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Abstract

This paper investigates the informational efficiency of green bond
markets using a recently introduced quantitative measure for market
inefficiency. The paper finds that, first, the degree of inefficiency of the
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1 Introduction

Climate finance is crucial for tackling climate change, as it provides the

necessary resources to support mitigation and adaptation efforts. By mobi-

lizing financial resources at both domestic and international levels, climate

finance plays a vital role in addressing the root causes of climate change

while also building resilience to its impacts, ultimately contributing to a

more sustainable and secure future for all. Green bonds play a pivotal

role in climate finance by channeling capital toward environmentally sus-

tainable projects and initiatives. These bonds are specifically earmarked

to finance projects with positive environmental impacts, such as renewable

energy development, energy efficiency improvements, sustainable agricul-

ture, and climate adaptation measures. By providing investors with the

opportunity to support projects that address climate change and promote

sustainability, green bonds help mobilize private capital toward the tran-

sition to a low-carbon economy. Overall, green bonds serve as a critical

financial instrument in accelerating global efforts to combat climate change

and promote sustainable development.

The following figures illustrate the significance of the green bond market:

as noted by Flammer (2020), total green bond issuance was under USD 1

billion in 2008, but skyrocketed to USD 143 billion by 2018. This impres-

sive growth trajectory has continued; green bond issuance reached USD 870

billion in 2023, according to Climate Bonds Initiative (2023). This rapid

expansion highlights the market’s vital role in addressing the climate emer-

gency and makes it a more than worthwhile area of study. A crucial aspect

of green bonds is the principle of additionality, which requires that funded

projects provide distinct environmental benefits beyond standard practices.

As for the related literature, a dominant theme in the financial eco-

nomic analysis of green bonds is whether or not they are priced differently

compared to conventional bonds due to the aforementioned environmental

benefits: on the one hand, Flammer (2021) as well as Baker, Bergstresser,

Serafeim, and Wurgler (2022) find that U.S. green bonds sell for a premium

between zero and a handful of basis points over comparable ordinary bonds

2



by the same issuer. On the other, Feldhütter, Halskov, and Krebbers (2024)

find that investors are willing to accept a 1-2 basis points lower yield of

sustainability-linked bonds due to the bond’s Environmental, Social, and

Governance (ESG) label. These authors interpret this as evidence for the

environmental concerns among financial investors. The finance literature

also has shown growing interest in this newly emerged asset class with a fo-

cus on the interplay between green bond markets and conventional financial

markets. For instance, Karim, Lucey, Naeem, and Yarovaya (2024) examine

extreme risk dependence between green bonds and broader financial mar-

kets. They highlight that green bonds can provide significant diversification

benefits, along with safe-haven and hedging opportunities. Other recent

studies contribute further insights: Ren, Xiao, Duan, and Urquhart (2024)

investigate the dynamic correlation and inefficiency interplay between fossil

energy markets and green markets, while Adekoya, Oliyide, Asl, and Jalal-

ifar (2021) focus on market efficiency and volatility persistence differences

between green and conventional bonds.1

This paper takes a traditional finance perspective to contribute to the

broader literature on green bond pricing and evaluation: it examines the

green bond market through the lens of the Efficient Market Hypothesis

(EMH) proposed by Fama (1970). Thus, it is interested in the market’s

informational efficiency. According to the weak-form of the EMH, all pub-

licly available information is already reflected in asset prices, which implies

that future price movements are unpredictable based on past data. This

principle is typically captured through the Random Walk model. Studying

the informational efficiency of the green bond market is particularly relevant

given its unique attributes, including the above-mentioned additionality cri-

terion and environmental considerations of investors. These factors mean

that investors in green bonds not only assess financial performance but also

the issuer’s environmental impact, which adds a layer of complexity to the

1Additional studies explore related areas, such as the interconnectedness of crude oil
and green bond markets (Yousaf, Mensi, Vo, & Kang, 2024), volatility spillovers between
green bond and new energy markets (Wu & Qin, 2024), the effects of green bond issuance
on stock price crash risk (Zhang, Li, & Chen, 2024), and the impact of climate policy
uncertainty on new energy market volatility (Raza, Khan, Benkraiem, & Guesmi, 2024).

