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Abstract— The widespread adoption of Software Defined 

Networks (SDN) in Information and Communication 

Technology (ICT) sectors has positioned it as a crucial 

technology due to its flexibility and modularity, which results 

from shifting control from physical network devices to software 

controllers. However, this shift has led to several challenges, 

including increasing energy consumption. Serverless computing 

can effectively support SDN to address various issues, such as 

energy efficiency, yet lacks an energy-aware scheduling 

framework designed for such an environment. This research 

investigates the key factors influencing serverless energy 

consumption in SDN by examining the correlations between the 

energy usage of serverless applications and traffic flow patterns, 

as such correlations can play a critical role in developing an 

energy-aware scheduling framework. The findings reveal that 

several traffic patterns strongly or moderately impact energy 

consumption in serverless environment. 

Keywords—Serverless, Energy Efficiency, Software Defined 

Network, ONOS, Knative, Scheduling, Flow Management. 

I. INTRODUCTION 

The rapid proliferation of smart devices worldwide has 
resulted in an unprecedented surge in data traffic, 
underscoring the challenges associated with controlling and 
managing information flow within networks [1,2]. 
Traditionally, networking infrastructures were primarily 
designed to handle text-based content and are therefore ill-
equipped to manage the dynamic traffic and interactive 
applications characteristic of modern networks. To address the 
challenges posed by the explosive increase and heterogeneity 
in traffic, automatic and adaptive network management 
strategies can be employed. These strategies improve 
scalability, reliability, and cost-effectiveness while 
maintaining the required quality of service [3,4]. 

Software Defined Networks (SDN) has emerged as a 
promising technology capable of providing effective solutions 
for managing the vast amounts of heterogeneous data 
traversing contemporary networks [5]. By decoupling the 
control logic from the forwarding devices, SDN enables more 
efficient resource management and establishes a flexible 
network management framework. In this framework, remote 
software can control and program forwarding devices 
according to network policies set by administrators. SDN 
simplifies network management by abstracting away the 
underlying complexities of network infrastructure, thereby 
allowing it to meet the increasing demands of networking 
applications. Key advantages of SDN include ease of routing 
management and flexibility in implementing network policies. 

While SDN offers several solutions to the challenges of 
traditional networks, it also encounters several difficulties, 
which have become active areas of research in recent years. 
One significant issue is the rising energy demands resulting 
from the increased use of software controllers and servers in 

data centres [6]. Research has shown that energy costs account 
for over 10% of the operating expenses for ICT service 
providers. 

Moreover, the widespread adoption of cloud services and 
cloud-based technologies, such as containers and 
microservices, has facilitated the rise of a new programming 
paradigm known as serverless computing, or Function as a 
Service (FaaS) [7]. This model leverages container-based 
virtualization to provide a platform that allows software 
developers to deploy applications with minimal management 
of the underlying infrastructure. A key feature of serverless 
platforms is their high level of abstraction, wherein 
applications are broken down into fine-grained functions that 
are deployed and executed without developer intervention. 
Unlike traditional cloud services, serverless functions are 
executed only when invoked, which provides a resource-
efficient, low overhead alternative to Virtual Machines (VMs) 
and containers [8,23]. Consequently, serverless computing is 
seen as a promising approach for enhancing the efficiency of 
cloud/edge resource utilisation, reducing energy consumption, 
and lowering the cost of resource allocation compared to VMs 
and containers [23]. 

This paper forms the first part of ongoing research aimed 
at enhancing the energy efficiency of SDN by utilising 
serverless computing to manage and execute non-core 
functions of SDN controllers. The research aims to develop an 
energy-aware scheduling framework for serverless 
applications in SDN, leveraging machine learning models to 
optimize scheduling decisions. These models will be 
developed based on the primary factors that impact the energy 
consumption of serverless applications, allowing for more 
accurate scheduling decisions that can significantly reduce 
energy usage. Given that SDN applications primarily handle 
network traffic, this paper examines the relationships between 
traffic patterns and the energy consumption of serverless 
applications in SDN environments. 

