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Abstract 

The use of Machine Learning (ML) models in blast protection engineering has rapidly 

expanded in recent years, with various publications applying bespoke algorithms to blast 

wave propagation, fragmentation and structural response problems. The benefits of using 

this approach for predicting the effects of urban explosions is driven by the need to 

comprehensively quantify risk through analysing a significant number of unique threats with 

limited computational expense. However, due to the presence of complex wave 

coalescence effects, the current state-of-the-art for predicting blast loads in urban 

environments using ML, the Direction-encoded Neural Network (DeNN), is only able to 

predict in domains with a limited number of orthogonally placed rectangular obstacles. 

Therefore, this paper presents a series of developments to the DeNN that allow the tool to 

predict more complex domains featuring varied obstacle shapes and positions. This is 

achieved through novel feature engineering that trains the model to understand how the 

local environment surrounding a point of interest and the strength of the blast wave that is 

impacting the point influences the magnitude of the prediction. It is shown that peak 

overpressure can be predicted with an average error of 16.2 kPa for a randomly generated 

urban environment that emulates a typical city. Future developments will expand the new 

approach to predict other variables alongside implementing an improved ML architecture. 

 

Introduction 

A comprehensive understanding of the risk posed to an urban environment by an explosive 

detonation requires tens, or hundreds, of unique threats to be considered. Existing work 

achieves this with numerical simulations that take probabilistically determined inputs of key 

parameters related to the possible charge characteristics and locations [1]. However, 

Computational Fluid Dynamics (CFD) solvers requiring large computation times can prohibit 

the exploration of entire parameter ranges and in most cases, varied building geometries. 

Recent experimental work that aims to improve the efficiency of analysing urban environments 

explores the use of small-scale explosive charges or detonators with TNT equivalency under 

3 grams [2, 3]. Combining this with Hopkinson-Cranz scaling [4, 5] enables obstacles to be 

positioned on a table, or work surface, such that a large scale blast can be emulated with lower 
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risk. However, again, this approach currently lacks the ability to explore the full range of threats 

in an efficient and cost-effective way. 

As an emerging alternative to CFD and experiments, Machine Learning (ML) models are 

typically used to generalise the relationships between several parameters associated to 

complex phenomenon. This allows for predictions of specified outputs to be generated rapidly, 

with limited computational expense. They are therefore well suited to this problem, however, 

[6] discusses how many existing works focus on the creation of tools that are bespoke to 

specific geometries, lacking the ability to produce outputs when changes to the charge size or 

domain are required. 

In an attempt to avert these issues, [7] introduced the Direction-encoded Neural Network 

(DeNN) as a means of predicting peak overpressure in obstacle filled environments. The study 

adopted a novel methodology for translating local geometrical information to the ML tool, but 

it was only capable of generating predictions in domains with rectangular obstacles at 0° or 

90°. Also, predictions in channelled and shielded regions were largely inaccurate due to the 

inability of the approach to relate complex wave interaction processes to the required 

reductions and amplifications in the observed pressure. 

This study therefore builds upon the DeNN through novel feature engineering that introduces 

19 new inputs to the ML model. This allows more complex urban domains, featuring angled 

obstacles of varied shapes and sizes, to be analysed. 

 

Overview of Machine Learning 

Machine Learning (ML) is a subset of Artificial Intelligence (AI) that involves pattern recognition 

and the representation of the relationships between variables [8]. To develop a ML tool, a 

training process is required so that the calculations being performed by the model capture the 

required complexities of the problem, resulting in acceptable levels of predictive accuracy. 

Supervised Learning is one of the simplest approaches for developing a ML tool as it involves 

the use of a training dataset of known inputs and outputs. Batches of inputs are provided to 

the model so it can make a prediction of the outputs, then, comparisons between these 

predictions and the known outputs are used to evaluate performance. The errors are summed 

and used to update the model’s calculation in an iterative process that continually aims to 

improve its accuracy [9]. 

