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A B S T R A C T

A natural approach for representation learning is to combine the inference mechanisms of VAEs and the
generative abilities of GANs, within a new model, namely VAEGAN. Most existing VAEGAN models would
jointly train the generator and inference modules, which has limitations when learning representations
generated by a pre-trained GAN model without data. In this paper, we develop a novel hybrid model, called the
Self-Supervised Adversarial Variational Learning (SS-AVL) which introduces a two-step optimization procedure
training separately the generator and the inference model. The primary advantage of SS-AVL over existing
VAEGAN models is that SS-AVL optimizes the inference models in a self-supervised learning manner where the
samples used for training the inference models are drawn from the generator distribution instead of using real
samples. This can allow SS-AVL to learn representations from arbitrary GAN models without using real data.
Additionally, we employ information maximization into the context of increasing the maximum likelihood,
which encourages SS-AVL to learn meaningful latent representations. We perform extensive experiments to
demonstrate the effectiveness of the proposed SS-AVL model.

1. Introduction

Generative Adversarial Nets (GANs) [1] is one of the most popular
deep generative models, which has been applied in a wide range
of applications, including for compressing sensing images [2], image
synthesis, rain removal from images [3] and face image inpainting [4].
The primary drawback of GANs is their lacking of an inference mecha-
nism, which prevents using them for representation learning. The other
popular generative model is the Variational Autoencoder (VAE) [5].
Different from employing adversarial learning used for training GANs,
VAEs aim to train jointly an inference model and a decoder enabling
unified optimization which consists of the maximization of the sample
log-likelihood. Unlike GANs, a VAE has an inference mechanism which
can provide latent representations. However, VAEs tend to generate
approximate results, such as blurred images. Therefore lately, many re-
search studies would focus on hybrid models combining the advantages
of both GANs and VAEs. Nevertheless, existing hybrid models usually
optimize jointly the inference model and generator, which can lead to
unstable training and cannot be used for learning representations from
a pre-trained GAN model.

Representation learning in generative modelling aims to define and
find several underlying factors that can describe the variability of image
data. Meanwhile, unsupervised disentangled representation learning
aims to decompose the latent representations into several independent
variables, with each describing the variability of a certain characteristic
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in the data without using any supervision signals. In order to use
disentanglement for practical applications, such data sets are assumed
to contain semantically distinct clusters representing different cate-
gories of characteristics. The level of independence between such data
categories should be measured by a criterion. Learning disentangled
representations that may capture semantic meaningful information can
allow to explicitly edit images and is useful for a variety of tasks [6,
7]. Furthermore, enabling disentangled representations can overcome
overfitting during the training, leading to a better generalization in the
resulting trained models [8].

Learning interpretable and disentangled representations has been
considered in the 𝛽−VAE [9] which uses a large penalty on the
Kullback–Leibler (KL) divergence term of the loss function, in order
to encourage the independence between latent variables. However,
a large penalty would sacrifice the quality of image reconstruction
when inducing disentangled representations [10]. To address this issue,
other research studies focus on using other penalty functions such as
the total correlation (TC) [11] which is a measure of multivariate
mutual independence. The primary drawback of VAE based approaches
is that they generally produce blurred and unclear images compared
to Generative Adversarial Networks (GANs) which generated clear
images. On the other hand, few research efforts have been made to use
GANs for disentangled representations [12] and their outcomes show
rather mixed results. GANs are trickier to control and may produce
unexpected artifacts in the generated images.
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Recently, it was shown that by combining the GAN and VAE into
a unified learning framework, the resulting model can address the
drawbacks of both models [13]. However, the joint optimization of the
generator and inference network in a hybrid model usually requires to
design two loss functions: the reconstruction loss and the regularization
loss [13]. These two loss functions have different training behaviours,
which cannot guarantee an optimal solution for both at the same time.
For example, the reconstruction loss encourages the encoding-decoding
process to provide an accurate reconstruction for an input while it
matches the true posterior distribution 𝑝(𝐳 | 𝐱) [5], for the encoding dis-
tribution 𝑞(𝐳 | 𝐱). The regularization loss, implemented through adver-
sarial learning, encourages the encoding distribution 𝑞(𝐳 | 𝐱) to match
the prior distribution 𝑝(𝐳), and would move 𝑞(𝐳 | 𝐱) far away from the
true posterior distribution 𝑝(𝐳 | 𝐱), resulting in a poor generation 𝐱′ ∼

𝑞(𝐱 | 𝐳), 𝐳 ∼ 𝑝(𝐳). Moreover, the joint optimization of the generator and
inference models also require a careful hyperparameter configuration
in order to ensure stable training.

After considering the drawbacks of existing hybrid models and
VAE-based disentangled approaches, we develop a new self-supervised
method for learning interpretable and disentangled representations,
which combines the advantages of GANs and VAEs. Existing GAN-VAE
hybrid methods train GANs and VAEs together, which is not possible
for a pre-trained GAN model. Moreover, the inference models in these
approaches require access to real data samples, which is challenging
when real data samples cannot be accessed. To address these two
issues, we propose to split the training of the hybrid model into two
independent processes, where adversarial learning is performed only to
train the generator, while a VAE optimization process is used to train
the inference models in a self-supervised manner using pseudo-samples
drawn by the generator. We aim to learn three latent representations
{𝐳, 𝐜,𝐝} from the data, implemented by two inference models 𝑞𝜉 (𝐳 | 𝐱)
and 𝑞𝜔(𝐝, 𝐜 | 𝐱), respectively, where the latent variable 𝐳 is assumed to
be a random noise vector in a generative process, while encouraging
{𝐜,𝐝} to capture continuous and discrete latent representations. To
induce the interpretable representations {𝐜,𝐝}, we propose a mutual
information optimization procedure that jointly optimizes the generator
and inference model 𝑞𝜔(𝐝, 𝐜 | 𝐱) during training. The proposed approach
does not require a careful balance between the adversarial and VAE
losses during training, providing a stable training paradigm and facili-
tating implementation. We perform a series of experiments on various
datasets, and the empirical results demonstrate that our approach can
produce sharp generative results when compared with other methods.

This research study brings the following contributions :

(1) A self-supervised learning procedure is proposed, where the in-
ference model is estimated separately from the generator. This
learning procedure provides many advantages over other hybrid
methods, such that the inference learning does not affect the gen-
erator’s optimization while it can also learn data representations
from a trained GAN model.

(2) We introduce the mutual information optimization for the Self-
Supervised Adversarial Variational Learning (SS-AVL) model to
encourage learning interpretable and disentangled representa-
tions.

(3) Qualitative and quantitative results are provided demonstrating
the capability of the proposed approach on disentangled and
interpretable representation learning.

The rest of the paper is organized as in the following. The back-
ground and related works are presented in Section 2. The proposed
SS-AVL model is introduced in Section 3 and its theoretical framework
in Section 4. The mutual information maximization for interpretable
representations is discussed in Section 5 and the training and imple-
mentation of the proposed model in Section 6. In Section 7 we discuss
the limitations of the proposed method. The experimental results are
presented and discussed in Section 8, while the conclusions are drawn
in Section 9.

2. Background and related works

In the following we discuss the main approaches in generative deep
learning.
Variational autoencoder (VAE). VAEs represent one of the most
popular generative models, consisting of two network components, the
encoder and decoder, which during the training aim to represent the
conditional distributions 𝑞𝜃(𝐳 | 𝐱) and 𝑝𝜙(𝐱 | 𝐳), respectively, where 𝐱 are
the input data and 𝐳 are the latent variables. A VAE aims to maximize
an error lower bound objective (ELBO) to the marginal log-likelihood
of the data distribution :

(𝜙, 𝜃) =E𝑞𝜃 (𝐳∣𝐱)[log 𝑝𝜙(𝐱 ∣ 𝐳)] −𝐷𝐾𝐿(𝑞𝜃(𝐳 ∣ 𝐱) || 𝑝(𝐳)) ≤ log 𝑝(𝐱) (1)

Generative adversarial networks (GAN). GANs also consist of two
network components: generator and discriminator. These two compo-
nents are trained alternatively and can be seen as playing a Minimax
game, defined by the following loss :

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) =E𝐱∼𝑝𝑑(𝐱)[log𝐷(𝐱)] + E𝐳∼𝑝(𝐳)[log[1 −𝐷(𝐺(𝐳))]]. (2)

While the discriminator network is trained to distinguish between real
and fake data, the generator aims to produce more realistic data that
can fool the discriminator.
Hybrid VAE-GAN models. Hybrid models attempt to address the draw-
backs of both GANs and VAEs, by combining their architectures. These
models usually consist of three components : an encoder to map data
into the latent space, a generator to recover data from the latent space,
and a discriminator to distinguish real from fake data. We provide a
brief literature review for the hybrid model as follows.

