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Abstract—Edge computing (EC) aims to facilitate internet of
things (IoT) applications and services with low latency at the
edge, thereby reducing response time and providing quality of
service (QoS). However, increasing user demand for low-latency
applications has highlighted the need to reduce task completion
time delay in EC environments. Therefore, this paper introduces
an approach for heterogeneous task scheduling in heterogeneous
EC environments to minimise task delay for time-sensitive appli-
cations. A combination of deep reinforcement learning (DRL) and
federated learning (FL) techniques is used to build the scheduling
framework. Initially, the deep Q network (DQN)-based scheduling
framework is employed to reduce the delay of tasks generated
on an edge cluster within heterogeneous nodes. For collaborative
learning, DQN agents are trained in different edge clusters for
multiple FL rounds. The federated averaging model (FedAvg) is
applied to calculate the average of the parameters of each trained
agent in every FL round to generate a global agent that improves
task completion time across the entire system. Compared to the
standard DQN-based scheduling model, simulation results show
that using the FL technique improves the learning curve over
training time, reducing task delay and speeding up processing
by about 50% in scheduling tests. Furthermore, collaborative
learning by all trained agents confirms the global agent’s stability
and improvement, in contrast to the individual agent’s fluctuating
performance.

Index Terms—edge computing, task scheduling, federated
learning, deep Q network.

I. Introduction

Delay-sensitive tasks generated by internet of things (IoT)

devices have recently become easier to execute due to the

advancement of computing resources and storage capacities

at the edge of the network [8]. The increased focus on

this progress in edge computing (EC) is mainly due to its

capacity to fulfil the growing requirements of time-critical

IoT applications [18]. Edge AI, which involves the direct

deployment of artificial intelligence (AI) algorithms on edge

devices, has primarily driven this advancement. Furthermore,

the distributed structure of the EC environment is well-suited

to the attributes of the federated learning (FL) technique, an

advanced machine learning (ML) technique [15]. In the FL
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approach, edge nodes locally train the AI model required by the

FL server, transmitting only model updates, such as gradients

and weights, to the FL server for aggregation. The FL server then

transmits the combined parameters for the subsequent training

cycle. This iterative process continues until the model achieves

an acceptable efficiency level.

FL techniques have been demonstrated to be effective in

a variety of applications, particularly resource-constrained

environments such as the EC environment [17]. Incorporating

FL techniques into collaborative edge computing effectively

reduces communication overhead by enabling edge nodes to

locally train models. Therefore, it eliminates the need to transfer

large datasets to a central server, a crucial feature in environ-

ments with limited resources. In addition, FL can customise

models to the local environment, particularly in scenarios

where centralised training may be hindered by significant

unpredictability or system heterogeneity. It also increases the

ability to handle larger workloads and system durability, reduces

time delay, improves real-time task processing, enhances the

quality of learning results, and accelerates convergence.

In terms of enhancing EC quality of service (QoS) provision,

the implementation of efficient task scheduling algorithms is a

crucial element of the EC environment, particularly to reduce

task delay. Current research primarily focuses on the spatial

dimension, which involves offloading requirements to more

capable edge nodes. Several studies have proposed a variety of

approaches for task scheduling, including traditional, heuristic,

and ML-based methods [1]. The ML approach typically assumes

that the environment has a fixed state transition. However, in real-

world scenarios, an agent is required to handle simultaneously

different state transitions in multiple environments [7], such

as EC environments. As a result, learning scheduling policies

surpasses the previously mentioned standard assumption.

