

This is a repository copy of Enhanced mechanical performance of 3D printed continuous carbon fibre reinforced polyphenylene sulphide composites through dopamine treatment and post-processing compression.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/221045/

Version: Supplemental Material

Article:

Lyu, Y., Li, A. orcid.org/0000-0001-8897-0447, Wu, J. et al. (4 more authors) (2025) Enhanced mechanical performance of 3D printed continuous carbon fibre reinforced polyphenylene sulphide composites through dopamine treatment and post-processing compression. Composites Part A: Applied Science and Manufacturing, 190. 108627. ISSN 1359-835X

https://doi.org/10.1016/j.compositesa.2024.108627

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

SUPPLEMENTARY INFORMATION

Enhanced mechanical performance of 3D printed continuous carbon fibre reinforced polyphenylene sulphide composites through dopamine treatment and post-processing compression

Yahui Lyu¹, Aonan Li¹, Jiang Wu¹, Vasileios Koutsos¹, Chun Wang², Conchúr M. Ó Brádaigh³, Dongmin Yang^{1,*}

Figure S1. Set-up of an in-house developed filament-line.

-

¹ School of Engineering, Institute for Materials and Processes, University of Edinburgh, EH9 3FB, Edinburgh, UK

² Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT, Leeds, UK

³ Department of Mechanical Engineering, University of Sheffield, S10 2TN, Sheffield, UK

^{*} Corresponding author. Email: Dongmin.Yang@ed.ac.uk

Figure S2. (a) Hot-press program and (b) as-printed and post-processed printed specimens.

Figure S3. Interaction models after equilibration of (a) CF and SiO2, (b) CF and PDA and (c) PDA and SiO2; (d) Initial interaction and (e) equilibrated models of CF, SiO2 and PDA.

Figure S4. Surface micrographs of (a) as-printed CCF/PPS (b) post-processed CCF/PPS using a saltbath.

Table S1 Printing parameters for CCF/PPS filament.

Printing parameter	Values		
Bed temperature	90 °C		
Nozzle temperature	320 °C		
Chamber temperature	25 °C		
Print speed	150 mm/min		
Raster width	1.5 mm		
Layer height	0.2 mm		
Nozzle diameter	1.3 mm		

Table S2 Designed dimensions and actual dimensions of as-printed and post-processed perforated part.

Perforated part	Designed model (mm)	As-printed part (mm)	Post- processed part (mm)	As-printed deviations (%)	Post- processed deviations (%)	Variations (%)
Major size	120.00	119.11	119.18	0.74	0.68	/
Minor size	13.00	12.88	13.22	0.92%	1.70	/
Thickness	2.00	2.22	1.99	/	/	10.36
Width	3.00	3.21	2.91	/	/	9.35

Table S3 Designed dimensions and actual dimensions of as-printed and post-processed stiffener part.

Stiffener part	Designed diameter (mm)	As-printed diameter (mm)	Post-processed diameter (mm)	As-printed deviations (%)	Post-processed deviations (%)	Variations (%)
Top inner	173.00	170.29	169.80	1.57	1.85	/
Top outer	191.00	190.83	188.84	0.09	1.13	/
Bottom inner	164.00	165.37	165.38	0.84	0.84	/
Bottom outer	200.00	200.29	199.37	0.15	0.31	/
Top width	18.00	20.54	19.04	/	/	7.30
Bottom width	36.00	34.92	33.99	/	/	2.67
Thickness	4.00	4.34	3.77	/	/	13.13