Adversarial Autoencoders (AAE) [13] replace the Kullback–Leibler
(KL) divergence, used in the objective function for training VAEs,
with the adversarial loss encouraging the output distribution of the
encoder to be as similar as possible to the prior distribution. Srivastava
et al. [14] introduced the VEEGAN model, which uses a reconstructing
network to avoid the model collapse from GANs. The final objective
function in VEEGAN aims to minimize the upper bound of the posterior
distribution. BiGANs, proposed in [15], is a hybrid model where the
Discriminator network is trained to learn the inverse mapping, by
projecting data back into the latent space. Huang et al. [16], proposed
a hybrid model called the Introspective Variational Autoencoders (In-
troVAE), which was applied in photographic image synthesis. Unlike
most other hybrids methods which require an additional Discriminator
network for adversarial learning, IntroVAE uses the Inference network
as a discriminator to distinguish between fake and real data samples.
A similar approach was proposed by Ulyanov et al. in [17], where
the proposed Adversarial Generator-Encoder (AGE) does not require
an extra Discriminator network. The Decoder and Encoder are jointly
trained in order to optimize the objective function in an adversarial
way. Mescheder et al. [18], introduced the Adversarial Variational
Bayes (AVB), which trains a VAE in an adversarial way. This method
employs an additional auxiliary Discriminator network that can rewrite
the maximum-likelihood of marginal distribution as a two-player game.
Both Veegan [14] and AVB [18] use statistical measures aiming to
distinguish between joint distributions, similarly to BiGAN [15], but
BiGANs do not actually have any connections to VAEs. The asymmetric
KL divergence term from the objective function is replaced by its
symmetric variant in the Adversarial Symmetric Variational Autoen-
coder [19], which searches for an adversarial solution to the VAE
objective.

To summarize, adversarial learning in existing hybrid models can
be performed into the data space [20], latent space [13] or into their
joint spaces [21]. Lately, the likelihood estimation as a regularization
term was shown to stabilize adversarial distribution matching [22]. The
likelihood estimation is also employed to learn latent representations
across the domain in mixture models [23]. However, all these methods
only focus on improving the generation capability and do not design
suitable objective functions for inducing disentangled representations.
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This research study is the first to propose an appropriate objective
function for training a hybrid VAE-GAN method for learning both
continuous and discrete disentangled representations.

Self-supervised learning. Self-Supervised Learning (SSL) was used
for classification [24], where the classifier is trained on the labelled
augmented dataset to learn visual representations. SSL was also used for
semi-supervised learning [25] producing successful results. However,
most SSL methods focus on predictive tasks such as image classification,
while applying SSL in generative tasks remains unexplored.

In this paper, we introduce a novel representation learning model
which can acquire meaningful data representations in a self-supervised
manner.

3. Self-Supervised Adversarial Variational Learning (SS-AVL)

In the following we describe the training of the proposed SS-AVL
model.

3.1. Adversarial learning for the generator

Let 𝐱 ∈ R
𝑑 represent an observed random variable sampled from the

empirical data distribution P𝐱. We assume that the generation process
of 𝐱 involves three underlying generative factors corresponding to
continuous 𝐳, 𝐜 and discrete variables 𝐝, respectively. These generative
factors are sampled from three independent prior distributions 𝐳 ∼

 (𝝁𝐳 ,𝜮𝐳) , 𝐜 ∼  (𝝁𝐜,𝜮𝐜), 𝐝 ∼ 𝐶𝑎𝑡(𝑘 = 𝐾, 𝑝 = 1∕𝐾), where 𝝁𝐜 and
𝜇𝐳 are the mean vectors of Gaussian distributions, while 𝜮𝐜 and 𝜮𝐳

are identity covariance matrices. 𝐾 represents the number of potential
categories for the dataset and 𝐶𝑎𝑡 is the categorical distribution. Let us
define a generator 𝐺𝜓 (𝐳,𝐝, 𝐜), implemented by a neural network with
parameters 𝜓 . The generation process for the observed variable 𝐱 is
defined as :

𝐝 ∼ 𝑝(𝐝), 𝐳 ∼ 𝑝(𝐳), 𝑐 ∼ 𝑝(𝐜), 𝐱 ∼ 𝑞𝜓 (𝐱 ∣ 𝐳,𝐝, 𝐜), (3)

where 𝑞𝜓 (𝐱 ∣ 𝐳,𝐝, 𝐜) can be seen as the generator 𝐺𝜓 (𝐳,𝐝, 𝐜) in GAN or as
the decoder in VAE. One of our goals is to encourage the generator dis-
tribution P𝐺 to match the real data distribution P𝐱 by using adversarial
learning. Therefore, we introduce a discriminator network 𝐷 ∶  → R

𝑑

and we consider the Wasserstein GAN (WGAN) loss [26], which is
defined as the optimal path of transporting information mass from the
generator distribution P𝐺 to the data distribution P𝐱, corresponding to
the Earth Mover Distance. By considering the Kantorovich–Rubinstein
duality [27], the optimal transport adversarial learning is defined as :

min
𝐺

max
𝐷∈𝛩

{
E𝐱∼P𝐱

[𝐷(𝐱)] − E𝐱′∼P𝐺
[𝐷(𝐱′)]

}
, (4)

where 𝛩 represents a set of 1-Lipschitz functions. We introduce a
gradient penalty term [28] to enforce the Lipschitz constraint, resulting
in :

min
𝐺

max
𝐷

{
E𝐱∼P𝐱

[𝐷(𝐱)] − E𝐱′∼P𝐺
[𝐷(𝐱′)]

}

+ 𝜆E�̃�∼P�̃�
[(‖‖∇�̃�𝐷(�̃�)‖‖2 − 1)2],

(5)

where P�̃� is defined as sampling uniformly along straight lines between
pairs of data originating from two distributions P𝐱 and P𝐺. This training
procedure is illustrated in Fig. 2.

3.2. Self-supervised learning for inference models

In this section, we introduce a novel algorithm that trains inference
models in a self-supervised manner. The main goal of the proposed

algorithm is to learn meaningful latent representations 𝐳 and 𝐮 = {𝐝, 𝐜},
respectively. The maximum log-likelihood has been used in the VAE
framework [5,29] to learn generative factors of data by jointly opti-
mizing both the generator and inference models. However, VAEs are
only used for learning real samples and therefore its ability is limited
when data are not available. In this section, we propose using inference
models in the SS-AVL model which are optimized in a self-supervised
learning manner.