3



information the market must process. Moreover, measuring environmental

performance is inherently more challenging than evaluating financial perfor-

mance, which could suggest that the green bond market may be less informa-

tionally efficient. However, it is also possible that green bonds have emerged

as a distinct asset class which is primarily influenced by environmental fac-

tors rather than the complex fundamentals that are impacting conventional

bonds. Additionally, despite its growth, the green bond market remains rel-

atively niche, with participation largely limited to well-informed, specialized

investors. This could, in fact, imply greater informational efficiency within

the market.2 Thus, this study explores whether green bonds operate within

a more efficient market structure due to specialized investor activity or if

their dual focus on financial and environmental metrics renders them less

efficient overall.

The preceding discussion suggests that a quantitative, rather than qual-

itative, approach to measure informational efficiency is essential. Conse-

quently, this paper adopts the measure for market inefficiency recently pro-

posed by Duan, Li, Urquhart, and Ye (2021). The core idea of this approach

is to quantify inefficiency by assessing how much observed price behavior

diverges from the Random Walk model benchmark.3 The distinctive con-

tribution of Duan et al. (2021) lies in their novel application of fractional

integration as a measure of market efficiency. In that framework, the order

of integration d of a time series can take fractional values between 0 and 1;

it is not restricted to integer values. This paper employs the Feasible Exact

Local Whittle estimator to obtain precise estimates of d. Following Duan

et al. (2021), market inefficiency is quantified as the absolute deviation of

d from 1, defined by D = |1 − d|. To capture dynamic efficiency, or in

other words, to measure how efficiency changes over time, a rolling window

2Relevant to this context is the finding by Sattarhoff and Gronwald (2022) that the
European Union Emissions Trading Scheme exhibits higher informational efficiency than
the U.S. stock market. The EU-ETS, which is primarily affected by EU Commission
regulatory decisions, contrasts with the broader U.S. market, which is influenced by a
wide range of fundamental factors.

3This methodology shares conceptual ground with prior measures, such as those by
Kristoufek and Vosvrda (2013, 2014), which utilize Hurst exponents, and by Sattarhoff
and Gronwald (2022), which employs a multifractal analysis.
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approach is used in this analysis.

This research yields two main findings. First, fundamental factors that

influence bond prices broadly are also influential in the green bond market,

with the level of inefficiency in the green bond market closely resembling that

of benchmark bond markets. Additionally, the green bond market appears

more resilient to disruptive events, such as the COVID-19 outbreak in 2020

and the inflationary pressures of 2022/2023, compared to the benchmark

markets. Second, drawing from the differences-of-opinion literature (Kandel

& Person, 1995), the study suggests that new information leads not only to

increased price volatility (Bollerslev, Li, & Xue, 2018) but also to larger de-

viations from the Random Walk model. To further explore this effect, data

from the Philadelphia Fed Survey of Professional Forecasters is employed to

measure the level of disagreement among market participants, which pro-

vides insight into how diverging expectations impact market efficiency and

price dynamics.

These findings are novel in several key ways. First, they contribute to

a broader evaluation of green bonds as an investment instrument. For in-

stance, Flammer (2020) observes positive stock market responses to green

bond issuance announcements, which suggests a favourable perception of

green bonds in financial markets. Additionally, Flammer (2021) finds that

issuing green bonds can increase ownership by long-term and environmen-

tally focused investors and, thus, serves as a credible signal of a company’s

environmental commitment. This paper demonstrates that green bonds and

conventional bonds are driven by very similar fundamental factors. One

implication of this is that the price trends of both asset types have devel-

oped in parallel over the years, with inflation and monetary policy emerging

as dominant influences, particularly evident since early 2022. Given that

empirical tests of the weak-form EMH are fundamentally based on price

behavior, the finding that both green and conventional bonds exhibit com-

parable inefficiency levels implies similar price dynamics. However, while

inflation concerns and general market uncertainty - such as those seen dur-

ing the COVID-19 pandemic - certainly affect green bond prices, the impact

is relatively milder than on conventional bonds. This comprehensive analy-
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sis aligns with studies such as Flammer (2021) as they further advance the

understanding of green bonds within the wider financial landscape.

Second, the strong relationship between arrival of news and market ac-

tivity is well-documented (see, e.g., Mitchell and Mulherin (1994); Engle,

Hansen, Karagozoglu, and Lunde (2021)). This increase in market activ-

ity often results in increased volatility (Bollerslev et al., 2018; Engle et al.,

2021). The “differences-of-opinion” literature (Banerjee & Kremer, 2010;

Kandel & Person, 1995) provides a framework for understanding this phe-

nomenon: differing interpretations of new information among investors lead

to increased market activity and volatility. The empirical findings of this

paper not only support this view, they also demonstrate that increased dis-

agreement among investors leads to greater deviations from a random walk

which is commonly interpreted as reduced market efficiency. This paper also

relates to research focused on disagreement among forecasters (e.g., Mankiw,

Reis, and Wolfers (2003); Patton, J, and Timmermann (2010); Andrade and

Bihan (2013)), which seeks to understand the roots of these differences in

opinion. Such analyses are particularly relevant in contexts like monetary

policy and the anchoring of inflation expectations. The paper reveals that

investor disagreement tends to increase markedly during times of elevated

uncertainty, which indicates that uncertainty has an additional economic

impact by intensifying divergences in market expectations which, in turn,

affects inflation anchoring.