Heterogeneous environments such as EC nodes have different

capabilities and active times. In the EC environment, opti-

mising task delay for heterogeneous task scheduling remains

a significant challenge. This is because incoming tasks have

heterogeneous resource requirements and deadlines. Therefore,

this paper considers the heterogeneity of tasks, each with



different requirements and estimated time. In addition, each

agent is trained in a heterogeneous environment, represented

by a cluster with multiple nodes. The main contribution of this

paper is a scheduling framework that builds upon applying the

FL technique to a deep reinforcement learning (DRL)-based

task scheduling model, which is a deep Q network (DQN)-

based task scheduling model. The DQN model is a form of

DRL that involves using neural networks to approximate Q-

values, aiding in decision-making processes. The focus is on

minimising the total delay of tasks, considering each task’s

resource requirements and execution time within a flexible

scheduling framework. To reduce task delay, the task scheduling

problem is formulated as a Markov Decision Process (MDP),

a mathematical construct used to model decision-making in

contexts where results are influenced by both chance and the

agent’s choices [11]. The MDP model is commonly used in

reinforcement learning (RL) to model decision-making prob-

lems. The DQN-based task scheduling model is then developed

to determine an efficient execution time, minimising task delay

across the cluster nodes.

Building on this, an FL technique is introduced for col-

laboration between multiple DQN agents trained in different

instances of cluster environments. The federated averaging

model (FedAvg) is a widely used FL algorithm that commonly

forms the fundamental framework in several FL applications [9].

Compared to a single DQN agent in the cluster, the simulation

experiments demonstrate that applying the FL technique im-

proves the agent’s learning curve across the training phase. The

FL-based task scheduling framework reduces the total task delay

and increases stability over several rounds, leading to higher sys-

tem performance efficiency. Additionally, incorporating the FL

technique improves the scheduler performance while increasing

the number of heterogeneous nodes in the cluster.

This paper is structured as follows: Section 2 summarises

relevant research on task scheduling methods in EC environ-

ments, identifies the gap in previous studies, and outlines the

role this paper will play in addressing it. Section 3 explains

the system model architecture, including the approach for

scheduling various tasks using a single DQN and FL model.

Section 4 presents the experimental evaluation, which involves

the framework implementation details and a discussion of the

results. Section 5 concludes with the proposed framework

results, limitations, and future work.

II. Related work

Task scheduling in EC environments can be challenging

due to IoT application mobility, network hierarchy, restricted

resource capabilities, heterogeneity, and stochastic behaviour

patterns. Most of the proposed algorithms focus on distributing

workloads among geographically dispersed edge devices. Due

to the intricate and ever-changing nature of these environ-

ments, the ML and FL techniques have proven to be highly

effective in enhancing task-scheduling processes. Tuli et al.

[13] developed an RL-based stochastic dynamic scheduler

using an asynchronous-advantage-actor-critic (A3C) algorithm

for decentralised learning of many agents in an edge-cloud

environment. They also used a residual recurrent neural network

(R2N2) framework to harness temporal patterns for hybrid

scheduling. Simulations with iFogSim and CloudSim showed

that its scheduler can rapidly adjust to a dynamic environment

and improve energy use, reaction time, and cost.

Based on the concept of optimising task scheduling in edge

computing, Gazori et al. [5] suggested scheduling fog-based IoT

tasks using the DRL method to reduce energy consumption,

latency, and computation cost while meeting resource and

task deadlines. They used double deep Q-learning (DDQL)

scheduling and gateways as schedulers and agents. Many virtual

machines (VMs) assigned to incoming tasks shared the compute

node’s resources. In a broad state-action space, the DQN and

double DQN algorithms outperformed the simple Q-Learning

algorithm. Further advancing the application of DRL in task

scheduling, Meng et al. [10] addressed the problem of latency-

sensitive task scheduling and resource management on the server

side in multi-user of the MEC. They introduced an online DRL-

based method to reduce latency and timeout period of queued

tasks. They also created a reward function called double neural

network (DNN) to let the algorithm schedule tasks and manage

resources directly through experience. The simulation results

demonstrated that their method outperformed several traditional

algorithms, such as FCFS, SJF, Packer, and Random, and had a

significant advantage in terms of intelligence and environmental

awareness.