A key aspect of developing ML tools is therefore related to how the training dataset, that 

consists of the input/output combinations, is developed. Often it is formed from numerical 

modelling data that can be expensive to collect even when algorithms to speed up batch 

computations, such as the branching algorithm [10, 11], are used. Similarly, the process of 

feature engineering that concerns the extraction, transformation, selection, analysis and 

evaluation of the raw data that is used as inputs for the chosen ML algorithm is a critical step 

in tool development [12].  

As proved by [7], use of domain-specific knowledge in the feature engineering process can 

ensure that the model captures the relevant physical behaviour. In this example, the direction-

encoded approach allowed for geometrical information to be translated to the model with no 

dependency on overall domain layout. Therefore, the tool could be applied to domains of varied 

geometries. This study builds upon this method with additional feature engineering to develop 

a new model that can provide predictions for more complex urban domains. 



3 

 

Input Features 

The direction-encoded approach used to develop a new ML tool in this study is formed from 

multiple novel concepts that simplify blast parameter prediction. The first captures local 

geometric information around a point of interest (POI) through a series of directional ‘lasers’, 
or rays. This paradigm shift was first introduced by the author in [7] to centre predictions on 

the POI rather than the charge with the goal of removing the need to provide details of the 

entire domain geometry to the model with every prediction. 

Figure 1 provides an example of how a series of 16 directional lasers are projected from the 

POI with angular spacing of 22.5°. Adapting the previously implemented approach, here the 

rosette of lasers is rotated such that direction 1 points towards the incoming wave. This aims 

to enable the POI to relate the proximity of the surrounding obstacles to the direction of the 

incoming blast. 

 

Each directional laser is used to identify an obstruction distance that is then processed using 

the wave reflection equation given below: 

Directional input = max(Shortest path from charge – Obstruction distance, 0) (1) 

Use of this equation ensures that obstacles that are close to the POI provide large input values 

to the ML model, implying that the obstacle is having a large influence on the blast parameter 

being predicted. Conversely, an intersection that is further from the POI is translated to the ML 

model as a smaller number, suggesting that the effect of the obstacle is low. 

The directional input value is limited to a maximum value equal to the shortest path distance 

from the charge. This is shown in an example given by Figure 2 which highlights an ‘influence 
zone’ around the prediction point where any obstacles outside of this region are deemed to be 
insignificant for generating a peak overpressure prediction. Lasers that do not intersect an 

obstacle provide an input of 0, indicating no effect. Another example is given in Figure 1 where 

the influence zone of the POI is shown by the thin blue line. 
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Figure 1. Summary of directional inputs to the Machine Learning model. 
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Adapting the previous method further, this study introduces 16 new inputs to the ML model 

that correspond to intersection angles (between 0° and 90°) of each laser. They are calculated 

to assist the tool in learning the influence of the obstacle’s orientation around each POI. Two 

examples are given in Figure 3 for the highlighted directional lasers. A lower intersection angle 

corresponds to a shallower interaction, and a larger angle implies a direct hit. 

 

The final three new model inputs are based on the idea that a blast wave propagating through 

space can be considered as information being passed sequentially to its surroundings. This is 

captured by CFD solvers; however, the computation complexity of the time stepped process is 

simplified here by providing three ‘incoming values’ as model inputs. 
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Figure 2. Zone of influence for a given prediction point. Drawn as a circle with radius 

equal to the shortest path distance from the charge. 
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Figure 3. Example of the new input features allowing for predictions in more complex 

urban domains. Highlighted directional lasers correspond to angular inputs. Reduced 

domain and prediction point taken from Figure 1. 
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As shown in Figure 3, for a given POI, three points along the shortest travel path of the blast 

wave are identified with a predefined spacing. The peak overpressure at these locations is 

provided as inputs to the model when predicting the POI to establish the strength of the blast 

wave that is approaching. Pairing this with an understanding of the local geometry, translated 

to the model via the directional laser obstructions and angles, allows for the magnitude of the 

blast wave to be understood, and then adjusted based on the relevant surroundings. 

