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Abstract

Human brains can continually acquire and learn new skills
and knowledge over time from a dynamically changing en-
vironment without forgetting previously learnt information.
Such a capacity can selectively transfer some important and
recently seen information to the persistent knowledge regions
of the brain. Inspired by this intuition, we propose a new
memory-based approach for image reconstruction and gen-
eration in continual learning, consisting of a temporary and
evolving memory, with two different storage strategies, corre-
sponding to the temporary and permanent memorisation. The
temporary memory aims to preserve up-to-date information
while the evolving memory can dynamically increase its ca-
pacity in order to preserve permanent knowledge information.
This is achieved by the proposed memory expansion mecha-
nism that selectively transfers those data samples deemed as
important from the temporary memory to new clusters de-
fined within the evolved memory according to an information
novelty criterion. Such a mechanism promotes the knowledge
diversity among clusters in the evolved memory, resulting in
capturing more diverse information by using a compact mem-
ory capacity. Furthermore, we propose a two-step optimiza-
tion strategy for training a Variational Autoencoder (VAE)
to implement generation and representation learning tasks,
which updates the generator and inference models separately
using two optimisation paths. This approach leads to a bet-
ter trade-off between generation and reconstruction perfor-
mance. We show empirically and theoretically that the pro-
posed approach can learn meaningful latent representations
while generating diverse images from different domains. The
source code and supplementary material (SM) are available
at https://github.com/dtuzi123/DEMC.

Introduction

Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014a) and Variational Autoencoders (VAEs) (Kingma
and Welling 2013) represent two of the most popular
deep generative models used in many applications, includ-
ing image synthesis (Karras et al. 2020), video generation
(Tulyakov et al. 2018) and image-to-image translation (Isola
et al. 2017). However, despite their impressive performance,
most generative models can only be applied to static data
distributions. When trained in a continual learning fashion,
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these models suffer a significant performance degradation
when tested on past tasks, and such a performance loss is
called catastrophic forgetting (Parisi et al. 2019; Ye and Bors
2020). A simple and natural way to mitigate forgetting is
to use deep generative models such as GANs and VAEs to
remember and generate past knowledge that is then incor-
porated together with new data, and used for retraining the
model (Seff et al. 2017). However, the performance of such
an approach is highly dependent on the quality of the gen-
erative replay samples, and this degrades significantly after
learning several different data domains (Ye and Bors 2023a).
Another approach proposes using the dynamic expansion
mechanism to gradually add new parameters to learn new
tasks, while freezing all previously learned parameters to
preserve past knowledge (Varshney et al. 2021; Zhai et al.
2020). However, these approaches require access to the ex-
plicit task boundaries, which is impossible in real scenarios
(Aljundi, Kelchtermans, and Tuytelaars 2019).

In this paper, we study a new and more realistic learning
scenario called the Task-Free Continual Learning (TFCL)
(Aljundi, Kelchtermans, and Tuytelaars 2019), in which
a model is trained on a data stream without explicit
task boundaries. Storing diverse samples in a memory
buffer was shown to relieve forgetting in TFCL (Aljundi,
Kelchtermans, and Tuytelaars 2019). However, most exist-
ing memory-based methods can only be applied to super-
vised learning (Aljundi, Kelchtermans, and Tuytelaars 2019;
Jin et al. 2021), while unsupervised representation learn-
ing and generation in TFCL has not been studied before.
Here we aim to learn a generative model capable of gener-
ating diverse images while also capturing meaningful latent
representation across different data domains without forget-
ting. Biological studies show that the human brain can store
short- and long-term information in different regions (Berns
et al. 2013), where the short-term information can be persis-
tent when necessary. Inspired by this intuition, we propose
a new memory system consisting of temporary and evolved
memory buffers, each with different storage strategies. The
first type of memory aims to temporarily preserve the up-
to-date information about a data stream, while the second
type permanently preserves necessary samples from the tem-
porary memory during the training. The evolved memory
can dynamically build a sequence of memory clusters, each
having a fixed size, expected to capture different informa-
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Figure 1: The updating procedure of the proposed Continual Variational Autoencoder (CAA), at each training time, can be
summarized in three steps. In the first step, we update all modules using Lg′ and Ld from Eq. (5) and (3). In the second step,
we only update the inference model by minimizing Linf , Eq. (6), with the frozen generator and discriminator. In the sample
selection step, if the memory expansion criterion (Eq. (8)) is satisfied, we transfer the temporary memory buffer to a new
memory cluster Md[k], clearing up Mt

i. More details are provided in Appendix-A from Supplementary Material (SM).