Recent EC studies have proposed a federated or collaborative

learning technique where different edge deployments share ML

models, enabling them to leverage all accessible datasets without

transferring them. This approach has demonstrated potential

for improving collaborative task scheduling in edge/cloud

environments [20]. For instance, Awada et al. [6] introduced

AerialEdge, a framework for FL-based orchestration of an aerial

EC system. They demonstrated a federated multi-output linear

regression model (LR) to estimate task durations and resource

requirements. They choose the drone implementation with the

most resources and the longest flight time to complete tasks at

any given time. Extensive studies utilise task dependencies and

Alibaba’s cluster trace data. AerialEdge used cluster resources

more efficiently and executed multi-tasks faster than Spear,

Graphene, Tetris, and the random approach.

Expanding upon the idea of federated learning in edge en-

vironments, Wang et al. [16] demonstrated the paradigm of

wireless-powered mobile edge computing (WP-MEC). They

combined FL and DRL with WP-MEC to simultaneously

maximise computational and communication resources. In

terms of average task execution latency and task completion

ratio, the superiority of the created framework was evaluated

and compared to the energy-aware scheduling (EAS) and

local computing (LC) benchmark algorithms. In addition, Xia

et al. [19] investigated the FL approach to improve edge

intelligence and maintain data privacy, addressing the demand

for efficient edge network processing. Their work optimised

FL user scheduling strategies to handle training delays using

update importance and latency reduction methods. In cases

without prior node information, they used the multi-armed



bandit to balance exploration and exploitation. Simulation-based

evaluations confirmed these strategies’ efficacy. To schedule

tasks for multiple edge nodes (EN) in an MEC system, Shi et

al. [12] used the FL technique as a collaborative framework.

The work offers a DQN-based task scheduling approach to

enhance edge node computational task execution order. The

study uses the FL approach to aggregate edge nodes to extract

global parameters that optimise task completion latency across

the MEC system. Simulations prove the proposed algorithm’s

superiority in latency-sensitive tasks and reveal the key elements

affecting system performance.

Previous research has examined the application of FL and

ML techniques in EC environments for task scheduling, with

each study focusing on specific objectives to improve the edge

QoS. While these studies have made significant contributions

to understanding a variety of aspects of the FL technique in

task scheduling, they have not explicitly addressed the issues

associated with heterogeneous task delay in heterogeneous

environments. As a result, there is still a significant gap

in the scheduling of heterogeneous tasks for delay-sensitive

applications in heterogeneous environments. This gap presents

a substantial opportunity to implement a collaborative learning

approach by combining the DQN and FL techniques to improve

task scheduling and consider the heterogeneity of task resource

requirements and deadlines and the heterogeneity of environ-

ment specifications and active time. The main objective is to

improve the scheduling framework for minimising the total task

delay in heterogeneous environments over time.

III. System model architecture

This paper considers deploying an FL-based task schedul-

ing framework in heterogeneous EC environments. In this

framework, each ML model (DQN agent) undergoes training

and testing in a separate EC environment with different state

transitions. The FL approach is included in the scheduling

framework to distribute the DQN agents among all EC envi-

ronments and acquire knowledge from different policies in each

EC environment. Then, a global agent is created for the FL-

based scheduler by aggregating all agents’ parameters in EC

testing environments.

A heterogeneous environment involves a cluster with multiple

nodes, each possessing distinct resource types (e.g., small,

imbalanced, large) and active time for each task. Within this

cluster is a queue of heterogeneous tasks (q), each of which

requests a predetermined quantity of different resources for a

specified duration of time. The tasks are generated with different

resource requirements and estimation times and then sent to

be scheduled on cluster nodes. Each discrete time step lodges

incoming tasks in the queue 𝑞 of a fixed length. When the queue

is full, the number of additional tasks is placed in a backlog 𝑘 . In

a concurrently running process, the agent (scheduler) selects and

allocates tasks to appropriate nodes with the earliest response

time and availability of resources. The scheduler assigns a

task to an occupied node to be processed later. As long as

the queue is full, the scheduler continues to assign new tasks,

progressively moving the scheduled tasks forward. According

to this framework, the FL technique among multiple cluster

instances is considered an aggregator between environments and

supports the scheduling decision. Fig. 1 provides an overview

of the system model.

Env 1

Env 2

Env n

Fig. 1: The overview of system architecture.

