)", (A18)

where n > 2. The first three examples of such polynomials are shown
in the left panel of Fig. Al.

To determine «a(x) for x € [0.5,1], we require the function
w’ (w_) to be the same as w', (w.), apart from y}, replaced by ya,
and write
wl = yaa(w-). (A19)
Given the constraints (A6) and (A13), one can write this equation as
w, =1—yaa(l —wy).

This allows us to fully specify w’, (w,) and w” (w.),

r _ prn(w+)7 0 < w < 0.5 ,
w (wy) = {1 —ape(l—wy), 05<uwy <1, (A20)
wi(wy) =1—wi(wy). (A21)
Similarly, one finds

I _ Jrvapa(wy), 0<wy <05,
w (wy) = {1 el —wy), 05 <w. <1, (A22)
wh(wy) =1 —wh(ws). (A23)

Fig. A1 shows the non-linear weights based on p4(x).

A3 Downgrading to second-order TVD interpolation at strong
shocks

Strong shocks in high-o regime may still exhibit residual numerical
oscillations of the flow parameters. To remove them completely, one

Splitting method for RMHD 1301

can switch to the second-order TVD interpolation in the safety zone
around such shocks (see Section 3.5).

APPENDIX B: VARIABLES CONVERSION

The conserved variables of the perturbation system are mass density

D =py, (B

energy density

(B2)

E? + B?
Eny=E—Eon=Eo- Eq+Boy By +—"—— 4wy~ p,
where
E? + B?
5=—%}—+wﬁ—p, (B3)
E2 + B2
Eo =~ (B4)

momentum density

Sty =8 —Sw = EoxBa + EqyxBo + Eq)x Bay + wy’v,

(B5)
where
S=ExB+wyv, (B6)
S0y = EoxBq). B7)
In addition, we have the perfect conductivity condition is
E=—-vxB, (B8)
which can also be written as
Ey)=—-Ep—vxB. (BY)
and the polytropic equation of state
w=(p+kp), (B10)
where xk = I'/(I" —1).
Equation (BS8) leads to
ExB =Bx(vxB)= B*v— (v-B)B
and hence
S=(B*+W)v—(B-v)B, (B11)
where W = wy 2. From the last equation, it follows that
S-B
(B-v):%. (B12)
Substituting this back in equation (B11), we obtain
,_ S+(S-B)W)B B13)

B2+ W
This equation shows that v depends solely on the unknown W. From
this result, it follows that

(S-B)
w2
Thus, we have an equation for only two unknowns, W and v?.
However, this equation is not immediately suitable for the high
magnetization case as it involves terms of the order B*, that results

in large computational errors for the hydrodynamic variables. As we
show later, these terms cancel out.

$? = (B> 4+ W)*v® — 2W + B?)

(B14)
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Next, we use the perfect conductivity condition (B9) to eliminate
E ;) from the expression (B2) for &£,. To this end, we first find that
E(o)-E(l) = —E(zo) — E(O)-(U X B) ,
and
E, = Eg +2Eq)-(vxB) + [[vx B||*,

and hence

E(l) _Eg
2 2

This can be reduced further using

Eq-Eq + +loxBJ*.

loxB||* = (vxB)- (vx B)
=v-(Bx(vxB))

v-(wB>— B(v-B))

=v?B* — (v-B)*.

Substituting the last two results into equation (B2), we obtain

1 E2 B2
Eny = E(Bzvz—(v'B)z)-FW— 2(0) +%+B(0)'B(1)-
(B15)

The last three terms of the right-hand side are already known. To
reflect this, we introduce

- E% B}
S =&+ o _Z0 — B)-Bg, (B16)
2 2
and write equation (B15) as
_ 1 1(S-B)?
E =B+ wW-— , B17
1=5B% + 5 we (B17)

where we have also applied equation (B12). This equation contains
the unknowns v, W, and p. Using EOS (B10) and equation (B1),
we find that
1
= —(W( —v*) = DU =)', (B18)
K
which allows to eliminate p from equation (B17) and obtain the
cubic equation

azs(WVOW? + a(VHW? 44y =0, (B19)

where

ay=1- 1Y (B20)
K

a2=%Bzv2—5‘l+D(1_Kﬁ, (B21)

1 2
a =~>(S-B). (B22)

Thus, we have obtained two equations (B14) and (B19), for the
unknowns W and v2. This system is to be solved numerically.

Obviously, one can further reduce the system to just one equation,
either for v> or W. Following the reasonable argument of Del Zanna
et al. (2007), it is preferable to eliminate W by solving the cubic
equation (12) analytically. This allows us to control the condition
0 < v? < 1 during the numerical iterations of the Newton method
(or its secant version) for the resultant equation.

The fully expanded expression for the coefficient a; is
e 2 a 2)1 /2
*(B (0)) Eny+ — ) 4 Bo)-Bg) + p——")
The f?rst two terms of this ex%resswn constitute the difference
between B>v?/2 and E2 {0)- These non-negative terms can be very large
and their difference can be a source of large error in computations of
a, in the case of high magnetization.

Introducing the drift velocity of force-free approximation

E ) x B

2
B ©0)

Vo) =
One can write

2.2 2 2.2 2.2 2 .2
B“v —E(O)=B v —B(O)U(O)zB(O)(v —

and hence
= 3 (B (v* — U(20>) + (B3, + By Bay)v?) —
_g(l)+ +B(O) B(l)+D(1 UZ)I/Z

Computations of the term S-B may also involve subtraction of
large numbers and hence results in large errors. This can be avoided
if we note that S()- B = 0 and write

Substituting (S- B)?/W? from equation (B17) into equation (B14)
and cancelling out terms of the order B* results in

W2v2 +4€1W + 4(]7 — W) (W + 372> = S(zl) + 25(1)'5(0) —

—2& B? — B(z(»v(zo)(B(z,) +2B)-B(), (B23)
where
. B3,
& = 5(1) - T - B(O)'B(l)-

This paper has been typeset from a TEX/IZTEX file prepared by the author.
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U(zo)) + (3(21) + By Bay)v’,
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