The primary objective of this paper is to propose a method 
for identifying key correlations between the energy 
consumption of a serverless application developed for 
network-related tasks and the characteristics of the incoming 
traffic handled by this application. Understanding these 
correlations is crucial for improving the energy efficiency of 
serverless applications within SDN environments, as they 
offer valuable insights into the application's energy 
consumption. These insights can potentially guide decisions 
regarding optimal placement or resource consumption 
prediction for serverless functions. This paper therefore 
presents the methodology employed to discover these 
correlations and highlights the results, which identify the most 
influential traffic features affecting the application's energy 
consumption. 

The contributions of this paper are: 
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1. A comprehensive presentation of the methodology 
used to identify the traffic features that most 
significantly impact the energy consumption of 
serverless applications in SDN. 

2. A quantitative analysis of the results, showcasing 
the most impactful traffic features. 

3. A set of recommendations for adopting serverless 
computing in SDN in an energy-aware 
environment. 

The remainder of this paper is organized as follows. 
Section 2 reviews some of the work on SDN, energy efficiency 
and serverless computing. Section 3 describes the 
methodology employed to investigate the correlations 
between the energy consumption of serverless applications in 
SDN, and traffic characterisation. The experimental design is 
presented in Section 4 and the results of the investigation are 
discussed in Section 5. Section 6 concludes the paper. 

II. RELATED WORK 

The energy efficiency of SDN has been a prominent 
research topic in recent years, with numerous studies 
exploring the issue from various perspectives. Research in this 
field typically focuses on four main areas: traffic awareness, 
end-host awareness, rule placement, and controller placement. 

Reference [18] addresses an aspect of the controller 
placement problem, which often involves dividing the 
network into several sub-networks, depending on its size, and 
assigning each partition to a dedicated controller for 
management. To reduce energy consumption, the study 
proposes determining the optimal number of network 
partitions that can meet the required latency while avoiding 
underutilisation of controllers and links. The proposed 
solution connects controllers with switches through in-band 
control planes, differing from the traditional out-of-band 
control planes that establish static links between controllers 
and switches. This approach is specifically designed to handle 
dynamic and large volumes of data traffic generated by 
Internet of Things (IoT) devices. The evaluation of this 
solution demonstrated an energy saving of approximately 
22%. 

Reference [19] explores enhancing the energy efficiency 
of SDN controllers by utilising multi-core processors instead 
of single-core ones. According to this study, energy 
consumption in SDN is distributed across three components: 
controllers, switches, and links. While switches and links 
account for the majority of energy consumption, optimizing 
controller energy use can also enhance the overall energy 
efficiency of the network. The conducted experiment shows 
that processing a workload using multiple cores operating at a 
lower frequency consumes less energy than using a single core 
at a higher frequency. As a result, an end-host-aware solution 
is proposed that implements a parallelised controller to 
distribute the load across multiple processor cores while 
lowering the frequency. This trade-off between performance 
and energy consumption resulted in a 28% reduction in energy 
consumption. 

Another study examines an energy-efficient approach for 
balancing the load across SDN controllers [20]. The traffic-
aware solution migrates some of the load from heavily 
burdened controllers to lightly loaded ones, which includes 
transferring some switches as well. This migration process 
requires an energy-efficient re-routing algorithm to reduce 
energy consumption while maintaining service levels. The 
developed system comprises several components that 

continuously monitor the load of each controller and ensure 
that every controller is aware of the others' loads. This enables 
each controller to calculate and update the threshold at which 
the load migration process is triggered. Their experimental 
results show that the proposed solution achieved a 25% 
reduction in energy consumption along with a 20% 
improvement in performance. 

Several studies have demonstrated that serverless 
computing is both more energy-efficient and more effective in 
managing resources compared to other platforms, such as 
Docker [13,14]. Consequently, various researchers have 
proposed serverless computing as a solution for managing and 
deploying SDN applications. For example, the work of [15] 
introduced a new SDN architecture that incorporates 
serverless computing to process most of the events originating 
from the data plane. This solution builds on the architecture 
proposed in [16], where the SDN controller is reduced to 
perform only essential tasks, while other functions are 
offloaded to separate modules executed by the serverless 
framework. 

This study distinguishes itself from previous research by 
examining the correlations between energy consumption of 
serverless applications in SDN and the associated traffic 
patterns. The significance of these correlations lies in their 
potential to predict the energy consumption of the serverless 
application, which can be leveraged to inform the 
development of an energy-aware scheduling framework for 
serverless applications in SDN. 

