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Abstract

Vision Transformers (ViTs) represent self-attention-based
network backbones shown to be efficient in many individual
tasks, but which have not been explored in Task-Free Con-
tinual Learning (TFCL) so far. Most existing ViT-based ap-
proaches for Continual Learning (CL) are relying on task in-
formation. In this study, we explore the advantages of the ViT
in a more challenging CL scenario where the task bound-
aries are unavailable during training. To address this learn-
ing paradigm, we propose the Task-Free Dynamic Sparse Vi-
sion Transformer (TFDSViT), which can dynamically build
new sparse experts, where each expert leverages sparsity to
allocate the model’s capacity for capturing different infor-
mation categories over time. To avoid forgetting and en-
sure efficiency in reusing the previously learned knowledge
in subsequent learning, we propose a new dynamic dual at-
tention mechanism consisting of the Sparse Attention (SA’)
and Knowledge Transfer Attention (KTA) modules. The SA’
refrains from updating some previously learned attention
blocks for preserving prior knowledge. The KTA uses and
regulates the information flow of all previously learned ex-
perts for learning new patterns. The proposed dual attention
mechanism can simultaneously relieve forgetting and pro-
mote knowledge transfer for a dynamic expansion model in a
task-free manner. We also propose an energy-based dynamic
expansion mechanism using the energy as a measure of nov-
elty for the incoming samples which provides appropriate ex-
pansion signals leading to a compact network architecture for
TFDSViT. Extensive empirical studies demonstrate the effec-
tiveness of TFDSViT. The code and supplementary material
(SM) are available at https://github.com/dtuzi123/TFDSViT.

Introduction

Deep learning models have achieved state-of-the-art perfor-
mance in many popular vision tasks, including image clas-
sification (He et al. 2022), image generation (Goodfellow
et al. 2014; Liu, Gu, and Samaras 2019), object detection
(Ren et al. 2015) and reconstruction (Kingma and Welling
2013). However, when applying these advanced models for
continuously learning a series of tasks, their performance
on past tasks would sharply degenerate and eventually they
would fail. Learning successively multiple tasks paradigm
is called Continual Learning (CL). Classical models tend to
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Figure 1: The proposed dynamic dual attention mechanism
consists of a Sparse Attention (SA’) and a Knowledge Trans-
fer Attention (KTA) module. We assume that TFDSViT has
already trained k experts. When learning the u-th submodel
consisting of an MLP layer (‘MLP u’) and a sub-classifier
(‘Sub-Cu’), the sparse attention generates binary masks for
each self-attention block (‘SA 1’, · · · ,‘SA m’) to avoid for-
getting. The KTA generates attention masks to regulate each
self-attention block of all previously trained experts incorpo-
rating them into the learning process of the u-th submodel.
We omit the embedding layer for the sake of simplification.

rewrite their previously learnt parameters to adapt to new
tasks, leading to catastrophic forgetting (Parisi et al. 2019).

Existing approaches to continual learning can be broadly
divided into three categories : memory-based (Bang et al.
2021, 2022), regularisation-based (Kemker et al. 2018;
Martens and Grosse 2015) and dynamic extension models
(Hung et al. 2019; Ye and Bors 2020b, 2022b). Memory-
based methods store some past examples in a memory
buffer, while a classifier is trained on both new and stored
examples to relieve forgetting (Bang et al. 2021). Another
memory-based approach trains a generator to remember past
data and replay generative samples while also learning new



tasks (Zhai et al. 2019; Ye and Bors 2020a). Regularisation-
based approaches usually prevent the change of some im-
portant parameters to avoid forgetting. These can be com-
bined with the memory-based approaches to further improve
their performance (Kemker et al. 2018; Martens and Grosse
2015). However, despite their impressive performance in
CL, such methods cannot learn long task sequences due to
their fixed model capacity. This drawback prompts several
researchers to develop Dynamic Extension Models (DEMs)
(Ye and Bors 2021, 2022a), which increase their capacity by
adding new models to cope with new tasks. One of the cru-
cial advantages of DEMs over static models is that they can
naturally solve the stability-plasticity dilemma by freezing
previously learnt parameters and creating new components
to learn new data distributions (Ye and Bors 2022a).

