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ABSTRACT

Despite the remarkable progress in the video generation

field, generating videos of longer-term remains challenging

due to the challenge of sustaining the temporal consistency

and continuity in the resulting synthesized movement while

ensuring realism. In this paper, we propose a recall mech-

anism for enabling an encoder-empowered short-term video

generator to produce long-term videos. This mechanism

connects smoothly short video clips by modeling their tem-

poral connections. We propose the Recall Encoder-GAN3

(REncGAN3), which enables an Encoder-based Generative

Adversarial Network (GAN) to connect short generated video

clips into longer sequences of hundreds of frames. The re-

call mechanism, defined through a loss function, enables

an appropriate plasticity-continuity balance in the resulting

long video stream. The proposed long-term video generation

method ensures the generation of several hundred frames dis-

playing consistent movement, which is non-repetitive while

the computational memory costs are similar to those of short

video generation models.

Index Terms— VAE-GAN architectures, Long-term

video generation.

1. INTRODUCTION

Video generation methods aim to use the relationship between

frames for modeling movement in the scene or by reducing

the redundancy between consecutive frames. Generative Ad-

versarial Networks (GANs) [1, 2, 3, 4], Variational Autoen-

coder (VAEs) [5, 6, 7, 8, 9, 10] or their extensions [11, 12, 13,

14, 15, 16, 17] have been used as video generative models.

Most existing video generation methods are shown to gener-

ate about 16 frames and most would struggle to generate real-

istic videos of more than a hundred frames. In this study, we

called models that generate less than 100 frames as short-term

video generation methods [18, 19, 20] to distinguish them

from the recently proposed long-term video generation meth-

ods [21, 22, 23]. The general synthesis of each frame relies

on modeling temporal dynamics and coherence of the entire

sequence, significantly increasing computational complexity

and memory costs for generating longer sequences.

In this paper, we propose extending existing short-term

video generation approaches to generating long-term videos

by using a recall mechanism. We consider that we have

short videos produced by a hybrid VAE-GAN video gen-

eration model, namely Encoding GAN3 (EncGAN3) pro-

posed in [13]. EncGAN3 employs an inference mechanism

implemented by a dual stream encoder feeding data to a

GAN-based generator disentangling movement from content

in a dual generation stream [19]. The dual stream consists

of reconstructing content, represented as an image frame,

and movement, modeled by differences between consecutive

video frames. We propose the Recall EncGAN3 (REnc-

GAN3) which applies the proposed recall mechanism to

utilize the VAE-GAN hybrid short-term video generator from

EncGAN3 [13], for generating long-term video sequences.

In REncGAN3, the recall mechanism utilizes the inference

properties of the encoder to enable the modeling of temporal

relationships between consecutive clips instead of within the

frames of the entire sequence, saving representation cost.

Hence, the generator in REncGAN3 produces connected

clips instead of a whole sequence made up of individual

frames. REncGAN3 trains the encoder and generator jointly

for improving the generation of long-term videos, unlike in

EncGAN3 where these are trained separately. Meanwhile,

REncGAN3 requires identical GPU memory requirements

as EncGAN3 while is able to generate long-term videos of

hundreds of frames with good temporal consistency.

The following contributions are brought in this paper : a)

We propose a new recall-based model REncGAN3 for long-

term video generation modeling temporal relationships be-

tween consecutive video clips; b) Quantitative and qualita-

tive results for REncGAN3 showing good visual quality and

displaying spatial-temporal consistency and stability of gen-

erated long-term videos.

2. THE ARCHITECTURE OF RENCGAN3

Th architecture of the proposed Recall EncGAN3 (REnc-

GAN3), designed for generating long-term videos is shown

in Fig. 1. REncGAN3 relies upon EncGAN3 [13] to gener-

ate short video clips and then through training enforces the

temporal connectivity between the generated clips through

the recall mechanism. EncGAN3 [13] is a VAE-GAN hybrid

method enabling a GAN-based video generator with encoders



Fig. 1. The architecture of REncGAN3 continuously interlinks successive video clips for generating long video sequences.

in order to infer useful information for generating better video

results. In the processing order, EncGAN3 consists of a two-

stream Encoder, a three-stream Generator and a two-stream

Discriminator [13]. Two separate generating streams, one

for content and another for motion, are propagating through

two encoders, Ec and Em, for each of the two streams, and

then enabling the generator G to generate appropriate content

and movement data, as shown in the lower part of Fig. 1. As

shown in the upper part of Fig. 1, each long video sequence is

separated into several overlapping video clips, of Tc-frames

each (in the experiments Tc = 16). Through the recall mech-

anism, a number of overlapping frames is considered between

each two consecutive clips defined by a reference frame xr.

