
This is a repository copy of Continual compression model for online continual learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/221042/

Version: Published Version

Article:

Ye, Fei and Bors, Adrian Gheorghe orcid.org/0000-0001-7838-0021 (2024) Continual
compression model for online continual learning. APPLIED SOFT COMPUTING. 112427.
ISSN 1568-4946

https://doi.org/10.1016/j.asoc.2024.112427

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Continual compressionmodel for online continual learning
Fei Ye a, Adrian G. Bors b,∗

a School of Information Software Engineering, University of Electronic Science and Technology of China, Chengdu, China
b Department of Computer Science, University of York, York YO10 5GH, UK

A R T I C L E I N F O

Keywords:
Continual learning
Dynamic expansion model
Task-Free Continual Learning
Component pruning

A B S T R A C T

Task-Free Continual Learning (TFCL) presents a notably demanding but realistic ongoing learning concept,
aiming to address catastrophic forgetting in sequential learning systems. In this paper, we tackle catastrophic
forgetting by introducing an innovative dynamic expansion framework designed to adaptively enhance the
model’s capacity for novel data learning while also remembering the information learnt in the past, by
using a minimal-size processing architecture. Our proposed framework incorporates three key mechanisms
to mitigate model’ forgetting: (1) by employing a Maximum Mean Discrepancy (MMD)-based expansion
mechanism that assesses the disparity between previously acquired knowledge and that from the new training
data, serving as a signal for the model’s architecture expansion; (2) a component discarding mechanism
that eliminates components characterized by redundant information, thereby optimizing the model size while
fostering knowledge diversity; (3) a novel training sample selection strategy that leads to the diversity of the
training data for each task. We conduct a series of TFCL experiments that demonstrate the superiority of the
proposed framework over all baselines while utilizing fewer components than alternative dynamic expansion
models. The results on the Split Mini ImageNet dataset, after splitting the original dataset into multiple tasks,
are improved by more than 2% when compared to the closest baseline.

1. Introduction

Continually learning new concepts represents an innate ability of
living beings that allows them to learn new skills and adapt to chang-
ing environments. Continual learning is required for real-life online
learning systems such as those used for autonomous driving vehicles,
robots or for streaming services. However, most existing deep learning
models fail to achieve continual learning since they would rewrite
their previously learnt parameters with new values to adapt when
learning the new tasks. As a result, the previously learnt information
of previous tasks is lost, leading to performance degeneration [1].
Such performance degeneration is referred to in machine learning as
catastrophic forgetting [2] .

The current methods for addressing continual learning can be
summarized into three categories: memory-based approaches [3,4],
regularization-based methods [5,6] and dynamic expansion models
(DEMs) [7,8]. The memory-based methods [4] use a memory buffer to
store a few past samples and replay them during the new task learning
to deal with forgetting. Another type of the memory-based models
trains a deep generative model such as a Variational Autoencoder
(VAE) [9] or a Generative Adversarial Network (GAN) [10] to learn
and then generate past samples which are combined with new data
samples to relieve network forgetting [11]. Such an approach can

∗ Corresponding author.
E-mail addresses: feiye@uestc.edu.cn (F. Ye), adrian.bors@york.ac.uk (A.G. Bors).

provide infinite generative replay data samples, which overcome the
limitation of a fixed-size memory buffer system. Regularization-based
methods [5] usually consider additional terms to the loss function for
controlling forgetting. A combined replay and regularization approach
is the teacher-student framework where the teacher module is frozen
after the training, while the student module is the currently learning
model. This approach aims to align the output of the teacher and
student modules for the given new data samples by using a penalty term
in the primary objective function [6]. Different from the memory-based
and regularization-based methods, the dynamic expansion models can
automatically add new hidden layers and nodes into a unified network
architecture when learning new tasks [8]. The primary advantage of
using the dynamic expansion model is that it does not suffer from
forgetting problems and can deal with learning long task sequences.

Most existing continual learning studies only consider a simple
assumption where the task information and corresponding indices are
given during the training. However, this learning scenario is not realis-
tic in most real-time applications, such as when continuously streaming
online incoming data. In this paper, we address a more challenging
learning scenario called the Task-Free Continual Learning (TFCL) [12],
which trains a model on a data stream without accessing any task

https://doi.org/10.1016/j.asoc.2024.112427
Received 21 May 2024; Received in revised form 4 October 2024; Accepted 23 October 2024

Applied Soft Computing Journal 167 (2024) 112427

Available online 12 November 2024
1568-4946/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

F. Ye and A.G. Bors

Fig. 1. Comparison between a general DEM and the proposed DEM. The general DEM framework checks the input data shifts, using them as expansion signals while the proposed
DEM framework evaluates the knowledge diversity among experts as the expansion signal. In addition, the proposed DEM framework enables a component discarding mechanism
to reduce its complexity, optimizing the model.

information or boundaries. A popular and efficient approach for im-
plementing TFCL is by considering a memory buffer for storing some
of the past training data [13–15]. When the model proceeds to a new
training step, the memorized samples are replayed from the memory
buffer to update the model, thus relieving forgetting. However, due
to the absence of task information, memory-based approaches require
enabling a sample selection approach, aiming to store a diversity of
data that can represent all data modalities [13]. In this paper we
propose a novel Dynamic Expansion Model (DEM) to address network
forgetting in TFCL driven by the following motivations:

• Since memory-based methods usually have only a limited memory
capacity, it is intractable to consider such methods for learning in-
finite data streams. Instead, we employ a new dynamic expansion
model (DEM) to deal with the TFCL challenges.
• When compared to the static models, DEM provides a better
generalization performance while also being able to preserve the
knowledge of much more information from the past learning.

One of the key mechanisms for DEM is the dynamic expansion
process that controls and regularizes the network size [16]. Using
a Neural Dirichlet process-based dynamic expansion mechanism was
proposed in [16], which adds new components automatically when
detecting novel information. Another DEM approach from [3] considers
evaluating the sample log-likelihood as the signal for the network
expansion. However, these two methods [3,16] only consider expand-
ing the network architecture when the input distributions changes,
eventually leading to components learning similar knowledge. We pro-
vide a comparison between the general DEM and the proposed DEM
framework in Fig. 1. An optimal DEM should have a compact net-
work architecture while achieving optimal performance where each ex-
pert/component should learn and capture different information. How-
ever, most existing DEM methods only consider addressing forgetting
problems while ignoring how to compress the model without sacrificing
much performance, resulting in non-optimal network architectures.

Aiming to address the limitations of prior works, this study pro-
poses the Continual Compression Model for Online Continual Learning
(CCM-OCL) that simultaneously addresses catastrophic forgetting and
model compression for DEMs through two goals: (1) Firstly, CCM-OCL
dynamically expands its network architecture to learn new information
while freezing all previously learnt components to avoid forgetting; (2)
Secondly, CCM-OCL optimizes its model size by automatically removing
those components deemed redundant.

The contributions of the paper are summarized in the following:

• A novel dynamic expansion mechanism enabled by the Maxi-
mum Mean Discrepancy (MMD) measure. The proposed dynamic

expansion mechanism dynamically adds new components to the
model without accessing any task information.
• A novel approach enables the diversity-aware sample selection
which ensures the preservation of a diversity of knowledge in
the memory buffer. This sample selection approach can further
promote the discrepancy among components, leading to a more
compact model structure.
• A new component discarding mechanism is proposed for se-
lectively removing redundant components, resulting in a com-
pact, yet efficient network architecture without sacrificing per-
formance.
• Through multiple TFCL experiments we compare the proposed
CCM-OCL model with several well-known methods. The empir-
ical results on several datasets show that the proposed method
leads to a compact DEM achieving better performance than other
methods.

2. Related works

In this section we provide a comprehensive literature review for
continual learning. Continual learning methods can be divided into
three categories: memory-based, regularization-based and dynamic ex-
pansion models. A succinct categorization of the main approaches is
provided in Table 1. In the following we discuss some of the more
important continual learning approaches.

2.1. Memory-based methods

Memory-based methods utilize a memory buffer to retain criti-
cal past data samples, facilitating the learning process and aiming
to mitigate network forgetting during continual learning [3,4]. One
typical memory-based approach is the Gradient Coreset-based Replay
(GCR) [6], which employs a sample selection approach to preserve the
data samples approximating the gradient of all seen data using the
model parameters updated at the current task learning. Another ap-
proach, the Experience Packing Factor (EPF) [20] is used for continual
image learning, by storing important patches, for each image being
learnt, in the memory buffer. Specifically, EPF employs the saliency
maps as the guideline for choosing which image patches to store.
The Adaptive Rehearsal [21] is a simple still efficient memory-based
approach which employs the Boltzmann sampling to selectively store
past data samples into a memory buffer. However, these memory-
based methods only consider simple and popular continual learning
environments in which the new classes appear during new training
phases. The model’s performance can be further improved by enabling
the memory-based methods with regularization-based mechanisms, by

Applied Soft Computing 167 (2024) 112427

2

F. Ye and A.G. Bors

Table 1
Outline of significant continual learning models.
Methods Method type TFCL Year

MIR [17] Memory-based methods Yes 2019
GSS [18] Memory-based methods Yes 2019
Rainbow Memory [19] Memory-based methods No 2019
CoPE [13] Memory-based methods Yes 2021
GMED [14] Memory-based methods Yes 2021
GCR [6] Memory-based methods No 2022
EPF [20] Memory-based methods No 2023
Adaptive Rehearsal [21] Memory-based methods No 2024
DCM [22] Memory-based methods No 2024
LwF [23] Regularization-based method No 2017
EWC [24] Regularization-based method No 2017
Online EWC [25] Regularization-based method No 2018
VCL [26] Regularization-based method No 2018
MAML-Rep [27] Regularization-based method No 2019
ACL [28] Regularization-based method No 2020
RFG [29] Regularization-based method No 2022
A Closer Look [30] Regularization-based method No 2023
DER+++refresh [31] Regularization-based method No 2024
Progressive Neural Networks (PNN) [32] Dynamic expansion model No 2016
AdaNet [8] Dynamic expansion model No 2017
Expert Gate [33] Dynamic expansion model No 2017
Compacting, Picking, and Growing [7] Dynamic expansion model No 2019
CURL [3] Dynamic expansion model Yes 2019
CN-DPM [16] Dynamic expansion model Yes 2020
Batch Ensemble [34] Dynamic expansion model No 2020
Dynamic-CVA [35] Dynamic expansion model Yes 2024

penalizing, during the training, changes in some important network
weights [5,6], while managing the memory buffer. Despite providing
some promising performances, such methods depend on fixed memory
capacities, and are not able to store sufficient information for updating
the model when learning an infinite number of tasks.