tion. In order to gradually store important information in
the evolved memory, we propose a new memory expan-
sion mechanism that evaluates the probabilistic distance be-
tween each existing memory cluster and the current tempo-
rary memory’s probabilistic representation. A large distance
indicates that the temporary memory is new to the already
preserved knowledge and then many critical samples from
the temporary memory are stored into a newly created clus-
ter of the evolved memory following a sample selection pro-
cess. Furthermore, we perform this expansion mechanism on
the aggregated posterior achieved by the inference model,
which is computationally efficient.

To relieve poor generation results caused when using the
VAE loss, some research studies proposed to explore the
generation ability of GANs, within a hybrid VAE-GAN
framework (Huang et al. 2018; Larsen et al. 2015; Ulyanov,
Vedaldi, and Lempitsky 2018; Xian et al. 2019). However,
these methods adopt a unified objective function, which can
not guarantee the learning of an optimal inverse mapping
for the generator. In this paper, we develop a new model
called the Continual Variational Autoencoder (CAA) that
formulates the inference model and the generator (decoder)
learning as two separate optimisation paths, providing a bet-
ter trade-off between generation and reconstruction perfor-
mance. In particular, we introduce a two-step optimization
strategy. In the first step, we want the generator to approx-
imate the data distribution as closely as possible while the
model can also learn latent representations. In the second
step, we freeze the generator and optimise the inference
model only by maximising the sample log-likelihood in or-
der to learn an optimal inverse mapping of the generator.
Such a training procedure, called the Two-Step Optimiza-
tion Strategy (TSOS), is a good compromise between op-
timizing the generator and the inference model. Moreover,
unlike existing hybrid VAE-GAN approaches (Huang et al.
2018; Larsen et al. 2015; Ulyanov, Vedaldi, and Lempitsky
2018; Xian et al. 2019), which can only learn a static data
distribution, the proposed CAA is trained on a dynamically
changing data stream without explicit task boundaries.

Extensive experiments show that the proposed Continual
Variational Autoencoder (CAA) can produce diverse images
across all learnt data domains over time, which is consis-
tent with our theoretical results. The contributions are sum-
marised as follows: (1) We propose a bio-inspired memory
approach to deal with the generation and unsupervised rep-
resentation learning in TFCL; (2) We propose a new training
strategy which ensures a good trade-off between generation
and reconstruction performance; (3) We provide the theo-
retical analysis and understanding of the proposed memory
approach. (4) We establish a new evaluation criterion for the
generation and unsupervised representation learning.

Related Work

Lately, Continual Learning (CL) has become a hot topic
in machine learning since it enables machines to deal with
tasks without forgetting. Many efforts are devoted to mit-
igating forgetting in CL by developing a memory buffer-
ing system that stores past examples to relieve forgetting
(Bang et al. 2022; Cha, Lee, and Shin 2021; Yan et al. 2022;
Lopez-Paz and Ranzato 2017; Derakhshani et al. 2021; Shi
et al. 2021; Wang et al. 2021; Egorov, Kuzina, and Bur-
naev 2021). Regularization and knowledge distillation meth-
ods have recently been considered to further improve perfor-
mance (Aljundi et al. 2019b; Chaudhry et al. 2019b,a; Bang
et al. 2021, 2022; Cha, Lee, and Shin 2021; Kirkpatrick et al.
2017; Kurle et al. 2020; Li and Hoiem 2017). Although the
memory-based approaches perform well, they suffer from
the negative backward transfer when learning new samples
(Ye and Bors 2022a). Such a drawback is solved by employ-
ing a dynamic network architecture which preserves prior
knowledge into frozen parameters of specific units while
building new hidden layers and units to learn novel tasks
(Wen, Tran, and Ba 2020; Ye and Bors 2023b,a).

