
This is a repository copy of SDN Traffic Flows in a Serverless Environment: a
Categorization of Energy Consumption.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/221032/

Version: Accepted Version

Proceedings Paper:
Alhindi, A. and Djemame, K. orcid.org/0000-0001-5811-5263 (Accepted: 2024) SDN Traffic
Flows in a Serverless Environment: a Categorization of Energy Consumption. In: 17th
IEEE/ACM International Conference on Utility and Cloud Computing (UCC 2024). 17th
IEEE/ACM International Conference on Utility and Cloud Computing (UCC 2024), 16-19
Dec 2024, Sharjah, UAE. IEEE/ACM (In Press)

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

SDN Traffic Flows in a Serverless Environment: a
Categorization of Energy Consumption

Abdulaziz Alhindi
School of Computing, University of Leeds, UK

Qassim University, KSA
a.allhndi@qu.edu.sa

Karim Djemame
School of Computing, University of Leeds, UK

K.Djemame@leeds.ac.uk

Abstract— The widespread adoption of Software Defined

Networks (SDN) in Information and Communication

Technology (ICT) sectors has positioned it as a crucial

technology due to its flexibility and modularity, which results

from shifting control from physical network devices to software

controllers. However, this shift has led to several challenges,

including increasing energy consumption. Serverless computing

can effectively support SDN to address various issues, such as

energy efficiency, yet lacks an energy-aware scheduling

framework designed for such an environment. This research

investigates the key factors influencing serverless energy

consumption in SDN by examining the correlations between the

energy usage of serverless applications and traffic flow patterns,

as such correlations can play a critical role in developing an

energy-aware scheduling framework. The findings reveal that

several traffic patterns strongly or moderately impact energy

consumption in serverless environment.

Keywords—Serverless, Energy Efficiency, Software Defined

Network, ONOS, Knative, Scheduling, Flow Management.

I. INTRODUCTION

The rapid proliferation of smart devices worldwide has
resulted in an unprecedented surge in data traffic,
underscoring the challenges associated with controlling and
managing information flow within networks [1,2].
Traditionally, networking infrastructures were primarily
designed to handle text-based content and are therefore ill-
equipped to manage the dynamic traffic and interactive
applications characteristic of modern networks. To address the
challenges posed by the explosive increase and heterogeneity
in traffic, automatic and adaptive network management
strategies can be employed. These strategies improve
scalability, reliability, and cost-effectiveness while
maintaining the required quality of service [3,4].

Software Defined Networks (SDN) has emerged as a
promising technology capable of providing effective solutions
for managing the vast amounts of heterogeneous data
traversing contemporary networks [5]. By decoupling the
control logic from the forwarding devices, SDN enables more
efficient resource management and establishes a flexible
network management framework. In this framework, remote
software can control and program forwarding devices
according to network policies set by administrators. SDN
simplifies network management by abstracting away the
underlying complexities of network infrastructure, thereby
allowing it to meet the increasing demands of networking
applications. Key advantages of SDN include ease of routing
management and flexibility in implementing network policies.

While SDN offers several solutions to the challenges of
traditional networks, it also encounters several difficulties,
which have become active areas of research in recent years.
One significant issue is the rising energy demands resulting
from the increased use of software controllers and servers in

data centres [6]. Research has shown that energy costs account
for over 10% of the operating expenses for ICT service
providers.

Moreover, the widespread adoption of cloud services and
cloud-based technologies, such as containers and
microservices, has facilitated the rise of a new programming
paradigm known as serverless computing, or Function as a
Service (FaaS) [7]. This model leverages container-based
virtualization to provide a platform that allows software
developers to deploy applications with minimal management
of the underlying infrastructure. A key feature of serverless
platforms is their high level of abstraction, wherein
applications are broken down into fine-grained functions that
are deployed and executed without developer intervention.
Unlike traditional cloud services, serverless functions are
executed only when invoked, which provides a resource-
efficient, low overhead alternative to Virtual Machines (VMs)
and containers [8,23]. Consequently, serverless computing is
seen as a promising approach for enhancing the efficiency of
cloud/edge resource utilisation, reducing energy consumption,
and lowering the cost of resource allocation compared to VMs
and containers [23].