Another direction of research consists of training a generative net-
work, such as a GAN [10] or a VAE [9], aiming to preserve and
reproduce previously learnt information [11]. Once the learning of a
task is finished, the generator can produce data samples, consistent
with the previously learnt information, which is then combined with
new samples to relieve forgetting. However, the performance of such
approaches is relying on the quality of the generative replay samples.
The model’s performance will be decreased significantly when the gen-
erator cannot produce high-quality generative replay samples. This is
usually caused by the unstable training and mode collapse [36], a phe-
nomenon analyzed and discussed in [37]. In addition, these approaches
suffer from an ever-increasing computational complexity burden when
learning an increasing number of tasks. Another drawback of these
approaches is that they are not scalable when learning many tasks [38].

This paper can address the weaknesses of the memory-based meth-
ods [4] by developing a novel DEM that adaptively creates new experts
to capture underlying data distributions over time. In addition, the
proposed approach can be applied to a more realistic continual learning
setting in which the data stream consists of infinite samples.

2.2. Regularization-based methods

Regularization-based approaches aim to alleviate catastrophic for-
getting by employing an auxiliary loss term that is added into the
primary objective function to penalize significant changes in the net-
work’s weights when training the model on a new task [23,39–41].
There are two regularization-based approaches including by adding
additional penalty terms in the primary objective function as in the
Variational Continual Learning (VCL) [26], or by using knowledge dis-
tillation [23]. Learning Without Forgetting (LwF) [23], is perhaps the
best known continual learning regularization approach, which employs
knowledge distillation in order to enable the newly learnt model to
remember previously learnt information. The knowledge distillation
mechanism trains a dual processing model framework, called teacher-
student, using a specific loss function that aims to align the output data

between the student and teacher processing modules. Furthermore, by
combining parameter regularization and knowledge distillation into a
unified framework rehearsal-free continual learning models [30] can
achieve good performance in continual learning without requiring to
store any past data samples.

Empirical results have shown that the Elastic Weight Consolidation
(EWC) [24] can achieve good results in the task-incremental setting in
which each new task contains data samples from all classes. However,
the performance of the EWC in the class-incremental setting suffers
from significant performance degeneration. This issue/problem was
addressed by Schwarz et al. [25], which introduces a new approach
called Online EWC which updates the Fisher matrix only at the latest
learnt task, reducing the model’s complexity. The Variational Continual
Learning (VCL) [26] uses Bayesian inference to relieve forgetting for
both classifiers and VAE models. Several studies have considered ad-
versarial training [28] to regulate the learned representations in order
not to be forgotten during the continual learning process. Such ap-
proaches can also be implemented using meta-learning [27]. However,
one significant weakness is the amount of computational resources
required by such approaches for relieving forgetting, especially when
the number of tasks increases ceaselessly [42]. Adversarial Continual
Learning [28] uses adversarial learning as a regularization approach
to learn task-invariant features that capture the shared information
among different tasks. Projected Functional Regularization [29] uses
self-supervised learning for regulating network optimization. The Dark
Experience Replay (DER) [43], matches the network’s logits sampled
throughout the optimization trajectory promoting consistency with its
past. Furthermore, the DER+++refresh [31] builds upon the results
of DER [43] by introducing an unlearning procedure that encourages
critical network parameters to only change slowly while allowing more
significant changes for those parameters not deemed important.

2.3. Dynamic Expansion Models (DEM)

The DEM framework has been used to deal with forgetting in
continual learning by relying on its scalability and generalization abil-
ities, [7,8]. The primary idea of the DEM is to dynamically add new
hidden units and layers when learning new tasks. Previously learnt
information is preserved in the frozen network parameters to prevent
forgetting [32], while only the newly created parameters are updated

Applied Soft Computing 167 (2024) 112427

3

F. Ye and A.G. Bors

to learn new knowledge. The Progressive Neural Network [32] builds
its architecture upon a starting small network, by gradually adding new
component nodes and parameters for learning new tasks. Specifically,
this approach preserves all previous information in frozen sub-networks
and only updates the newly created parameters when training on a new
task. The idea of this expansion mechanism is also applied to [33],
which introduces a new mixture model, namely the Expert Gate for
CL, where each expert is implemented as an autoencoder for learning a
new task. When the learning of all tasks is finished, the reconstruction
error is used as the expert selection mechanism during the testing
phase. Combining network pruning and model expansion mechanisms
was proposed in [7], aiming to achieve a compact dynamic expansion
model. This approach relies on the task information to pick certain
parameters for learning a new task and thus cannot be applied to
TFCL. Furthermore, these dynamic expansion models usually have a
large model size when considering learning a long sequence of tasks
since each expert has its own individual parameters. This issue is
solved by the BatchEnsemble [34], which consists of several modules,
each used to learn a new task while considering shared parameters
among the ensemble members, reducing the whole model’s size. More
recently, a gating-based Dirichlet process [38] enabled to reuse existing
components to learn related new tasks. The DEM-based models enjoy
several advantages over static network architectures: (1) They can
preserve the best information from the past tasks and thus can provide
a better model performance than the static model; (2) They can deal
with an infinite number of tasks [38].

However, most existing dynamic expansion frameworks [34,38]
need accessing task information to check the model’s expansion process
and thus cannot address TFCL. In addition, unlike in the approach
proposed in this paper, these methods do not use an appropriate sample
selection approach when a memory buffer is used during the learning
of the expanding model.

2.4. TFCL learning paradigm

Most existing continual learning methods can only be applied to a
general setting, where the task information is accessible at all times.
However, this is not a realistic setting. Recent studies have given
attention to the TFCL setting, where the model is trained on a data
stream without accessing any task information or identity. A popular
and efficient way to deal with TFCL is called the memory-based ap-
proach which uses a memory buffer to preserve some past training
samples. During the subsequent learning, samples from the memory
buffer are replayed to determine the model to remember past infor-
mation. However, since the memory buffer cannot store many samples
forever, a suitable sample selection approach is required to selectively
preserve only certain data over time. The first paper, which considered
training a continual learning classifier on the memory buffer for ad-
dressing TFCL was explored in [12]. This approach was then extended
by the Maximal Interfered Retrieval (MIR) model [17] to train both
a VAE and a classifier by using an information retrieval approach
which selectively preserves the most distinct data. More recently, the
Gradient Sample Selection (GSS) [18] can selectively store critical
samples in the memory buffer by using a constrained optimization
reduction approach. Furthermore, the sample selection process can be
implemented within a learner-evaluator framework called the Continual
Prototype Evolution (CoPE) [13], which ensures that the number of
memorized samples for each task is equal. Another approach to address
TFCL modifies the data samples from the memory buffer, by means of
the Gradient-based Memory Editing (GMED) algorithm [14], in which
the edited samples would increase the loss in the upcoming model
updates. Furthermore, managing a memory system without accessing
any supervised signals such as the task or class labels is the Dynamic
Cluster Memory (DCM) [22], which dynamically builds several new
memory clusters to store critical past information. Different from most
existing memory-based methods, the DCM memory system can be used

to train deep generative models in continual unsupervised learning.
Despite performing very well under TFCL, these methods rely on a
single memory buffer with a fixed capacity, making it hard to deal
with data streams consisting of several different data domains. This
inspires several studies to employ dynamic expansion models for TFCL.
The first study applying DEM to TFCL, introduced in [3], proposed
an unsupervised learning framework, namely the Continual Unsuper-
vised Representation Learning (CURL). This framework dynamically
builds new inference models to capture novel latent information while
the generator replays past samples to relieve forgetting. A similar
DEM approach, called the Continual Neural Dirichlet Process Mixture
(CN-DPM) was introduced in [16]. CN-DPM dynamically creates new
VAE-based components that are added to a mixture model by means of
a neural Dirichlet process. However, the dynamic expansion mechanism
in these methods employs either the sample log-likelihood estimation
or density estimation, which ignores the diversity of information con-
tained in the model’s mixture components when expanding, leading
to sub-optimal network architectures. Implementing a mixture system
by using a dynamic expansionable memory cluster was proposed for
the task-free continual generation and representation learning in the
Dynamic Continual Variational Autoencoder (Dynamic-CVA) [35].

Existing dynamic expansion models [3,16,35] usually evaluate the
input shift as the expansion signal, which would tend to create more
components/experts when similar data samples appear at different
training times. In contrast, the approach proposed in this paper imple-
ments the model-expansion checking process by evaluating the distance
between the knowledge learnt by the current expert and that of each
previously learnt expert, which leads to a compact network architec-
ture. Moreover, the reduction in the number of parameters of the
dynamic expansion models has not been explored before in the context
of TFCL. The approach from this paper introduces a novel component
discarding mechanism that can compress the mixture model without
losing much performance.

3. Methodology

In this section, we introduce the proposed Continual Compression
Model for Online Continual Learning (CCM-OCL), which employs a
novel dynamic expansion mechanism using the MMD measure for
enabling the DEM for TFCL. We then propose a diversity-aware sample
selection approach enabling the current learning component to acquire
novel knowledge. We also propose a component discarding strategy
aimed at removing components that represent knowledge closely re-
sembling that of the others. We end with a unifying optimization
framework for achieving a good performance with a compact model.