The Vision Transformer (ViT) (Dosovitskiy et al. 2021),
given its good generalization performance and robust fea-
ture learning ability, has recently been used for continual
learning (Douillard et al. 2022; Wang et al. 2022a; Xue et al.
2022). However, ViT-based approaches require access to the
task information to generate specific attention masks for
each learning task (Douillard et al. 2022; Xue et al. 2022),
which cannot be considered in a realistic CL scenario where
there are no explicit task boundaries (Wang et al. 2022b).
Moreover, these approaches are based on either static net-
work architectures (Wang et al. 2022a; Xue et al. 2022) or by
employing expansion architectures, where their number of
parameters grows ceaselessly while learning an increasing
number of tasks (Douillard et al. 2022), which makes them
intractable for learning long-term data streams. In this study,
we address these challenging problems by proposing a novel
ViT-based dynamic expansion model, called the Task-Free
Dynamic Sparse Vision Transformer (TFDSViT), which can
dynamically maintain a minimum number of sparse experts
to deal with emerging patterns without requiring the task
information. Each expert consists of multiple self-attention
blocks, which are dynamically allocated to capture multi-
ple information categories during different training periods.
To appropriately expand the model’s capacity, we propose a
new dynamic expansion mechanism that estimates the nov-
elty of incoming samples by evaluating their energy simi-
larity. Specifically, we train an auto-encoder as an energy
function for each submodel, computing the sample recon-
struction error as the energy for a given sample. A high en-
ergy score, estimated by all previously learnt autoencoders,
indicates that the newly encountered data batch is dissimilar
from the already learnt knowledge. Consequently, TFDSViT
will allocate or increase its capacities to learn these novel
samples. Unlike the task-specific components/tokens used
in (Douillard et al. 2022), the proposed dynamic expansion
mechanism does not require knowing task boundaries and
results in a compact model.

Given that the prior learnt knowledge would be beneficial
for future learning, we propose a new dynamic dual attention
mechanism that simultaneously relieves forgetting and pro-
motes knowledge transfer for a dynamic expansion model
in a task-free manner. Specifically, this mechanism consists
of a sparse attention module and a Knowledge Transfer At-
tention (KTA) module. The former generates binary masks

to prevent changes in the parameters of some self-attention
blocks, thus preserving previously learnt knowledge while
allocating the remaining capacity to learn new samples, as
shown in Fig. 1, where we assume that TFDSViT has trained
k experts and only the current one (‘Expert k’) is updated.
The KTA module generates attention masks to regulate all
previously learnt attention blocks and incorporates them into
the learning process of the current expert. These attention
masks are continually optimized to minimize the main ob-
jective function (classification loss) over time, maximising
the positive knowledge transfer benefits.

Our contributions are summarized as follows : (1) We pro-
pose a novel ViT-based dynamic expansion model in TFCL,
which adaptively expands its capacity without the need for
task information. (2) We propose a new dynamic dual atten-
tion mechanism which simultaneously prevents catastrophic
forgetting and promotes the knowledge transfer for a dy-
namic expansion model in a task-free manner. (3) We pro-
pose an energy-based dynamic expansion mechanism which
can dynamically allocate or increase the model’s capacities
to acquire novel knowledge without any task boundaries.
(4) Extensive experiments demonstrate that the proposed
TFDSViT far outperforms other methods with less compu-
tation or memory costs.

Related Work
Memory-based approaches usually selectively store some
past examples using a fixed-length memory buffer, which
is used for replaying past information in the subsequent
learning to relieve forgetting (Rebuffi et al. 2017; Cha, Lee,
and Shin 2021; Tiwari et al. 2022; Wang et al. 2022b,c;
Yan et al. 2022). The memory-based approaches can fur-
ther improve their performance by integrating with the
regularization-based models (Li and Hoiem 2017; Dai et al.
2007; Kemker et al. 2018). However, most current memory-
based approaches require knowing the task boundaries. The
memory-based approaches have been applied to TFCL by
developing several sample selection criteria based on the
loss value (Aljundi, Kelchtermans, and Tuytelaars 2019;
Aljundi et al. 2019a), gradient information (Aljundi et al.
2019b) and a learner-evaluator framework (De Lange and
Tuytelaars 2021). In addition to the sample selection ap-
proach, the Gradient-based Memory EDiting (GMED) (Jin
et al. 2021) dynamically modifies the memorized samples,
which can then be integrated with memory buffering mod-
els to further improve the performance. Although such ap-
proaches can achieve promising results, they are not scalable
for learning long-term data streams.
The Dynamic Expansion Model (DEM) is a recent popular
framework which dynamically expands the network archi-
tecture according to the complexity of the given tasks (Hung
et al. 2019; Ye and Bors 2020b, 2023b, 2021; Rao et al.
2019; Wen, Tran, and Ba 2020; Ye and Bors 2023a, 2022a,
2023d,c). These approaches preserve the knowledge of past
tasks into their frozen parameters while adding new param-
eters in order to adapt to learning the newly given tasks
(Ye and Bors 2021). However, most existing DEMs require
knowing the task identity to provide the auxiliary informa-
tion for the expansion strategy (Ye and Bors 2021). Recently,