This paper forms the first part of ongoing research aimed
at enhancing the energy efficiency of SDN by utilising
serverless computing to manage and execute non-core
functions of SDN controllers. The research aims to develop an
energy-aware scheduling framework for serverless
applications in SDN, leveraging machine learning models to
optimize scheduling decisions. These models will be
developed based on the primary factors that impact the energy
consumption of serverless applications, allowing for more
accurate scheduling decisions that can significantly reduce
energy usage. Given that SDN applications primarily handle
network traffic, this paper examines the relationships between
traffic patterns and the energy consumption of serverless
applications in SDN environments.

The primary objective of this paper is to propose a method
for identifying key correlations between the energy
consumption of a serverless application developed for
network-related tasks and the characteristics of the incoming
traffic handled by this application. Understanding these
correlations is crucial for improving the energy efficiency of
serverless applications within SDN environments, as they
offer valuable insights into the application's energy
consumption. These insights can potentially guide decisions
regarding optimal placement or resource consumption
prediction for serverless functions. This paper therefore
presents the methodology employed to discover these
correlations and highlights the results, which identify the most
influential traffic features affecting the application's energy
consumption.

The contributions of this paper are:

mailto:a.allhndi@qu.edu.sa
mailto:K.Djemame,%20F.BanaieHeravan%7D@leeds.ac.uk

1. A comprehensive presentation of the methodology
used to identify the traffic features that most
significantly impact the energy consumption of
serverless applications in SDN.

2. A quantitative analysis of the results, showcasing
the most impactful traffic features.

3. A set of recommendations for adopting serverless
computing in SDN in an energy-aware
environment.

The remainder of this paper is organized as follows.
Section 2 reviews some of the work on SDN, energy efficiency
and serverless computing. Section 3 describes the
methodology employed to investigate the correlations
between the energy consumption of serverless applications in
SDN, and traffic characterisation. The experimental design is
presented in Section 4 and the results of the investigation are
discussed in Section 5. Section 6 concludes the paper.

II. RELATED WORK

The energy efficiency of SDN has been a prominent
research topic in recent years, with numerous studies
exploring the issue from various perspectives. Research in this
field typically focuses on four main areas: traffic awareness,
end-host awareness, rule placement, and controller placement.

Reference [18] addresses an aspect of the controller
placement problem, which often involves dividing the
network into several sub-networks, depending on its size, and
assigning each partition to a dedicated controller for
management. To reduce energy consumption, the study
proposes determining the optimal number of network
partitions that can meet the required latency while avoiding
underutilisation of controllers and links. The proposed
solution connects controllers with switches through in-band
control planes, differing from the traditional out-of-band
control planes that establish static links between controllers
and switches. This approach is specifically designed to handle
dynamic and large volumes of data traffic generated by
Internet of Things (IoT) devices. The evaluation of this
solution demonstrated an energy saving of approximately
22%.

Reference [19] explores enhancing the energy efficiency
of SDN controllers by utilising multi-core processors instead
of single-core ones. According to this study, energy
consumption in SDN is distributed across three components:
controllers, switches, and links. While switches and links
account for the majority of energy consumption, optimizing
controller energy use can also enhance the overall energy
efficiency of the network. The conducted experiment shows
that processing a workload using multiple cores operating at a
lower frequency consumes less energy than using a single core
at a higher frequency. As a result, an end-host-aware solution
is proposed that implements a parallelised controller to
distribute the load across multiple processor cores while
lowering the frequency. This trade-off between performance
and energy consumption resulted in a 28% reduction in energy
consumption.

Another study examines an energy-efficient approach for
balancing the load across SDN controllers [20]. The traffic-
aware solution migrates some of the load from heavily
burdened controllers to lightly loaded ones, which includes
transferring some switches as well. This migration process
requires an energy-efficient re-routing algorithm to reduce
energy consumption while maintaining service levels. The
developed system comprises several components that

continuously monitor the load of each controller and ensure
that every controller is aware of the others' loads. This enables
each controller to calculate and update the threshold at which
the load migration process is triggered. Their experimental
results show that the proposed solution achieved a 25%
reduction in energy consumption along with a 20%
improvement in performance.