3.1. Problem statement

Let  and  be the space of the data samples and their classes,
respectively. Let  be a data stream trained on a set of training
steps/times  = {1,… , 𝑛}, where 𝑛 represents the total number of
training steps. Under the class-incremental setting, we divide a training
dataset 𝑐 into several parts {1

𝑐
,… ,𝑐′

𝑐
} where each 𝑗

𝑐 represents a
set of samples, and 𝑐′ is the total the number of parts. A data stream 
in this setting is then formed as:

 = {1
𝑐
∪2

𝑐
⋯ ∪𝑐′

𝑐
} . (1)

At a certain training time 𝑖, the model can only access a small
batch of samples {𝐱𝑡, 𝐲𝑡}

𝑏
𝑡=1

drawn from  while all previously learnt
data samples are not available. In addition, we also consider a more
challenging learning paradigm, which involves multiple data domains,
expressed as:

 = {1
𝑐
∪2

𝑐
⋯ ∪𝑐′

𝑐
⋯ ,𝑐′

𝑐2
} , (2)

where 𝑐2 is the index of the training dataset 𝑐2, which is entirely
different from 𝑐 . The model will address the class and domain shift

Applied Soft Computing 167 (2024) 112427

4

F. Ye and A.G. Bors

Table 2
The description of notations.
Notations Descriptions

 = {1 ,… , 𝑛} 𝑛 number of training times for tasks.
 The data stream.
𝐶 (𝑆𝑡 ,𝑖) The loss function used to update the classifier.
𝑉 (𝑆𝑡 ,𝑖) The loss function used to update the VAE model.
𝐷𝐾 𝐿(𝑃 ′ ||𝑄′) The KL divergence.
𝑒
M
(𝑃 , 𝑄) The unbiased empirical estimate for the MMD criterion.

𝑆𝑡 The 𝑡th component.
𝑖 The memory buffer updated at 𝑖.
|𝑖| The number of data samples for the memory buffer 𝑖.
𝜆 The expansion threshold for the proposed approach.
𝑑 (𝐱𝑠) Calculating the discrepancy score for each sample.
𝑓FID(𝐃

′ ,𝐃) The FID score for two datasets.
𝐄 The relationship matrix among experts.
𝑑 𝑖𝑣𝑒𝑟(𝑆𝑎) Calculating the diversity score for an expert/component.
𝑐 𝑒(𝐲′𝑗 , 𝐲𝑗) The cross-entropy loss.

over time when using the setting from Eq. (2). The primary goal of a
continual learning model is that of minimizing the loss values on all
previous data batches at 𝑖, expressed as:
min
𝜉

{ 𝑖∑

𝑗=1

(𝐘𝑗 , 𝑓𝜉 (𝐗𝑗))
}
, (3)

where 𝐗𝑗 and 𝐘𝑗 denote the 𝑗th data batch and corresponding class
labels at 𝑗 , 𝑗 ≤ 𝑖. (⋅, ⋅) is a loss function and 𝑓𝜉 (⋅) is a classifier defined
by the parameter set 𝜉. However, updating the model’s parameter
set 𝜉 using Eq. (3) in continual learning is impossible because we
cannot access all previously seen data batches. Once the whole training
procedure is finished, we evaluate the model’s performance using all
testing datasets. In Table 2 we provide some important notations and
abbreviations used in this paper.

3.2. MMD-based expansion mechanism

A straightforward and efficient approach for addressing forgetting
in TFCL is by utilizing a defined-capacity memory buffer designed to
retain a limited number of previous examples. Such a memory buffer is
denoted as 𝑖, where the subscript 𝑖 indicates that 𝑖 was updated at𝑖. Let  = {𝑆1,… , 𝑆𝑡} be a DEM and we assume that the mixture model is made up of 𝑡 components, where each component 𝑆𝑡 has a classifier
𝐶𝑡 and a Variational Autoencoder (VAE) 𝑉𝑡 used for the component
selection at the inference time, [9]. The classifier 𝐶𝑡 is implemented
using a fully connected or a convolution network 𝑓𝜉𝑡

∶ →  , where
𝜉𝑡 is the model’s parameter, which is used to predict the class label
for each sample. The VAE model 𝑉𝑡 consists of two neural networks
𝑓 𝑣
𝜔𝑡
∶  →  and 𝑓 𝑣

𝜃𝑡
∶  →  . The former predicts the Gaussian

hyper-parameters that are used to form an encoding distribution 𝑞𝜔𝑡
(𝐳 ∣

𝐱) =  (𝝁,𝝈2𝐈), where {𝝁,𝝈} are inferred by 𝑓 𝑣
𝜔𝑡
. Meanwhile, the latter

network is used to model a decoding distribution 𝑝𝜃𝑡
(𝐱 | 𝐳), assumed

to be Gaussian. To ensure that the error backpropagated properly
through the encoding–decoding process during the training, we use
the reparameterization trick to implement the sampling process of the
latent variable 𝐳 = 𝝁+ 𝝈 ⊙ 𝝉, where ⊙ is the element-wise product and
𝝉 ∼  (𝟎, 𝐈).

When optimizing the whole mixture framework during continual
learning, one reasonable approach is to update only one component
while freezing all previously learnt components. Let 𝐶 denote the
classification loss used to update the classifier 𝐶𝑡 and 𝑉 represents
the VAE loss used to update 𝑉𝑡. The current component 𝑆𝑡 is trained,
using the samples from 𝑖 at 𝑖 for updating the loss functions for the
component’s classifier and VAE, respectively, as:

𝐶 (𝑆𝑡,𝑖)
𝛥
=

1

|𝑖|

|𝑖|∑

𝑗=1

𝑐 𝑒
(
𝑓𝜉𝑡

(𝐱𝑗), 𝐲𝑗
)
, (4)

𝑉 (𝑆𝑡,𝑖)
𝛥
= E𝑞𝜔𝑡

(𝐳∣𝐱)

[
log 𝑝𝜃𝑡 (𝐱𝑡 ∣ 𝐳)

]
−𝐷𝐾 𝐿

[
𝑞𝜔𝑡

(𝐳 ∣ 𝐱𝑡) ∥ 𝑝(𝐳)
]
, (5)

where 𝑐 𝑒(⋅, ⋅) is the cross-entropy loss, defined as:

𝑐 𝑒(𝐲′𝑗 , 𝐲𝑗) =
𝐾̂∑

𝑐=1

𝑦𝑐 log(𝑦
′
𝑐
) , (6)

where 𝐾̂ is the total number of categories. 𝑦𝑐 and 𝑦′
𝑐
denote the 𝑐th

dimension of 𝐲𝑗 and 𝐲′
𝑗
, respectively. We use |𝑖| to denote the number

of memorized samples at 𝑖. 𝑝(𝐳) =  (𝟎, 𝐈) is a pre-defined Gaussian
prior, and 𝐷𝐾 𝐿(⋅ ∥ ⋅) is the Kullback–Leibler (KL) divergence, defined
as:

𝐷𝐾 𝐿(𝑃 ′ ∥ 𝑄′) =1

2

[
log

|𝜮𝑄′ |
|𝜮𝑃 ′ |

− 𝑑𝐳

+ (𝝁𝑃 ′ − 𝝁𝑄′)T𝜮−1
𝑄′ (𝝁𝑃 ′ − 𝝁𝑄′) + t r (𝜮−1

𝑄′𝜮𝑃 ′)
]
,

(7)

where 𝝁𝑃 ′ and 𝝁𝑄′ denote the mean vector of the Gaussian distribution
𝑃 ′ and 𝑄′, respectively. 𝑑𝐳 represents the dimension of the latent space.
𝜮𝑄′ and 𝜮𝑃 ′ denote the covariance matrix for 𝑄′ and 𝑃 ′, respectively.
The superscript T and −1 of a matrix denotes the matrix transpose and
inverse matrix while t r (⋅) denotes the matrix trace.

The Maximum Mean Discrepency (MMD) is a popular measure used
to evaluate the distance between two probability density functions.
Such a distance is formed on the basis of embedding probabilities in
a Reproducing Kernel Hilbert space (RKHS) [44]. Let us define 𝑄 and
𝑃 as two Borel probability measures. We consider 𝐱 and 𝐮 as random
variables over a topological space  . We consider {𝑓 ∈  |𝑓 ∶ → 𝐑}

to denote a function, while  represents a class of functions. We define
the MMD between 𝑄 and 𝑃 as [44]:

M(𝑃 , 𝑄)
𝛥
= sup

𝑓∈
(
E𝐱∼𝑃 [𝑓 (𝐱)] − E𝐮∼𝑄 [𝑓 (𝐮)]

)
. (8)

where sup denotes the least upper bound of a set of numbers. If 𝑃 = 𝑄,
we have M(𝑃 , 𝑄) = 0. The function class  is considered as a unit ball
in an RKHS with a positive definite kernel 𝑘(𝐱, 𝐱′). Calculating Eq. (8) is
usually computationally intractable. In practice, the MMD is estimated
on the embedding space [45], expressed as:

2
M
(𝑃 , 𝑄) = ‖𝝁𝑃 − 𝝁𝑄‖2 , (9)

where 𝝁𝑃 and 𝝁𝑄 denote the mean embedding of 𝑃 and 𝑄, respectively.
‖ ⋅ ‖2 denotes the Euclidean distance. 𝝁𝑃 is defined as:

𝝁𝑃 (𝐱
′) = ∫ 𝑘(𝐱, 𝐱′)

𝜕 𝑃 (𝐱)
𝜕𝐱

𝑑𝐱 , (10)

where 𝑃 (𝐱) denotes the probability density function for 𝑃 . 𝝁𝑃 also
satisfies the following equation:

E[𝑓 (𝐱)] = ⟨𝑓 ,𝝁𝑃 ⟩ , (11)

where ⟨𝑓 , ⋅⟩ denotes the inner product. Since RKHS has the repro-
ducing property 𝑓 ∈  , 𝑓 (𝐱) = ⟨𝑓 , 𝑘(𝐱, 𝐱′)⟩ , Eq. (9) can be calculated
using the kernel functions:

2
M
(𝑃 , 𝑄) = E𝐱,𝐱′∼𝑃 [𝑘(𝐱, 𝐱

′)] − 2E𝐱∼𝑃 ,𝐮∼𝑄[𝑘(𝐱,𝐮)] +E𝐮,𝐮′∼𝑄[𝑘(𝐮,𝐮
′)] , (12)

where 𝐮′ and 𝐱′ are independent copies of 𝐮 and 𝐱, respectively. In
practice, we employ the same number of samples from 𝑃 and 𝑄 (𝑁𝑃 =

𝑁𝑄), where 𝑁𝑃 and 𝑁𝑄 are the total counts of samples for 𝑃 and
𝑄, respectively. Then Eq. (12) can be estimated using an unbiased
empirical estimate, defined as:

𝑒
M
(𝑃 , 𝑄) = 1

𝑁𝑃 (𝑁𝑝 − 1)

𝑁𝑃∑

𝑖≠𝑗
ℎ(𝑖, 𝑗) , (13)

where ℎ(𝑖, 𝑗) = 𝑘(𝐱𝑖, 𝐱𝑗) + 𝑘(𝐮𝑖,𝐮𝑗) − 𝑘(𝐱𝑖,𝐮𝑗) − 𝑘(𝐱𝑗 ,𝐮𝑖).
In the following, we describe how the MMD measure can be used as

the expansion signal for the proposed dynamic expansion mechanism.
Assume that the DEM  = {𝑆1,… , 𝑆𝑡} has already learnt 𝑡 components.
During the training, we only update the current component 𝑆𝑡 at 𝑖.
The dynamic expansion process is implemented by encouraging the

Applied Soft Computing 167 (2024) 112427

5

F. Ye and A.G. Bors

probabilistic diversity between the trained components when adding a
new component. We can express this goal as an optimization problem:

𝑐⋆ = ar g max
𝑐=𝑖,𝑖+1,…,𝑛

𝑡−1∑

𝑗=1

𝑒
M

(
P𝐳̃𝑗 ,P𝐳𝑐

)
, (14)

where P𝐳̃𝑗 is the distribution of the latent vectors {𝐳̃𝑗 ,1,… , 𝐳̃𝑗 ,𝑚}. Each
latent vector 𝐳̃𝑗 ,𝑠 is predicted using the inference model with the sample
𝐱̃𝑗 ,𝑠 produced by 𝑉𝑗 . P𝐳𝑐

is the distribution formed using the latent
vectors {𝐳1,… , 𝐳𝑚}. Each latent vector 𝐳𝑠 is predicted based on the
stored sample 𝐱𝑠 drawn from the memory𝑐 using the inference model
of 𝑉𝑡. The right-hand side of Eq. (14) is used to evaluate the distance
between the current memory buffer and the knowledge preserved in
each previously learnt component. 𝑐⋆ is the optimal solution that
achieves the maximum distance. Eq. (14) can be viewed as a recursive
optimization problem if we expand the model  (𝑆𝑡 is added). However,
searching for the optimal solution 𝑐⋆ in Eq. (14) is impossible since we
need to access the data from all training steps, which are not available.
Therefore, we propose a new dynamic expansion mechanism for the
model in order to be able to evaluate Eq. (14) at 𝑖, expressed as:
min

{𝑒
M

(
P𝐳̃1 ,P𝐳𝑖

)
,… ,𝑒

M

(
P𝐳̃𝑡−1 ,P𝐳𝑖

)} ≥ 𝜆, (15)

where 𝜆 is a hyper-parameter used to control the model’s expansion. If
the current memory buffer𝑖 stores sufficiently different samples with
respect to the already learnt knowledge at 𝑖 (satisfying Eq. (15)), we
freeze the current component 𝑆𝑡 and build a new component 𝑆𝑡+1 at the
next training step 𝑖+1. The 𝜆’s value influences the model’s expansion.
A small 𝜆 tends to frequently add new components during the training
while a large 𝜆 has the opposite effect.

The MMD measure has several limitations, which can be summa-
rized into three aspects: (1) The estimation of the MMD measure is
imprecise when the target distributions are complex; (2) The choice
of different kernel functions 𝑘(⋅, ⋅) can lead to different results for
the MMD; (3) The MMD criterion requires considerable computational
costs when it is evaluated on the high-dimensional data space. In the
experiments we evaluate the MMD on a low-dimensional latent space,
which is computationally efficient.

In order to avoid learning from data samples representing similar
information, we clear up the memory buffer 𝑖 after is being used to
train each component/expert. If similar data would at different times
𝑖 be stored in the memory buffer 𝑖, the components trained on this
memory buffer would capture and accumulate similar knowledge with
each other. This paper addresses this issue, as described in detail in
the next section, by developing a data sample selection approach that
encourages the diversity of information stored in the memory buffer.

3.3. Diversity-aware sample selection

Unlike other sample selection approaches, such as [13], which
ensures balanced data samples across all tasks, this section introduces
a new sample selection approach for 𝑖 aiming to store novel sam-
ples which are then used to train the current learning component.
The primary idea of the proposed sample selection is to encourage
the current component to learn examples that are different from the
information stored by each previously trained component. Before we
introduce the proposed approach, we first discuss a straightforward
sample selection approach, which is considered as the baseline, called
the Sliding Window approach, which always stores incoming samples
while removing the earliest stored samples when the memory buffer is
full at 𝑖, as a first-in-first-out (FIFO) approach :
𝑖 = 𝑖−1

⋃𝑖 , 𝑖 =

|𝑖|+𝑏⋃

𝑗=𝑏

𝑖[𝑗] , (16)

where 𝑖[𝑗] is the 𝑗th stored sample of 𝑖 and 𝑏 is the batch size,
considered as 𝑏 = 10 in the experiments, while |𝑖| is the previous
buffer size. However, Eq. (16) only allows the current memory buffer to
store newly seen information while ignoring previous data samples and

the sample diversity. This can result in 𝑖 storing many similar data
samples. To address this problem, we propose a new sample selection
approach to selectively preserve those data samples that are critical for
training the model.

The primary idea of the proposed approach is to store those data
samples which are different from the information which is already
accumulated. Thus, in the first step we evaluate the novelty of in-
coming samples. Since VAEs have inference mechanisms and can esti-
mate the sample log-likelihood, we use the VAEs associated with the
existing CCM-OCL components to evaluate the novelty of incoming
samples, [3]. To achieve this goal, we calculate the sum of the negative
sample log-likelihood estimated by each previously learnt component
as a discrepancy score for each sample to be memorized :

𝑑 (𝐱𝑠) =
1

𝑡 − 1

𝑡−1∑

𝑗=1

{
−𝑉 (𝑆𝑗 , 𝐱𝑠)

}
, (17)

where 𝐱𝑠 is the 𝑠th memorized sample. A small 𝑑 (𝐱𝑠) indicates that the
sample 𝐱𝑠 is known by at least one of the previously learnt components
and this sample should not be stored in order to be used for training.
Then, we selectively store the samples through the proposed Diverse
Sampling Selection :
𝐱′
𝑠
= ar g min

𝐱𝑠∈𝑖

{𝑑 (𝐱𝑠)} , (18)

then we remove the selected sample by considering that 𝐱′
𝑠

∉ 𝑖.
We recursively repeat the exclusion of other samples 𝐱′

𝑠
, considered

as redundant, until |𝑖| ≤ |𝑖|𝑀 𝑎𝑥, where |𝑖|𝑀 𝑎𝑥 is the maximum
buffer size.

3.4. The component discarding mechanism

Existing dynamic expansion frameworks ignore the model compres-
sion and thus do not result in compact network architectures. In this
section, we propose further optimizing the model size by develop-
ing a new component discarding mechanism that selectively deletes
unimportant components that have learnt similar knowledge. The other
advantage of the proposed component discarding mechanism is that of
promoting knowledge diversity among the model’s components.

For removing those components characterized by representing over-
lapping information we introduce a graph relation matrix to articulate
the knowledge similarity among components, serving as a framework
to facilitate the elimination of redundant components. We illustrate the
detailed component discarding mechanism in Fig. 2, where we assume
that the DEM has already learnt 𝑡 components. Firstly, we employ
the VAE of each component to generate 1,000 samples, representing
the previous knowledge learnt by the model, denoted as P𝑥̃𝑗 for the
𝑗th component. Then we calculate the relationship graph on a pair
of components using the Fréchet Inception Distance (FID) score, [46],
estimated from the samples generated by the VAEs associated with
each component. FID is chosen for two main reasons: (1) The FID
score is a symmetric measure and does not require knowing the exact
density form of each data distribution; (2) FID was shown as an efficient
measure when considered for calculating differences between empirical
data distributions, used to evaluate the performance of GAN models
on image generation tasks [47]. Let 𝐄 ∈ 𝐼𝑅𝑡×𝑡 be a relationship matrix
whose entry 𝐸(𝑐 ,𝑔) is the edge between a pair of components 𝑆𝑐 and 𝑆𝑔 ,
evaluated as 1∕𝑓FID(P𝑥̃𝑐 ,P𝑥̃𝑔), where 𝑓FID(⋅, ⋅) is a function that returns
the FID score between the data distributions corresponding to two
components, defined as [46]:

𝑓FID(𝐃
′,𝐃) = ‖𝝁𝐃 − 𝝁𝐃′‖2 + t r (𝜮𝐃 +𝜮′

𝐃
− 2(𝜮𝐃𝜮𝐃′)1∕2) , (19)

where 𝐃 and 𝐃′ represent two different datasets. 𝝁𝐃,𝝁𝐃′ and 𝜮𝐃,𝜮𝐃′

represent the means and covariance matrices of the variable vectors,
𝐃 and 𝐃′, respectively. Since the FID score is symmetric, 𝐄 is also a