Using a memory buffer to store past samples was shown
to perform well in the Task Free Continual Learning (TFCL)
(Aljundi, Kelchtermans, and Tuytelaars 2019; Aljundi et al.
2019a,a; De Lange and Tuytelaars 2021; Jin et al. 2021; Ye
and Bors 2023e,d, 2022b,a). The Reservoir sampling (Vitter



1985) randomly stores data samples over time and can be
used in unsupervised learning. However, these methods per-
form worse when applied to learning a long-term data stream
due to their fixed model capacity. Meanwhile, dynamic ar-
chitecture models have achieved promising results (Lee et al.
2020; Rao et al. 2019; Ye and Bors 2022a). The first dy-
namic expansion model for TFCL, proposed in (Rao et al.
2019), dynamically adds new inference models to capture
data changes while using Generative Replay Mechanisms
(GRMs) to alleviate forgetting. Then the Continual Neu-
ral Dirichlet Process Mixture (CN-DPM) (Lee et al. 2020),
proposes to use Dirichlet processes to augment the mix-
ture model while freezing the trained components to pre-
serve past knowledge. More recently, the dynamic expan-
sion model was implemented by using a mixture of VAEs
as in the Online Cooperative Memorization (OCM) model
(Ye and Bors 2022a), which employs a kernel-based sample
selection approach to manage the memory buffer for TFCL.

Most attempts in TFCL are devoted to the classification
task, while data generation was less explored in this con-
text. The pioneering work in continual generation tasks em-
ploys a VAE-based framework (Achille et al. 2018), which
learns shared and task-specific representations over time.
More recently, continual generation was implemented us-
ing a teacher-student (Ramapuram, Gregorova, and Kalousis
2017; Ye and Bors 2023a) or a hybrid VAE-GAN framework
(Ye and Bors 2020). Despite achieving promising results,
these methods rely highly on the task information, which is
intractable in TFCL. The recently developed dynamic ex-
pansion models can solve this drawback by dynamically in-
creasing the model’s capacity (Ye and Bors 2022a; Rao et al.
2019), but lead to the creation of many sub-models requiring
significant inference times during testing.

Methodology

Problem Definition and Network Architecture

Under the TFCL, a model is trained on a data stream with-
out accessing the knowledge about task boundaries. Let

DT
t = {xTi }

nT
t

i=1 and DS
t = {xSi }

nS
t

i=1 be the t-th unlabelled

testing and training datasets, respectively, where nTt and nSt
represent the number of samples for DT

t and DS
t , respec-

tively. In a class-incremental learning paradigm, each train-
ing set DS

t is divided into CS
t parts {DS

t,j | j = 1, · · · , CS
t }

according to the category information. A data stream S in
such a learning paradigm is defined as:

S =
⋃CS

t

j=1
DS
t,j . (1)

During the training, a model is able to access a small batch
of b samples Xi = {xSj }

b
j=1 from S at a training time (Ti),

while all previous data batches {X1, · · · ,Xi−1} are un-
available. We assume that there are a total of n data batches
for S. The model is evaluated on DT

t after finishing training.
Network architecture. The structure of the proposed Contin-
ual Variational Autoencoder (CAA) is shown in Fig. 1; it
contains three modules: the discriminator, generator and in-
ference model (encoder). We implement the discriminator
using a convolutional neural network (CNN) fψ : X → R

which receives an image x ∈ X and returns a scalar, where
X is the data space. The generator is implemented by a de-
convolution neural network fθ : Z → X which receives a
low-dimensional latent variable vector z ∈ Z and produces
a generated image x

′ ∈ X , where Z is the latent variable
space. We can form a decoding distribution using fθ, ex-
pressed as pθ(x | z) which is usually a Gaussian distribution.
For learning meaningful latent variables and enabling the de-
coding process, the proposed CAA has an inference model,
implemented by a CNN fϵ which takes an image x as input
and returns the Gaussian hyperparameters {µϵ,σϵ}, which
forms an encoding distribution qϵ(z |x) = N (µϵ,σ

2
ϵI). The

latent variable z = µϵ +σϵ ⊙ τ is drawn from N (µϵ,σ
2
ϵI)

using the reparameterization trick (Kingma and Welling
2013) to ensure end-to-end training, τ ∼ N (0, I), and ⊙
is the element-wise product.

The Two-Step Optimization Strategy (TSOS)

In this section, we address the drawbacks of VAEs in gener-
ating blurred images or of GANs which cannot learn mean-
ingful latent representations, by proposing a two-step opti-
mization strategy, described as follows.
First step: We aim to approximate the memory distribution
by updating the generator. To implement this goal, we firstly
employ a WGAN-GP loss (Gulrajani et al. 2017) for updat-
ing the generator and discriminator at Ti:

Lg = −Ex
′∼Pθi

[fψi
(x′)] , (2)

Ld = Ex
′∼Pθi

[fψi
(x′)]− Exj∼P

M̃i

[fψi
(xj)]

+ γEx̂∼P
x̂

[(
∥∇x̂fψi

(x̂)∥2−1
)2]

,
(3)

where x̂ is an interpolated image produced by x̂ = uxi +
(1 − u)x′ where u is drawn from a uniform distribution
U(0, 1) and Px̂ is the distribution of the interpolated images.