The remainder of the paper is organised as follows: Section 2 describes

the data and method used in this paper. Section 3 presents the empirical

results; Section 4 provides a discussion of which. Section 5 offers some

concluding remarks.

2 Data and Method

The dataset utilized in this paper closely resembles the one used in Pham

(2021). The analysis employs the S&P Dow Jones Green Bond Index as a

proxy for green bond pricing, with additional series outlined in Table 1. The

data is collected at a daily frequency, covering the period from October 2014
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to February 2024.4 Data for this study were obtained via the Bloomberg

terminal. For forecast dispersion, the analysis uses the dispersion of the

Consumer Price Index (CPI) and a 3-month Treasury bill sourced from the

Federal Reserve Bank of Philadelphia.

Table 1: Details of data

Index Bloomberg Ticker Benchmark

S&P Dow Jones Green Bond TR Index SPUSGRN Green bond
MSCI World MXWO General stock
S&P Global Clean Energy Index SPGTCED Clean energy stock
Bloomberg Global Aggregate Corporate LGCPTRUU Global bond
Bloomberg Global Aggregate Treasuries LGTRTRUU Global bond
Bloomberg Global Aggregate Index LEGATRUU Global bond
NASDAQ OMX Clean Energy-focused Index GRNCLNFO Green equity: Clean energy
NASDAQ OMX Wind GRNWIND Green equity: Wind energy
NASDAQ OMX Green Building GRNGB Green equity: Building
NASDAQ OMX Solar GRNSOLAR Green equity: Solar
NASDAQ OMX Green Transportation GRNTRN Green equity: Transportation
NASDAQ OMX Global Water GWATERL Green equity: Water

Source: MSCI, S&P, NASDAQ and Bloomberg terminal

Figure 1 illustrates the key variables analysed in this paper: the green

bond price index and the aggregate bond index, along with the MSCI World

index as a broad stock market benchmark and the S&P Clean Energy in-

dex. Throughout the early part of the sample, up until the end of 2019, the

green bond price index remains relatively stable, with occasional sharper

fluctuations. However, the second half of the sample is marked by signifi-

cant turbulence, including the onset of the COVID-19 pandemic, a notable

decline in green bond prices in response to the inflation shock in early 2022,

and increased volatility in 2023. The trend in the aggregate bond price series

generally mirrors that of the green bond prices, albeit with slightly greater

fluctuations. In contrast, the two stock price indices display markedly dif-

ferent trends over time. The MSCI World index shows a consistent upward

trajectory throughout the sample period, with notable deviations occurring

4As previously noted, green bond issuance levels saw significant growth between 2008
and 2023. However, studies such as Flammer (2020) indicate that the surge began in
earnest in 2013. What is more, Flammer (2021) highlights that corporate green bonds
were virtually non-existent before that year. The observation period in Lam and Wurgler
(2024) spans 2013 to 2022. Thus, it a common practice in the literature not to consider
the very early stages of the green bond market.
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Figure 1: Selected time series used in this paper.

in 2020 and 2022. Meanwhile, the S&P Clean Energy index remains rela-

tively flat until 2019, followed by a sharp increase starting in 2020. This is

followed by a steep decline in early 2021 and a downward trend persisting

through 2021-2023.

Having outlined the data, the focus now shifts to the methodological

approach. Fractionally integrated processes, denoted as I(d), have gained

increasing prominence among empirical researchers in economics and finance

due to their ability to capture the long-term dependencies present in eco-

nomic and financial data (see Zaffaroni and Henry (2003) for further details).
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This paper applies the methodology of Duan et al. (2021), which utilizes frac-

tional integration within a framework specifically designed for such depen-

dencies, including Shimotsu (2010)’s semiparametric Feasible Exact Local

Whittle (FELW) estimator. Shimotsu (2010) introduce a modified two-step

ELW estimator, adapted for economic data analysis to account for both an

unspecified mean (requiring estimation) and polynomial time trends.5 This

approach aligns with the fully extended local Whittle estimator by Abadir,

Distaso, and Giraitis (2007), which incorporates a fully extended discrete

Fourier transform. The FELW estimator builds on the Type II process,

while the fully extended local Whittle estimator is based on the Type I

process.6

Duan et al. (2021) build on Hamilton (1994) to explain different forms of

“memory” within a time series, aiming to identify any underlying fractional

integration order - an essential metric for assessing market informational

efficiency.7 This approach incorporates fractional integration by modeling

“long-memory” dynamics, effectively capturing the persistence characteris-

tics within the system.