Several studies have demonstrated that serverless
computing is both more energy-efficient and more effective in
managing resources compared to other platforms, such as
Docker [13,14]. Consequently, various researchers have
proposed serverless computing as a solution for managing and
deploying SDN applications. For example, the work of [15]
introduced a new SDN architecture that incorporates
serverless computing to process most of the events originating
from the data plane. This solution builds on the architecture
proposed in [16], where the SDN controller is reduced to
perform only essential tasks, while other functions are
offloaded to separate modules executed by the serverless
framework.

This study distinguishes itself from previous research by
examining the correlations between energy consumption of
serverless applications in SDN and the associated traffic
patterns. The significance of these correlations lies in their
potential to predict the energy consumption of the serverless
application, which can be leveraged to inform the
development of an energy-aware scheduling framework for
serverless applications in SDN.

III. METHODOLOGY

A. Architecture

SDN is designed to separate the control plane from the data
plane, promoting scalability and simplifying network
management [15]. The control plane manages core
functionalities and applications like firewalls and load
balancing through Northbound APIs, while the data plane
includes forwarding devices, using OpenFlow as a
Southbound API. Traditional SDN controllers are monolithic,
making it difficult to add services independently. To address
this, a modular SDN architecture using serverless computing
can be used to allow external applications to provide services
as independent, scalable functions, enabling flexible resource
management and network programmability (see Fig. 1).

To fully integrate serverless computing into SDN, a
bridging mechanism can be employed to connect the SDN
controller with the serverless platform. This bridge is
responsible for capturing the required packets and distributing
them to the appropriate serverless applications. Additionally,
the bridge facilitates the transfer of actions generated by the
serverless applications back to the controller, which then
applies these actions to the data plane devices. This approach
ensures seamless communication and control between the
SDN controller and serverless platform. The source code of
this bridge can be found on the project’s GitHub page [24].

Fig. 1. SDN architecture in a serverless environment

B. Design Method

As the primary objective of this paper is to investigate the
key correlations between the energy consumption of serverless
applications in SDN and the characteristics of their incoming
traffic, this section outlines the methodology employed to
achieve this goal.

Network traffic consists of multiple flows, each
representing the packets exchanged between two IP addresses
over a specific period. Thus, mapping energy consumption to
data traffic involves answering the question: how to measure
the energy consumed by the serverless application to process
each flow?

The serverless application concurrently processes varying
numbers of flows over time. Additionally, traffic flows vary
significantly in duration, with some lasting only a few
microseconds, while others may persist for several seconds or
longer. This variability provides a pathway for mapping the
energy consumed in processing traffic flows to individual
flows, acknowledging that the serverless application may
simultaneously process packets from multiple flows. Energy
consumption, measured in Joules, is the product of power
usage over time, where one Joule equals one watt-second.

We propose a method to measure the energy consumed by
the serverless application to process a single traffic flow. The
first step is to define a time interval during which the energy
consumption of the serverless application is measured, along
with the number of processed packets and their corresponding
flows. The next step involves dividing traffic flows based on
the selected time interval. Some flows may start and end
within a single time interval (discontinuous flows), while
others may span multiple time intervals (continuous flows), as
illustrated in Fig. 2. The energy consumed to process
discontinuous flows can be measured within a single time
interval, while the energy consumed by continuous flows must
be aggregated over several time intervals.

The final step is to allocate the energy consumed during
each time interval across the processed traffic flows based on
their relative weights. These flows can be either continuous,
where only a portion is processed within the time interval, or
discontinuous, where the entire flow is processed within the
time interval. Each flow’s weight within a given time interval
is calculated by multiplying its duration by its speed (packets
per second), and then dividing the result by the total duration
of all flows in that interval. The duration of a discontinuous
flow is the time difference between its start and end, while the
duration of a continuous flow is the length of the flow segment
within the time interval. Ultimately, each discontinuous flow
will have an estimated energy consumption for its processing,
while the energy consumption of continuous flows will be the
sum of the energy consumed by its segments processed across
multiple time intervals.

Fig. 2. Two kind of traffic flows

C. Hypotheses

Throughout the experimental design, the following
hypotheses were formulated based on observation of similar
trends in the literature:

1. H1: The number of processed packets is one of the
most significant factors influencing the energy consumption
of the serverless application.

2. H2: The length of the processed packets has a strong
correlation with the energy consumption, as large packets
require more energy to be processed.