Applied Soft Computing 167 (2024) 112427

6

F. Ye and A.G. Bors

Fig. 2. The proposed mixture component discarding mechanism. We create an adjacency matrix representing a knowledge graph for the model. Each entry of this matrix is the
FID score between the distributions of generated data by two VAEs, corresponding to two components. We select a pair of components with the maximal edge value and discard
one of them according to a statistical diversity criterion.

symmetric matrix. We then search for a pair of components showing a
maximum knowledge similarity by using 𝐄 :

𝐸⋆ = max
𝑐 ,𝑔=1,…,𝑡

𝐸(𝑐 ,𝑔),

𝑐⋆, 𝑔⋆ = ar g max
𝑐 ,𝑔=1,…,𝑡

𝐸(𝑐 ,𝑔) ,
(20)

where 𝑐⋆ and 𝑔⋆ are the indices of the selected components. Then we
remove one of these components from  by considering that the deleted
component should have a large discrepancy with respect to the other
components. To achieve this goal, we define a function that calculates
the diversity score for a component:

𝑑 𝑖𝑣𝑒𝑟(𝑆𝑎) =
1

𝑡 − 1

𝑡∑

𝑗=1

1

𝐸(𝑗 ,𝑎)
, 𝑗 ≠ 𝑎 . (21)

We employ Eq. (21) to estimate the diversity score for 𝑆𝑐⋆ and 𝑆𝑔⋆ ,
respectively:

𝑐 = ar g min
𝑐={𝑐⋆ ,𝑔⋆}

{𝑑 𝑖𝑣𝑒𝑟(𝑆𝑐)
}
, (22)

where 𝑐 is the index of the final selected component marked to be
removed from . In order to remove more components with overlapping
information we continually evaluate Eqs. (20) and (22) until a trade-off
is achieved between the number of components and performance.

Another approach consists of removing several components, which
are not considered important by employing a threshold 𝜆2 on the
maximum admitted knowledge similarity in the network ;

𝐸⋆ < 𝜆2, (23)

where 𝐸⋆ is evaluated in Eq. (20) leading to an acceptable number of
components.

3.5. The unified optimization framework

In this section, we provide the unified framework which incorpo-
rates the sample selection approach, expansion mechanism and dis-
carding mechanism. The overview of the framework is provided in
Fig. 3 while the pseudo-code is provided in Algorithm 1, which can
be summarized in four steps:
Step 1 (The training process.) In the initial training stage, we build
the first expert consisting of a classifier and a VAE model. The proposed
dynamic expansion mechanism defined in Eq. (15) requires at least two
experts. We freeze the first expert and automatically build the second
expert at 200. In the subsequent learning, we assume that the proposed
DEM has already learnt 𝑡 experts. Only the last (current) component
𝑆𝑡 is updated on 𝑖−1 and the new training data 𝐗𝑖, at 𝑖 using the

loss functions 𝐶 (𝑆𝑡,𝑖) and 𝑉 (𝑆𝑡,𝑖). We also update the memory
buffer by 𝑖 = 𝑖−1 ∪ 𝐗𝑖.
Step 2 (Check the model expansion.)We perform the dynamic expan-
sion if the memory buffer is full, |𝑖| ≥ |𝑖|𝑀 𝑎𝑥. If the criterion from
Eq. (15) is satisfied, we freeze the current component 𝑆𝑡 and create a
new component 𝑆𝑡+1, which is added to the model . We also clean up
the memory buffer 𝑖 to allow the newly created component to learn
new data.
Step 3 (Sample selection.) If the memory buffer is not full, |𝑖| ≤
|𝑖|𝑀 𝑎𝑥, we perform the sample selection using Eq. (18). We continu-
ally store the incoming data samples in the memory buffer as long as
it still has the capacity.
Step 4 (Discarding similar components.) Once the whole training
procedure is completed, we repeatedly remove from the mixture model
, those components which contain similar information with other
components.

4. Experiments

In this section, we provide the results of several experiments to
evaluate the effectiveness of the proposed CCM-OCL and compare it
with the state-of-the-art. Then we investigate the importance of each
component of our methodology by performing a full ablation study. In
the following, we provide the detailed experiment settings.
Datasets: Split MNIST splits the original MNIST dataset1 [48] contain-
ing 60k training samples into five subsets according to the category
information, as in [13]. Split CIFAR10 divides the original CIFAR10
dataset2 [49] into five subsets, each consisting of images from two
different classes, [13]. Split CIFAR100 splits the original CIFAR100
dataset,3 consisting of 50,000 training data samples, into 20 subsets
where each set contains 2,500 examples from five classes in the given
class order, [42]. Similar to other studies we normalize pixel values of
all images from [0, 255] to [−1,−1] for each image.
Software/Hardware system: In all experiments, we employ one Tesla
V100 GPU for training models. We run the experiments using the op-
erating system (Ubuntu 18.04.5) and use Pytorch library to implement
our approach.
Network architecture and hyperparameters:We consider employing
the setting from [13], and consider ResNet-18 [50], as the classifier
for Split CIFAR10 and Split CIFAR100. For Split MNIST, we employ an

1 https://yann.lecun.com/exdb/mnist/
2 https://www.cs.toronto.edu/~kriz/cifar.html
3 https://www.cs.toronto.edu/~kriz/cifar.html

Applied Soft Computing 167 (2024) 112427

7

F. Ye and A.G. Bors

Fig. 3. Overview of the proposed learning framework consisting of four steps. Firstly, we train the current ‘‘Component t’’ on the currently updated memory at 𝑖. Then we check
the model’s expansion using Eq. (15) and perform the sample selection using Eq. (18). Finally, when the whole training stage is finished, we discard the redundant components
to compress the model. The ‘Criterion’ denotes the proposed component discarding criterion, defined in Eq. (23).

Algorithm 1: Algorithm for the proposed framework
1 Input: The data stream, the total number of training steps (𝑁) ;
2 Output: The model’s parameters ;
3 for 𝑖 < 𝑁 do
4 Training process;
5 {𝐗𝑖,𝐘𝑖} ∼  ;
6 Train 𝑆𝑡 on 𝑖−1 and {𝐗𝑖,𝐘𝑖} ;
7 𝑖 = 𝑖−1 ∪ {𝐗𝑖,𝐘𝑖} ;
8 Check the model’s expansion ;
9 if |𝑖| = |𝑖|𝑀 𝑎𝑥 then
10 Estimate the MMD using Eq. (13);
11 if min

{𝑒
M

(
P𝐳̃1 ,P𝐳𝑖

)
,⋯ ,𝑒

M

(
P𝐳̃𝑡−1 ,P𝐳𝑖

)} ≥ 𝜆 then

12 Build a new expert  = ⋃𝑆𝑡+1;
13 Clear up the memory 𝑖 = {} ;
14 end
15 else
16 Perform the sample selection ;
17 𝑑 (𝐱𝑠) = 1

𝑡−1

∑𝑡−1

𝑗=1

{
− 𝑉 (𝑆𝑗 , 𝐱𝑠)

}
;

18 𝐱′
𝑠
= ar g min𝐱𝑠∈𝑖

(𝑑 (𝐱𝑠);

19 We repeat recursively the exclusion of 𝐱′
𝑠
’es until

|𝑖| ≤ |𝑖|𝑀 𝑎𝑥;
20 end

21 end
22 Perform the discard mechanism ;
23 Calculate the matrix 𝐄 using FID criterion ;
24 for 𝑗 < (𝑡 − 𝑛), (𝑛 is the number of removed components) do
25 Search for a pair of components by

𝑐⋆, 𝑔⋆ = ar g max𝑐 ,𝑔=1,⋯,𝑡 𝐸(𝑐 ,𝑔) ;
26 Diversity evaluation using Eq. (21) ;
27 Remove one selected component from  ;
28 Remove all edge values of the deleted component from 𝐄 ;

29 end

30 end

MLP neural network consisting of two hidden layers of 400 units, [13].
Following from [13], we set the maximum memory size as 2000,
1000 and 5000 data samples for Split MNIST, Split CIFAR10, and Split
CIFAR100, respectively. The task information is unavailable and during
each training step the model can only see a small batch of training
samples, where the batch size is 𝑏 = 10. We consider ten training epochs
for each learning step in for all continuous learning models used for the
experiments. The proposed framework has two parameters 𝜆 and 𝜆2 for
regulating the model optimization. The goal of the hyperparameter 𝜆 is
to control the network architecture expansion. A small 𝜆 tends to allow
the framework to create more components over time, resulting in a
large model size. In contrast, a large 𝜆 tends to create a small number of
components, ensuring a compact model structure. The hyperparameter
𝜆2 is used to regulate the component discarding process. We provide
the values for the hyperparameters in Table 3.
Baselines: The proposed CCM-OCL is trained using the MMD-based
expansion mechanism as the base model, while when considering the

sample selection approach for the memory buffer and the component
discarding mechanism, called ‘‘CCM-OCL + Discard’’. We designate the
model as ‘‘SW + Discard’’ when adopting a moving-window based sam-
ple selection approach for the buffer, when adopting CCM-OCL as the
base model. In this study, we compare with two continual learning dy-
namic expansion baselines: Continual Neural Dirichlet Process Mixture
(CN-DPM) [16], and Continual Unsupervised Representation Learning
(CURL) [3]. In addition, we also compare the proposed approach
with : ‘finetune’ that learns a classifier using the data stream, Maximal
Interfered Retrieval (MIR) [17], Gradient Sample Selection (GSS) [18],
Dynamic-Online Cooperative Memorization (OCM), [51], incremental
Classifier and Representation Learning (iCARL) [52], Gradient Episodic
Memory (GEM) [42], Reservoir [53], Continual Prototype Evolution
(CoPE) [13], ER + GMED and ER𝑎 + GMED, [14], where ER is the Ex-
perience Replay [54], and ER𝑎 is ER with data augmentation. Dynamic-
CVA [35] is a recently proposed dynamic expansion framework, in
which each component consists of a hybrid VAEGAN model and a
classifier. Specifically, the Dynamic-CVA detects the loss change as the
signal for expanding the network architecture.