Notations. Let 𝐱′ ∼ 𝐺(�̃�,𝐝, �̃�) be the generated sample where �̃�,𝐝, �̃�

are latent variables sampled from the prior distributions 𝑝(�̃�), 𝑝(𝐝),
𝑝(�̃�). Let 𝑞𝜔(𝐝, 𝐜 | 𝐱) and 𝑞𝜉 (𝐳 | 𝐱) represent two independent conditional
distributions implemented by two inference models with parameters 𝜔
and 𝜉, respectively. Let us define {𝐝, 𝐜} as interpretable representations
which model discrete and continuous meaningful variations of the data
𝐱′, and �̃� as the observed variables. Let us define a latent variable model
𝑝𝜓 (𝐱

′, �̃�,𝐝, 𝐜) = 𝑝𝜓 (𝐱
′ | �̃�,𝐝, 𝐜)𝑝(𝐝, 𝐜)𝑝(�̃�). The log-likelihood of 𝑝𝜓 (𝐱

′) is
defined as:

log 𝑝𝜓 (𝐱
′) = ∭ log 𝑝𝜓 (𝐱

′ |𝐝, 𝐜, �̃�)𝑝(𝐝, 𝐜)𝑝(�̃�) d𝐝 d𝐜 d�̃�. (6)

Eq. (6) is intractable since it requires to integrate over all latent
variables. To address this problem, we introduce a variational distribu-
tion 𝑞𝜔(𝐝, 𝐜 | 𝐱′), and derive a lower bound on the model log-likelihood,
called ELBO, by using the Jensen’s inequality :

log 𝑝𝜓 (𝐱
′) = logE𝑞𝜔(𝐝,𝐜∣𝐱′)𝑝(�̃�)

[
𝑝𝜓 (𝐱

′,𝐝, 𝐜, �̃�)

𝑞𝜔(𝐝, 𝐜 ∣ 𝐱
′)𝑝(�̃�)

]

≥ E𝑞𝜔(𝐝,𝐜∣𝐱
′)𝑝(�̃�)

[
log

𝑝𝜓 (𝐱
′,𝐝, 𝐜, �̃�)

𝑞𝜔(𝐝, 𝐜 ∣ 𝐱
′)𝑝(�̃�)

] (7)

This can be rewritten, following a derivation provided in the fol-
lowing, as:

log 𝑝𝜓 (𝐱
′) ≥ E𝑞𝜔(𝐝,𝐜∣𝐱

′)𝑝(�̃�)

[
log

𝑝𝜓 (𝐱
′ ∣ 𝐝, 𝐜, �̃�)𝑝(𝐝)𝑝(𝐜)𝑝(�̃�)

𝑞𝜔(𝐝 ∣ 𝐱′)𝑞𝜔(𝐜 ∣ 𝐱
′)𝑝(�̃�)

]

= E𝑞𝜔(𝐝,𝐜∣𝐱
′)𝑝(�̃�)

[
log

𝑝𝜓 (𝐱
′ ∣ 𝐝, 𝐜, �̃�)𝑝(𝐝)𝑝(𝐜)

𝑞𝜔(𝐝 ∣ 𝐱′)𝑞𝜔(𝐜 ∣ 𝐱
′)

]

= E𝑞𝜔(𝐝,𝐜∣𝐱
′)𝑝(�̃�)

[
log 𝑝𝜓 (𝐱

′ ∣ 𝐝, 𝐜, �̃�)
]

+ E𝑞𝜔(𝐝,𝐜∣𝐱
′)𝑝(�̃�)

[
log

𝑝(𝐝)

𝑞𝜔(𝐝 ∣ 𝐱′)

]
+ E𝑞𝜔(𝐝,𝐜∣𝐱

′)𝑝(�̃�)

[
log

𝑝(𝐜)

𝑞𝜔(𝐜 ∣ 𝐱
′)

]

= E𝑞𝜔(𝐝,𝐜∣𝐱
′)𝑝(�̃�)[log 𝑝𝜓 (𝐱

′ ∣ 𝐝, 𝐜, �̃�)]

− 𝐷𝐾𝐿(𝑞𝜔(𝐝 ∣ 𝐱′) || 𝑝(𝐝)) −𝐷𝐾𝐿(𝑞𝜔(𝐜 ∣ 𝐱
′) || 𝑝(𝐜)).

(8)

log 𝑝𝜓 (𝐱
′) ≥ E𝑞𝜔(𝐝,𝐜∣𝐱

′)𝑝(�̃�)[log 𝑝𝜓 (𝐱
′ ∣ 𝐝, 𝐜, �̃�)]

− 𝐷𝐾𝐿(𝑞𝜔(𝐝 ∣ 𝐱′) ‖ 𝑝(𝐝)) −𝐷𝐾𝐿(𝑞𝜔(𝐜 ∣ 𝐱
′) ‖ 𝑝(𝐜)).

(9)

We consider that �̃� is independent from 𝐝 and 𝐜 since �̃� represents
the prior information about 𝐱′. Meanwhile, we assume that 𝐝 is also
independent from 𝐜. In order to sample from discrete distributions,
such as 𝐝, we use the Gumbel-softmax distribution [30] which is
differentiable and can be embedded in the SGD training algorithm.
𝑞𝜔(𝐝 | 𝐱′) can be implemented by a convolution network with the last
layer consisting of the softmax function computing a probability vector
(𝑎1,… , 𝑎𝐾 ), where 𝐾 is the length of the discrete representation :

𝑑𝑘 =
exp((log 𝑎𝑘 + 𝐠𝑘)∕𝑇 )

∑𝐾

𝑖=1
exp((log 𝑎𝑖 + 𝐠𝑖)∕𝑇 )

(10)

where 𝐠𝑘 is sampled from Gumbel(0, 1) and 𝑇 is the temperature param-
eter controlling the smoothness of the Gumbel-softmax function.

Eq. (9) is only used to optimize the inference models with respect
to the latent variables {𝐝, 𝐜}. The advantage of this optimization is
that {𝐝, 𝐜} would capture invariant representations of 𝐱′ since this
optimization considers �̃� as the prior information which is drawn from
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Fig. 1. Unsupervised learning for the inference module. We separately optimize the inference modules while the generator is fixed.

an independent distribution. Therefore, 𝐱′ would not change too much
when changing �̃� while fixing {𝐝, 𝐜}.

In the following, we describe how to optimize the inference model
with respect to the latent variable 𝐳. Let 𝑞𝜉 (𝐳 | 𝐱′) be a variational
distribution of parameters 𝜉. Similarly, we define a latent variable
model 𝑝𝜓 (𝐱

′, 𝐳,𝐝, �̃�) = 𝑝𝜓 (𝐱
′ | 𝐳,𝐝, �̃�)𝑝(𝐳)𝑝(𝐝, �̃�), where we treat 𝐱′, �̃�,𝐝 as

observed variables and 𝐳 as an unobserved vector. Then we can define
the model’s log-likelihood and its ELBO as :

log 𝑝𝜓 (𝐱
′) = logE𝑞𝜉 (𝐳∣𝐱′)𝑝(𝐝)𝑝(�̃�)

[
𝑝𝜓 (𝐱

′,𝐝, �̃�, 𝐳)

𝑞𝜉 (𝐳 ∣ 𝐱
′)𝑝(𝐝)𝑝(�̃�)

]

≥ E𝑞𝜉 (𝐳∣𝐱
′)𝑝(𝐝)𝑝(�̃�)

[
log

𝑝𝜓 (𝐱
′,𝐝, �̃�, 𝐳)

𝑞𝜉 (𝐳 ∣ 𝐱
′)𝑝(𝐝)𝑝(�̃�)

]
.

(11)

Then we rewrite this expression as :

log 𝑝𝜓 (𝐱
′) ≥ E𝑞𝜉 (𝐳∣𝐱

′)𝑝(𝐝)𝑝(�̃�)[log 𝑝𝜓 (𝐱
′ ∣ 𝐝, �̃�, 𝐳)] −𝐷𝐾𝐿(𝑞𝜉 (𝐳 ∣ 𝐱

′) || 𝑝(𝐳)),

(12)

where �̃� and 𝐝 are drawn from the prior distributions, 𝑝(�̃�) and 𝑝(𝐝),
respectively. In practice, Eqs. (9) and (12) can be optimized consid-
ering adversarial learning, which would allow us to learn meaningful
representations from a pre-trained GAN model without data. The ar-
chitectures implementing Eqs. (9) and (12) are shown in Fig. 1a and b,
respectively. We introduce the detailed training process in Section 6.

4. Theoretical framework

In existing hybrid VAE-GAN models, the inference model and gen-
erator network are trained jointly by using a single objective function.
This optimization process requires to access real data samples for
both the inference model and generator, which cannot be done in a
pre-trained GAN model. Additionally, this optimization process would
result in the degradation of the model’s generated data quality. The
training of SS-AVL, illustrated in Fig. 1, has several different aspects
when compared to other VAE-GAN models, by optimizing separately
the inference models using two different loss functions, defined by

Eqs. (9) and (12). The proposed training for SS-AVL provides many
advantages. For instance, the training of the inference model does not
interfere with the optimization of the generator, which consequently
would provide a stable training procedure. When the generator would
model exactly the true data distribution, we can also derive more
accurate inference modules. It is easier to achieve the matching of two
single distributions individually, than aligning two joint distributions
using adversarial learning, as in other VAE-GAN based approaches [18].
Unlike in InfoGAN [31], the proposed model has a full inference mech-
anism, which enables the inference of both meaningful and nuisance
latent representations, benefiting many down-stream tasks such as data
reconstruction and interpolation.