The main objective is to minimise the total delay of tasks in

the EC system. Equation (1) defines the total delay 𝐷𝑖 of a task

from its generation to completion consisting of execution delay

and waiting delay as follows.

𝐷𝑖 = 𝑑𝑒 + 𝑑𝑤𝑞 + 𝑑𝑤𝑘 (1)

The execution delay is related to the task’s execution time

in the edge node (𝑑𝑒), while the waiting delay is related to the

task’s waiting time in the queue (𝑑𝑤𝑞) and the task’s waiting

time in the backlog (𝑑𝑤𝑘).

A. Problem Formulation

This paper presents the task scheduling problem MDP model

that represents the system as an assemblage of cluster state,

action, and reward. Table I shows the mathematical notations

used for their description.

TABLE I: Mathematical notations

Notation Meaning

𝐷𝑖 Total task delay

𝑑𝑒 Execution delay

𝑑𝑤𝑞 Waiting delay in queue

𝑑𝑤𝑘 Waiting delay in backlog

𝑡 Time

𝑙 Node

𝑞 Task queue length

𝑘 Task backlog length

𝑛 Number of nodes

𝑖𝑙 Scheduled tasks

𝛼𝑖 Transmission speed

𝛽 Discount factor

State. The cluster state denotes the task description (resource

requirements and duration time) and the node specification

(resource capacity and active time). The cluster state is con-

sidered binary matrices representing data regarding nodes and

tasks. State includes the current status of node resources in the



cluster and the task resource requirements in the queue, which

collectively constitute the system state at a certain time with a

different value for each cluster instance. Fig. 2 illustrates the

representation of the cluster state. Colours are employed only

to represent distinct tasks. Coloured squares denote occupied

resource slots, while white squares denote vacant resource slots.

The node matrices indicate the status of scheduled tasks across

various nodes. The task slot matrices illustrate the resource

requirements of the queued tasks.

Resource1

Time

Resource

Resource 2

Node1 Node2 Task slot 1 Task slot2 Backlog

Fig. 2: State representation.

Action space. Action is defined as scheduling a task from

the queue to a node in the cluster. During each time step,

the scheduler schedules one task at the earliest available time

in the node for each valid action, thereby altering the system

state. When the scheduler selects an invalid action (no task is

scheduled), time progresses, resulting in the addition of new

tasks to the queue and the processing of tasks at the nodes in

each cluster instance. Equation (2) defines the action space size,

which represents the total number of possible actions, including

all possible task-node scheduling and the invalid action, as

follows:

𝑛 · 𝑞 + 1 (2)

n is the number of cluster nodes, and q is the length of the

queue.

Reward. The reward is designed to help the agent minimise

the total task delay over time. Equation (3) calculates the reward

for each action in each cluster instance is defined as:

Reward = −
∑︁

𝑙

(

𝛼𝑖
∑

𝑖𝑙
𝑡𝑖𝑙

+
𝛽

∑

𝑞 𝑡𝑞
+

𝛾
∑

𝑘 𝑡𝑘

)

(3)

All tasks in the queue are represented by 𝑞, all tasks in the

backlog by 𝑘 , and all scheduled tasks for node 𝑙 are represented

by 𝑖𝑙 , as well as time for tasks represented by 𝑡. The negative

reward is intended to indicate that reduced delays should lead to

increased rewards (less negative).

It is important to observe that at the initial scheduling

framework, 𝛼𝑖 , 𝛽, and 𝛾 are all set to 1. The cumulative reward

over time is exactly equal to the negative sum of task delays,

reducing the average task delay. In this approach, to prioritise

the completion of tasks at the earliest opportunity, a higher

penalty is imposed on tasks in the queue by assigning a slightly

larger value to 𝛽 = 2. It also uses several 𝛼𝑖 to represent the

distinct transmission speeds from the task queue to different

nodes.