4.1. Continual image classification learning results

Class-Incremental Learning. We examine the performance of the
proposed methodology in the class-incremental learning scenario. We
follow the standard TFCL experiment setting from [13], in which the
model only sees and accesses a small batch of data samples in an
online learning manner. The classification results for three datasets,
including Split CIFAR10, Split MNIST and Split CIFAR100, are provided
in Table 4, where CCM-OCL denotes that the proposed approach em-
ploys only the dynamic expansion and sample selection approaches.
We also provide the number of components for the proposed model
in Table 5. From Table 4, we can observe that the proposed CCM-
OCL achieves the best results on these datasets when comparing with
other methods. In addition, by employing the component discarding
mechanism does not influence the performance too much, according to
the results from Table 4, while significantly compressing the model,
according to Table 5. The proposed framework outperforms other
dynamic expansion models, significantly compacting the number of
necessary parameters.

We also investigate how the component relationship matrix guides
the component discarding process. We train CCM-OCL including the
proposed discarding mechanism under Split MNIST. The relation matrix
𝐄 before and after applying the component discarding procedure is
shown in Figs. 4-a and 4-b, respectively. The components belonging
to the same cluster tend to have a light color indicating a close
relationship among these components, and from Fig. 4-a we observe
that the learned components from the CCM-OCL are grouped into five
clusters. This result is due to the fact that the adjacent components
tend to learn similar knowledge with each other. When performing
the discarding process, the number of components is reduced to ten
as shown in Fig. 4-b. This result shows that the proposed discarding
mechanism can efficently remove overlapping knowledge components.

Applied Soft Computing 167 (2024) 112427

8

F. Ye and A.G. Bors

Table 3
Hyperparameter values for the proposed framework. 𝑟 represents the loss value.
Hyper-par. Split MNIST Split CIFAR10 Split CIFAR100 Split MImageNet
𝜆 0.009 0.04 0.03 0.055
𝜆2 0.05 0.03 0.01 0.03
𝑟 0.001 0.001 0.001 0.001

Fig. 4. The representation of the graph relationship matrix 𝐄.

Table 4
Supervised classification performance (accuracy), evaluated from five independent runs
for different models.
Methods Split MNIST Split CIFAR10 Split CIFAR100
ER + GMED† 82.67 ± 1.90 34.84 ± 2.20 20.93 ± 1.60
MIR* 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57
GEM* 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48
iCARL* 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37
finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04
reservoir* 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79
CoPE-CE* 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52
GSS* 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94
CoPE* 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69
CURL* 92.59 ± 0.66 – –
CN-DPM* 93.23 ± 0.09 45.21 ± 0.18 20.10 ± 0.12
ER𝑎 + GMED† 82.21 ± 2.90 47.47 ± 3.20 19.60 ± 1.50
Dynamic-OCM 94.02 ± 0.23 49.16 ± 1.52 21.79 ± 0.68
Dynamic-CVA 95.23 ± 0.05 50.28 ± 1.16 23.58 ± 0.57

CCM-OCL + Discard 96.16 ± 0.11 50.12 ± 0.23 25.24 ± 0.17
SW + Discard 95.93 ± 0.15 49.93 ± 0.23 24.18 ± 0.18
SW 96.81 ± 0.12 50.91 ± 0.25 25.65 ± 0.16
CCM-OCL 96.95 ± 0.13 53.71 ± 0.19 26.03 ± 0.16

* and † represent the results cited from [13], and [14], respectively.

Table 5
The number of components for the proposed model when learning different datasets.
Methods Split MNIST Split CIFAR10 Split CIFAR100
CCM-OCL + Discard 10 10 6
SW 30 35 10
CCM-OCL 29 31 9
SW + Discard 10 10 6

In the following, we also investigate the performance achieved by
different models when they are trained on a large dataset, by consider-
ing MINI-ImageNet dataset,4 [55], a subset of ImageNet dataset, [56],

4 https://github.com/yaoyao-liu/mini-imagenet-tools

consisting of 100 categories with 60,000 training samples. Follow-
ing from [17], we obtain Split MINI-ImageNet after dividing MINI-
ImageNet into 20 subsets, with each set consisting of images from five
classes. We consider setting the maximum memory size for all methods
as 10,000 for Split MINI-ImageNet and using a ResNet-18 network [50]
as the classifier. We report the classification results for Split MINI-
ImageNet in Table 6, by quoting the results of some related methods
from [14]. After the training, the proposed model has ten components
and we employ the proposed discarding mechanism, eventually ending
with eight components. These results show that the proposed model
achieves better results than other methods on this large dataset.
Results when considering fuzzy task boundaries. In a challenging
learning environment, the data stream would include mixed data sam-
ples from different classes at different times. This setting is called the
fuzzy task boundaries [16], in which samples from the next task are
introduced and mixed with the training data from the current task after
learning half of the current task’ data. Specifically, for Split MNIST, the
first task contains data samples from categories ‘0’, ‘1’, ‘2’, ‘3’ where
the number of samples for the categories ‘0’ and ‘1’ is of 5000 and the
number of samples for the categories ‘2’ and ‘3’ is of 2500. The second
task contains data samples from the categories ‘2’, ‘3’, ‘4’, ‘5’ where
the number of samples for each class is 2500. We perform the same
split procedure for the third and fourth tasks while the last task only
contains data samples from the categories ‘8’ and ‘9’. For adapting Split
CIFAR10 and Split MImageNet to the fuzzy task boundary setting, we
employ the same split procedure. We train the proposed model using
this setting for three datasets, including Split MNIST, Split CIFAR10
and Split MImageNet and we present the results in Table 7. We also
provide the model complexity, given by the number of components,
in Table 8. These results show that the proposed framework provides
better performance than other methods under this challenging setting.
Learning multiple domains when considering component reduc-
tion. We consider a more complex data stream by combining Split
MNIST and Split SVHN, resulting in Split MNIST-SVHN and in the same
way we create Split MNIST-CIFAR10, which combines Split MNIST
and Split CIFAR10. These data streams involve shifts in both domains
and classes over time, representing a more challenging experimental
context than other data streams that consider the learning of data

Applied Soft Computing 167 (2024) 112427

9

F. Ye and A.G. Bors

Fig. 5. The number of components used by the proposed approach when increasing the number of tasks being learnt.

Table 6
Supervised classification performance (accuracy) evaluated after per-
forming 20 independent runs when testing various models on Split
MImageNet.

Methods Split MImageNet
ER + GMED 27.27 ± 1.8
MIR+GMED 26.50 ± 1.3
ER𝑎 25.92 ± 1.2
MIR 25.21 ± 2.2

CCM-OCL + Discard 27.58 ± 2.7
CCM-OCL 29.63 ± 1.5

Table 7
Supervised classification performance (accuracy) evaluated after performing five inde-
pendent runs for different models over a data stream with fuzzy task boundaries.
Methods Split MNIST Split CIFAR10 Split MImageNet
ER 79.74 ± 4.0 37.15 ± 1.6 26.47 ± 2.3
Vanilla 21.53 ± 0.1 20.69 ± 2.4 3.05 ± 0.6
ER + GMED 82.73 ± 2.6 40.57 ± 1.7 28.20 ± 0.6
MIR 84.80 ± 1.9 38.70 ± 1.7 25.83 ± 1.5
MIR+GMED 86.17 ± 1.7 41.22 ± 1.1 26.86 ± 0.7

CCM-OCL + Discard 95.80 ± 2.1 43.57 ± 1.6 28.27 ± 1.5
CCM-OCL 96.51 ± 1.8 44.23 ± 1.4 29.35 ± 1.2

Table 8
The number of components from the proposed model for Split MNIST, Split CIFAR10
and Split MImageNet when considering fuzzy task boundaries.
Methods Split MNIST Split CIFAR10 Split MImageNet
CCM-OCL + Discard 10 10 6
CCM-OCL 25 32 12

from a single domain. We consider various specific architecture reduc-
tion continual learning models such as Pruning [57], and Knowledge
Distillation (KD) [37]. We also consider an approach similar to the
pruning from [57] to reduce the number of mixture components in our

Table 9
Classification results under Split MNIST-SVHN and Split MNIST-CIFAR10. ‘‘Parameters’’
and ‘‘No’’ represents the number of parameters and of components, respectively.
‘‘Speed’’ represents the testing/inference time required for evaluating each testing
sample.