DEMs have been shown to achieve promising results in
TFCL (Ye and Bors 2022a). The first study of using DEMs
for TFCL was proposed in (Rao et al. 2019), which intro-
duces a continual learning framework called the Continual
Unsupervised Representation Learning (CURL). CURL can
automatically expand its network architecture to adapt to
data distribution changes over time. A similar idea called
the Continual Neural Dirichlet Process Mixture (CN-DPM)
uses the Dirichlet processes for the VAE component expan-
sion (Lee et al. 2020). Moreover DEMs can further improve
their performance by using an efficient sample selection ap-
proach called the Online Cooperative Memorization (OCM)
(Ye and Bors 2022a). which employs a a dual memory sys-
tem to store both short and long-term information.

The Vision transformer (ViT) : The self-attention mecha-
nism was first used for machine translation in (Vaswani et al.
2017), and was extended to the Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin et al. 2019)
for language comprehension. Dosovitskiy et al. (Dosovit-
skiy et al. 2021) proposed to split an image into several
patches processing them as tokens in a ViT. Several recent
works such as the Data-efficient image Transformer (DeiT)
(Touvron et al. 2021a), Class-attention in image Transform-
ers (CaiT) (Touvron et al. 2021b), Convolutional vision
Transformer (Convit) (d’Ascoli et al. 2021) and the Swin
Transformer (Liu et al. 2021) have been proposed to im-
prove the original ViT in terms of computational efficiency
and performance. These models can only be applied to a sin-
gle data set and are not able to handle continuously evolving
data distributions. Recently, the DYnamic TOken expansion
(DyTox) (Douillard et al. 2022) is the first study to apply
ViT to continual learning. DyTox dynamically builds a task-
specific trained token when it sees a new task, while sharing
most of its parameters across all tasks. However, this ap-
proach still requires the task label during the training, which
cannot be considered in TFCL. Moreover, DyTox does not
control the expansion process, which leads to an ever in-
creasing number of components over time. More discussions
are provided in Appendix-B from the Supp. Material (SM).

Methodology

Preliminaries

We study a stricter TFCL learning paradigm in which task
information and boundaries are unavailable during training
and testing. Let us consider a data stream S which consists
of incoming samples, assumed to be provided as batches of

incremental classes from a training set DS = {xS
i ,y

S
i }N

S

i=1,

where xS
i and yS

i are the observed variable and its class la-

bel. NS represents the total number of training samples. In
TFCL, a model can only access a small batch of b samples
Xe = {xS

e,1, · · · ,xS
e,b} drawn from the data stream S at a

certain training time te, where b is the batch size. During
subsequent learning stages, data batches are drawn from dif-
ferent underlying data distributions, which imposes a severe
challenge for the model’s learning. The goal is to accumu-
late knowledge from the learning of the entire data stream
and then make accurate predictions on all testing samples.

Overview

The overview of the proposed TFDSViT is presented in
Fig. 2. We assume that the proposed TFDSViT has already
learnt k experts E = {E1, · · · , Ek}, where each Ei consists
of m self-attention modules. To enable each Ei to recognize
the information from different data categories, we can allow
each expert Ei to dynamically build u > 1 Multilayer Per-
ceptrons (MLP) layers and sub-classifiers (Sub-Cs), based
on all attention blocks of Ei. Each MLP layer combined with
the associated sub-classifier can be seen as a submodel (clas-
sifier) for predicting specific concepts/classes.