The reference frame xi,Tc−r of clip i corresponds to the

frame xi+1,0 of next clip. Meanwhile, the reference frame

xi+1,r of clip i + 1 is the same as the last frame of its previ-

ous clip i. The difference of indexes Tc − r (r for the initial

video segment) requires training two EncGAN3 modules to

recursively connect all clips in a long video. We consider

Tc − r = r, resulting in r = Tc/2, enabling each generated

clip to half-overlap with both its previous and next clips, thus

ensuring the continuity and consistency of the movement.

3. LOSS FUNCTIONS OF RENCGAN3

In REncGAN3, we expand the EncGAN3 model for generat-

ing probabilistic dependencies by enforcing the continuity be-

tween successive small video clips leading to longer videos.

A long video ŷ1:T is created by recursively connecting pairs

of shorter video clips x̂i,1:Tc
, i = 1, . . . , N for an entire

sequence of N generated video clips, T ≫ Tc. The con-

tinuity between consecutive segments of the long video is

ensured through a Markov chain by considering a reference

frame x̂i,Tc/2 from one video clip i to the next one i + 1,

i = 1, . . . , N − 1 for linking successive video clips :

p(ŷ) =
N∏

i=1

p(x̂i,1:Tc
) = p(x̂1,1:Tc

)
N∏

i=2

p(x̂i,1:Tc
| x̂i−1,1:Tc

)

≈ p(x̂1,1:Tc
)

N∏

i=2

p(x̂i,1:Tc
| x̂i−1,r), (1)

where we consider x̂i,1:Tc
for the short video sequences of

length Tc for i = 1, . . . , Nc, while x̂i−1,r, represent the ref-

erence frame from (i− 1)th video clip.

The loss function for training together the Encoder and

Generator in REncGAN3 is given by :

LEncG =

NL∑

m=1

NC∑

i=1

∥xm,i,r − x̂m,i,r∥

+

NL∑

m=1

NC∑

i=1

Tc−1∑

j=1

∥xm,i,j − x̂m,i,j(v̂m,i,j , x̂m,i,r)∥

+DKL(qθx(zx|x)||p(zx)) (2)

+DKL(qθv(zv|v)||p(zv))

− E
zx∼qθx (zx|x),zv∼qθv (zv|v) log[D(G(zx, zv))]

− E
x̂n∼G(zx,zv) log[D(x̂n)]

where we have NL long-term videos, with each split into

NC overlapped clips, each clip containing Tc frames. Each

{xm,i,j}
Tc−1
j=0 represents an image frame while x̂m,i,j is its

reconstruction. {v̂m,i,j}
Tc−1
j=1 represents the reconstruction of

the movement, as the differences between consecutive frames,

associated with the frame j form clip i from the long-term

video m. Meanwhile, {zx, zv}, represent the latent spaces

of the content and movement, modeled by the encoders Ec

and Em, respectively. The loss function for REncGAN3 from

Eq. (2) trains the Encoder and Generator together to integrate

better their latent spaces, which is different from EncGAN3

in [13], where these are trained separately.

The recall mechanism uses the two-stream encoder of

EncGAN3 to relate the information from the ending of a

video clip with that from the beginning of the next video clip,

for enforcing the continuity and consistency in the long-term

video sequence. Thus, the loss function reconstruction error

term enforces the generator to learn the connecting informa-

tion for generating consistent and coherent video components

from individual video clips. The image reconstruction error

term restricts the reference frame of the generated clip to

be close to the input of the next video clip while the video

reconstruction error term restricts the other frames of the



generated clip to be coherent with the reference frame. As

the input clips are overlapped through their reference frame,

the clips represent continuously connected consecutive video

segments of the same long-term generated video. The random

generation property of the GAN provides for the diversity of

generated clips, resulting in diverse long videos.

For each clip, the frame reconstructions {x̂ij}
Tc−1
j=0 are

calculated recursively using the reconstructed reference frame

x̂i,r and frame differences reconstructions {v̂ij}
Tc−1
j=1 as :

x̂i,j−1 = x̂i,j ⊖ v̂i,j , j = 1, . . . , r (3)

x̂i,j = x̂i,j−1 ⊕ v̂i,j , j = r + 1, . . . , Tc − 1

where i = 1, . . . , Nc and the index of the reference frame

is considered as r = Tc/2 in REncGAN, while ⊖ and ⊕
mean pixel-wise addition and subtraction, respectively. By

considering r = Tc/2, we ensure that consistency of the cur-

rent video clip in equal proportions with the next and previous

video clips ensuring overall video consistency and continuity.