Methods Split MNIST-SVHN
Accuracy No Parameters Speed (s)

CCM-OCL + Discard 63.78 13 126M 0.0048
CCM-OCL 65.29 18 175M 0.0064
CCM-OCL + KD 58.82 13 126M 0.0048
CCM-OCL + Pruning 60.63 18 131M 0.0052
CN-DPM 60.26 31 301M 0.0104

Methods Split MNIST-CIFAR10
CCM-OCL + Discard 62.15 11 106M 0.0032
CCM-OCL 64.36 16 155M 0.0050
CCM-OCL + KD 56.64 11 106M 0.0032
CCM-OCL + Pruning 58.97 16 112M 0.0041
CN-DPM 59.92 27 262M 0.0106

framework and call the approach as CCM-OCL + Pruning. KD can be
used to transfer knowledge from multiple components to a single one as
in [37] and we call this method as CCM-OCL + KD. The classification
accuracy of various models on the complex data streams is provided
in Table 9. From this table it can be observed that CCM-OCL requires
fewer parameters and less inference times than CN-DPM [16] when
used in the continual learning of these complex data streams. These
results demonstrate that the proposed framework can learn several
separate components that capture different information. In contrast,
CN-DPM would result in statistically overlapping components following
training, eventually also requiring additional computational costs.
Discussion. The class-incremental learning represents an important
paradigm assumption within continual learning. Data from each class is
provided in a sequential way and it should be learnt without forgetting
the information which was learnt before. A robust model under this
setting should attain an excellent average classification accuracy upon

Applied Soft Computing 167 (2024) 112427

10

F. Ye and A.G. Bors

Fig. 6. The classification performance obtained by the proposed model when varying the number of remaining experts.

completing all training phases, as illustrated in Table 4. On the other
hand an effective dynamic expansion model must maintain a minimal
architecture, defined by a low component count, enabling the seamless
deployment on resource-limited machines and devices. The results from
Table 5 indicate that the proposed discarding mechanism reduces the
number of components from 29 to 10 on the Split MNIST dataset. Such
results show substantial model compression without compromising
performance. The component discarding mechanism holds numerous
potential applications. For instance, when a robot is trained to acquire
various skills sequentially, data corresponding for training a certain
skill may arise at different times, leading to an increase in redun-
dant components. The proposed mechanism automatically eliminates
knowledge-overlapping components, thus enabling the robot to acquire
additional skills over time while utilizing a fixed-size storage device.

4.2. Ablation study

In the following we perform an extensive ablation study for evalu-
ating the performance of the proposed approach when using different
configurations.
Expansion mechanism: We study the dynamic expansion process by
training the proposed framework considering different values for the
threshold 𝜆 in Eq. (15) and then we examine the change in the number
of components for the proposed approach during training. We train
CCM-OCL under split MNIST, and record the number of components
and the number of tasks seen in each training step. We plot the results
in Fig. 5, where we observe that a large threshold 𝜆 encourages the
proposed model to use fewer components, considering that a single
component learns two tasks. A small threshold 𝜆, on the other hand,
leads to training more components while multiple components model
sub-tasks of a single task.
Component discarding: We study the performance change for the
proposed framework when enabling the discarding mechanism while
evaluating the performance of the remaining components. We con-
sider to learn the proposed framework CCM-OCL on Split MNIST, by
removing the redundant components. Also in Fig. 4-b we visualize
the relationship matrix 𝐄 among the components after considering
the component discarding on the configuration shown in Fig. 4-a. We
provide the number of components and the performance in the top and
bottom plot, respectively, from Fig. 6-a. These results show that the
performance of the model does not suffer from too much degeneration
even when the number of components considered is rather low, such
as six components in this case.

We also change the threshold 𝜆2 from Eq. (23), aiming to remove
several components, which are not considered that important, during
the training, and the results are reported in Fig. 6-b, showing the
number of components on top plot and the accuracy in the bottom
plot. The proposed framework tends to remove fewer components

Table 10
The classification accuracy calculated by the proposed model on Split MNIST when
changing the batch size.
Batch size 10 30 50 100 130 160

CCM-OCL 96.12 95.23 95.89 96.54 98.27 96.23

Table 11
The training time (hours) of various models for the continual supervised learning.
Methods Split MNIST Split CIFAR10 Split CIFAR100
Dynamic-CVA 0.69 2.53 3.17
CCM-OCL + Discard 0.52 2.36 2.98

Table 12
Assessing the proposed data selection in the proposed model.
Methods Split MNIST Split CIFAR10 Split CIFAR100
MMD-CoPE 95.21 52.75 25.49
MMD-MIR 95.28 52.29 25.52
MMD-reservoir 95.62 52.97 25.38
CCM-OCL 96.85 53.76 26.01

when the threshold 𝜆2 increases. In contrast, using a very small 𝜆2
can significantly reduce the model size, while the model’s performance
would also suffer from significant degeneration.
The influence of the batch size on the performance. We investigate
whether changing the batch size can significantly affect the perfor-
mance of the proposed framework. We consider different batch size
configurations for training the proposed model on Split MNIST and the
results are provided in Table 10. We can observe that the performance
of the proposed framework does not change much when using different
batch sizes.
Computational complexity. We evaluate the training time for the
proposed framework when considering Split MNIST, Split CIFAR10 and
Split CIFAR100, and provide the results Table 11. From these results we
can observe that the proposed framework requires less computational
costs then the state-of-the-art method Dynamic-CVA [35]. The primary
reason for these results is because the proposed framework employs
an efficient sample selection approach while the dynamic expansion
mechanism is based on processing the whole embedding space.
Comparison with other sample selection methods. We compare the
proposed data sampling approach with other sample selection methods
that are used when considering the MMD approach in CoPE [13],
MIR [17] or reservoir, denoting the resulting methods as: MMD-CoPE,
MMD-MIR, and MMD-reservoir. The classification accuracy for these
approaches when applied on Split MNIST, Split CIFAR10 and Split
CIFR100 datasets is reported in Table 12. We observe that the proposed
sample selection approach performs better than other sample selection
methods on these datasets.

Applied Soft Computing 167 (2024) 112427

11

F. Ye and A.G. Bors

Fig. 7. Classification results achieved by different models when changing the memory size.

Changing the memory size. We examine the model’s performance on
various datasets when varying the memory size. The classification re-
sults of the model CM-OCL + Discard when compared with other base-
lines are reported in Fig. 7, which show that the proposed framework
achieves stable performance under different memory configurations.

5. Conclusion and future research

In this paper, we propose a novel dynamic model expansion mech-
anism for the Task Free Continual Learning (TFCL) scenario. The pro-
posed model employs the Maximum Mean Discrepancy (MMD) measure
to evaluate the change in the data distributions over time, providing a
better criterion for triggering model expansion when the probabilistic
representation of data changes. The proposed approach promotes the
learning of distinct knowledge by each expert throughout the entire
training process. In addition, we propose a novel sample selection
approach for the memory buffer, which selectively preserves critical
data samples which are different from the already learnt knowledge by
the model. The sample selection approach by encouraging the informa-
tion diversity in the memory buffer, enables the current component to
learn novel information further ensuring the knowledge diversity and
discrepancy among the trained components. Furthermore, we propose
a component discarding mechanism to remove those components that
have learnt similar concepts with each other, significantly reducing
the model size and optimizing processing time. The model is exten-
sively tested in the context of TFCL resulting in the state-of-the-art
performance for the proposed methodology.
Advantages: One significant advantage of the proposed approach over
existing methods is that it introduces a novel dynamic expansion mech-
anism that evaluates the distance between the knowledge learnt by
the current expert and each previously frozen expert from the mix-
ture model. This distance measure is used to regulate the model’s
expansion process, leading to a compact network architecture. Another
advantage of the proposed approach is that it is introducing a novel

expert discarding mechanism that automatically removes redundant
knowledge-overlapping experts. This mechanism enables deploying the
model on resource-constrained platforms, such as drones or robots.
Limitations: One weakness of the proposed approach is the fact that
the model’s dynamic expansion is sensitive to the selection of the
expansion threshold 𝜆 which may have to be adapted for different
databases. Another weakness is that it suffers from data privacy issues
given that past data samples are stored in a memory buffer and then
are used each time when checking the model expansion. Such samples
may contain confidential information. One way to address this problem
would be to store corresponding latent variables instead of real data.
Future Research and Impact: The area of deep learning and artificial
intelligence is very dynamic and new processing models are created all
the time. The methodology proposed can be extended to other networks
with small adjustments to the properties of the networks and models.
An important direction of future research consists in designing spe-
cialized networks for various applications where continual learning is
essential. The proposed dynamic expansion framework can be applied
to real-time systems, autonomous driving, robots or drones navigation
or by continually assessing the evolution of diseases from medical
data. In addition, another benefit of the proposed approach is that it
can be applied for training large language models, aiming to reduce
computational costs by continually learning new information without
the need to retrain on the whole dataset.

CRediT authorship contribution statement

Fei Ye:Writing – original draft, Validation, Software, Methodology,
Formal analysis, Conceptualization. Adrian G. Bors: Writing – review
& editing, Supervision, Project administration.

Applied Soft Computing 167 (2024) 112427

12

F. Ye and A.G. Bors

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] F. Zenke, B. Poole, S. Ganguli, Continual learning through synaptic intelligence,
in: Proc. of Int. Conf. on Machine Learning, vol. PLMR 70, 2017, pp. 3987–3995.

[2] G.I. Parisi, R. Kemker, J.L. Part, C. Kanan, S. Wermter, Continual lifelong learning
with neural networks: A review, Neural Netw. 113 (2019) 54–71.

[3] Dushyant Rao, Francesco Visin, Andrei A. Rusu, Yee Whye Teh, Razvan Pascanu,
Raia Hadsell, Continual unsupervised representation learning, in: Advances in
Neural Inf. Proc. Systems, NeurIPS, 2019, pp. 7645–7655.

[4] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. Dokania, P.H.S. Torr,
M.’A. Ranzato, On tiny episodic memories in continual learning, 2019, arXiv
preprint arXiv:1902.10486.

[5] Yanan Gu, Xu Yang, Kun Wei, Cheng Deng, Not just selection, but exploration:
Online class-incremental continual learning via dual view consistency, in: Proc.
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR,
2022, pp. 7442–7451.

[6] Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, Pradeep Shenoy, GCR:
Gradient coreset based replay buffer selection for continual learning, in: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR, 2022, pp. 99–108.

[7] Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan,
Chu-Song Chen, Compacting, picking and growing for unforgetting continual
learning, in: Advances in Neural Information Processing Systems, 2019, pp.
13647–13657.

[8] C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri, S. Yang, AdaNet: Adaptive
structural learning of artificial neural networks, ICML, in: Proc. of Int. Conf.
on Machine Learning, vol. PMLR 70, 2017, pp. 874–883.

[9] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, 2013, arXiv preprint
arXiv:1312.6114.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, Y. Bengio, Generative adversarial nets, in: Proc. Advances in Neural
Inf. Proc. Systems, NIPS, 2014, pp. 2672–2680.