Proposition 1. Let 𝐺∗ be the optimal solution of the Wasserstein distance
𝑊 (P𝐱 ,P

∗
𝜓
) and consequently we have P𝐱 ≈ P

∗
𝜓
, where P∗

𝜓
is the distribution

of data generated by 𝐺∗. Let P𝑋,𝑍 be the coupling between observed data 𝐱
and the latent variables 𝐳, inferred by the optimal inference model 𝑞∗

𝜉
(𝐳 | 𝐱).

Based on the assumption that P𝐱 ≈ P
∗
𝜓
, 𝑞𝜔(𝐝, 𝐜 | 𝐱′) adapts the generator to

maximize a lower bound on the real data log-likelihood.

Proof. We can rewrite log 𝑝𝜓 (𝐱
′) from (9), as :

log 𝑝𝜓∗ (𝐱∗) ≥ E𝑞𝜔(𝐝,𝐜|𝐱∗)𝑝(�̃�)[log 𝑝𝜓∗ (𝐱∗ ∣ 𝐝, 𝐜, �̃�)] −𝐷𝐾𝐿(𝑞𝜔(𝐜 ∣ 𝐱
∗) || 𝑝(𝐜))

− 𝐷𝐾𝐿(𝑞𝜔(𝐝|𝐱∗) || 𝑝(𝐝)) = (𝜓∗, 𝜔; 𝐱∗) ,

(13)

where �̃� is the prior latent variable used for sampling 𝐱∗ from 𝐺∗(�̃�,𝐝, 𝐜).
We only consider �̃� to be available during the decoding phase since
𝐝, 𝐜 are treated as unobserved variables in the case when optimizing
𝑞𝜔(𝐝, 𝐜 | 𝐱∗). Let us define (�̃� , �̃�; 𝐱) as the optimal lower bound on
log 𝑝𝜓 (𝐱), where :

(�̃� , �̃�) = arg max
𝜓∈𝛩,𝜔∈𝛷

(𝜓,𝜔; 𝐱). (14)

Then we have :
𝑛∑

𝑖=1

(�̃� , �̃�; 𝐱𝑖) ≥
𝑛∑

𝑖=1

(𝜓∗, 𝜔; 𝐱𝑖) → log 𝑝𝜓 (𝐱) ≥ (𝜓∗, 𝜔; 𝐱), (15)
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Fig. 2. Unsupervised learning structures in the generative models. 𝐜 and 𝐝 are the continuous and discrete variables, while 𝐳 represents Gaussian noise.

given that {�̃� , �̃�} are the optimal parameters for the model
log-likelihood log 𝑝𝜓 (𝐱). We assume that P𝜓∗ has an optimal behaviour,
which allows it to gradually approximate P𝐱. Under this assump-
tion, (𝜓∗, 𝜔; 𝐱) is increased towards (�̃� , �̃�; 𝐱) during the learning’s
convergence. This shows that when the generator is an exact approx-
imation for P𝐱 and we have the optimal coupling P𝑋,𝑍 optimizing
𝑞𝜔(𝐝, 𝐜 | 𝐱∗), it results in the maximization of a lower bound on the
sample log-likelihood. □

Proposition 2. Following the definitions from Proposition 1 and assuming
that the optimal coupling P𝑋,𝐷,𝐶 exists, 𝑞𝜉 (𝐳 | 𝐱′) is trained to be an adapter
to the generator in order to maximize a lower bound on the real sample
log-likelihood.

Proof.When optimizing 𝑞𝜉 (𝐳 | 𝐱′), we only consider accessing 𝐝, �̃� during
the decoding phase. We can rewrite log 𝑝𝜓 (𝐱

′) as :

log 𝑝𝜓∗ (𝐱∗) ≥E𝑞𝜉 (𝐳∣𝐱∗)𝑝(𝑑)𝑝(�̃�)[log 𝑝𝜓∗ (𝐱∗ ∣ 𝐳,𝐝, �̃�)]

− 𝐷𝐾𝐿[𝑞𝜉 (𝐳 ∣ 𝐱
∗) || 𝑝(𝐳)] = (𝜓∗, 𝜉; 𝐱∗) □

(16)

Similarly to Proposition 1, we define {�̃� , 𝜉} = argmax𝜓∈𝛩,𝜉∈𝛤(𝜓, 𝜉; 𝑥) as the optimal parameters and its optimal lower bound is
(�̃� , 𝜉; 𝐱), then we have for 𝑛 data samples, 𝐱𝑖, 𝑖 = 1,… , 𝑛 :
𝑛∑

𝑖=1

(�̃� , �̃�; 𝐱𝑖) ≥
𝑛∑

𝑖=1

(𝜓∗, 𝜉; 𝐱𝑖) → log 𝑝𝜓 (𝐱) ≥ (𝜓∗, 𝜉; 𝐱) (17)

The conclusions of Propositions 1 and 2, support the hypothesis that
by maximizing the log-likelihood objective function, the model is able
to learn accurate data representations when the generator approximates
well the empirical data distribution P𝐱. In practice, the inference model
provides a flexible learning manner in which the networks can be
trained individually.

Proposition 3. For a given well-trained inference model, we can estimate
the sample log-likelihood for data 𝐱𝑡, generated by a GAN, as :

log 𝑝𝜓 (𝐱𝑡) ≥E𝑞𝜔,𝜉 (𝐝,𝐜,𝐳∣𝐱𝑡)[log 𝑝𝜓 (𝐝, 𝐜, 𝐳 ∣ 𝐱𝑡)] −𝐷𝐾𝐿(𝑞𝜔(𝐝 ∣ 𝐱𝑡) || 𝑝(𝐝))

− 𝐷𝐾𝐿(𝑞𝜔(𝐜 ∣ 𝐱𝑡) || 𝑝(𝐜))
− 𝐷𝐾𝐿(𝑞𝜉 (𝐳 ∣ 𝐱𝑡) || 𝑝(𝐳)) = (𝜓, 𝜉, 𝜔; 𝐱𝑡)

(18)

The model 𝑝𝜓 (𝐱𝑡) combines the two inference models from Fig. 1 and a
generator.

Proposition 3 provides an explicit way to estimate the data sample
log-likelihood in GAN models, when providing a pre-trained model.

Proof. We combine the two inference models for continuous and
discrete variables, and a generator as a single model log 𝑝𝜓 (𝐱𝑡) =

𝑝𝜓 (𝐱𝑡 |𝐝, 𝐜, 𝐳)𝑞𝜔(𝐝, 𝐜 | 𝐱𝑡)𝑞𝜉 (𝐳 | 𝐱𝑡). Then we define the model log-likelihood
as :

log 𝑝𝜓 (𝐱𝑡) = logE𝑞𝜔,𝜉 (𝐝,𝐜,𝐳∣𝐱𝑡)

[
𝑝𝜓 (𝐱𝑡,𝐝, 𝐜, 𝐳)

𝑞𝜔,𝜉 (𝐝, 𝐜, 𝐳 ∣ 𝐱𝑡)

]
. (19)

According to the Jensen inequality, we have :

log 𝑝𝜓 (𝐱𝑡) ≥ E𝑞𝜔,𝜉 (𝐝,𝐜,𝐳∣𝐱𝑡)

[
log

𝑝𝜓 (𝐱𝑡,𝐝, 𝐜, 𝐳)

𝑞𝜔,𝜉 (𝐝, 𝐜, 𝐳 ∣ 𝐱𝑡)

]

= E𝑞𝜔,𝜉 (𝐝,𝐜,𝐳∣𝐱𝑡)

[
log

𝑝𝜓 (𝐝, 𝐜, 𝐳 ∣ 𝐱𝑡)𝑝(𝐝)𝑝(𝐜)𝑝(𝐳)

𝑞𝜔(𝐝|𝐱𝑡)𝑞𝜔(𝐜 ∣ 𝐱𝑡)𝑞𝜉 (𝐳|𝐱𝑡)