For the two-stream Discriminator, we have two loss func-

tions LDI
and LDV

, for deciding how realistic are the im-

age and video streams. The Discriminator of each stream is

trained independently and both Discriminators are optimized

in parallel, similar with [11, 13, 18, 19]. The loss function of

the image-stream Discriminator LDI
is given by :

LDI
= −E

xn∼p(x) log[D(xn)] (4)

− E
x̂n∼G(zx,zv) log[1−D(x̂n)]

where xn is a frame sampled from the real video clip and x̂n

is from the video generated by latent codes.

The video-stream Discriminator LDV
loss function is :

LDV
= −E

x0:Tc
∼p(x0:Tc

) log[D(x0:Tc
)] (5)

− E
x̂0:Tc

∼p(x̂0:Tc
) log[1−D(x̂0:Tc

)]

where x0:Tc
= {xij}

Tc

j=0 and x̂0:Tc
= {x̂ij}

Tc

j=0 represent the

real videos and their generations, while p(x0:Tc
) and p(x̂0:Tc

)
are their probabilities.

During the training, first the Discriminator is updated by

optimizing LDI
and LDV

using Eq. (4) and (5), then the En-

coder and Generator by LEncG, according to Eq. (2).

4. EXPERIMENTS

We train REncGAN3 using the loss functions described in

Section 3 on Tai-Chi-HD (Taichi) [24] dataset to generate

long video sequences with video lengths of hundreds of

frames. The video lengths of generated long-term videos

depend on the lengths of input video data. Initially, we had

generated video clips of length Tc = 16, using the training

explained in Section 3, and then by considering overlapping

of 50%, i.e. Tc/2 = 8 frames overlapping between consecu-

tive video clips, enabling the recall mechanism for generating

long-term videos. The training of REncGAN3 is imple-

mented using the ADAM optimizer [25] with the exponential

decay rate of first-order and second-order moment estimation

of β1=0.5 and β2=0.999, while considering a learning rate

of 2e−4 for the loss functions when training all modules:

Discriminator, Encoder and Generator.

Frames sampled from a long-term video generated fol-

lowing the training on the Tai-Chi-HD dataset are shown in

the first row of images from Fig. 2, while underneath on the

second row we provide the frames when adapting the loss

function of EncGAN3 [13] for training REncGAN3 process-

ing configuration for the long-term video sequence and name

this approach as REncGAN3 (Enc G). The main difference is

that in REncGAN3 (Enc G) the Encoder and Generator are

trained separately instead of jointly end-to-end as proposed

by using LEncG from Eq. (2) for REncGAN3. The bottom

two rows from Fig. 2 show frames from the videos gener-

ated by DIGAN [22] and TATS [23], respectively. It can

be observed that the frames generated by REncGAN3 show

temporally consistency and continuity, while the results by

DIGAN [22] cannot maintain the consistency of the repre-

sentation in many frames, displaying blurred features, while

TATS [23] produces repeated movements which are not con-

sistent with the Tai-Chi action. REncGAN3 produces Taichi

movements which have the appropriate speed, fitting the orig-

inal movements, while the other methods generate videos dis-

playing rather quick movements. Meanwhile, the frames gen-

erated by REncGAN3 show better visual quality than REnc-

GAN3 (Enc G). Moreover, REncGAN3 is able to generate

videos of various lengths by means of a simple recall mecha-

nism connecting short-term clips.

In the following we evaluate the Fréchet Inception Dis-

tance (FID) [26] on sequences of 16-frame clips which are cut

sequentially from the long-term videos generated by REnc-

GAN3. Lower FID values indicate high visual quality and

spatial-temporal consistency of generated videos. The video

FID values for 3 long-term videos generated after training on

the TaiChi dataset together with their average are provided

in Fig. 3. Two of the generated videos display consistency

with good FID scores, while the one indicated in red and la-

beled as ‘560f’, displays more complex movement with some

segments characterized by high FID scores. The recall mech-

anism in REncGAN3 merges short-term clips forming a long-

term video instead of generating the whole long video frame

by frame, displaying quality consistency, as shown by the FID

results from Fig. 3. Moreover, REncGAN3 requires for gen-

erating long-term videos the same amount of GPU memory

as EncGAN3, which can only generate short sequences.