[11] H. Shin, J.K. Lee, J. Kim, J. Kim, Continual learning with deep generative replay,
in: Advances in Neural Inf. Proc. Systems, NIPS, 2017, pp. 2990–2999.

[12] Rahaf Aljundi, Klaas Kelchtermans, Tinne Tuytelaars, Task-free continual learn-
ing, in: Proc. of IEEE/CVF Conf. on Computer Vision and Pattern Recognition,
2019, pp. 11254–11263.

[13] Matthias De Lange, Tinne Tuytelaars, Continual prototype evolution: Learning
online from non-stationary data streams, in: Proc. of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 8250–8259.

[14] Xisen Jin, Arka Sadhu, Junyi Du, Xiang Ren, Gradient-based editing of mem-
ory examples for online task-free continual learning, in: Advances in Neural
Information Processing Systems, NeurIPS, 2021, pp. 29193–29205.

[15] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, Jonghyun Choi,
Rainbow memory: Continual learning with a memory of diverse samples, in:
Proc. of IEEE/CVF Conf. on Computer Vision and Pattern Recognition, CVPR,
2021, pp. 8218–8227.

[16] Soochan Lee, Junsoo Ha, Dongsu Zhang, Gunhee Kim, A neural Dirichlet process
mixture model for task-free continual learning, in: Int. Conf. on Learning
Representations, ICLR, 2020, arXiv preprint arXiv:2001.00689.

[17] Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin,
Laurent Charlin, Tinne Tuytelaars, Online continual learning with maximal
interfered retrieval, in: Advances in Neural Information Processing Systems,
NeurIPS, 2019, pp. 11872–11883.

[18] R. Aljundi, M. Lin, B. Goujaud, Y. Bengio, Gradient based sample selection
for online continual learning, in: Advances in Neural Information Processing
Systems, NeurIPS, 2019, pp. 11817–11826.

[19] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, Jonghyun Choi,
Rainbow memory: Continual learning with a memory of diverse samples, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 8218–8227.

[20] Gobinda Saha, Kaushik Roy, Saliency guided experience packing for replay
in continual learning, in: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2023, pp. 5273–5283.

[21] James Seale Smith, Lazar Valkov, Shaunak Halbe, Vyshnavi Gutta, Rogerio Feris,
Zsolt Kira, Leonid Karlinsky, Adaptive memory replay for continual learning,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024, pp. 3605–3615.

[22] Fei Ye, Adrian G. Bors, Online task-free continual generative and discriminative
learning via dynamic cluster memory, in: Proc. of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 26202–26212.

[23] Z. Li, D. Hoiem, Learning without forgetting, IEEE Trans. Pattern Anal. Mach.
Intell. 40 (12) (2017) 2935–2947.

[24] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath,
D. Kumaran, R. Hadsell, Overcoming catastrophic forgetting in neural networks,
Proc. Natl. Acad. Sci. (PNAS) 114 (13) (2017) 3521–3526.

[25] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-
Barwinska, Yee Whye Teh, Razvan Pascanu, Raia Hadsell, Progress & compress:
A scalable framework for continual learning, ICML, in: Proc. of Int. Conf. on
Machine Learning, vol. PMLR 80, 2018, pp. 4535–4544.

[26] Cuong V Nguyen, Yingzhen Li, Thang D Bui, Richard E Turner, Variational
continual learning, in: Proc. of Int. Conf. on Learning Representations, ICLR,
2018, arXiv preprint arXiv:1710.10628.

[27] Khurram Javed, Martha White, Meta-learning representations for continual
learning, in: Advances in Neural Information Processing Systems, NeurIPS, 2019,
pp. 1820–1830.

[28] Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, Marcus
Rohrbach, Adversarial continual learning, ECCV, in: Proc. European Conf. on
Computer Vision, vol. LNCS 12356, 2020, pp. 386–402.

[29] Alex Gomez-Villa, Bartlomiej Twardowski, Lu Yu, Andrew D Bagdanov, Joost
Van de Weijer, Continually learning self-supervised representations with pro-
jected functional regularization, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 3867–3877.

[30] James Seale Smith, Junjiao Tian, Shaunak Halbe, Yen-Chang Hsu, Zsolt Kira, A
closer look at rehearsal-free continual learning, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, 2023, pp.
2410–2420.

[31] Zhenyi Wang, Yan Li, Li Shen, Heng Huang, A unified and general framework
for continual learning, in: International Conference on Learning Representations,
ICLR, 2024, arXiv preprint arXiv:2403.13249.

[32] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell, Progressive
neural networks, 2016, arXiv preprint arXiv:1606.04671.

[33] R. Aljundi, P. Chakravarty, T. Tuytelaars, Expert gate: Lifelong learning with a
network of experts, in: Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, CVPR, 2017, pp. 3366–3375.

[34] Yeming Wen, Dustin Tran, Jimmy Ba, BatchEnsemble: an alternative approach
to efficient ensemble and lifelong learning, in: Proc. Int. Conf. on Learning
Representations, 2020, arXiv preprint arXiv:2002.06715.

[35] Fei Ye, Adrian G. Bors, Task-free continual generation and representation
learning via dynamic expansionable memory cluster, in: Proc. of the AAAI
Conference on Artificial Intelligence, vol. 38, 2024, pp. 16451–16459.

[36] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, C. Sutton, Veegan: Reducing
mode collapse in GANs using implicit variational learning, in: Proc. Advances in
Neural Inf. Proc. Systems, NIPS, 2017, pp. 3308–3318.

[37] Fei Ye, Adrian G. Bors, Lifelong teacher-student network learning, IEEE Trans.
Pattern Anal. Mach. Intell. 44 (10) (2022) 6280–6296.

[38] Fei Ye, Adrian G. Bors, Lifelong infinite mixture model based on knowledge-
driven Dirichlet process, in: Proc. of the IEEE/CVF International Conference on
Computer Vision, ICCV, 2021, pp. 10695–10704.

[39] Yujun Shi, Li Yuan, Yunpeng Chen, Jiashi Feng, Continual learning via bit-level
information preserving, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 16674–16683.

[40] Jingxin Zhang, Donghua Zhou, Maoyin Chen, Adaptive cointegration analysis
and modified RPCA with continual learning ability for monitoring multimode
nonstationary processes, IEEE Trans. Cybern. (2022).

[41] W. Chen, Bo. Chen, Y. Liu, X. Cao, A. Zhao, H. Zhang, L. Tian, Max-margin deep
diverse latent Dirichlet allocation with continual learning, IEEE Trans. Cybern.
52 (7) (2022) 5639–5653.

[42] David Lopez-Paz, Marc’Aurelio Ranzato, Gradient episodic memory for continual
learning, in: Advances in Neural Information Processing Systems, 2017, pp.
6467–6476.

[43] Matteo Buzzega, Angelo Porrello, Davide Abati, Simone Calderara, Dark experi-
ence for general continual learning: a strong, simple baseline, in: Advances in
Neural Information Processing Systems, NIPS, 2020, pp. 15920–15930.

[44] Ilya O Tolstikhin, Bharath K Sriperumbudur, Bernhard Schölkopf, Minimax
estimation of maximum mean discrepancy with radial kernels, Adv. Neural Inf.
Process. Syst. 29 (2016) 1930–1938.

[45] Gintare Karolina Dziugaite, Daniel M. Roy, Zoubin Ghahramani, Training gener-
ative neural networks via maximum mean discrepancy optimization, 2015, arXiv
preprint arXiv:1505.03906.

[46] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp
Hochreiter, GANs trained by a two time-scale update rule converge to a local
Nash equilibrium, in: Advances in Neural Information Processing Systems, NIPS,
2017, pp. 6626–6637.

[47] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. C. Courville, Improved
training of wasserstein GANs, in: Proc. Advances in Neural Inf. Proc. Systems,
NIPS, 2017, pp. 5767–5777.

[48] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

Applied Soft Computing 167 (2024) 112427

13

F. Ye and A.G. Bors

[49] Alex Krizhevsky, Geoffrey Hinton, Learning Multiple Layers of Features from
Tiny Images, Technical Report, Univ. of Toronto, 2009.

[50] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 2016,
pp. 770–778.

[51] Fei Ye, Adrian G. Bors, Continual variational autoencoder learning via online
cooperative memorization, ECCV, in: Proc. European Conference on Computer
Vision, vol. LNCS 13683, 2022, pp. 531–549.

[52] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, Christoph H Lam-
pert, iCaRL: Incremental classifier and representation learning, in: Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 2017, pp.
2001–2010.

[53] Jeffrey S. Vitter, Random sampling with a reservoir, ACM Trans. Math. Softw.
11 (1) (1985) 37–57.

[54] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, Gregory
Wayne, Experience replay for continual learning, NeurIPS, in: Advances in Neural
Information Processing Systems, vol. 34, 2019, pp. 348–358.

[55] Ya Le, Xuan Yang, Tiny ImageNet Visual Recognition Challenge, Technical
Report, Univ. of Stanford, 2015, pp. 1–6.

[56] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, Imagenet classification with
deep convolutional neural networks, in: Advances in Neural Inf. Proc. Systems,
NIPS, 2012, pp. 1097–1105.

[57] Michael Zhu, Suyog Gupta, To prune, or not to prune: exploring the efficacy
of pruning for model compression, in: ICLR-Workshop, 2018, arXiv preprint
arXiv:1710.01878.

Applied Soft Computing 167 (2024) 112427

14

	Continual compression model for online continual learning
	Introduction
	Related Works
	Memory-based Methods
	Regularization-based Methods
	Dynamic Expansion Models (DEM)
	TFCL Learning Paradigm

	Methodology
	Problem Statement
	MMD-based Expansion Mechanism
	Diversity-Aware Sample Selection
	The Component Discarding Mechanism
	The Unified Optimization Framework

	Experiments
	Continual image classification learning results
	Ablation Study

	Conclusion and Future Research
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