B. Deep Q Network-based Task Scheduling Model

Within this framework, DQN uses a multi-layer convolutional

neural network (CNN) to approximate Q-values and support

decision-making. The DQN agent’s primary role is to interact

dynamically with an environment, which is conceptualised as a

series of states. As mentioned earlier, the environment state is

formalised as binary matrices to simplify data handling and

processing by the DQN agent. This formulation allows for

organised and straightforward input to the CNN model, aiding

in learning patterns, making decisions, and optimising the DQN

agent’s behaviour. In addition, the integration of CNN and DQN

into the task scheduling model aims to optimise decision-making

by learning and selecting actions that yield the most beneficial

rewards in a given state.

Regarding local training and scheduling on the cluster with

heterogeneous nodes, the tasks are sent to a queue with a fixed

length to the cluster for scheduling on nodes. The state of tasks

and nodes is then sent to the DQN agent, which uses the policy

gradient method to learn and schedule tasks on the nodes. After

training the DQN agent on the cluster environment through

several episodes, the agent schedules tasks on the nodes based

on its experience. Fig. 3 illustrates such a DQN agent’s decision-

making process.

Fig. 3: DQN-based task scheduling model.

Algorithm 1 demonstrates the deployment of DQN-based task

scheduling on the cluster.

The 𝜖-greedy approach [2] entails that the agent has a

probability of 𝜖 to randomly explore the action space. Otherwise,

it will select the action with the greatest current Q-value to find

a balance between exploration and exploitation. The experience

buffer stores a collection of state transition information (s,

s’, a, r), which is randomly taken in small batches to reduce

the correlation between samples. When the experience buffer

reaches its maximum capacity and new experiences are added,

older experiences will be systematically added and removed. In



Algorithm 1 DQN-based task scheduling algorithm

1: Input: cluster state (task requirements and node specifications)

2: Output: scheduling tasks to nodes

3: Initialisation:

4: Cluster state

5: DQN parameters and CNN model

6: Experience buffer 𝐵 with capacity 𝐷
7: while true do

8: for episode < 𝐸 do

9: Initialise 𝑀 tasks considering the length of queue (𝑞) and backlog (𝑘)

10: Select an action (𝑎) with 𝜖 -greedy strategy

11: Perform action (𝑎), obtain next state (𝑠′), reward (𝑟), task delay (𝑠𝑖 )
12: Store transition (𝑠,𝑎,𝑟 ,𝑠𝑖 ,𝑠

′) in 𝐵
13: Accumulate 𝑟 += (𝑟), and 𝑠𝑖 += -(𝑟+)

14: if amount of samples in 𝐵 > 𝐷 then

15: Update experience buffer (𝑠,𝑎,𝑟 ,𝑠𝑖 ,𝑠
′)

16: Perform gradient descent on the loss function

17: Update DQN parameters

18: end if

19: Update the cluster state (𝑠) to (𝑠 + 1)

20: end for

21: end while

addition, gradient descent is an optimisation process employed

to minimise a loss function by iteratively modifying the

parameters of the agent. It is a fundamental technique in the

ML approach and is extensively employed for training neural

network models [3].

C. Federated Learning-based Task Scheduling Model

The scheduling framework integrates the FL technique at this

level by training and testing multiple DQN agents in different

environments. In this approach, task scheduling occurs after

training multiple DQN agents in multiple instances of the

environment, all of which have identical specifications but are

in different states. Consequently, the FL-based task scheduling

is determined by acquiring knowledge policies and experiences

from different environments to inform task scheduling decisions,

resulting in a scheduling framework that is more adaptable and

resilient. The process of the FL technique can be succinctly

summarised in the subsequent steps:

1) During the setup phase, the FL server generates an

initial DQN agent and distributes it to each environment

instance. These instances can later access the global agent.

2) Every instance trains an individual DQN agent based on

its unique states.

3) The FL server receives updates on agent parameters.

4) The FL server aggregates the agent parameter updates

using the FedAvg model.

5) The integrated model is distributed to all agents in order

to build a global agent.

The process iterates until the model converges or reaches

the maximum number of iterations. Finally, the global model

applied task scheduling in global test environment, as illustrated

in Fig. 4.

Algorithm 2 presents the FL technique for task scheduling,

which involves collaborating with multiple DQN agents in

different cluster instances to improve task scheduling decisions.