The empirical analysis is initiated by estimating d, the fractional inte-

gration order of green bond price series as well as benchmark series (yt) by

using the Feasible Exact Local Whittle estimator (FELW) introduced by

Shimotsu (2010). Taking into account that overly high or low bandwidths

can result in a reduced or increased number of valid observations utilised

in the estimation of d using the FELW methods (Shimotsu, 2010), causing

unstable outcomes, a moderate bandwidth of 0.6 is chosen to generate the

5Traditional estimators for d, such as Rescaled Range (R/S), may suffer from biases
and inconsistencies, while Detrended Fluctuation Analysis (DFA) estimators tend to un-
derestimate d when the data’s memory structure is unknown. Though the Exact Local
Whittle (ELW) estimator improves on some limitations, it can still be unstable, particu-
larly with non-stationary series. The FELW estimator addresses these issues, offering a
more robust approach to handle unknown trends and stationarity concerns.

6Further details on Type I and Type II processes can be found in Shimotsu and Phillips
(2006).

7Subsequently, they apply the Fractionally Cointegrated Vector Autoregressive (FC-
VAR) model, as introduced by Johansen (2008) and Johansen and Nielsen (2012), which
addresses both short-term error corrections and long-term relationships among variables.
For further details, see Section 3.1 of Duan et al. (2021).
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Table 2: Memory properties of a given price series (yt) with different d
values.

d Value Persistence
of shocks

Market
efficiency

Information
transmis-
sion

The close de-
gree to an
efficient mar-
ket

d > 1 Expansionary
memory, ex-
plosive over
time

Inefficiency Excessive
transmission

-

d = 1 Permanent
memory

Efficiency Complete
transmission

Efficient
Market

0.5 ≤ d < 1 Long memory Inefficiency Partial
transmission

High degree

0 < d < 0.5 Long memory Inefficiency Partial
transmission

Lower degree

d = 0 Short memory Inefficiency None Zero degree
d < 0 Long memory Inefficiency Reverse

transmission
-

Note: This table provides information on the memory properties of a given price se-
ries (yt) across different integration orders (d) and outlines their corresponding ef-
fects on market efficiency. Adapted from “Dynamic efficiency and arbitrage potential
in Bitcoin: A long-memory approach,” by K. Duan, Z. Li, A. Urquhart, and J. Ye,
2021, International Review of Financial Analysis, 75, p. 4, (https://doi.org/10.1016/
j.irfa.2021.101725). Copyright 2021 by Elsevier Inc.

time series for d. Subsequently, the d-value is used to gauge the degree of

market efficiency. Table 2 (Duan et al., 2021) show the statistical (mem-

ory) properties of yt for varying values of d, along with the corresponding

indications of market efficiency.

To examine how the informational efficiency of the markets under consid-

eration evolves over time, market efficiency is assessed by using a self-derived

index D in this study. This D index is created by computing the absolute

difference between 1 and the fractional integration order that provides in-

sights into the bond market’s evolving nature of efficiency.

Dt = |1− dt|

where dt is the estimated fractional integration order at time t. A 1-year

rolling window is used to estimate the d-value. The index D, determined by
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the disparity between d values and 1, inversely signifies the level of market

efficiency. In other words, a higher D indicates a larger absolute gap, reflect-

ing a more inefficient market and a lower degree of market efficiency. Hence,

D can also be seen as a representation of the degree of market inefficiency.

3 Results
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Figure 2: Inefficiency of green bond as well as aggregate bond markets.

The upper panel of Figure 2 shows the green bond price index along with

the estimate of the degree of inefficiency, D, for the green bond market. The

degree of inefficiency generally fluctuates between 0 and 0.2, and exceeds 0.1

11



only in some periods. Often, the degree inefficiency remains close to 0, which

corresponds to the random walk benchmark. This indicates near-full mar-

ket efficiency. Notable increases in inefficiency in the first half of the sample

period correspond to sharp movements in the green bond price index, partic-

ularly at the end of 2016, mid-2017, and mid-2018. During the onset of the

COVID-19 pandemic in early 2020, green bond prices showed pronounced

volatility, causing inefficiency to spike to around 0.2. Another increase in

inefficiency occurred in 2022, following the Russian invasion of Ukraine,

when green bond prices fell sharply. In 2023, inefficiency remained elevated

amid high inflation rates and corresponding shifts in monetary policy. This

underscores the market’s sensitivity to challenging economic conditions.