III. METHODOLOGY 

A. Architecture 

SDN is designed to separate the control plane from the data 
plane, promoting scalability and simplifying network 
management [15]. The control plane manages core 
functionalities and applications like firewalls and load 
balancing through Northbound APIs, while the data plane 
includes forwarding devices, using OpenFlow as a 
Southbound API. Traditional SDN controllers are monolithic, 
making it difficult to add services independently. To address 
this, a modular SDN architecture using serverless computing 
can be used to allow external applications to provide services 
as independent, scalable functions, enabling flexible resource 
management and network programmability (see Fig. 1). 

To fully integrate serverless computing into SDN, a 
bridging mechanism can be employed to connect the SDN 
controller with the serverless platform. This bridge is 
responsible for capturing the required packets and distributing 
them to the appropriate serverless applications. Additionally, 
the bridge facilitates the transfer of actions generated by the 
serverless applications back to the controller, which then 
applies these actions to the data plane devices. This approach 
ensures seamless communication and control between the 
SDN controller and serverless platform. The source code of 
this bridge can be found on the project’s GitHub page [24]. 

Fig. 1. SDN architecture in a serverless environment 



 

B. Design Method 

As the primary objective of this paper is to investigate the 
key correlations between the energy consumption of serverless 
applications in SDN and the characteristics of their incoming 
traffic, this section outlines the methodology employed to 
achieve this goal. 

Network traffic consists of multiple flows, each 
representing the packets exchanged between two IP addresses 
over a specific period. Thus, mapping energy consumption to 
data traffic involves answering the question: how to measure 
the energy consumed by the serverless application to process 
each flow? 

The serverless application concurrently processes varying 
numbers of flows over time. Additionally, traffic flows vary 
significantly in duration, with some lasting only a few 
microseconds, while others may persist for several seconds or 
longer. This variability provides a pathway for mapping the 
energy consumed in processing traffic flows to individual 
flows, acknowledging that the serverless application may 
simultaneously process packets from multiple flows. Energy 
consumption, measured in Joules, is the product of power 
usage over time, where one Joule equals one watt-second. 

We propose a method to measure the energy consumed by 
the serverless application to process a single traffic flow. The 
first step is to define a time interval during which the energy 
consumption of the serverless application is measured, along 
with the number of processed packets and their corresponding 
flows. The next step involves dividing traffic flows based on 
the selected time interval. Some flows may start and end 
within a single time interval (discontinuous flows), while 
others may span multiple time intervals (continuous flows), as 
illustrated in Fig. 2. The energy consumed to process 
discontinuous flows can be measured within a single time 
interval, while the energy consumed by continuous flows must 
be aggregated over several time intervals. 

The final step is to allocate the energy consumed during 
each time interval across the processed traffic flows based on 
their relative weights. These flows can be either continuous, 
where only a portion is processed within the time interval, or 
discontinuous, where the entire flow is processed within the 
time interval. Each flow’s weight within a given time interval 
is calculated by multiplying its duration by its speed (packets 
per second), and then dividing the result by the total duration 
of all flows in that interval. The duration of a discontinuous 
flow is the time difference between its start and end, while the 
duration of a continuous flow is the length of the flow segment 
within the time interval. Ultimately, each discontinuous flow 
will have an estimated energy consumption for its processing, 
while the energy consumption of continuous flows will be the 
sum of the energy consumed by its segments processed across 
multiple time intervals. 

Fig. 2. Two kind of traffic flows 

C. Hypotheses 

Throughout the experimental design, the following 
hypotheses were formulated based on observation of similar 
trends in the literature: 

1. H1: The number of processed packets is one of the 
most significant factors influencing the energy consumption 
of the serverless application. 

2. H2: The length of the processed packets has a strong 
correlation with the energy consumption, as large packets 
require more energy to be processed. 

3. H3: The rate at which packets are transmitted has a 
significant correlation with the energy consumption, as high 
transmission speeds may increase the workload on the 
serverless application, leading to greater energy usage. 

4. H4: The energy consumption of serverless 
applications can be accurately predicted based on specific 
traffic patterns or features. 