M̃i is a joint memory buffer consisting of Md and Mt
i and

P
M̃i

is the memory distribution. Pθi is the generator dis-

tribution updated at Ti. Lg and Ld are two loss functions
which are minimized using the stochastic gradient method
for optimizing the generator and discriminator, respectively.
In order to learn an inverse mapping of the generator, we
minimize the negative maximum likelihood function at Ti:

Lv = Ex∼P
M̃i

[
− Eqϵi (z|x)

[log pθi (x | z)]

+DKL (qϵi (z |x) || p (z))
]
,

(4)

where ϵi is the parameter set of the inference model updated
at Ti. The first term in Eq. (4) is implemented by the recon-
struction error of the decoder pθi (x | z) and the second term
is the Kullback–Leibler divergence between the variational
distribution qϵi (z |x) and the prior distribution p(z). We up-
date the generator and inference model by using a unified
loss function, as in VAEGAN (Larsen et al. 2015):

Lg′ = Lg + λ2Lv , (5)

where λ2 ∈ [0.1, 1] is a hyperparameter which balances the
generator and inference model learning.
Second step: Since the loss function from Eq. (5), trades off
the optimization between the generator and inference model,



it cannot ensure learning a good inverse mapping of the gen-
erator. Then we optimize the inference model qϵi (z |x) in
order to learn meaningful latent representations improving
the image reconstruction performance. We freeze the gener-
ator and only update the parameters of the inference model
by minimizing the negative sample log-likelihood using the
memorized and generative replay samples at Ti:

Linf = Ex∼P
M̃i⊗M̂i

[
− Eqϵi (z|x)

[log pθi (x | z)]

+DKL (qϵi (z |x) || p (z))
]
,

(6)

where P
M̃i⊗M̂i

is the distribution of M̃i and M̂i, with the

latter representing a set of generative replay samples drawn
from the generator at Ti, and ⊗ denotes the joint dataset.

The Dynamic Expansionable Memory Cluster

Current memory-based methods usually consider storing
the entire past information within a single restricted mem-
ory buffer, which is not scalable to a dynamically chang-
ing data stream. In this paper, we propose a bio-inspired
memory approach which dynamically manages two mem-
ory buffers: the temporary buffer Mt with a fixed length
|Mt|max aiming to store more recent information and an
evolving memory buffer Md that can dynamically add novel
samples over time to preserve the long-term required infor-
mation. Md continually adds a sequence of memory clus-
ters {Md[1], · · · ,Md[k]} during the training, where each
cluster has a small fixed size |Md[i]|max, and is expected to
preserve a diverse information. Md can add a new memory
cluster Md[k+ 1] when the temporary buffer Mt

i is largely

different from the existing clusters of Md. We can interpret
this memory expansion process as an optimization problem:

M̄t = argmax{Mt
i
| i=c+1,··· ,n}

∑k

j=1
Ld(M

d[j],Mt
i) ,

(7)
where c is the index of the training time and Md[k] was
added to Md at Tc. k is the number of existing memory clus-
ters in Md. Ld(·, ·) is an arbitrary measuring function that
evaluates the distance between each memory cluster and the
temporary memory, while the maximum distance is achieved
by the optimal memory M̄t. However, we can not evaluate
Eq. (7) in the TFCL because it requires passing all training
times. Instead, we implement the goal of Eq. (7) by propos-
ing a novel memory expansion criterion, which evaluates the
difference between the temporary buffer Mt

i and each mem-

ory cluster {Md[j] | j = 1, · · · , k}, as the expansion signal
at each training time Ti:

min
{
Ld(M

d[1],Mt
i), · · · ,Ld(M

d[k],Mt
i)
}
≥ λ, (8)

where λ ∈ [0, 40] is an expansion detection threshold con-
trolling the growing process of Md. Instead of evaluating
the distance between memory buffers in the image space,
which would require a higher computational complexity, we
propose to estimate the distance on the aggregate posterior
of each memory set using the inference model fϵ:

qMd[j](z |x) = E
x∼Md[j][qϵ(z |x)] ,

qMt
i
(z |x) = E

x∼Mt
i
[qϵ(z |x)] .