The lower panel of Figure 2 displays Bloomberg’s Aggregate Bond Price

Index, a key benchmark representing global bond market performance. As

noted earlier, the aggregate bond price trend is broadly similar to that of

green bonds, although its fluctuations tend to be slightly more pronounced.

The inefficiency levels of the aggregate bond market generally mirror those

of the green bond market, with a few notable distinctions: in the first half of

the sample period, inefficiency levels are somewhat higher than in the green

bond market, particularly in 2016 and 2017. Additionally, the period of

elevated inefficiency observed in 2019 and 2020 is prolonged relative to green

bonds. A similar pattern re-emerges in 2023 for both markets. In summary,

shifts in green bond prices largely reflect broader challenges impacting the

aggregate bond market, though the green bond market’s inefficiency remains

marginally lower. One possible reason for this difference is that the aggregate

bond market processes a broader scope of information, not all of which is

directly relevant to green bond pricing.

A comparison of inefficiency levels between the green bond market and

two major stock indices — the MSCI World (a broad stock market index)

and the S&P Clean Energy index — reveals additional valuable insights;

see Figure 3. The inefficiency in these stock markets generally aligns, hov-

ering around 0.1, with noticeable deviations during predictable periods of

market stress. One key observation is that during turbulent periods in 2020

and again in 2022/2023, stock market inefficiency remains lower than that
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Figure 3: Inefficiency of MSCI World as well as S&P Clean Energy

observed in both the aggregate bond and green bond markets. This discrep-

ancy likely reflects the fact that the inflation shock and subsequent mon-

etary policy responses have a much greater impact on bond markets than

on stocks. Processing this increased level of economic information creates

added challenges for bond markets, resulting in higher degrees of inefficiency.

Figure 4 presents the results for broader green stock markets: NASDAQ

OMX Green Economy (Clean Energy), along with various submarkets. Each

index displays unique patterns, with some, like the NASDAQ OMX Wind

Energy index, more closely mirroring broad market trends, while others,
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Figure 4: Inefficiency of other benchmark markets



such as NASDAQ OMX Buildings, show distinct behavior. The inefficiency

level for the broader green market fluctuates between 0 and 0.1, occasionally

exceeding 0.1. Similar to other stock markets, this index is less affected

by monetary policy responses to COVID-19 and the inflation shock. The

degree of inefficiency varies across submarkets: it remains below the broad

market level for solar and transport-focused indices but is higher for those

focused on buildings. The inefficiency of the green bond market is generally

similar to these markets, often dropping to near zero - the Random Walk

benchmark of an efficient market. While not all green energy indices achieve

such low inefficiency levels, solar and transport-focused markets occasionally

approach this efficient benchmark.

Following the analysis of green stock market results, the focus now shifts

to additional benchmark bond markets. Figure 5 shows the results for the

corporate bond market as well as the treasury bond market. The price trends

in these two markets are generally similar; however, a notable distinction

exists: the corporate bond price index has returned to levels comparable to

those of 2017 following the decline in 2022, while treasury bond prices have

experienced a more significant drop, falling well below the levels observed

in the first half of the sample. In the first half of the sample, the degree of

inefficiency for both bond markets generally fluctuates around 0.1, though

the corporate bond market exhibits greater volatility. A significant difference

arises during the 2019-2020 period, where the inefficiency in the treasury

bond market is not only considerably higher but also remains elevated for an

extended duration. Moreover, both markets show an increase in inefficiency

throughout 2023. These last findings will be discussed in more detail in the

next section.

4 Discussion

Recall that assessments of the degree of inefficiency are based on the de-

viation of observed price movements from a random walk benchmark. Ex-

pressed in more general terms, it is based on the statistical behaviour of

price series. It is well-documented that the arrival of new information in
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Figure 5: Inefficiency of corporate as well as treasury bond markets

a financial market leads to increased market activity as well as volatility

(Bollerslev et al., 2018; Engle et al., 2021). To explain this, these authors

refer to the so-called “differences-of-opinion” literature according to which

investors do not necessarily agree on how to interpret new information and

what the updated evaluation of the asset would be. This creates additional

trading incentives and, thus, market activity. This paper argues that in-

creased volatility is not the only consequence of this; this also results in

price behaviour that deviates further from a random walk.