D. Software Tools 

The technologies used in the experimental environment 
setup for SDN management control and the serverless 
computing platform are described next. 

1) Knative 

Knative [11] is an open-source serverless framework 
initially developed by Google in collaboration with over 50 
technology companies, and it is currently hosted by the Cloud 
Native Computing Foundation. The framework is primarily 
designed as an extension to Kubernetes, providing a platform 
for building and managing containerised serverless 
applications. These applications can be deployed in two main 
forms: Serving, which consists of a set of serverless functions 
along with their associated resources, such as configurations 
and revisions, and Eventing, which is more complex and 
facilitates the deployment of an event-driven framework for 
managing the exchange of events between serverless 
functions. 

As this research focuses on testing a single serverless 
application for processing events received from ONOS, 
Knative Serving—whose architecture is illustrated in Fig. 3—
was utilised for deploying the application. 

2) ONOS 

The Open Network Operating System (ONOS) [12] is a 
leading open-source controller designed for managing SDN 
and Network Functions Virtualization (NFV) environments. 
ONOS is built to support distributed deployment, ensuring 
scalability, high availability, and simplified network 
management. Additionally, it provides a modular framework 
that allows developers to create extensions for performing 
various network tasks with ease. The strong community 
support and the platform’s flexibility in enabling modular 
network management are the primary reasons this controller 
was selected for use in this research.  

Fig. 3. Knative Service Architecture [11] 

IV. EXPERIMENTAL DESIGN 

The implementation of the proposed methodology and 
underlying experiments that were conducted are described 
next. 

 



 

A. Experiment Description 

The conducted experiment is comprised of five main 
components, all of which were deployed on a single machine, 
as shown in Fig. 4.  This machine is equipped with the 
following hardware specifications: AMD CPU Ryzen 7 5800h 
with 8 cores and base clock 3.2GHz, 16 GB memory, Ubuntu 
22.04 LTS OS, and 512 GB SSD storage. 

1) Serverless application: Various network 
applications could have been implemented for this 
experiment, such as a firewall or an intrusion detection 
system. However, a packet analyser was chosen as the 
serverless application for this experiment. The application 
operates by inspecting the IP addresses and ports of both the 
source and destination and comparing them against a 
predefined list of blocked IPs and ports. Additionally, the 
application scans packet payloads using regular expressions 
to detect malicious patterns related to attacks like SQL 
injection. Each packet is then classified as either allowed or 
denied based on the results of these checks. This application 
is implemented as a single serverless function written in 
Python. 

2) Energy consumption measurement: Several tools 
can be used to measure the energy consumption of serverless 
applications. For this experiment, Kepler [21] was chosen due 
to its integration with Kubernetes clusters, allowing it to track 
the energy consumption of individual pods or namespaces. 
Kepler collects the necessary metrics using Prometheus and 
presents the energy consumption data via Grafana. 

3) SDN controller: for managing SDN, ONOS is 
chosen for this experiment. 

4) A virtual network: A virtual network is setup whose 
primary purpose is to replay pre-captured traffic. Mininet was 
used to create and manage the network, consisting of two 
virtual hosts connected to a single virtual switch, with ONOS 
serving as the main controller. 

5) The control application: It was necessary to develop 
a communication bridge or channel capable of exchanging 
events between ONOS and serverless applications, see Fig. 1. 
This bridge facilitates event exchange through the HTTP 
protocol, as serverless applications typically receive requests 
via HTTP. Consequently, a control application on ONOS that 
collects the required packets and forwards them to the 
serverless application was developed. Simultaneously, the 
control application receives responses from the serverless 
application and applies the necessary changes to the switches' 
rules. 

B. Pre-captured Traffic 

It was crucial to use pre-captured traffic generated from 
SDN environments rather than traditional networks. The 
investigation of available datasets revealed that there are only 
a limited number of studies providing raw traffic datasets 
captured from SDN environments. One such dataset is 
presented in [17], where the authors emphasize the need for 
updated and compatible traffic datasets for SDN networks. 
This dataset, created by a team at University College Dublin 
in 2020, is designed for evaluating Intrusion Detection 
Systems (IDS) in SDN. It includes two types of SDN traffic: 
normal and attack traffic, with the attack traffic mimicking 
real-world scenarios from external and internal networks. 