For the quantitative evaluation, we consider the genera-

tion of short-term video clips of 16 frames each. The results

for FID are provided in Table 1, where “*” indicates that re-

sults are referred from [13, 19]. REncGAN3 uses the loss

function from Eq. (2) for the end-to-end training of the En-

coder and Generator modules, while EncGAN3, proposed in



Fig. 2. Each row from top to bottom show frames from videos generated by REncGAN3, EncGAN3 (Enc G), DIGAN [22]

and TATS [23], respectively. Videos in each row have lengths of 400, 424, 1024 and 1024 frames with the same resolution of

128 × 128. To illustrate the long sequence within limited space, frames in each row are sampled with steps of 8 frames from

the sequences 0 to 130 (left), 130 to 260 (middle) and 260 to 400 (right).

Fig. 3. Quality degradation. Video FID evaluated for suc-

cessions of non-overlapping 16-frame clips split from long-

term videos generated by REncGAN3, after being trained on

the Taichi dataset for lines labeled with ‘f’ to show video

length while “avg” is averaging.

[13], trains them separately. We also consider the Inception

Score (IS) [27] for videos [11], called video IS. Higher video

IS indicates better visual quality and diversity. The Inter-

Entropy H(y) and Intra-Entropy H(y|x) [6] are components

of the video IS that measure the visual quality and diversity

of generated videos, respectively. The results from Table 2

compare REncGAN3 with EncGAN3. REncGAN3 provides

significantly better spatial-temporal consistency (lower video

FID score), though with worse diversity (lower H(y)) and vi-

sual quality (higher H(y|x)) than EncGAN3 on the face ex-

pression UvA, Human Action Weizmann and KTH datasets.

These results show the benefits to the spatial-temporal con-

sistency of generated videos when trained with tighter con-

nections between the Encoder and Generator through using

the loss function from Eq. (2), although of a lower diver-

sity. When training on the bigger and more complex UCF101

dataset which contains videos with variations of facial expres-

sions and human actions, REncGAN3 achieves significantly

better visual quality but provides worse diversity and spatial-

UvA Weizmann KTH UCF101

FID↓ FID↓ FID↓ FID↓

VGAN* 235.01 158.04 - 115.06

TGAN* 216.41 99.85 - 110.58

MoCoGAN* 197.32 92.18 - 104.14

G3AN* 91.77 98.27 111.99 108.36

EncGAN3 87.63 83.35 72.59 91.18

REncGAN3 73.14 70.91 66.97 95.87

Table 1. Video FID results, where “*” indicate that results

are referred from [19, 13].

IS↑ H(y)↑ H(y|x)↓ Dataset

571.29 6.499 0.151 UvA

EncGAN3 42.60 3.959 0.207 Weizmann

50.48 4.812 0.891 KTH

33.87 6.699 3.177 UCF101

87.007 4.656 0.190 UvA

REncGAN3 35.329 3.804 0.239 Weizmann

11.477 4.087 1.647 KTH

57.121 5.827 1.782 UCF101

Table 2. IS and its components, where ↑ indicates that higher

values are better, while ↓ shows that lower values are better.

temporal consistency than EncGAN3.

5. CONCLUSION

In this paper, we propose generating long-term video se-

quences by learning temporal relationships between short

video clips. A recall mechanism, relying on an encoder-based

inference mechanism, is used for enabling a short-term video

generator to learn temporal relationships between consecutive

clips. This mechanism is applied to a hybrid Encoder-GAN

short-term video generator, resulting in the recall EncGAN3

(REncGAN3). In REncGAN3, the recall mechanism utilizes

the inference mechanism in EncGAN3 to enable the model

to learn not only the temporal relationships between frames

within the 16-frame clip but also the temporal relationships

between pairs of short video clips. The proposed REnc-

GAN3 generates videos with hundreds of consistent frames

displaying continuity and consistency.
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Ricci, and Stéphane Lathuilière, “Click to move: Con-

trolling video generation with sparse motion,” in Proc. of

the IEEE/CVF International Conference on Computer Vision

(ICCV), October 2021, pp. 14749–14758.

[21] Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elho-

seiny, “Stylegan-v: A continuous video generator with the

price, image quality and perks of stylegan2,” in Proc. of the

IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2022, pp. 3626–3636.

[22] Sihyun Yu, Jihoon Tack, Sangwoo Mo, Hyunsu Kim, Junho

Kim, Jung-Woo Ha, and Jinwoo Shin, “Generating videos with

dynamics-aware implicit generative adversarial networks,” in

Int. Conf. on Learning Representations (ICLR), arXiv preprint

arXiv:2202.10571, 2022.

[23] Songwei Ge, Thomas Hayes, Harry Yang, Xi Yin, Guan Pang,

David Jacobs, Jia-Bin Huang, and Devi Parikh, “Long video

generation with time-agnostic vqgan and time-sensitive trans-

former,” Proc. European Conf. on Computer Vision (ECCV),

vol. LNCS 13677, pp. 102–118, 2022.
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