(9)

The aggregate posterior (Gaussian distribution) has been
successfully used in zero-shot learning (Chen et al. 2020),
as the optimal prior in VAE learning (Tomczak and Welling
2018), and in the VAEGAN model (Makhzani et al. 2016).
However, none of the current studies considers measuring
the distance on the aggregate posterior in continual learning.
In this paper, we propose to implement Ld(M

d[j],Mt
i) by

using the Jensen–Shannon divergence which is a symmetri-
cal statistical measure with an analytical solution:

Ld(M
d[j],Mt

i) = DJS

(
qMd[j](z |x) || qMt

i
(z |x)

)
.
(10)

When satisfying the criterion from Eq. (8), we transfer some
samples from the temporary buffer Mt

i to a new memory

cluster Md[k + 1] by performing sample selection:

Md[k + 1] =
⋃|Md[k+1]|max

j=1
M̂t

i[j] , (11)

where M̂t
i is a memory buffer sorted as Linf(M̂

t
i[a]) >

Linf(M̂
t
i[b]) for a < b, where Linf is defined in (6). M̂t

i[b]

is the b-th sample from M̂t
i and |Md[k+1]|max is the max-

imum memory cluster size, |Md[k + 1]|max < |Mt
i|. Lv(·)

is the loss function of the inference model from Eq. (4).
Eq. (11) selects the data that have large loss values and tend
to be forgotten. The temporary memory buffer Mt

i is then
emptied to avoid storing again the same data.

Algorithm Implementation

We provide the algorithm for learning the proposed CAA,
which can be summarized into three steps in a training time:

• Step 1. At a training time Ti, the memory buffer is up-
dated using the Reservoir approach (Vitter 1985). The
generator and inference model are updated on the mem-
ory buffer using Lg′ from Eq. (5) and then the discrimi-
nator using Ld from Eq. (3).

• Step 2. The inference model is updated using Linf from
Eq. (6).

• Step 3 (Memory expansion). If the temporary memory
buffer is full, |Mt

i| = |Mt
i|
max and Md is empty, the

first memory cluster Md[1] is created using Mt
i. This is

used for checking the memory expansion, and if Eq. (8)
is satisfied, we perform the sample selection and transfer
the temporary memory buffer to a new memory cluster
Md[k + 1] using Eq. (11) while clearing up the tempo-
rary memory buffer to avoid learning samples which are
statistically similar to those already stored.

Theoretical Framework

In this section, we extend the framework from (Ye and Bors
2023c) to analyze the forgetting behaviour and provide the
theoretical understanding for the Continual Variational Au-
toencoder (CAA).
Definition 1. Let PMt

i
represent the distribution of the mem-

ory buffer Mt
i at the training time (Ti). If Md has several

memory clusters {Md[1], · · · ,Md[k]}, we define a proba-
bilistic representation PMd[j] for each cluster Md[j].



Reconstruction Generation

Datasets CAA OCM OCM-Dynamic Reservoir CNDPM CAA OCM OCM-Dynamic Reservoir CNDPM

Split MNIST 30.57 34.68 33.56 35.02 36.78 21.46 90.10 76.13 45.88 77.42
Split Fashion 72.33 75.87 73.12 102.70 75.23 67.28 123.58 121.60 99.56 123.62
Split SVHN 52.70 68.96 67.08 55.26 64.29 57.14 175.59 168.92 61.29 172.42
Split CIFAR10 119.58 120.83 122.52 123.13 124.26 74.97 173.73 170.23 93.57 175.27

Average 68.29 75.05 74.07 79.02 75.14 55.21 140.75 134.22 75.07 137.18

Table 1: FID results for the class-incremental learning paradigm, achieved by various models.

0% 25% 50% 100%75%

Figure 2: The image interpolation results of the proposed
approach under CelebA.