]

= E𝑞𝜔,𝜉 (𝐝,𝐜,𝐳∣𝐱𝑡)

[
log 𝑝𝜓 (𝐝, 𝐜, 𝐳 ∣ 𝐱𝑡)

]
+ E𝑞𝜔,𝜉 (𝐝,𝐜,𝐳∣𝐱𝑡)

[
log

𝑝(𝐝)

𝑞𝜔(𝐝|𝐱𝑡)

]

+ E𝑞𝜔,𝜉 (𝐝,𝐜,𝐳∣𝐱𝑡)

[
log

𝑝(𝐜)

𝑞𝜔(𝐜 ∣ 𝐱𝑡)

]
+ E𝑞𝜔,𝜉 (𝐝,𝐜,𝐳∣𝐱𝑡)

[
log

𝑝(𝐳)

𝑞𝜉 (𝐳 ∣ 𝐱𝑡)

]

= E𝑞𝜔,𝜉 (𝐝,𝐜,𝐳∣𝐱𝑡)

[
log 𝑝𝜓 (𝐝, 𝐜, 𝐳 ∣ 𝐱𝑡)

]
−𝐷𝐾𝐿(𝑞𝜔(𝐝 ∣ 𝐱𝑡) || 𝑝(𝐝))

− 𝐷𝐾𝐿(𝑞𝜔(𝐜|𝐱𝑡) ‖ 𝑝(𝐜)) −𝐷𝐾𝐿(𝑞𝜉 (𝐳|𝐱𝑡) ‖ 𝑝(𝐳)) □

(20)

5. Mutual information maximization for interpretable representa-
tions

In information theory, mutual information (MI) measures the amo-
unt of information shared by one random variable when observing
another variable. In the proposed SS-AVL model, we aim to transfer
the underlying characteristics of the continuous and discrete latent
variables during the decoder-generation process.

Let us denote the joint latent variables by 𝐮 = (𝐝, 𝐜) and we want to
maximize the MI between the joint latent variable 𝐮 and the decoder
result, I(𝐮, 𝐺(𝐳,𝐮)). Similar MI objectives have been adopted in [21,31–
35]. According to these studies, it is difficult to optimize the mutual
information directly given that it needs to access the information rep-
resented by the true posterior 𝑝(𝐮 | 𝐱). In order to address this problem,
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we define an auxiliary distribution 𝑊 (𝐮 | 𝐱) to approximate the true
posterior and then derive a lower bound on the mutual information,
expressed using the marginal entropy 𝐻(𝐮), as well as the conditional
entropy, 𝐻(𝐮 |𝐺(𝐳,𝐮)) :

I(𝐮, 𝐺(𝐳,𝐮)) = 𝐻(𝐮) −𝐻(𝐮 ∣ 𝐺(𝐳,𝐮))

= ∬ 𝐺(𝐳,𝐮)𝑝(𝐮 ∣ 𝐱) log
𝑝(𝐮 ∣ 𝐱)

𝑊 (𝐮 ∣ 𝐱)
𝑑𝐱𝑑𝐮

+ ∬ 𝐺(𝐳,𝐮)𝑝(𝐮 ∣ 𝐱) log𝑊 (𝐮 ∣ 𝐱)𝑑𝐱𝑑𝐮 +𝐻(𝐮)

= E𝐱∼𝐺(𝐳,𝐮)𝐷𝐾𝐿[𝑝(𝐮 ∣ 𝐱) ||𝑊 (𝐮 ∣ 𝐱)]

+ E𝐱∼𝐺(𝐳,𝐮)[E𝐮∼𝑝(𝐮,𝐱)[log𝑊 (𝐮 ∣ 𝐱)]] +𝐻(𝐮)

⩾ E𝐱∼𝐺(𝐳,𝐮)[E𝐮∼𝑝(𝐮,𝐱)[log𝑊 (𝐮 ∣ 𝐱)]] +𝐻(𝐮) = 𝑀𝐼 ,

(21)

where the auxiliary distribution 𝑊 (𝐮 | 𝐱) is implemented by 𝑞𝜔(𝐝, 𝐜 | 𝐱).
In practice, we sample a pair of latent variables 𝐝, 𝐜 from 𝑞𝜔(𝐝, 𝐜 | 𝐱). We
estimate the mutual information by means of the lower bound 𝑀𝐼 ,
from (21). The last term, 𝐻(𝐮) represents the marginal entropy of the
latent variables and is considered as a constant for simplicity.

6. The two-stage algorithm and implementation details

The structure implementing SS-AVL model is shown in Figs. 2 and
1. 𝑞𝜔(𝐝 | 𝐱) and 𝑞𝜔(𝐜 | 𝐱) are implemented by the same network except
for the last layer which is different for the inference of each latent
variable, as it can be seen in Fig. 1a. 𝑞𝜉 (𝐳 | 𝐱) is implemented by a
neural network with trainable parameters 𝜉, as shown in Fig. 1b. We
introduce a two-stage algorithm to train the inference and generator,
separately. The proposed algorithm has two independent optimization
stages, named‘‘wake’’ and ‘‘dreaming’’.

In the ‘‘wake’’ phase, we optimize the discriminator and generator
by the following loss functions :

𝐷 = ▽𝜑

1

𝑚

𝑚∑

𝑖=1

−[𝐷(𝐱𝑖) −𝐷(𝐺(𝐳𝑖, 𝐜𝑖,𝐝𝑖))], (22)

𝐺 = −▽𝜓

1

𝑚

𝑚∑

𝑖=1

𝐷(𝐺(𝐳𝑖, 𝐜𝑖,𝐝𝑖)), (23)

where 𝑚 represents the number of data samples used in the batch
during SGD learning.

In the ‘‘dreaming’’ phase, we maximize the MI between latent
representations and observed data by optimizing the parameters of
the generator, discriminator and inference model with respect to their
gradients :

𝑀𝐼 = ▽𝜑,𝜔,𝜓

(
E𝐱∼𝐺(𝐳,𝐮)[E𝐝∼𝑝(𝐝,𝐱)[log 𝑞𝜔(𝐝 ∣ 𝐱𝑖)]]

+ E𝐱∼𝐺(𝐳,𝐮)[E𝐜∼𝑝(𝐜,𝐱)[log 𝑞𝜔(𝐜 ∣ 𝐱)]]
)
.

(24)

It can be seen from Figs. 2 and 1, that unlike the approach from
BiGAN [15], where the inference model is trained with respect to gra-
dient signals from the discriminator, the proposed algorithm optimizes
the parameters of the inference model in the ‘‘dreaming’’ phase by
using two different objective functions, whose parameters are updated
by maximizing the marginal log-likelihood objective functions over the
observed samples drawn during the ‘‘wake’’ phase from the current
generator distribution. The proposed algorithm can allow the inference
models to be trained independently in order to enforce disentanglement
between 𝐳 and (𝐜,𝐝) :

▽𝜔

(
E𝐝,𝐜∼𝑞𝜔(𝐝,𝐜∣𝐱

′),�̃�∼𝑝(�̃�)[log 𝑝𝜓 (𝐱
′ ∣ 𝐝, 𝐜, �̃�)] −𝐷𝐾𝐿(𝑞𝜔(𝐝 ∣ 𝐱′) || 𝑝(𝐝))

−𝐷𝐾𝐿(𝑞𝜔(𝐜 ∣ 𝐱
′) || 𝑝(𝐜))

)
,

(25)

▽𝜉

(
E𝐳∼𝑞𝜔(𝐳∣𝐱

′),𝐝∼𝑝(𝐝),�̃�∼𝑝(�̃�)[log 𝑝𝜓 (𝐱
′ ∣ 𝐝, �̃�, 𝐳)] −𝐷𝐾𝐿(𝑞𝜉 (𝐳 ∣ 𝐱

′) || 𝑝(𝐳))
)
.

(26)

The pseudo-code of the supervised training algorithm is provided in
Algorithm 1.