To provide empirical support for this assertion, Figure 6 displays the
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Figure 6: Bond market inefficiency and forecast dispersion

degrees of inefficiency of the green bond market, the three benchmark bond

markets, along with the dispersion of CPI (left panel) as well as 3-months

treasury bill (right panel) forecasts obtained from the Survey of Professional

Forecasters, Federal Reserve Bank of Philadelphia.8 These dispersion mea-

sures are used here to measure “differences-of-opinion”: they capture the

extent to which market participants disagree in terms of their evaluation

8Data source: Cross-Sectional Forecast Dispersion: Survey of Professional Forecasters,
Federal Reserve Bank of Philadelphia. Forecast dispersion is measured as the difference
between the 75th and the 25th percentile of the forecast for the variable of interest. Note
that the original data is available at a quarterly frequency. Thus, the frequency of the
degree of inefficiency measure has been converted from daily to quarterly.
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of the future development of these crucial economic variables. It is evi-

dent that CPI forecast dispersion sharply increase in 2020; this coincides

with the increase in the degree of inefficiency of both the aggregate and

the treasury bond market. The markets for corporate bonds and green

bonds, respectively, do not undergo such a sharp increase in the degree of

inefficiency. Additionally, the forecast dispersion for treasury bills shows a

notable upward trend in 2022, remaining elevated through the end of the

sample period. Throughout the 2022-2023 period, the degree of inefficiency

across all bond markets also rises. In summary, during challenging market

conditions, such as the COVID outbreak in 2020 and the inflation shock

period 2022-2023, there is an increase not only in the dispersion of fore-

casts but also in the extent to which observed bond market prices deviate

from the Random Walk benchmark. This deviation is typically interpreted

as an increase in market inefficiency. This paper posits that during such

challenging periods, processing new information which arrives in a market

becomes more complex, resulting in not only increased price volatility but

also greater departures from the Random Walk model. Ultimately, both are

simply time series properties.

5 Conclusions

This paper examines a critical segment of climate finance markets: the green

bond market, with a specific emphasis on its informational inefficiency. The

primary finding indicates that the key factors driving green bond prices are

largely the same general influences affecting aggregate bond markets. This

conclusion is supported by observed similarities in price movements and the

evolution of inefficiency of these markets over time. Notably, the degree of

inefficiency in the green bond market is found to be slightly lower than that

of the aggregate bond market. A significant role in this analysis plays the

response of monetary policy to substantial exogenous shocks, such as the

COVID outbreak in 2020 and the inflation shock experienced in 2022 and

2023. While all bond markets have been impacted by these events, green

bond markets have been affected to a lesser extent, whereas treasury bond
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markets have experienced more pronounced effects. Furthermore, this paper

demonstrates that during these extreme periods, not only does the degree

of inefficiency increases, but so does the level of disagreement among pro-

fessional forecasters regarding their predictions for key economic variables,

including inflation and short-term interest rates.

This research presents two key insights: one that is particularly relevant

for policymakers and investors, and another that contributes to a significant

academic debate. First, while treasury bond prices reflect critical factors as-

sociated with treasury bond ownership, corporate bond prices similarly align

with the fundamental considerations of holding corporate bonds. Both trea-

sury and corporate bonds are vital financing instruments for governments

and corporations, respectively. In contrast, green bonds are designed specifi-

cally to finance initiatives aimed at addressing climate change, underscoring

the significance of this market in light of the pressing climate crisis. The

findings in this paper are encouraging. Green bond prices generally track

broader bond risk trends without showing significant deviations from fun-

damental values; they are influenced by factors such as monetary policy and

inflation expectations. Moreover, despite being a relatively new and niche

market, the informational inefficiency of the green bond market appears to

be comparable to that of more established and mature markets.

This is good and bad news at the same time: while the green bond mar-

ket exhibits a level of efficiency comparable to conventional bond markets, it

is not shielded from the broader risks that impact traditional bonds. Conse-

quently, if the appeal of bonds as an investment diminishes, green bonds are

likely to experience similar challenges. This insight carries significant policy

implications: the demand for climate investment funding is substantial and

continues to grow. If the overall bond investment landscape turns unfavor-

able, policymakers must carefully consider this dynamic when determining

how to direct funds toward climate initiatives.