Definition 2. For a given S consisting of samples from a
dataset DS

t , let PDi
be a distribution of all visited data

batches {X1, · · · ,Xi} drawn from S at (Ti).
In the following we analyze the forgetting behaviour of

the proposed CAA by deriving a new lower bound to the
sample log-likelihood.
Theorem 1. For a given data stream S, we derive a lower
bound to the sample log-likelihood at (Ti):

EPDi

[
log pθi(x)

]
≥ EP

Mt
i
⊗Md

[
LELBO(x; θi, ϵi)

]

−DJS

(
PDi

|| PMt
i
⊗Md

)
−FA

(
PMt

i
⊗Md ,PDi

,Pθi
)

+ FB

(
PDi

,PMt
i
⊗Md

)
, (12)

where FA and FB are defined as:

FA

(
PMt

i
⊗Md ,PDi+1

,Pθi
) ∆
=

∣∣DKL

(
PMt

i
⊗Md || Pθi

)

−DKL

(
PDi

|| Pθi
)∣∣ (13)

FB

(
PDi

,PMt
i
⊗Md

) ∆
= EPDi

[
pDi

(x) log pDi
(x)

]

− EP
Mt

i
⊗Md

[
pMt

i
⊗Md(x) log pMt

i
⊗Md(x)

]
, (14)

where PMt
i
⊗Md represents the distribution of all memo-

rized samples. pMt
i
⊗Md and pDi

are the density functions

for PMt
i
⊗Md and PDi

, respectively.

The detailed proof can be found in Appendix-B from SM.
From Theorem 1, we observe that the memory buffers play
an essential role in the performance of the proposed CAA
during the training. If PMt

i
⊗Md preserves more information

about PDi
, the JS divergence term DJS

(
PDi

|| PMt
i
⊗Md

)

in Eq. (12) is small, leading to a better performance for the
proposed CAA.
Proposition 1. We assume that the previously seen data

batches {X1, · · · ,Xi} can be divided into C̃i sets
{DS

t,1, · · · ,D
S

t,C̃i

} at (Ti), with each one belonging to a data

category or a task. Let PDS
t,j

:DS

t,C̃i

represent a joint distri-

bution of {DS
t,1, · · · ,D

S

t,C̃i

}. Then, we can derive a lower

bound to the sample log-likelihood at (Ti):

EP
DS

t,j
:DS

t,C̃i

[
log pθi(x)

]
≥ −DJS

(
PDS

t,j
:DS

t,C̃i

|| PMt
i
⊗Md

)

+ EP
Mt

i
⊗Md

[
LELBO(x; θi, ϵi)

]
−FA

(
PMt

i
⊗Md ,

PDS
t,j

:DS

t,C̃i

,Pθi
)
+ FB

(
PDS

t,j
:DS

t,C̃i

,PMt
i
⊗Md

)
. (15)

We provide the detailed proof in Appendix-C from SM.
From Eq. (15), we have several observations: (1) As the
training time Ti is growing, the number of target distribu-

tions (C̃i) also increases, raising a challenge for the model’s
training. (2) The forgetting happens when the memory buffer
Md does not add the necessary information from the pre-
viously learnt target distributions {PDS

t,1
, · · · ,PDS

t,C̃i−1

}.

(3) The knowledge diversity among the clusters of Md can
help capture sufficient information for all previously seen
distributions and therefore reduce all JS divergence terms
in Eq. (15), resulting in better performance; the memory ex-
pansion mechanism (Eq. (8)) implements this goal by adding
a new memory cluster that has sufficient novel information
when compared to the existing memory clusters.

Experiments

Baselines and Performance Criterion. Since this paper fo-
cuses on lifelong generative modelling, we adopt the Fréchet
Inception Distance (FID) (Heusel et al. 2017) for the image
generation and reconstruction evaluation, as in (Ye and Bors
2022a). We adopt Reservoir sampling (Vitter 1985) to train
CAA as a baseline, named Reservoir. Other baselines are
described in Appendix-D5 from SM.
Datasets and Hyperparameters: For the class-incremental
learning paradigm, we adopt the standard datasets, includ-
ing Split MNIST (LeCun et al. 1998), Split SVHN (Net-
zer et al. 2011), Split Fashion MNIST (Fashion) (Xiao, Ra-
sul, and Vollgraf 2017) and Split CIFAR10 (Krizhevsky and
Hinton 2009) (See details in Appendix-D2 from SM). We
test the expansion threshold λ in Eq. (8) for values between
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Datasets CAA OCM OCM-Dynamic Reservoir CNDPM CAA OCM OCM-Dynamic Reservoir CNDPM

MNIST 26.96 29.52 32.84 28.23 33.43 245.32 239.44 168.50 298.24 217.83
SVHN 53.75 55.86 54.81 55.26 57,38 137.43 234.74 185.17 155.06 219.28
CIFAR10 120.42 121.50 124.09 123.64 124.74 87.17 283.14 242.70 65.05 277.96

Average 67.04 68.96 70.58 69.04 71.85 156.64 252.44 198.7 172.78 238.36

Table 2: FID results for image reconstruction and generation tasks under the domain-incremental learning paradigm.