The proposed dynamic dual attention mechanism consists
of a sparse attention (SA’) and a Knowledge Transfer At-
tention (KTA) module. The former aims to allocate the re-
maining capacity of the current expert in training, during
subsequent learning, while preventing the parameter updat-
ing of all previously learned submodels. The KTA incor-
porates and regulates the self-attention blocks of all previ-
ously trained experts into the learning procedure of the cur-
rent expert. KTA automatically generates adaptive attention
masks for each previously trained self-attention block, selec-
tively reusing the previously learnt knowledge for learning
new patterns, which benefits the positive knowledge trans-
fer, as shown in Fig. 1. Moreover, each expert can dynam-
ically build u auto-encoders, each learning an energy func-
tion for the associated submodel. To ensure a compact model
structure while promoting the knowledge diversity among
submodels for TFDSViT, the proposed dynamic expansion
mechanism evaluates the novelty of the incoming samples
using all previously trained autoencoders, resulting in ap-
propriate signals for model expansion. Furthermore, these
auto-encoders can be employed as model selectors for the
submodel, without requiring access to the task information
in the testing phase.

The Expert’s Architecture

Let X ∈ R
H×W×C be an input space where {H,W,C}

denote the image height, weight and channels, respectively.
An image x ∈ X is split into N image patches xb =
{xb

1, · · · ,xb
N},xb

i ∈ R
G×G, defining local image regions,

where G2 and N = HW/G2 is the patch size and the num-
ber of image patches, respectively. Let us define the j-th self-

attention block of Ek as SAk
j where k represents the expert

index. Each self-attention block SAk
j has a projection ma-

trix Wk,j
p ∈ R

p which maps the image patches xb into the
p-dimensional embedding space :

xp = Wk,j
p xb . (1)

The embedding vector xp is then transformed by each self-

attention block SAk
j which has three trainable weight matri-

ces {Wk,j
K ,Wk,j

Q ,Wk,j
V } :

Sk,j = Softmax(Qk,j(Kk,j)T/
√
d)Vk,j , (2)

Qk,j = W
k,j
Q xp,K

k,j = W
k,j
K xp,V

k,j = W
k,j
V xp ,

where
√
d is a scaling factor and (·)T is the matrix trans-

pose operator. Each expert Ek has m self-attention blocks
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Figure 2: Overview of our proposed model (TFDSViT). We assume that our model has already trained k experts, where each
expert is composed of m self-attention (SA) modules and has u MLPs and sub-classifiers. We omit the embedding layer for
simplicity. The sparse attention is used to assign the remaining capacity for learning new samples, which allows each expert
to capture different category information. In addition, each expert can reuse the information flow from all previously trained
experts for a positive knowledge transfer through the knowledge transfer attention. Each expert has u auto-encoders, where
each one is assigned to the corresponding submodel. During the training, we only train the current submodel and the associated
auto-encoder on the memory buffer. Once the current training step is finished, we check the expansion criterion using Eq. (12).

{SAk
1 , · · · , SAk

m}, which can form a multi-head attention
mechanism :

Sk = FConcat(Sk,1, · · · ,Sk,m) , (3)

where each Sk,j , j = 1, · · · ,m is obtained using Eq. (2)
and FConcat(·) is used to concentrate all {Sk,1, · · · ,Sk,m}.
In order to enable each expert Ek to classify new category
information over time, we dynamically create a new sub-

model Bk,t = {Fk,t
C ,Fk,t

MLP} consisting of an MLP (Fk,t
MLP)

and a sub-classifier Fk,t
C , on the top of all self-attention

blocks {SAk
1 , · · · , SAk

m} from Ek, where the superscript
t = 1, · · · , u represents the submodel index and u is the
maximum number of submodels for each expert. For a given
input x, the submodel Bk,t makes the prediction p̂ :

p̂ = Fk,t
C (Fk,t

MLP(Sk)) . (4)

We implement the MLP Fk,t
MLP and sub-classifier Fk,t

C using
simple fully connected layers to avoid excess parameters.