Algorithm 1: The supervised learning for SS-AVL

Input: Training database
Output: Model’s parameters

1 for 𝑒𝑝𝑜𝑐ℎ < 𝐸𝑝𝑜𝑐ℎ𝑚𝑎𝑥 do
2 for 𝑗 < 𝑏𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡 do
3 𝐱𝑏𝑎𝑡𝑐ℎ ∼ 𝑝𝑑(𝐱) Sample from the data distribution ;
4 𝐳 ∼ 𝑝(𝐳), 𝐜 ∼ 𝑝(𝐜),𝐝 ∼ 𝑝(𝐝) Latent random vectors drawn from

the prior distributions ;
5 𝐱𝑔 = 𝐺(𝐳, 𝐜,𝐝) Generate images for prior distributions ;
6 𝐳′ ∼ 𝑞𝜉

(
𝐳 | 𝐱𝑔

)
, 𝐜′,𝐝′ = 𝑞𝜔

(
𝐜,𝐝 | 𝐱𝑔

)
Infer latent variables from

generated images ;
7 𝐱′ = 𝐺

(
𝐳, 𝐜′,𝐝′

)
, �̃� = 𝐺

(
𝐳′, 𝐜,𝐝

)
Reconstruct images ;

8 Wake phase ;
9 Update discriminator network by 𝐷 ;
10 Update generator by 𝐺 ;
11 Dreaming phase ;
12 Update all components by 𝑀𝐼 ;
13 Update the encoder by the two loss functions (Eq. (25) and

Eq. (26)) ;

14 end

15 end

Fig. 3. Reconstruction results on MNIST.

7. Discussion

One downside of the proposed SS-AVL is that the mutual informa-
tion maximization from Eq. (21) requires updating jointly the inference
model and generator on real training samples to encourage learning
interpretable representations. However, when real training samples are
not available, mutual information optimization will not be applicable.
In addition, in a more realistic learning environment where the past
datasets are unavailable when learning a new dataset [37], the pro-
posed SS-AVL would quickly forget its previously learnt knowledge,
leading to significant performance degeneration on past datasets. A
simple approach to relieving forgetting is to employ the generation
property of SS-AVL, which can produce past knowledge that is incor-
porated with new samples for learning a new task. This approach will
be investigated in a future study.

Another downside of this proposed SS-AVL methodology is that it
cannot always learn optimal latent representations when the gener-
ator does not approximate the real data distribution exactly. When
the generator is trained on a more complex data distribution, the
model could easily suffer from the mode collapse [14], resulting in
reproducing images only from certain categories. In order to address
this drawback, an appropriate hyperparameter configuration can be
adopted. In addition, several procedures have been lately proposed to



Pattern Recognition 148 (2024) 110156

7

F. Ye and A.G. Bors

Fig. 4. Generation results on MNIST when the discrete variable is manipulated and the continuous variable is fixed. The visual results of JointVAE are those from [36].

Fig. 5. Generation results when changing continuous variables 𝑐1 and 𝑐2 from −1 to 1.

Fig. 6. Generation results when training on the Fashion dataset and considering changing the discrete variable while the continuous variable is fixed. The visual results of JointVAE
are those from [36].

Fig. 7. Reconstruction results when training on Fashion dataset.

stabilize the GAN training [14,38], which can relieve the mode collapse

issue. Since the proposed SS-AVL does not interfere with the adversarial

learning, SS-AVL can be smoothly combined with these approaches to

further enhance the performance, which will be investigated in our

future work.

8. Experimental results

In the following we test and evaluate the performance and prop-
erties of SS-AVL on a variety of datasets while comparing it with the
state-of-the-art.

8.1. Results on MNIST and MNIST-fashion databases

We firstly consider the MNIST dataset [39], representing images of
handwritten digits grouped in 10 classes. In order to learn the discrete
latent variable which captures different styles of the handwritten digits,
we choose a categorical vector sampled from 𝐜 ∼ 𝐶𝑎𝑡(𝐾 = 10, 𝑝 = 0.1)

and two continuous variables sampled from a uniform distribution
𝐳,𝐝 ∼ 𝑈 (−1, 1), where we consider each entry of the latent feature
vectors being sampled from the corresponding distribution for the
proposed Self-Supervised Adversarial Variational Learning (SS-VAL) as
well as for InfoGAN [31], which is used for comparison.

We provide the reconstruction results on MNIST, achieved by the
proposed SS-AVL in Fig. 3d, where the discrete latent variables are
sampled from the Gumble-softmax distribution while the continuous
latent variables are sampled from a Gaussian distribution, whose mean
and diagonal covariance are parameterized by the encoder, and then
take the latent variables as the input for the generator. In Fig. 3b
and Fig. 3c we provide the reconstruction results for the Adversarially
Learned Inference (ALI) [45] and InfoGAN [31], respectively. From
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Fig. 8. Generation results when changing continuous variables 𝑐1 and 𝑐2 from −1 to 1.

Table 1
Unsupervised classification results. M represents the number of different
runs and K is the number of mixtures’ components.

MNIST

Method K M Mean Best
Accuracy Accuracy

SS-AVL 1 4 95.42 96.15
JointVAE [36] 1 4 71.53 87.32
SubGAN [40] 20 4 89.72 90.81
InfoGAN [31] 1 4 91.98 93.35
GMVAE [41] 30 4 87.45 89.27
GMVAE [41] 16 4 87.12 87.82
AAE [13] 16 4 88.82 90.45
CatGAN [42] 30 4 93.67 95.73
DEC [43] 10 4 83.26 84.30
PixelGAN [44] 30 4 93.57 94.73

MNIST-Fashion

SS-AVL 1 4 51.62 52.53
JointVAE [36] 1 4 48.57 49.83
InfoGAN 1 4 38.63 39.80

Fig. 9. Results produced by a fixed GAN considering a trained inference model.

these results, it can be observed that SS-AVL provides better digit image
reconstructions than either ALI or InfoGAN.

In another experiment, we change the discrete latent variable from
0 to 9 and sample the continuous variables 𝐜 from the uniform distribu-
tion 𝑈 (−1, 1). The results generated when considering MNIST database
for training are presented in Figs. 4a, 4b and 4c, for JointVAE, Info-
GAN and the proposed SS-AVL, respectively. From Fig. 4c we observe
that SS-AVL can generate digits showing different handwritten style
characteristics, which cannot be said about the InfoGAN results, which
sometimes would generate digit images which do not correspond to
what is expected, as it can be observed from Fig. 4b. In the following we
sample the continuous codes 𝑐1, 𝑐2 within [−1, 1] and fix the other latent
variables. The results generated when considering training with MNIST
data are shown in Figs. 5b and 5d for SS-AVL, while those for InfoGAN

are provided in Figs. 5a and 5c, when changing either 𝑐1 or 𝑐2. It can
be observed that by varying the latent codes in SS-AVL, we generate
images showing meaningful characteristics such as digits being rotated
or displaying various handwriting styles.

The Fashion dataset, which contains images of clothing items, is a
more challenging database for training than MNIST and we consider
the same hyperparameters as for MNIST when training SS-AVL and
InfoGAN for comparison. The generation results across all Fashion
classes are presented in Fig. 6, where we change the discrete latent
variable from 0 to 9. The original images are provided in Fig. 7a and the
reconstructions by ALI, InfoGAN and SS-AVL are shown in Figs. 7b, 7c
and 7d, respectively. We also sample the continuous codes 𝑐1, 𝑐2 within
[−1, 1] and fix the other latent variables. The results for InfoGAN and
SS-AVL are shown in Fig. 6e and 6f, respectively. We find that both
SS-AVL and InfoGAN are able to generate the right image classes for
a given discrete code. However, while SS-AVL is usually able to yield
various styles of shapes and textures for the clothing items shown in
images, InfoGAN tends to output images displaying a rather fixed style.
We also change two continuous latent variables 𝑐1, 𝑐2 within [−1, 1] and
the results are shown in Fig. 8. We observe from Figs. 8b and 8d that
the continuous latent variables in SS-AVL can capture well the variation
in items’ shape as well as in the lighting. Meanwhile, InfoGAN produces
rather unexpected image variations, as it can be seen from Figs. 8a and
8c.

In Table 1 we provide the classification results when considering
unsupervised learning on both MNIST and Fashion datasets, where we
infer the class from the discrete variables 𝐝, and compare with the
real class label. Most existing unsupervised learning methods adopt
mixture models, which have higher complexity and significantly more
parameters, so we refer to 𝐾 as the number of components in such
mixing models from Table 1. From these results we observe that the
proposed approach achieves higher accuracy than InfoGAN and than
most other models.