Methods Split MNIST Split CIFAR10 Split CIFAR100

finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04
GEM* 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48
iCARL* 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37
reservoir* 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79
MIR* 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57
GSS* 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94
CoPE-CE* 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52
CoPE* 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69
CURL* 92.59 ± 0.66 - -
CNDPM* 93.23 ± 0.09 45.21 ± 0.18 20.10 ± 0.12
Dynamic-OCM 94.02 ± 0.23 49.16 ± 1.52 21.79 ± 0.68

Dynamic-CAA 95.23 ± 0.05 50.28 ±1.16 23.58 ±0.57

Table 3: The classification accuracy of five independent runs
for various models on three datasets.

5 to 30. Then, we consider λ for Split MNIST, Split Fash-
ion, Split SVHN and Split CIFAR10, Split MSC, CelebA
and ImageNet under the generation task, as 28, 30, 29, 29,
21, 27 and 26, respectively. We also empirically find that
employing λ2 = 1 in Eq. (5) performs well. For the clas-
sification task, the final λ for Split MNIST, Split CIFAR10,
Split CIFAR100, Split MImageNet and Permuted MNIS is
20, 22, 21, 25 and 25, respectively. Each memory cluster in
the evolved memory buffer Md can store up to 64 samples
and the batch size used during each training time is 64.

Class-Incremental Generation

We evaluate the performance of various models in the class-
incremental learning paradigm. We create a data stream
for each dataset, namely Split MNIST, Split Fashion, Split
SVHN and Split CIFAR10, as described above, where all
images are resized to the resolution 32 × 32 × 3. For this
setting, we consider that a model can only see a batch of 64
samples from the data stream S at a training time. We restrict
the maximum memory buffer size (the number of memo-
rized samples) to 2500 for all models. Specifically, the max-
imum memory buffer size for the temporary buffer Mt and
the evolved memory buffer Md is 1000 and 1500, respec-
tively. All methods use the same maximum memory capac-
ity restriction. The results for the class-incremental learning
paradigm are reported in Table 1, where the generation per-
formance is evaluated using 5000 generated samples from
each model and real testing examples from each dataset, re-
spectively. The results from Table 1, show that the proposed
CAA outperforms other baselines, including the VAE-based

Figure 3: The performance and the number of memory clus-
ters when changing λ in Eq. (8).

models, on the image reconstruction task. Moreover, the pro-
posed CAA significantly outperforms other baselines on the
image generation task, especially on the more complex CI-
FAR10 dataset. We provide the generation results of various
models in the Appendix-E1 from SM. We can observe that
the proposed CAA achieves high-quality and diverse digit
image generation when compared to other methods. These
results show that CAA generates sharp and diverse images
achieving a better trade-off between image reconstruction
and generation performance under TFCL, than other base-
lines.

Domain-Incremental Generation

In this section, we evaluate the performance of various mod-
els on a more challenging learning paradigm, the domain-
incremental generation. We create a data stream by collect-
ing samples from three datasets, including MNIST, SVHN
and CIFAR10. The maximum memory buffer size for Mt

and Md is 1000 and 2000, respectively. All models use a
similar network architecture and memory configuration for a
fair comparison. The performance of various models for the
domain-incremental learning paradigm is reported in Table 2
where we can observe that the proposed CAA outperforms
the other methods.

In the following, we evaluate the performance of various
models on datasets containing complex images. First, we
create a data stream for CelebA (Liu et al. 2015) and Im-
ageNet (Krizhevsky, Sutskever, and Hinton 2012), respec-
tively. The maximum memory buffer size for all models is
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Datasets CAA OCM OCM-Dynamic Reservoir CNDPM CAA OCM OCM-Dynamic Reservoir CNDPM

CelebA 20.41 25.23 24.26 25.72 26.27 23.64 91.88 90.30 24.70 93.29
ImageNet 84.97 88.44 82.16 86.94 89.85 37.49 225.41 210.52 86.31 224.89

Average 52.62 56.83 53.21 56.33 58.06 30.56 158.64 150.41 55.50 159.14

Table 4: FID results for complex datasets, achieved by various models.