3. H3: The rate at which packets are transmitted has a
significant correlation with the energy consumption, as high
transmission speeds may increase the workload on the
serverless application, leading to greater energy usage.

4. H4: The energy consumption of serverless
applications can be accurately predicted based on specific
traffic patterns or features.

D. Software Tools

The technologies used in the experimental environment
setup for SDN management control and the serverless
computing platform are described next.

1) Knative

Knative [11] is an open-source serverless framework
initially developed by Google in collaboration with over 50
technology companies, and it is currently hosted by the Cloud
Native Computing Foundation. The framework is primarily
designed as an extension to Kubernetes, providing a platform
for building and managing containerised serverless
applications. These applications can be deployed in two main
forms: Serving, which consists of a set of serverless functions
along with their associated resources, such as configurations
and revisions, and Eventing, which is more complex and
facilitates the deployment of an event-driven framework for
managing the exchange of events between serverless
functions.

As this research focuses on testing a single serverless
application for processing events received from ONOS,
Knative Serving—whose architecture is illustrated in Fig. 3—
was utilised for deploying the application.

2) ONOS

The Open Network Operating System (ONOS) [12] is a
leading open-source controller designed for managing SDN
and Network Functions Virtualization (NFV) environments.
ONOS is built to support distributed deployment, ensuring
scalability, high availability, and simplified network
management. Additionally, it provides a modular framework
that allows developers to create extensions for performing
various network tasks with ease. The strong community
support and the platform’s flexibility in enabling modular
network management are the primary reasons this controller
was selected for use in this research.

Fig. 3. Knative Service Architecture [11]

IV. EXPERIMENTAL DESIGN

The implementation of the proposed methodology and
underlying experiments that were conducted are described
next.

A. Experiment Description

The conducted experiment is comprised of five main
components, all of which were deployed on a single machine,
as shown in Fig. 4. This machine is equipped with the
following hardware specifications: AMD CPU Ryzen 7 5800h
with 8 cores and base clock 3.2GHz, 16 GB memory, Ubuntu
22.04 LTS OS, and 512 GB SSD storage.

1) Serverless application: Various network
applications could have been implemented for this
experiment, such as a firewall or an intrusion detection
system. However, a packet analyser was chosen as the
serverless application for this experiment. The application
operates by inspecting the IP addresses and ports of both the
source and destination and comparing them against a
predefined list of blocked IPs and ports. Additionally, the
application scans packet payloads using regular expressions
to detect malicious patterns related to attacks like SQL
injection. Each packet is then classified as either allowed or
denied based on the results of these checks. This application
is implemented as a single serverless function written in
Python.

2) Energy consumption measurement: Several tools
can be used to measure the energy consumption of serverless
applications. For this experiment, Kepler [21] was chosen due
to its integration with Kubernetes clusters, allowing it to track
the energy consumption of individual pods or namespaces.
Kepler collects the necessary metrics using Prometheus and
presents the energy consumption data via Grafana.

3) SDN controller: for managing SDN, ONOS is
chosen for this experiment.

4) A virtual network: A virtual network is setup whose
primary purpose is to replay pre-captured traffic. Mininet was
used to create and manage the network, consisting of two
virtual hosts connected to a single virtual switch, with ONOS
serving as the main controller.

5) The control application: It was necessary to develop
a communication bridge or channel capable of exchanging
events between ONOS and serverless applications, see Fig. 1.
This bridge facilitates event exchange through the HTTP
protocol, as serverless applications typically receive requests
via HTTP. Consequently, a control application on ONOS that
collects the required packets and forwards them to the
serverless application was developed. Simultaneously, the
control application receives responses from the serverless
application and applies the necessary changes to the switches'
rules.

B. Pre-captured Traffic

It was crucial to use pre-captured traffic generated from
SDN environments rather than traditional networks. The
investigation of available datasets revealed that there are only
a limited number of studies providing raw traffic datasets
captured from SDN environments. One such dataset is
presented in [17], where the authors emphasize the need for
updated and compatible traffic datasets for SDN networks.
This dataset, created by a team at University College Dublin
in 2020, is designed for evaluating Intrusion Detection
Systems (IDS) in SDN. It includes two types of SDN traffic:
normal and attack traffic, with the attack traffic mimicking
real-world scenarios from external and internal networks.