IV. Experimental evaluation

This section evaluates the suggested scheduling framework

by running simulations to show how well it works with different

Environment 1 Environment 2 Environment n

Local model 1 Local model 2 Local model n 

FL Server

[4] Aggregation 

- - - -

[2] Train

[3
] 
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[1
]  

In
itia
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tio

n

[2] Train[2] Train

[5] Update [5] Update [5] Update

Updated model
Updated model

Fig. 4: FL training process across multiple environments

Algorithm 2 FL-based task scheduling algorithm

1: Input: 𝐴𝑔𝑒𝑛𝑡𝑠 & 𝐸𝑛𝑣𝑠
2: Output: 𝐺𝑙𝑜𝑏𝑎𝑙 𝑎𝑔𝑒𝑛𝑡 - global scheduling

3: Initialisation:

4: Initialise 𝑁 cluster instances (𝐸𝑛𝑣𝑠) & 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑔𝑒𝑛𝑡
5: Set total rounds 𝑅
6: for rounds in 0 to 𝑅 − 1 do

7: Initialise 𝑎𝑔𝑒𝑛𝑡𝑠 with their 𝐸𝑛𝑣𝑠
8: for each 𝑎𝑔𝑒𝑛𝑡 𝑖 in 𝑎𝑔𝑒𝑛𝑡𝑠 do

9: Train 𝑎𝑔𝑒𝑛𝑡 𝑖 in its 𝐸𝑛𝑣
10: Test 𝑎𝑔𝑒𝑛𝑡 𝑖 in its 𝑡𝑒𝑠𝑡𝐸𝑛𝑣
11: Add 𝑠𝑐𝑜𝑟𝑒 to 𝑠𝑐𝑜𝑟𝑒𝑠 list

12: end for

13: Aggregate 𝑎𝑔𝑒𝑛𝑡 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 to update 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑔𝑒𝑛𝑡
14: Distribute updated parameters to all 𝑎𝑔𝑒𝑛𝑡𝑠
15: Update each 𝑎𝑔𝑒𝑛𝑡 with 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑔𝑒𝑛𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 for next 𝑅
16: end for

17: Calculate 𝐴𝑣𝑔 𝑆𝑐𝑜𝑟𝑒𝑠

tasks in different EC environments. Initially, the first level of

scheduling in the framework is inspired by the standard DQN-

based task scheduling [4]. The framework is developed to

accept multiple heterogeneous EC environments, represented

by several cluster instances with different state transitions. The

FedAvg model is then employed to apply the FL technique

to the framework at the next scheduling level. The proposed

scheduling framework undergoes training and testing using

synthetic data, including task pattern generation as a workload.

The components of the scheduling framework are implemented

using Python (version 3.11) and TensorFlow (version 2.14.1).

The framework depends on several essential libraries, including

NumPy (version 1.26.4) for numerical computation, Pillow (ver-

sion 10.2.0) for visual representation, and Matplotlib (version

3.8.3) for results visualization. This framework is deployed on

the University of Leeds high-performance computing infras-

tructure (ARC3/4) [14]. ARC3/4 provides the computational

resources necessary to perform large-scale task-scheduling

experiments. The machine configuration used in the experiments

is a single V100 card, 10 CPU cores, and 48GB of system



memory with 170GB of storage.

The main goal of this evaluation is to demonstrate that the FL-

based task scheduling model improves the agent learning curve,

reduces task delay over time, and increases scalability over FL

rounds compared to the DQN scheduling model. In particular,

this evaluation aims to demonstrate that the global agent, trained

using the FedAvg model, outperforms a single agent in terms of

cumulative rewards, the average of task delay, scalability, and

achieves superior average scores in different scenarios.

Additionally, this section provides an implementation setup

including the key configurations of the task description, simu-

lation environment parameters, and ML models’ parameters in

the scheduling framework. Following this, a sub-section presents

and discusses the simulation results.