Methods Split MImageNet Permuted MNIST

ERa 25.92 ± 1.2 78.11 ± 0.7
ER + GMED 27.27 ± 1.8 78.86 ± 0.7
MIR+GMED 26.50 ± 1.3 79.25 ± 0.8
MIR 25.21 ± 2.2 79.13 ± 0.7
CNDPM 27.12 ±1.5 80.68 ± 0.7
ODDL 27.45 ± 0.9 82.33 ± 0.6
ODDL-S 28.68 ± 1.5 83.56 ± 0.5
OCM-Dynamic 28.74 ± 1.6 84.56 ± 0.7

CAA (proposed) 30.27 ± 1.4 86.89 ± 0.4

Table 5: Classification accuracy for 20 runs when testing
various models on Split MImageNet and Permuted MNIST.
The results of all baselines, except for OCM-Dynamic, are
taken from (Ye and Bors 2022b).

3000, and the results are reported in Table 4. We also pro-
vide interpolation results of the proposed CAA for CelebA
in Fig. 2, which show that the proposed CAA can smoothly
transform one image into another without forgetting.

Classification Task Results

Although the proposed CAA is mainly applied to the task-
free continual generation task, it can be extended to be ap-
plied to the classification task. Following from (Ye and Bors
2022a), we train a classifier along with CAA, which can be
seen as a mixture component in a dynamic expansion frame-
work. We call this approach as Dynamic-CAA, employing
the dynamic expansion mechanism (Ye and Bors 2022a),
while expanding its capacity during the training. For the
classification task, we adapt the standard TFCL experiment
setting of (De Lange and Tuytelaars 2021), where the max-
imum memory size for Split MNIST, Split CIFAR10 and
Split CIFAR100 is of 2000, 1000 and 5000, respectively.
During the training, a model can only see ten samples at a
training time.

The classification accuracy on Split MNIST, Split CI-
FAR10 and Split CIFAR100 is reported in Table 3. We can
observe that the proposed approach outperforms other base-
lines on all datasets. We also consider Split MImageNet,
which divides MINI-ImageNet (Le and Yang 2015) into 20
tasks and Permuted MNIST (Goodfellow et al. 2014b) con-
sisting of 10 tasks, where each task assigns a random pixel
permutation for all images. The maximum memory for Mt

and Md for the complex datasets, including Split MIma-
geNet and Permuted MNIST, is of 0.1K and 0.9K, respec-
tively. The classification accuracy is reported in Table 5,
which shows that the proposed approach still performs better

Settings Split MNIST

TSOS Lg Lg‘ Reconstruction Generation

! # ! 30.57 21.46

! ! # 33.84 34.04

# # ! 33.62 21.78

# ! # 45.72 47.56

Table 6: The performance (FID) of the proposed CAA with
different configurations on Split MNIST.

than other baselines on these complex datasets.

Ablation Study

In this section, we investigate the effectiveness of various
components of the proposed methodology.
The two-step strategy and loss functions. We consider vari-
ous configurations to evaluate the performance of the pro-
posed CAA. According to the results from Table 6, the
best performance is achieved when using the loss func-
tion Lg′ from Eq. (5) and the Two-Step Optimization Strat-
egy (TSOS). On the other hand, without using TSOS, the
proposed CAA still achieves good generation results. This
shows that the proposed TSOS can further improve the re-
construction performance without sacrificing the quality of
generated images. Furthermore, the loss Lg′ can lead to bet-
ter results in terms of the reconstruction and generation per-
formance when compared with Lg from Eq. (2)..
Changing the threshold λ in Eq. (8). We investigate the per-
formance and the number of memory clusters when chang-
ing the threshold λ, and the results are shown in Fig. 3. We
observe that when decreasing λ, the performance of CAA
gradually improves while the number of memory clusters
also increases. In contrast, a large threshold would reduce
the number of memory clusters while the performance de-
creases. The parameter λ maintains a trade-off between the
memory buffer size and the performance of the CAA.

Conclusion

In this paper, we propose a new model (CAA) for task-
free continual generation. To avoid forgetting, we propose a
new dual memory system consisting of a temporary and an
evolved memory buffer for training the CAA. The proposed
memory system can dynamically store diverse samples with-
out accessing any supervised or task information. Empirical
and theoretical results demonstrate the performance of the
proposed CAA framework.
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