For this experiment, the normal traffic dataset was used. It 
contains 11 raw traffic files (pcap files) with over 50,000 flows 

and more than one million packets. The packet lengths in this 
dataset occasionally exceeded 64,000 bytes, which caused 
issues when processed by ONOS and the serverless 
application. Therefore, packets exceeding 16,384 bytes were 
filtered out using Tcpreplay [22], resulting in a reduction of 
approximately 2% of the flows in each pcap file—a negligible 
effect on the overall results. The dataset, then, was cleaned by 
removing flows with unreasonable values, such as negative 
flow durations. Once this process was completed, the number 
of flows was reduced to 17,946, of which 17,617 are TCP 
flows, while the remaining are UDP. The key metrics 
associated with these flows are presented in Table 1. 

Table I. PRIMARY METRICS FOR EACH FLOW 

 Metrics For Each Flow 

No. of 

Packets 

Total 

Packet 

Lengths 

(bytes) 

Duration 

(seconds) 

IAT 

Mean 

(seconds) 

Packets

/second 

Packet 

Length 

Mean 

(bytes) 

Mean 96.05 136,575.95 44.61 1.65 376.75 475.52 

 

To extract traffic features, CICFlowMeter [10], developed 
by the Canadian Institute for Cybersecurity at the University 
of New Brunswick, was used. This tool extracts over 80 
features per flow, including factors such as forward and 
backward packets, inter-packet timings, packet lengths, and 
more. The features were exported as CSV files and used as 
input to determine correlations with energy consumption. 

C. Energy Consumption Measurement 

For this experiment, Kepler was chosen for its ability to 
estimate the energy consumption specific to the serverless 
application deployed on Kubernetes. It provides energy 
consumption metrics in intervals as short as 30 seconds, which 
served as the time periods within which energy consumption 
was divided across the observed flows. 

D. Experiment’s Scenario 

The goal of this experiment was to measure the energy 
consumed by the serverless application while processing 
traffic flows. The experimental scenario involved replaying 
pre-captured traffic within an SDN network while monitoring 
the energy consumption of the serverless application, as 
illustrated in Fig. 4. Tcpreplay was used to replay the traffic 
on one of the hosts, allowing the ONOS control application to 
capture each packet and forward it to the serverless 
application. While the serverless application processed the 
packets, Kepler recorded the corresponding energy 
consumption. This data was then used to create a dataset, with 
traffic   features as independent   variables   and   energy 
consumption as the dependent variable. 

Fig. 4. Experiment’s Scenario 

A Python application was developed to identify the traffic 
features most correlated with energy consumption, using the 
Spearman correlation coefficient. The Spearman method was 
chosen due to its robustness against outliers, which are 
common in network flow data, and its ability to detect 
monotonic relationships potentially caused by these outliers 



 

[9]. Also, outliers in this dataset were not disregarded since 
they often represent spikes in flow activity. 

V. RESULTS AND DISCUSSION 

The primary goal of this experiment was to identify the key 
factors influencing the energy consumption of the serverless 
application. The analysis revealed one feature with a 
correlation value exceeding 0.7, indicating positive strong 
correlations. Also, it showed other features with values either 
between 0.4 and 0.7, indicating positive moderate correlations, 
or between -0.4 and -0.7, which indicate negative moderate 
correlations [9]. 

The feature strongly correlated with energy consumption 
is the total number of packets in a flow, with a correlation 
value of 0.84. The following features exhibit moderate 
correlations:  

1. Total sum of packet lengths (0.65) 
2. Minimum inter-arrival time (IAT) between packets 

(-0.49) 
3. Maximum packet length (0.48) 
4. Flow duration (0.44) 
5. Mean packet length (0.42) 
6. Average payload size (0.41) 
7. Standard deviation and variance of packet lengths 

(0.40). 
Fig. 5 displays the above features, along with others that 

exhibit weak correlations with energy consumption. Details on 
the features can be found on the GitHub page of the 
CICFlowMeter app [10]. 