The Dynamic Dual Attention Mechanism

Current dynamic expansion models (Ye and Bors 2022a) dy-
namically build a new component when detecting novel in-
formation in the data under TFCL. However, they do not
consider integrating the already learnt parameters for learn-
ing new patterns. In contrast, the proposed TFDSViT en-
ables each expert to dynamically allocate for the model’s
capacity in order to capture multiple category information at
different training periods. This is implemented by the pro-
posed dynamic dual attention mechanism, which consists of
SA’ and KTA modules. The former generates a binary atten-

tion mask vector W
k,t
M ∈ R

m for the submodel Bk,t of Ek,
which regulates the information flow by :

Sk(t) = FConcat(Sk,1W
k,t
M [1], · · · ,Sk,mW

k,t
M [m]) , (5)

where W
k,t
M [j] denotes the j-th element of W

k,t
M and

W
k,t
M [j] = 0 indicates that SAk

j is ignored when learning

Bk,t, which is ready for future learning use. In practice, we
allocate the same capacity for each submodel in an expert.

The KTA module aims to reuse the information flow from
all previously trained experts for learning new patterns. Let

W
k,t
A ∈ R

(m(k−1)) be a trainable attention vector for Bk,t

where m(t − 1) represents the number of self-attention
blocks of all previously trained experts. To decide which
self-attention block contributes more to learning new sam-

ples, we propose to normalize W
k,t
A by using the Gumble-

Softmax trick (Maddison, Tarlow, and Minka 2014), which
also reduces the variation of gradients (Wang et al. 2018) :

Ŵ
k,t
A [j] =

exp((logWk,t
A [j] + gj)/T )∑K

i exp((logWk,t
A [i] + gi)/T )

, (6)

where gj is a sample drawn from Gumble(0, 1). Wk,t
A [j]

is the j-th element of W
k,t
A and T = 0.5 is the tempera-

ture parameter. K is the number of self-attention blocks of

all previously trained experts. We consider Ŵ
k,t
A to regulate

each previously learnt self-attention block by :

Ŝ1,1 = S1,1Ŵ
k,t
A [1], · · · ,

Ŝk−1,m = Sk−1,mŴ
k,t
A [m(k − 1)] .

(7)

Then, we concatenate all weighted self-attention blocks :

Ŝ1 = FConcat(Ŝ1,1, · · · , Ŝ1,m) , · · ·
Ŝk−1 = FConcat(Ŝk−1,1, · · · , Ŝk−1,m) .

(8)

An augmented attention map Ŝ =
∑k−1

i=1 {Ŝi} is obtained
by considering all previously learnt self-attention blocks us-
ing Eq. (8), which concentrates the prior learnt knowledge.



Algorithm 1: Training algorithm for TFDSViT

1: for e < n do
2: Memory updating :
3: if |Me| > |Me|

max then
4: Remove the earliest memorized samples
5: end if
6: Me = Me−1

⋃
Xe,Xe ∼ S Add a new data batch.

7: Training the TFDSViT :
8: if |E| = 0 then
9: E = E

⋃
Ei

10: E1 = E1

⋃
B1

11: else if |E1| = 1 and e > |Me|
max then

12: E1 = E1

⋃
B2 Add a new submodel.

13: end if
14: Train the current expert Ek using Eq. (10)

15: Train Ak,|Ek| of Ek using Eq. (11)
16: Check the model expansion :
17: if |Me| > |Me|

max then

18: if min{LAE(Xe,A
1,1), · · · ,LAE(Xe,A

k,t−1)} ≥ γ
then

19: Check the model’s capacity :
20: if |Ek| ≥ u then
21: E = E

⋃
Ek+1

22: Ek+1 = Ek+1

⋃
Bk+1,1

23: else
24: Ek = Ek

⋃
Bk,|Ek|+1

25: end if
26: end if
27: end if
28: end for

The prediction process of the submodel Bk,t incorporates

the augmented attention maps Ŝ and Sk(t) :

p̂c = Fk,t
C (Fk,t

MLP(FConcat(Sk
c (t), Ŝc))) , (9)

where p̂c is the prediction for xc, where we use the subscript

c to denote that Sk
c (t) and Ŝc are obtained using Eq. (5) and

Eq. (8) considering xc. We define a cross-entropy loss func-
tion for learning Bk,t at the e-th training time te to update
the attention and the submodel parameters :

Li,t
CE =

1

|Me|
∑|−Me|

c=1

C∑

j=1

{yc[j] log(p̂c[j])}, (10)

where Me is a memory buffer updated at te and |Me| is
the total number of memorized samples. yc[j] and p̂c[j] are
the j-th dimension of the c-th class label and the prediction,
respectively, and C is the total number of categories. We
consider a simple memory updating mechanism removing
the earliest memorized samples while storing incoming data.