The academic contribution this paper makes is related to the conven-

tional understanding that asset prices in an efficient market can be modeled

using the Random Walk model. According to the weak-form efficient mar-

ket hypothesis, all past publicly available information is reflected in financial
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asset prices, rendering these prices unpredictable based solely on historical

data; just as a Random Walk. This model is characterized by specific data

properties, and deviations from the Random Walk benchmark are typically

interpreted within the Efficient Market Hypothesis (EMH) literature as in-

dicative of a less efficient or even inefficient market. Research examining the

impact of new information on markets has established that the arrival of in-

formation can trigger increased market activity and volatility, the latter of

which is simply another distinct data property. However, this paper posits

that volatility is not the only aspect influenced by the arrival of information;

how close a time series is to the Random Walk benchmark is also affected.

In conclusion, the efficient market hypothesis remains highly relevant be-

cause it asserts that asset prices reflect all available information, facilitating

the optimal allocation of capital to investment projects. Although perfect

efficiency in any market is unrealistic, the green bond market demonstrates

a relatively high level of efficiency compared to other markets. This in-

dicates that funds are allocated with a degree of efficiency comparable to

that of traditional markets. While inefficient allocations of funds to invest-

ment projects are generally undesirable, the significance of climate finance

in addressing climate change makes this issue particularly critical.

References

Abadir, K. M., Distaso, W., & Giraitis, L. (2007). Nonstationarity-extended

local whittle estimation. Journal of econometrics, 141 (2), 1353–1384.

Adekoya, O. B., Oliyide, J. A., Asl, M. G., & Jalalifar, S. (2021). Financ-

ing the green projects: Market efficiency and volatility persistence

of green versus conventional bonds, and the comparative effects of

health and financial crises. International Review of Financial Anal-

ysis, 78 (May), 101954. Retrieved from https://doi.org/10.1016/

j.irfa.2021.101954 doi: 10.1016/j.irfa.2021.101954

Andrade, P., & Bihan, H. L. (2013). Inattentive professional forecasters.

Journal of Monetary Economics, 60 (8), 967–982.

20



Baker, M., Bergstresser, D., Serafeim, G., & Wurgler, J. (2022). The Pricing

and Ownership of US Green Bonds. Annual Review of Financial Eco-

nomics, 14 , 415–437. doi: 10.1146/annurev-financial-111620-014802

Banerjee, S., & Kremer, I. (2010). Disagreement and Learning: Dynamic

Patterns of Trade. Journal of Finance, 65 , 1269–1302.

Bollerslev, T., Li, J., & Xue, Y. (2018). Volume, volatility, and public news

announcements. Review of Economic Studies, 85 (4), 2005–2041. doi:

10.1093/restud/rdy003

Climate Bonds Initiative. (2023, May). Sustainable debt global state of

the market . Climate Bonds Initiative. Retrieved from https://www

.climatebonds.net/files/reports/cbi sotm23 02h.pdf

Duan, K., Li, Z., Urquhart, A., & Ye, J. (2021). Dynamic efficiency and arbi-

trage potential in Bitcoin: A long-memory approach. International Re-

view of Financial Analysis, 75 , 1–47. doi: 10.1016/j.irfa.2021.101725

Engle, R. F., Hansen, M. K., Karagozoglu, A. K., & Lunde, A. (2021).

News and Idiosyncratic Volatility: The Public Information Processing

Hypothesis. Journal of Financial Econometrics, 19 (1), 1–38. doi:

10.1093/jjfinec/nbaa038

Fama, E. F. (1970). Efficient capital markets: A review of theory and

empirical work. The Journal of Finance, 25 (2), 383–417.

Feldhütter, P., Halskov, K., & Krebbers, A. (2024). Pricing of sustainability-

linked bonds. Journal of Financial Economics, 162 (September),

103944. Retrieved from https://doi.org/10.1016/j.jfineco.2024

.103944 doi: 10.1016/j.jfineco.2024.103944

Flammer, C. (2020). Green bonds: Effectiveness and implications for public

policy. Environmental and Energy Policy and the Economy , 1 , 95-128.

Retrieved from https://doi.org/10.1086/706794 doi: 10.1086/

706794

Flammer, C. (2021). Corporate green bonds. Journal of Financial

Economics, 142 (2), 499–516. Retrieved from https://doi.org/10

.1016/j.jfineco.2021.01.010 doi: 10.1016/j.jfineco.2021.01.010

Hamilton, J. D. (1994). Time series analysis, vol. 2 princeton university

press. Princeton, NJ .

21



Johansen, S. (2008). A representation theory for a class of vector autore-

gressive models for fractional processes. Econometric Theory , 24 (3),

651–676.