A. Findings 

It is expected that the total number of packets in a flow is 
the most impactful feature, as packets represent the primary 
input for the serverless application. Therefore, the energy 
consumed in processing a flow is expected to have a linear 
relationship with the number of packets in that flow (see Fig. 
6), which provides a confirmation of hypothesis H1. 

Additionally, the energy consumption of the serverless 
application increases when processing flows with longer 
packet lengths, as indicated by features such as maximum 
packet length, mean packet length, variance, standard 
deviation, and payload size.  These features, with moderate 
correlations between 0.4 and 0.48, suggest that packet length 
and payload size are important factors for predicting energy 
consumption, which provides a confirmation of hypothesis 
H2. Predicting features such as the mean, variance, and 
standard deviation may simplify the prediction of total packet 
lengths, as the mean is highly correlated with total length 
(correlation value of 0.92, as shown in Fig. 7). 

Fig. 5. The most correlated traffic features to energy consumption 

Fig. 6. Four correlated traffic features to energy consumption 

On the other hand, the minimum IAT showed a negative 
correlation with energy consumption, indicating that shorter 
IATs result in more frequent packets, potentially requiring the 
serverless application to scale up replicas, which increases 
energy consumption. Flow duration had the weakest 
correlation among the examined features but is closely related 
to flow speed and IAT (Fig. 8), suggesting it could be 
predicted indirectly. 

Contrary to the expectations of the third hypothesis, flow 
speed—whether measured in packets per second or flows per 
second—does not directly impact the energy consumption of 
the serverless application. However, the minimum IAT 
demonstrates a moderate correlation with energy consumption 
and may provide a more accurate representation of flow speed 
than packets per second. This is because CICFlowMeter 
calculates the number of packets per second by simply 
dividing the total number of packets by the flow duration, a 
basic calculation that does not fully capture the actual flow 
speed. Hypothesis H3 is therefore partly confirmed. 

To demonstrate the strong correlation between energy 
consumption and the number of packets in a flow, Fig. 9 
compares predicted energy consumption using 
linear/polynomial regression and Random Forest. The linear 
regression model performed well, especially for smaller 
energy values, as the predicted values closely aligned with the 
actual data (represented by the red line), which provides a 
confirmation of hypothesis H4. 

By identifying flows that require more energy, serverless 
applications associated with processing high-energy flows can 
be scheduled to be executed on more powerful machines, 
while those processing low-energy flows can be scheduled on 
less energy-intensive machines. Furthermore, profiling flows 
based on energy consumption can play an important in 
predicting resource usage, which, in turn, can significantly 
reduce the energy consumption of serverless applications and 
help in selecting the optimal placement [25]. This approach 
can increase server utilisation, improving energy efficiency 
and optimising performance. Additionally, predicting the 
energy consumption of flows allows for proactive scaling of 
serverless function replicas before high-energy flows arrive, 
thereby mitigating the performance impact of cold starts. 

Fig. 7. The most correlated traffic features to total packet lengths 



 

Fig. 8. The most correlated traffic features to flow duration. 

Fig. 9. Predicting energy consumption using the number of flow packets 

VI. CONCLUSION AND FUTURE WORK 

This paper explores the correlation between energy 
consumption of serverless applications in SDN environments 
and the characteristics of incoming traffic. By offloading non-
core controller functions to serverless applications, the study 
aims to enhance the energy efficiency of SDN. An experiment 
was conducted using ONOS as the SDN controller and a 
serverless packet analyser, with energy consumption 
measured via Kepler. Pre-captured SDN traffic was replayed 
in a Mininet environment, and flow features were extracted for 
analysis. The results show that the number of packets in a flow 
is the most significant factor affecting energy consumption, 
with other factors such as packet length and IAT also having 
moderate correlations. These findings suggest that traffic 
management in SDN can be optimized to improve energy 
efficiency by predicting and managing flows based on their 
energy demands.  

Although this paper provides valuable insights, further 
research is necessary to fully understand the energy 
consumption of flows. Identifying the most influential factors 
on SDN application’s energy consumption, whether deployed 
on serverless platforms or others, can lead to more accurate 
energy consumption predictions in the future. Moreover, this 
research is an important milestone to design an energy-aware 
scheduling framework that leverages machine learning models 
to optimize scheduling decisions. 
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