Energy-Based Dynamic Expansion Mechanism

The energy-based model aims to learn an energy surface in
which the data samples consistent with the model have low
energies while those classed as outliers are given high ener-
gies (LeCun et al. 2006; Zhao, Mathieu, and LeCun 2017).
Such a model has been used as a discriminator in adversarial
learning (Goodfellow et al. 2014), aiming to distinguish real
images from generated ones. Inspired by such energy-based

models, we propose to train an autoencoder Ak,t involving
an encoder Fθk,t and a decoder Fξk,t as an energy function

for the associated submodel Bk,t, where θk,t and ξk,t are the
trainable network parameters. The reconstruction error func-
tion LR(·, ·) is used as the energy evaluation as well as the
loss function for learning Ak,t at training time te :

LAE(Me,Ak,t) =
1

|Me|

|Me|∑

c=1

{
LR(xc,Fξk,t(Fθk,t(xc)))

}
.

(11)
A high energy score, estimated by all previously trained au-
toencoders, indicates that the incoming data batch is novel
and could be used for training a new submodel in order to ad-
dress the stability-plasticity dilemma in continual learning.
To implement this learning paradigm, we propose a novel
dynamic expansion criterion which estimates the energy for
a new data batch using all previously trained autoencoders :

min{LAE(Xe,A1,1), · · · ,LAE(Xe,Ak,t−1)} ≥ γ, (12)

where Xe is an incoming data batch drawn from the data
stream S at the time te and γ is an expansion threshold
which balances the model size and generalization perfor-
mance. In addition to fulfilling Eq. (12), we also check
whether the current expert Ek has enough capacity to build a
new submodel by :

|Ek| < u , (13)

where |Ek| represents the number of current trained sub-
models for Ek. If Eq. (13) is satisfied, we will build a

new submodel Bk,|Ek|+1 by reusing the attention blocks

{SAk
1 , · · · , SAk

m}, otherwise, we will build a new expert
Ek+1 into E = {E1, · · · , Ek, Ek+1}.

Algorithm Implementation

This section provides the detailed algorithm implementation
while its pseudocode is provided in Algorithm 1. There are
three main processing steps at each training time te :

• Step 1 (Memory updating). At the e-th training time te,
if the memory buffer is full |Me| = |Me|max, then
we remove the earliest memorized samples from Me,
where |Me|max is the maximum capacity for the mem-
ory buffer. We add a new data batch into the memory
buffer, expressed as Me = Me

⋃
(Xe ∼ S).

• Step 2 (Training process). At the training time te, if
TFDSViT has only one submodel, we preserve the first
submodel into E1 while automatically building the sec-
ond submodel B1,2 if the memory buffer Me is full.
Such a mechanism enables the evaluation of the dynamic
expansion criterion (Eq. (12)) that requires E having al-
ready trained submodels. We assume that E has already
trained k experts while the current expert Ek has trained
t submodels. During the training, we only optimize the
current submodel Bk,t and the associated auto-encoder
Ak,t on Me using Eq. (10) and Eq. (11), respectively.

• Step 3 (Checking expansion). We check the model’s ex-
pansion (Eq. (12)) when the memory buffer is full
|Me| = |Me|max and E has trained more than one sub-
model. We also check the current expert’s capacity dur-
ing the expansion process using Eq. (13). If Eq. (13) is



Methods Split MNIST Split CIFAR10 Split CIFAR100

finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04

GEM* 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48

iCARL* 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37

reservoir* 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79

MIR* 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57

GSS* 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94

CoPE-CE* 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52

CoPE* 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69

ER + GMED† 82.67 ± 1.90 34.84 ± 2.20 20.93 ± 1.60

ERa + GMED† 82.21 ± 2.90 47.47 ± 3.20 19.60 ± 1.50

WGF-SVGD - 47.90 ± 2.50 19.90 ± 2.30

CURL* 92.59 ± 0.66 - -

CNDPM 95.23 ± 0.27 50.26 ± 1.36 28.76 ± 0.57

Dynamic-OCM 95.67 ± 0.22 51.27 ± 1.47 29.87 ± 0.69

TFDSViT 98.12 ± 0.18 55.46 ± 1.02 32.86 ± 0.56

Table 1: Classification accuracy for five independent runs for
various models on three datasets. * and † denote the results
cited from (De Lange and Tuytelaars 2021) and (Jin et al.
2021), respectively.