A. Implementation Setup

The present scheduling framework is trained and evaluated

using synthetic data as a workload that includes three distinct

task types, each with varying resource demands and estimation

time. Small tasks require a small size of three different resources

(CPU cores, memory (GB), and disc (GB)) to be completed

within a short time (e.g., a task requires 1 CPU core, 32 GB

of memory, and 10 GB of storage to be completed within 4

seconds as estimation time). Small tasks with skewed resources

necessitate three distinct resources of small sizes. However,

some tasks exhibit imbalanced resource requirements, such as

demanding large-size resources or a lengthy execution time (e.g.,

a task requires 1 CPU core, 128 GB of memory, and 50 GB of

storage to be completed within 7 seconds as estimation time).

This task type has three different batches, each considering

varying resource allocation needs. Large tasks come with

large-size resource demands and consume considerable time

(e.g., a task requires 1 CPU core, 256 GB of memory, and

1000 GB of storage to be completed within 25 seconds as

estimation time). In this way, the categorisation of tasks allows

the scheduling framework to properly handle a wide variety of

resource allocation scenarios, ensuring enhanced performance

and efficient use of system resources.

In the scheduling framework, the task generator is responsible

for generating the workload by creating 500 batch sizes for

each task type, which are then transmitted online to a queue

of fixed length 𝑞 = 15 and a backlog of fixed length 𝑘 = 10.

The workload comprises 2,500 tasks with random arrival times

following a Poisson distribution, three resource requirements of

varying sizes, and a completion time. In addition, this framework

represents heterogeneous cluster environments with different

node specifications. Table II summarises the related parameters

to the simulation environment, including the workload descrip-

tion. All the hyper-parameters are selected through several trials

that produce reasonable results for each cluster instance in the

framework.

Table III illustrates the CNN structure as a component of the

DQN-based scheduling model.

Table IV shows the hyper-parameters selected for the DQN-

based scheduling model after ten tests were run to find the

appropriate hyper-parameters for the scheduling framework. The

TABLE II: Environment simulation parameters.

Simulation Parameter Value

Number of task resource requirements 3

Task duration average (1 to 20) Seconds

Task type 3

Workload size 2,500 Heterogeneous tasks

Node type Heterogeneous

Node active time (10 to 25) Seconds

Number of node resources 3

Number of cluster nodes 1,2,4,6,8

Queue length 15

Backlog length 10

TABLE III: CNN model structure.

Layer Parameters Activation Function

Input Layer input shape -

Convolutional 16 filters, (3, 3) kernel size ReLU

Pooling Default pooling size -

Dropout 0.2 (drop rate) -

Flatten - -

Dense 256 units ReLU

Output Layer output shape Linear

objective was to optimise the agent learning curve in order to

enhance the scheduling decision as an inference model.

TABLE IV: DQN model hyper-parameters.

Parameters Description Value

episode Number of iterations 300

𝜎 Learning rate 0.01

D Max. of experience replay buffer 10,000

𝛾 Factor discounting future rewards 0.99

Update steps Copy and save parameters update 32

𝜖 Agent exploration probability 0.99

In order to integrate the FL technique into the scheduling

framework, the technique is first implemented by training and

testing the DQN agents across various environment instances

over a series of FL rounds, as explained in the previous section.

Task scheduling is implemented in accordance with the updated

DQN agent to evaluate the agents’ improved learning, and

average scores are then listed as a result of testing the global

agent. The hyper-parameters employed in the FL technique are

shown in Table V.

TABLE V: FL model hyper-parameters.

Parameters Value

FL rounds 5

FL technique FedAvg model

Frequency update 32

Number of agents 3

Number of cluster instances 3

Number of scheduling tests 3

Test environment for scheduling 3

Global agent (aggregated 3 agents) 1

Single agent 1

B. Results and Discussion

This subsection presents the experimental findings obtained

by implementing the proposed task scheduling framework,

which is based on the FL technique. The structure of the results

provides insights into the relative effectiveness of global agent

training and testing versus single-agent training and testing in

various scheduling scenarios within the cluster environments.