From Table 1 of the paper, we find that the GAN-based meth-
ods such as InfoGAN and AAE outperform other types of methods
for the unsupervised classification task. Such results demonstrate that
by combining a GAN model with the inference model we can cap-
ture discretely-defined variations in images and a GAN-based model
performs better than the VAE-based methods. Compared with the base-
lines, the proposed SS-AVL achieves the best performance. In addition,
the proposed SS-AVL does not require many components and still
outperforms mixture models such as GMVAE and SubGAN.

8.2. Learning representations from a trained GAN model

In this section, we investigate how the proposed approach can
provide inference mechanisms for a trained GAN model. In certain ap-
plications, because of the data privacy requirements or due to memory
limitations, we cannot access real samples and then we would consider
the data generated by a GAN which can provide an appropriate solu-
tion. In the following experiments, we consider a GAN model which
was trained on a certain dataset, considering a single latent vector 𝐳.
So we can rewrite the data-free log-likelihood objective function from
Eq. (16) by considering 𝛽-VAE [9]:

log 𝑝𝜓∗ (𝐱∗) ≥ E𝑞𝜉 (𝐳∣𝐱
∗)[log 𝑝𝜓∗ (𝐱∗ ∣ 𝐳)] − 𝛽𝐷𝐾𝐿[𝑞𝜉 (𝐳 ∣ 𝐱

∗) || 𝑝(𝐳)] (27)
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Fig. 10. Reconstructions on CelebA data, after training.

Fig. 11. Interpolation results on CelebA testing samples.

where we train a single inference model 𝑞𝜉 (𝐳 | 𝐱∗) by using the above
objective function while 𝐱∗ is produced by a GAN generator. We
provide the reconstruction results in Fig. 9b for the images from Fig. 9a.
These results are produced by the GAN’s generator (fixed during the
inference training) taking inputs from the latent variable 𝐳 estimated
by the inference model. This result shows that the proposed approach
can provide an accurate inference model with a fixed GAN model
without considering any real data. We also plot the log-likelihood in
Fig. 9c, where we use the negative reconstruction error as the first term
calculated for all testing samples, considering a fixed GAN model and a
learned inference model, where we also compare with a VAE trained on
all training samples. From these results, we observe that the proposed
approach can allow the inference model to adapt well to the fixed GAN
model by only considering a few training iterations.

In the following we train WGAN [26] on CelebA [46] dataset,
which also receives a single latent vector 𝐳. After training, we fix the
WGAN model and train the inference model with the proposed data-free
likelihood objective function from Eq. (27). In this case we optimize a
reduced ELBO, where 𝛽 is set as a small value, weighting the Kullback–
Leibler divergence, aiming to produce higher-quality reconstructions.
We also train a VAE model on CelebA for comparison. The generation
and reconstructions are shown in Fig. 10. We observe that the proposed
approach can produce better reconstruction results than VAEs.

We also perform image interpolation experiments and the results
are presented in Fig. 11. From these results, we can observe a smooth
transition between two faces during interpolation. These results demon-
strate manifold continuity showing that the proposed approach is able
to learn an accurate inference model from a fixed GAN model without
requiring any real data.

8.3. Results on databases containing complex images

We evaluate the proposed SS-AVL approach on databases contain-
ing more complex images, such as CelebA [46] and 3D Chair [47].
We consider a 10-dimensional vector only for the continuous latent
variables for modelling the underlying changing factors using SS-AVL.
When considering the face images from Fig. 12a, the reconstructions
and generations by SS-AVL when inferring the continuous and discrete
latent variables from the testing samples and then combining the

Fig. 12. Generation and reconstructions results by SS-AVL and InfoGAN on Celeba
dataset.

Fig. 13. Generation and reconstruction results by SS-AVL and InfoGAN on 3D-Chair
dataset.
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Fig. 14. Manipulating latent codes on CelebA dataset. We change a single latent variable in the latent space from −1 to 1 while fixing the others.

resulting variables as inputs for the generator are provided in Figs. 12b
and 12c. Meanwhile, reconstructions and generations by InfoGAN are
shown in Figs. 12d and 12e. From Figs. 12b and 12d it can be observed
that SS-AVL provides reasonable reconstructions, while InfoGAN yields
blurred reconstruction results, according to the results from Figs. 12c
and 12e.

In the following we consider a 10-dimensional vector for the con-
tinuous latent variables in order to model images from the 3D Chair
dataset [47]. We set the dimension of the noise generation vector 𝐳

as 100. The reconstruction and generation results for the images from
Fig. 13a by SS-AVL are provided in Figs. 13b and 13c, while the
reconstruction and generation results by InfoGAN [31] are provided in
Figs. 13d and 13e. We can see that SS-AVL is able to provide accurate
image reconstructions and realistic image generations of face and 3D
chair from Figs. 12 and 13.

We also manipulate in turns a single latent variable from the given
latent space, while fixing the others, when considering CelebA dataset,
and the results are provided in Fig. 14. We can observe that the
proposed approach can represent eight different kinds of disentangled
representations modelling the following changes: modifying hair bangs,
adding or not having glasses, modifying hair colour, modifying hair

style, varying makeup, narrowing the face, changing facial expression
such as smiling, or changing gender.

We repeat the same experiment as above for 3D Chair dataset,
by changing a single variable while keeping the others fixed. The
generation results for SS-AVL are shown in Figs. 15a–e while those
by 𝛽−TCVAE [48] are displayed in Figs. 15f–j. From these results it
can be observed that the proposed approach can discover a variety of
feature variations in 3D Chair images representing chair orientation,
style of chairs’ backrest, leg style. It can be observed from these results
that when the image is generated using SS-AVL and the chair size
is increasing, other features, such as for example the backrest of the
chair, are changed proportionally as well. Meanwhile, such changes are
not properly synchronized in the images generated by 𝛽−TCVAE from
Figs. 15f–j.

We also compare the proposed approach with other baselines on the
3D-Face dataset [49]. In Fig. 16a we provide the testing images and
their reconstructions by the proposed SS-AVL are shown in Fig. 16b. In
Figs. 16c [36] and 16d we show reconstructions of the 3D-Face dataset
images by JointVAE [36] and 𝛽-VAE [9]. We consider 200 training
epochs for each method. These visual results show that the proposed
SS-AVL achieves slightly better reconstructions than other baselines on
the challenging 3D-Face dataset.



Pattern Recognition 148 (2024) 110156

11

F. Ye and A.G. Bors

Fig. 15. Manipulating latent codes on the 3D chair dataset. We change a single latent variable in the latent space from −1 to 1 while fixing the others. The first row results are
provided by the proposed SS-AVL approach. The second-row results are for 𝛽−TCVAE [48].

Fig. 16. The reconstructions results on the 3D-Face dataset [49].

Table 2
Disentanglement evaluation on the dSprites, where L
is the dimension of the latent space.

Methods L Score

SS-AVL 10 0.79
Beta-VAE [9] 10 0.73
FactorVAE [10] 10 0.82
JointVAE [36] 10 0.69

8.4. Numerical evaluation

In this section, we investigate the disentanglement ability of the
proposed approach by using the metric from [10] on the benchmark
dataset dSprites [50]. We consider 6 continuous latent variables and
one three-dimensional discrete vector when training the model. We per-
form the experiments following the JointVAE analysis [36]. The results

are reported in Table 2 and all other results than ours are referred
from [36]. The proposed SS-AVL approach achieves a competitive
disentanglement score when compared with those of the state of art. We
provide visual results of the dSprites in Fig. 19a and we compare with
𝛽-VAE and FactorVAE, shown in Fig. 19b and 19c, respectively. These
results indicate that the proposed SS-AVL achieves competitive results
when compared to the two VAE-based methods. In particular, SS-AVL
produces variations for only a single image characteristic. For example,
SS-AVL only changes the 𝑦-axis of an object in the image, while the
other methods would also change the object’s shape, as can be seen in
the first row of the images shown in Fig. 19.