Methods Split MiniImageNet

ERa 25.92 ± 1.2

ER + GMED 27.27 ± 1.8

MIR+GMED 26.50 ± 1.3

MIR 25.21 ± 2.2

CNDPM 27.97 ± 2.3

Dynamic-OCM 28.03 ± 2.1

TFDSViT 35.62 ± 1.9

Table 2: Classification accuracy for 20 runs when testing
various models on Split MiniImageNet.

satisfied, we add a new submodel Bk,|Ek|+1 into Ek, oth-
erwise, we add a new expert Ek+1 into E.

Experiments

Experimental Setting

Datasets : We split MNIST (LeCun et al. 1998) containing
60k training samples into five sets and each set has im-
ages of two incremental classes (De Lange and Tuytelaars
2021), and call this setting Split MNIST. Similarly, we di-
vide CIFAR10 (Krizhevsky and Hinton 2009) into five sets
where each set consists of images from two consecutively
ordered classes, named Split CIFAR10. We also split CI-
FAR100 (Krizhevsky and Hinton 2009) into 20 sets with
each set containing images from five incremental classes.

Performance criterion. Since the model in the TFCL sce-
nario does not access the task information, we consider the

Methods Split MNIST Split CIFAR10 Split MImageNet

finetune 21.53 ± 0.1 20.69 ± 2.4 3.05 ± 0.6

ER 79.74 ± 4.0 37.15 ± 1.6 26.47 ± 2.3

MIR 84.80 ± 1.9 38.70 ± 1.7 25.83 ± 1.5

ER + GMED 82.73 ± 2.6 40.57 ± 1.7 28.20 ± 0.6

MIR+GMED 86.17 ± 1.7 41.22 ± 1.1 26.86 ± 0.7

TFDSViT 93.62 ± 1.3 49.23 ± 1.2 32.62 ± 0.5

Table 3: The classification accuracy of five independent runs
for various models on fuzzy task boundaries.

average classification accuracy on all testing samples as the
performance criterion, and this criterion has been used in
several other TFCL studies (Aljundi et al. 2019b; De Lange
and Tuytelaars 2021; Ye and Bors 2022a).

Hyperparameters and implementation. We set the image
patch size of 7 × 7 for Split MNIST. The embedding di-
mension for Split MNIST is 100. A simple fully connected
layer with 100 hidden units implements the MLP module for
each submodel. We also implement the encoder and decoder
of each autoencoder by using two fully connected layers,
with 200 hidden units on each layer. For Split CIFAR10 and
Split CIFAR100, we set the image patch size of 8 × 8 and
the embedding dimension as 100. The MLP for each sub-
model is implemented by two fully connected layers with
500 and 200 hidden units. For all datasets, we consider that
each expert has six self-attention blocks m = 6 and that we
can build two submodels u = 2. Additional information is
provided in Appendix-C from SM.

TFCL Benchmarks

In this section, we evaluate the performance of the proposed
TFDSViT on standard TFCL benchmarks. According to the
setting from (De Lange and Tuytelaars 2021), a model only
sees ten samples once at each training time. The maximum
memory buffer size for Split MNIST, Split CIFAR10 and
Split CIFAR100 is |Me|max = {2000, 1000, 5000}. The
classification accuracy of TFCL benchmarks is reported in
Tab. 1, where we compare the proposed TFDSViT with sev-
eral state-of-the-art methods, including Incremental Classi-
fier and Representation Learning (iCARL) (Rebuffi et al.
2017), GSS (Aljundi et al. 2019b), MIR (Aljundi et al.
2019a), Reservoir (Vitter 1985), Dynamic-Online Cooper-
ative Memorization (OCM) (Ye and Bors 2022a), CURL
(Rao et al. 2019), CNDPM (Lee et al. 2020), Gradient
Episodic Memory (GEM) (Lopez-Paz and Ranzato 2017),
CoPE (De Lange and Tuytelaars 2021), ER + GMED, ERa +
GMED (Jin et al. 2021) where ER is the Experience Replay
(ER) (Rolnick et al. 2019) and ERa denotes that the ER uses
data augmentation, WGF-SVGD (Wang et al. 2022b). From
Tab. 1, we observe that most dynamic expansion approaches
achieve better performance than the static/single model. In
addition, the proposed TFDSViT outperforms other meth-
ods by a large margin on these three datasets, demonstrating
its superior performance. The model complexity (number of
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Figure 3: Ablation study results on Split CIFAR10. (a) The performance and number of experts for TFDSViT when changing
γ in Eq. (12). (b) Varying m, u and task ID at each training time.