For this experiment, the normal traffic dataset was used. It
contains 11 raw traffic files (pcap files) with over 50,000 flows

and more than one million packets. The packet lengths in this
dataset occasionally exceeded 64,000 bytes, which caused
issues when processed by ONOS and the serverless
application. Therefore, packets exceeding 16,384 bytes were
filtered out using Tcpreplay [22], resulting in a reduction of
approximately 2% of the flows in each pcap file—a negligible
effect on the overall results. The dataset, then, was cleaned by
removing flows with unreasonable values, such as negative
flow durations. Once this process was completed, the number
of flows was reduced to 17,946, of which 17,617 are TCP
flows, while the remaining are UDP. The key metrics
associated with these flows are presented in Table 1.

Table I. PRIMARY METRICS FOR EACH FLOW

 Metrics For Each Flow

No. of

Packets

Total

Packet

Lengths

(bytes)

Duration

(seconds)

IAT

Mean

(seconds)

Packets

/second

Packet

Length

Mean

(bytes)

Mean 96.05 136,575.95 44.61 1.65 376.75 475.52

To extract traffic features, CICFlowMeter [10], developed
by the Canadian Institute for Cybersecurity at the University
of New Brunswick, was used. This tool extracts over 80
features per flow, including factors such as forward and
backward packets, inter-packet timings, packet lengths, and
more. The features were exported as CSV files and used as
input to determine correlations with energy consumption.

C. Energy Consumption Measurement

For this experiment, Kepler was chosen for its ability to
estimate the energy consumption specific to the serverless
application deployed on Kubernetes. It provides energy
consumption metrics in intervals as short as 30 seconds, which
served as the time periods within which energy consumption
was divided across the observed flows.

D. Experiment’s Scenario

The goal of this experiment was to measure the energy
consumed by the serverless application while processing
traffic flows. The experimental scenario involved replaying
pre-captured traffic within an SDN network while monitoring
the energy consumption of the serverless application, as
illustrated in Fig. 4. Tcpreplay was used to replay the traffic
on one of the hosts, allowing the ONOS control application to
capture each packet and forward it to the serverless
application. While the serverless application processed the
packets, Kepler recorded the corresponding energy
consumption. This data was then used to create a dataset, with
traffic features as independent variables and energy
consumption as the dependent variable.

Fig. 4. Experiment’s Scenario

A Python application was developed to identify the traffic
features most correlated with energy consumption, using the
Spearman correlation coefficient. The Spearman method was
chosen due to its robustness against outliers, which are
common in network flow data, and its ability to detect
monotonic relationships potentially caused by these outliers

[9]. Also, outliers in this dataset were not disregarded since
they often represent spikes in flow activity.

V. RESULTS AND DISCUSSION

The primary goal of this experiment was to identify the key
factors influencing the energy consumption of the serverless
application. The analysis revealed one feature with a
correlation value exceeding 0.7, indicating positive strong
correlations. Also, it showed other features with values either
between 0.4 and 0.7, indicating positive moderate correlations,
or between -0.4 and -0.7, which indicate negative moderate
correlations [9].

The feature strongly correlated with energy consumption
is the total number of packets in a flow, with a correlation
value of 0.84. The following features exhibit moderate
correlations:

1. Total sum of packet lengths (0.65)
2. Minimum inter-arrival time (IAT) between packets

(-0.49)
3. Maximum packet length (0.48)
4. Flow duration (0.44)
5. Mean packet length (0.42)
6. Average payload size (0.41)
7. Standard deviation and variance of packet lengths

(0.40).
Fig. 5 displays the above features, along with others that

exhibit weak correlations with energy consumption. Details on
the features can be found on the GitHub page of the
CICFlowMeter app [10].

A. Findings

It is expected that the total number of packets in a flow is
the most impactful feature, as packets represent the primary
input for the serverless application. Therefore, the energy
consumed in processing a flow is expected to have a linear
relationship with the number of packets in that flow (see Fig.
6), which provides a confirmation of hypothesis H1.