Regarding the training phase comparison, Fig. 5 depicts the total



rewards obtained by a single agent compared to a global agent

during a sequence of 300 episodes. The upward trajectory of

each agent’s respective curve indicates a general improvement

in performance. At first, the total rewards for both agents are

comparable, but as the episodes advance, the disparity between

the two agents increases. At the end of the 300 episodes,

the global agent’s total rewards are far greater than those

earned by the single agent. The global agent’s curve indicates

a steeper incline, suggesting a more rapid pace of learning and

adjustment to the cluster environment. Conversely, the single

agent shows a gradual rise in cumulative rewards, indicating

slower learning and potentially less effective adaptation. To

summarise, the global agent outperforms the single agent in

terms of cumulative rewards throughout the training period,

indicating the potential benefits of employing a global learning

strategy in task scheduling scenarios in the cluster environment.
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Fig. 5: Cumulative rewards in training phase

In order to evaluate the proposed task scheduling framework

in the testing phase, the first scenario includes eight experiments

to compare task scheduling by using a single agent and a global

agent (aggregated of three agents) based on the number of nodes

in the environment. Fig. 6 demonstrates that as the number of

nodes increases, the average task delay of both the global agent

and the single agent decreases. Nevertheless, at all node levels,

the global agent always shows a lower average task delay than

the single agent. The single agent delay is approximately (-0.3),

while the global agent delay is about (-0.2) with a single node,

which represents a 33.33% improvement for the global agent.

The global agent delay further decreases to approximately (-

0.6) as the number of nodes reaches eight, while the single

agent’s delay lowers to just below (-0.4), indicative of a 50%

improvement.

The global agent shows the most notable improvement

when transitioning from one to two nodes. As a result, the

improvement gradually increases across all levels of nodes.

Overall, the global agent outperforms the single agent by more

efficiently managing tasks across multiple nodes and attaining

lower task delays. The reason for this is that the global agent

acquires knowledge from a variety of policies during training

and testing on many rounds in different environments with

varying states.

In the second scenario, five experiments are conducted to test
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Fig. 6: Average task delay based on node number

three agents trained in different cluster instances. The goal is to

obtain a global agent within five FL rounds. Fig. 7 shows the

performance disparity between the single agent and the global

agent across multiple FL rounds. At first, the single agent shows

a significant decline in performance, reaching its lowest point

by the second round. In contrast, the global agent maintains

a more consistent trajectory, albeit with a consistently lower

score. The single agent undergoes substantial fluctuations as the

rounds progress, experiencing a significant peak and trough in

the third and fourth rounds, respectively. While the global agent

displays a consistent rate of improvement. In comparison to the

global agent, which continues its steady ascent, the single agent

presents a minor recovery by the fifth round but remains more

volatile.

This comparison highlights the global agent’s stability and

improvement in contrast to the single agent’s oscillating per-

formance. Global agent stability is ascribed to the fact that its

parameters are updated after each round, thus incorporating

learning from the various conditions of the three agents. This

method facilitates task scheduling during testing and elevates

the average scores in each round. In contrast, the single agent

operates individually in each round, with task scheduling

contingent upon the trained model from that particular round.
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Fig. 7: Average scores across multiple FL rounds.

V. Conclusion

This paper has addressed the problem of reducing heteroge-

neous task delay in a heterogeneous environment, specifically in

the EC environment. A task scheduling framework is proposed



to reduce task delay on clusters with multiple nodes. This

scheduling framework is based on the FL technique, which

involves the aggregation of multiple DQN agents that have

been trained in different environments periodically. Simulation

experiments prove that the FL-based task scheduling framework

is suitable for delay-sensitive tasks. The results show that the

global agent (FL-based scheduler) outperforms a single DQN

agent (DQN-based scheduler) in terms of improving the agent

learning curve, reducing task delay over time, and increasing

scalability. The proposed framework has been trained and tested

on synthetic data, with a focus on scheduling at the node level.

Future work will evaluate the proposed scheduling framework

using real-world data. In addition, the proposed framework will

incorporate feedback closed-loop learning, which is an iterative

process in which insights acquired at one level (node or cluster)

can reinforce learning and improve performance at the other

level.
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