parameters) of various dynamic expansion models is pro-
vided in Appendix-D5 from SM. These results show that the
proposed TFDSViT requires fewer parameters and performs
much better than other dynamic expansion models.

In the following we consider the continual learning of
Split MiniImageNet which splits MiniImageNet (Vinyals
et al. 2016) into twenty sets, where each set contains the
images of five consecutive classes (Aljundi et al. 2019a).
We employ a CNN network with two convolutional layers
as a feature extractor for each expert to reduce the num-
ber of parameters. Then the self-attention blocks are built
based on the feature extractor. The classification accuracy
of various models on Split MiniImageNet is reported in
Tab. 2. The proposed TFDSViT achieves better performance
than other methods on this more complex dataset. The num-
ber of experts trained in the proposed TFDSViT for Split
MNIST, Split CIFAR10, Split CIFAR100 and Split MIma-
geNet datasets is of 3, 4, 3, and 4, respectively.

Fuzzy Task Boundaries

In this section, we evaluate the performance of the proposed
TFDSViT on a more challenging and realistic CL scenario
called fuzzy task learning (Lee et al. 2020). In this setting,
samples from the following task are mixed with the samples
from the current task after learning half of the current task’
data. The classification accuracy of various models on the
fuzzy task learning scenario is reported in Tab. 3. From these
results, we observe that the proposed TFDSViT achieves
the best performance on this challenging CL scenario when
compared with other TFCL methods.

Ablation Study

This section investigates the effectiveness of each module in
TFDSViT by performing a wide range of ablation studies.
More ablation studies are provided in Appendix-D from SM.

Effect of the threshold γ : We investigate the model’s com-
plexity and generalization performance of the proposed
TFDSViT when varying the threshold γ from Eq. (12), and

the results on Split MNIST are shown in Fig. 3a. When de-
creasing γ, the proposed model would dynamically build
more experts. In contrast, a large γ prevents the model ex-
pansion and induces a compact structure. The result also in-
dicates that by using more experts can not bring a significant
performance improvement and TFDSViT with only three
experts can capture ten different categories while achieving
a good performance as well. These results show that each
expert from TFDSViT is able to dynamically allocate its ca-
pacity to capture more than one category.
Analysis for the expansion process : We train the proposed
TFDSViT on Split MNIST in which we estimate the num-
ber of submodels by varying u, of self-attention blocks m
for each expert, and the task ID, in each training step in
order to investigate the dynamic expansion process. In or-
der to estimate the task information, we assign a task ID
for each training sample. Actually, the task ID is not used
during the learning process of TFDSViT. The results plot-
ted in Fig. 3b, show that the second expert learns two tasks,
demonstrating that each expert in TFDSViT can capture dif-
ferent category information at different training times. The
proposed TFDSViT almost always builds a new expert when
a new task is given, indicating that it provides good signals
for model expansion.

Conclusion

This paper develops the Task-Free Dynamic Sparse Vision
Transformer (TFDSViT), which can automatically expand
its capacity to adapt to the data distribution shift, without ac-
cessing any task information during continual learning. An
energy-based dynamic expansion mechanism is proposed to
ensure a compact model structure. We then propose a dy-
namic dual attention mechanism which can simultaneously
relieve forgetting and promote knowledge transfer for a dy-
namic expansion model in a task-free manner, further im-
proving the performance. We evaluate the effectiveness of
the proposed TFDSViT against the standard Task-Free Con-
tinual Learning (TFCL) baselines and the empirical results
show that it outperforms existing methods.
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