Johansen, S., & Nielsen, M. Ø. (2012). Likelihood inference for a fractionally

cointegrated vector autoregressive model. Econometrica, 80 (6), 2667–

2732.

Kandel, E., & Person, N. (1995). Differential interpretation of public signals

and trade in speculative markets. Journal of Political Economy , 105 ,

1269–1302.

Karim, S., Lucey, B. M., Naeem, M. A., & Yarovaya, L. (2024). Extreme

risk dependence between green bonds and financial markets. European

Financial Management , 30 (2), 935–960. doi: 10.1111/eufm.12458

Kristoufek, L., & Vosvrda, M. (2013). Measuring capital market effi-

ciency: Global and local correlations structure. Physica A: Statis-

tical Mechanics and its Applications, 392 (1), 184–193. Retrieved from

http://dx.doi.org/10.1016/j.physa.2012.08.003 doi: 10.1016/

j.physa.2012.08.003

Kristoufek, L., & Vosvrda, M. (2014). Commodity futures and market

efficiency. Energy Economics , 42 , 50–57. doi: 10.1016/j.eneco.2013

.12.001

Lam, P., & Wurgler, J. (2024, May). Green bonds: New label, same projects.

(No. w32960). NBER Working Paper Series.

Mankiw, N. G., Reis, R., & Wolfers, J. (2003). Disagreement about inflation

expectations. , 18 , 209–248.

Mitchell, M. L., & Mulherin, J. H. (1994). The impact of public information

on the stock market. The Journal of Finance, 49 (3), 923–950.

Patton, J, A., & Timmermann, A. (2010). Why do forecasters disagree?

lessons from the term structure of cross-sectional dispersion. Journal

of Monetary Economics , 57 (7), 803–820.

Pham, L. (2021). Frequency connectedness and cross-quantile dependence

between green bond and green equity markets. Energy Economics, 98 ,

105257.

Raza, S. A., Khan, K. A., Benkraiem, R., & Guesmi, K. (2024). The

22



importance of climate policy uncertainty in forecasting the green,

clean and sustainable financial markets volatility. International Re-

view of Financial Analysis, 91 (March 2023), 102984. Retrieved from

https://doi.org/10.1016/j.irfa.2023.102984 doi: 10.1016/j.irfa

.2023.102984

Ren, X., Xiao, Y., Duan, K., & Urquhart, A. (2024). Spillover effects be-

tween fossil energy and green markets: Evidence from informational

inefficiency. Energy Economics, 131 (December 2023), 107317. Re-

trieved from https://doi.org/10.1016/j.eneco.2024.107317 doi:

10.1016/j.eneco.2024.107317

Sattarhoff, C., & Gronwald, M. (2022). Measuring informational effi-

ciency of the European carbon market — A quantitative evaluation of

higher order dependence. International Review of Financial Analysis ,

84 (October), 102403. Retrieved from https://doi.org/10.1016/

j.irfa.2022.102403 doi: 10.1016/j.irfa.2022.102403

Shimotsu, K. (2010). Exact local whittle estimation of fractional integration

with unknown mean and time trend. Econometric Theory , 26 (2), 501–

540.

Shimotsu, K., & Phillips, P. C. (2006). Local whittle estimation of fractional

integration and some of its variants. Journal of Econometrics, 130 (2),

209–233.

Wu, R., & Qin, Z. (2024). Asymmetric volatility spillovers among new

energy, ESG, green bond and carbon markets. Energy , 292 (December

2023), 130504. Retrieved from https://doi.org/10.1016/j.energy

.2024.130504 doi: 10.1016/j.energy.2024.130504

Yousaf, I., Mensi, W., Vo, X. V., & Kang, S. H. (2024). Dynamic

spillovers and connectedness between crude oil and green bond mar-

kets. Resources Policy , 89 (December 2023), 104594. Retrieved

from https://doi.org/10.1016/j.resourpol.2023.104594 doi:

10.1016/j.resourpol.2023.104594

Zaffaroni, P., & Henry, M. (2003). The long range dependence paradigm

for macroeconomics and finance. In Doukhan, Oppenheim, & Taqqu

(Eds.), Theory and applications of long-range dependence. Birkhauser.

23



Zhang, Y., Li, Y., & Chen, X. (2024). Does green bond issuance affect stock

price crash risk? Evidence from China. Finance Research Letters,

60 (December 2023), 104908. Retrieved from https://doi.org/10

.1016/j.frl.2023.104908 doi: 10.1016/j.frl.2023.104908

24