Additionally, the energy consumption of the serverless
application increases when processing flows with longer
packet lengths, as indicated by features such as maximum
packet length, mean packet length, variance, standard
deviation, and payload size. These features, with moderate
correlations between 0.4 and 0.48, suggest that packet length
and payload size are important factors for predicting energy
consumption, which provides a confirmation of hypothesis
H2. Predicting features such as the mean, variance, and
standard deviation may simplify the prediction of total packet
lengths, as the mean is highly correlated with total length
(correlation value of 0.92, as shown in Fig. 7).

Fig. 5. The most correlated traffic features to energy consumption

Fig. 6. Four correlated traffic features to energy consumption

On the other hand, the minimum IAT showed a negative
correlation with energy consumption, indicating that shorter
IATs result in more frequent packets, potentially requiring the
serverless application to scale up replicas, which increases
energy consumption. Flow duration had the weakest
correlation among the examined features but is closely related
to flow speed and IAT (Fig. 8), suggesting it could be
predicted indirectly.

Contrary to the expectations of the third hypothesis, flow
speed—whether measured in packets per second or flows per
second—does not directly impact the energy consumption of
the serverless application. However, the minimum IAT
demonstrates a moderate correlation with energy consumption
and may provide a more accurate representation of flow speed
than packets per second. This is because CICFlowMeter
calculates the number of packets per second by simply
dividing the total number of packets by the flow duration, a
basic calculation that does not fully capture the actual flow
speed. Hypothesis H3 is therefore partly confirmed.

To demonstrate the strong correlation between energy
consumption and the number of packets in a flow, Fig. 9
compares predicted energy consumption using
linear/polynomial regression and Random Forest. The linear
regression model performed well, especially for smaller
energy values, as the predicted values closely aligned with the
actual data (represented by the red line), which provides a
confirmation of hypothesis H4.

By identifying flows that require more energy, serverless
applications associated with processing high-energy flows can
be scheduled to be executed on more powerful machines,
while those processing low-energy flows can be scheduled on
less energy-intensive machines. Furthermore, profiling flows
based on energy consumption can play an important in
predicting resource usage, which, in turn, can significantly
reduce the energy consumption of serverless applications and
help in selecting the optimal placement [25]. This approach
can increase server utilisation, improving energy efficiency
and optimising performance. Additionally, predicting the
energy consumption of flows allows for proactive scaling of
serverless function replicas before high-energy flows arrive,
thereby mitigating the performance impact of cold starts.

Fig. 7. The most correlated traffic features to total packet lengths

Fig. 8. The most correlated traffic features to flow duration.

Fig. 9. Predicting energy consumption using the number of flow packets

VI. CONCLUSION AND FUTURE WORK

This paper explores the correlation between energy
consumption of serverless applications in SDN environments
and the characteristics of incoming traffic. By offloading non-
core controller functions to serverless applications, the study
aims to enhance the energy efficiency of SDN. An experiment
was conducted using ONOS as the SDN controller and a
serverless packet analyser, with energy consumption
measured via Kepler. Pre-captured SDN traffic was replayed
in a Mininet environment, and flow features were extracted for
analysis. The results show that the number of packets in a flow
is the most significant factor affecting energy consumption,
with other factors such as packet length and IAT also having
moderate correlations. These findings suggest that traffic
management in SDN can be optimized to improve energy
efficiency by predicting and managing flows based on their
energy demands.

Although this paper provides valuable insights, further
research is necessary to fully understand the energy
consumption of flows. Identifying the most influential factors
on SDN application’s energy consumption, whether deployed
on serverless platforms or others, can lead to more accurate
energy consumption predictions in the future. Moreover, this
research is an important milestone to design an energy-aware
scheduling framework that leverages machine learning models
to optimize scheduling decisions.

REFERENCES

[1] Al-Makhlafi, Moeen, et al. "RibsNet: A scalable, high-performance,
and cost-effective two-layer-based cloud data center network
architecture." IEEE Transactions on Network and Service Management
20.2 (2022): 1676-1690.

[2] Bannour, Fetia, Sami Souihi, and Abdelhamid Mellouk. "Distributed
SDN control: Survey, taxonomy, and challenges." IEEE
Communications Surveys & Tutorials 20.1 (2017): 333-354.

[3] Balakrishnan, Hari, et al. "Revitalizing the public internet by making it
extensible." ACM SIGCOMM Computer Communication Review 51.2
(2021): 18-24.

[4] McCauley, James, et al. "Enabling a permanent revolution in internet
architecture." Proceedings of the ACM Special Interest Group on Data
Communication. 2019. 1-14.