In the following we compare the proposed SS-AVL approach with
InfoVAE [51]. InfoVAE also enforces learning good representations by
maximizing the mutual information between representations and data.
However, InfoVAE incorporates the mutual information term in the
ELBO as a single optimization objective function, which is different
from the proposed approach that maximizes the mutual information
separately from the optimization of generator and inference models. We
use the Maximum-Mean Discrepancy as the divergence 𝐷𝑀𝑀𝐷(𝑝 ∥ 𝑞) in
InfoVAE. We provide the disentanglement results, calculated as in [36],
on dSprites in Fig. 17a while evaluating the Fréchet Inception Distance
(FID) [52] on CelebA and 3D-Chair databases in Fig. 17b and Fig. 17c,
respectively. According to these results we can observe that the pro-
posed approach not only that it achieves a better disentanglement score
but also it can generate better images than InfoVAE [51].

We also compare SS-AVL with more recent works on the chal-
lenging dataset ImageNet [53]. The Root Mean Square Error (RMSE)
and Inception Score (IS) results are reported in Table 3. From these
results we can observe that the proposed SS-AVL outperforms other
recent works except for MVAE, which is a mixture model using many
more parameters. These results demonstrate that the proposed SS-AVL
achieves good results while also enjoying some good properties such as
being able to learn interpretable representations and can be used for
representation learning from a pre-trained GAN model.

8.5. Analysis results

In the following we evaluate the model’s likelihood during the
training in order to investigate how the inference model can adapt to
the generator. We also provide numerical results for the theoretical
framework described in Section 4. We randomly select 1,000 testing
samples 𝐱𝑡, from the MNIST dataset in order to estimate the surrogate
log-likelihoods (𝜓, 𝜉, 𝜔; 𝐱𝑡), (𝜓,𝜔; 𝐱𝑡), (𝜓, 𝜉; 𝐱𝑡), respectively. The
results are shown in Fig. 18a, where the log-likelihood surrogates 1,
2, 3 represent (𝜓, 𝜉, 𝜔; 𝐱𝑡) from Eq. (18), (𝜓,𝜔; 𝐱𝑡) from Eq. (13) and
(𝜓, 𝜉; 𝐱𝑡) from Eq. (16). For comparison we train a VAE, that shares
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Fig. 17. Disentanglement score and Fréchet Inception Distance (FID) evaluations.

Fig. 18. Log-likelihood estimation and reconstruction errors on MNIST testing samples during the training.

Table 3
RMSE and Inception score (IS) on ImageNet database. The results of other baselines
are taken from [23] except ControlVAE [54] and NCP [55].

Model RMSE IS

MVAE-Gau [23] 19.44 6.84
MVAE-Gau fixed K [23] 20.87 6.30
MVAE-GS [23] 20.45 6.52
MSVI [56] 22.29 6.12
InfoVAE [51] 22.73 6.14
𝛽-VAE [9] 31.47 5.05
VAE 28.44 5.46
Wasserstein–Wasserstein Auto-Encoders [57] 25.63 5.79
MAE [58] 23.25 5.87
ControlVAE [54] 20.78 6.18
NCP [55] 21.23 6.10
SS-AVL 20.15 6.29

the same network architecture with the proposed model and treat the
VAE’s results as the ELBO on the real sample log-likelihood. We can
observe that (𝜓, 𝜉, 𝜔; 𝐱𝑡), (𝜓,𝜔; 𝐱𝑡) and (𝜓, 𝜉; 𝐱𝑡) are bounded on
the real sample log-likelihood, as described in Section 4, ‘‘Theoretical
framework’’. We also provide the reconstruction error calculated on
1,000 testing images for each iteration in Fig. 18b, which is gradually
reduced when the number of iterations is increased. We observe that
the quality of the generator, the surrogate log-likelihood on testing data
samples increases towards the results provided by the VAE.

The log-likelihood and reconstruction results across all MNIST and
Fashion testing samples are provided in Table 4, where SS-AVL-R de-
notes the model in which all inference networks are retrained by using
the log-likelihood objective function. From these results, we observe
that retraining inference models can improve the log-likelihood and
reconstruction ability. These results show that the performance of the
proposed approach is very close to that of a VAE trained on the real
training samples. However, the inference model in SS-AVL does not
actually see any real data samples.

Table 4
Log-likelihood (LL) estimation and MSE reconstructions on MNIST and
Fashion datasets.

Dataset Methods LL MSE

MNIST SS-AVL −59.01 35.39
MNIST SS-AVL-R −53.14 34.04
Fashion SS-AVL −46.39 29.41
Fashion SS-AVL-R −41.20 27.91

8.6. Ablation study

In this section, we investigate the importance of each module mak-
ing up the SS-AVL model and how this is addressing important ques-
tions.
Is only one inference model enough? First, we evaluate the perfor-
mance of the proposed approach when using only one inference model.
Therefore, we create two different baselines, one without using the
inference model 𝑞𝜉 (𝐳 | 𝐱), namely SS-AVL1, while a second baseline does
not use the inference model 𝑞𝜔(𝐝, 𝐜 | 𝐱), namely SS-AVL2. We consider
the same hyperparameter setting for the proposed approach and for
the two baselines during the training. The reconstruction results for
MNIST data from Fig. 20a, by SS-AVL1 and SS-AVL2 are shown in
Figs. 20b and 20c, respectively. Meanwhile, the results by the proposed
SS-AVL model are provided in Fig. 20d. We observe that the two
baselines are generating digits with different styles when comparing to
the real samples. However, by using a model with two inference models
defining two log-likelihood objective functions, as proposed in this
research study, we can generate digits displaying handwriting styles
which are clearer and consistent with those from the input images,
when comparing to the results provided by the baselines. The reason for
this is that the proposed two log-likelihood functions are encouraged
to capture different details of the data while when having only one
inference model we can only capture a limited set of feature variations.
Assessment of the disentanglement between 𝐳 and {𝐜,𝐝}. In this
section, we investigate the disentanglement ability between 𝐳 and {𝐜,𝐝}

in the proposed methodology. In Section 3.2, we have shown that the
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Fig. 19. Generation results for the dSprites dataset by changing a single latent variable from −3.0 to 3.0. The results from 𝛽-VAE and FactorVAE are from [36].

Fig. 20. Reconstruction results on MNIST testing samples by changing the inference encoders structure.

Fig. 21. Manipulated results when changing one of the dimensions of 𝐳 from −3 to 3,
while fixing the others.

latent variables {𝐜,𝐝} are able to capture both discrete and continuous
variations of data, which is evident from Fig. 4 for MNIST database.
In the following, we change one dimension of 𝐳 while fixing the other
variables. From the results presented in Fig. 21, we can see that after
changing a dimension from the continuous latent space vector 𝐳 =

(𝑧1 𝑧2 𝑧3 𝑧4 𝑧5)𝑇 , we can change neither the digital type nor the
handwriting style. The reason for this is that the proposed approach
separately trains two inference models by using the proposed data-free
likelihood objective functions. This mechanism helps enforce the dis-
entanglement between the random variable 𝐳 and the continuous and
categorical variables {𝐜,𝐝}. At the same time, the mutual information
maximization is only optimized on one inference model, which helps
learning better interpretable representations than InfoGAN and other
methods.

9. Limitation and conclusion

In this paper, we introduce a new approach, Self-Supervised Ad-
versarial Variational Learning (SS-AVL), for jointly learning discrete
and continuous interpretable representations. Different from other ex-
isting hybrid models, SS-AVL separately optimizes the inference and
the generator models by using a two-stage optimization approach.
SS-AVL is able to learn data representations from a trained (fixed)
GAN model without using any real data and has many advantages
over other VAE-GAN hybrid methods. This shows that the proposed
approach represents a tool which can provide inference mechanisms for
arbitrarily chosen GAN models without using any real data. In addition,

SS-AVL is shown to be enabled with disentangled and interpretable
representation learning mechanisms. Finally, experiments show that
SS-AVL can provide high-quality diverse interpretable results of data
variations. A challenge with the proposed approach is that the inference
models cannot learn interpretable representations of the real data if the
generator does not approximate the empirical data distribution well.
This weakness can be addressed by configuring the hyper-parameters
appropriately.

Data availability

Data used is public.
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