[5] Singh, Sanjeev, and Rakesh Kumar Jha. "A survey on software defined
networking: Architecture for next generation network." Journal of
Network and Systems Management 25 (2017): 321-374.

[6] Assefa, Beakal Gizachew, and Öznur Özkasap. "A survey of energy
efficiency in SDN: Software-based methods and optimization models."
Journal of Network and Computer Applications 137 (2019): 127-143.

[7] Kritikos, Kyriakos, and Paweł Skrzypek. "A review of serverless
frameworks." 2018 IEEE/ACM International Conference on Utility and
Cloud Computing Companion (UCC Companion). IEEE, 2018.

[8] Fox, Geoffrey C., et al. "Status of serverless computing and function-
as-a-service (faas) in industry and research." arXiv preprint
arXiv:1708.08028 (2017).

[9] Rebekić, Andrijana, et al. "Pearson's or Spearman's correlation
coefficient-which one to use?." Poljoprivreda 21.2 (2015): 47-54.

[10] CanadianInstituteForCybersecurity. “Cicflowmeter.” GitHub,
github.com/CanadianInstituteForCybersecurity/CICFlowMeter/blob/
master/ReadMe.txt. Accessed 19 Sept. 2024.

[11] Knative, knative.dev/docs/. Accessed 19 Sept. 2024.

[12] “Open Network Operating System (ONOS).” Open Networking
Foundation, 16 July 2024, opennetworking.org/onos/. Accessed 19
Sept. 2024.

[13] Alhindi, Abdulaziz, Karim Djemame, and Fatemeh Banaie Heravan.
"On the power consumption of serverless functions: an evaluation of
openFaaS." 2022 IEEE/ACM 15th International Conference on Utility
and Cloud Computing (UCC). IEEE, 2022.

[14] Jia, Xuechao, and Laiping Zhao. "RAEF: Energy-efficient resource
allocation through energy fungibility in serverless." 2021 IEEE 27th
International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2021.

[15] Banaie, Fatemeh, and Karim Djemame. "A serverless computing
platform for software defined networks." International Conference on
the Economics of Grids, Clouds, Systems, and Services. Cham:
Springer Nature Switzerland, 2022.

[16] Comer, Douglas, and Adib Rastegarnia. "Toward disaggregating the
SDN control plane." IEEE Communications Magazine 57.10 (2019):
70-75.

[17] Elsayed, Mahmoud Said, Nhien-An Le-Khac, and Anca D. Jurcut.
"InSDN: A novel SDN intrusion dataset." IEEE access 8 (2020):
165263-165284.

[18] Maity, Ilora, Ravi Dhiman, and Sudip Misra. "Enplace: Energy-aware
network partitioning for controller placement in sdn." IEEE
Transactions on Green Communications and Networking 7.1 (2022):
183-193.

[19] Oliveira, Tadeu F., Samuel Xavier-de-Souza, and Luiz F. Silveira.
"Improving energy efficiency on SDN control-plane using multi-core
controllers." Energies 14.11 (2021): 3161.

[20] Priyadarsini, Madhukrishna, et al. "An energy-efficient load
distribution framework for SDN controllers." Computing 102.9 (2020):
2073-2098.

[21] “Kubernetes Efficient Power Level Exporter (Kepler).” Kepler,
sustainable-computing.io/. Accessed 19 Sept. 2024.

[22] “TCPReplay.” Tcpreplay, tcpreplay.appneta.com/. Accessed 19 Sept.
2024.

[23] Djemame, Karim. "Energy efficiency in edge environments: a
serverless computing approach." Economics of Grids, Clouds,
Systems, and Services: 18th International Conference, GECON 2021,
Virtual Event, September 21–23, 2021, Proceedings 18. Springer
International Publishing, LNCS 13072.

[24] “OnosBridge.” OnosBridge, https://github.com/aalhindi/OnosBridge .
Accessed 9 Nov. 2024.

[25] Stojkovic, Jovan, et al. "EcoFaaS: Rethinking the Design of Serverless
Environments for Energy Efficiency." Proceedings of the 51st Annual
International Symposium on Computer Architecture (ISCA’24). 2024.

https://github.com/aalhindi/OnosBridge