Implementation of this novel addition is achieved by sequencing the ML tool to predict the peak 

overpressure on a grid of POIs through the domain in order of the shortest path distance from 

the charge. This ensures that the incoming values being used in input sets can be interpolated 

from an array of known values. 

 

Training dataset 

Training the ML tool requires a dataset of known input/output combinations. In this study, this 

is developed from 40 models that were simulated using walair++, a GPU based Computational 

Fluid Dynamics (CFD) solver produced and maintained by Thornton Tomasetti Defence Ltd. 

Each model has a domain of 10x10x4 m/kg1/3 with a 1 kg TNT hemispherical charge. The 

minimum z boundary is defined as reflective to replicate a rigid ground plane whereas all other 

boundaries are transmissive. All obstacles are 4 m tall to match the height of the domain.  

 

The charge position, number of obstacles, obstacle shapes and obstacle positions are all 

randomised with consideration of their typical size in an urban blast event when applying 

Hopkinson-Cranz scaling [4, 5]. For example, the 1 kg hemispherical charge in the 10x10 

m/kg1/3 domain corresponds to a 1000 kg hemispherical charge and a domain of 100x100 m. 

A building length of 20 m could therefore be represented as 2 m in the scaled training models. 

Three examples of the training models are given in Figure 4. 

Details of the Ideal Gas, walair++ simulations are provided in Table 1. In each case, 1D to 3D 

mapping was used when the blast wave had propagated 0.5 m/kg1/3 from the charge centre. 

The chosen termination time was found to allow the wave to fully propagate through the domain 
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Figure 4. Three example domains used in the training dataset.  
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with any reflections becoming sufficiently small that they no longer influence the peak 

overpressure values at each gauge. 

In each training model gauges were placed with 0.1 m/kg1/3 grid spacing in x and y to provide 

an average of 7464 POIs per domain. Then, as discussed by [7], each POIs directional lasers 

can be mirrored to double the amount of physically valid input-output training combinations. 

This ensures that the trained models are consistent for predictions where obstacles are on 

either side of the POI. 

Table 1. walair++ simulation inputs. 

Parameter Value Unit 

CFL 1D 0.5 - 

CFL 3D 0.4 - 

Termination time 0.075 s 

Cell size 1D 0.001 m 

Cell size 3D 0.02 m 

Spherical charge mass 1.8 kg 

Charge density 1600 kg/m3 

Charge initial energy 4.52e6 J/kg 

 

Network Architecture and Training 

The ML tool being developed in this study comprises of four individual Multi-Layer Perceptrons 

(MLPs) with the architecture and hyperparameters given by Table 2. 

Table 2. Network parameters and architecture. 

Parameter Value 

Inputs 

- Shortest path distance (m/kg1/3), 

- 16 directional laser obstructions (m/kg1/3), 

- 16 directional laser angle interactions (°), 

- 3 peak overpressures at ground level, one from each 

incoming value position (kPa) [Networks 2, 3 and 4 only] 

Output Peak overpressure at ground level (kPa) 

Layers and neuron counts 512 / 512 / 512 / 512 / 512 / 512 

Activation function ReLU 

Optimiser Adagrad 

Learning rate 0.02 

Dropout 0.03 

Batch size 32 

Training steps 
Maximum 500, early stopping when validation dataset loss 

does not improve for 10 steps. 

Loss function 
Mean squared error with added penalty for predictions below 

0 kPa. 

Weight initialiser Glorot normal 

Bias initialiser Zeros 

Regularisation L2 
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Inputs for each network are normalised using the following Z-score equation to rescale the 

data so that each feature has zero mean and a variance of one. This is a common approach 

for improving the speed and quality of training [13]. 

 𝑍 = 𝑥 − 𝜇𝜎  (1) 

Where 𝑍 is the scaled input feature value, 𝑥 is the original input feature value, 𝜇 is the mean 

of the training samples for this feature, and 𝜎 is the standard deviation of the training samples 

for this feature. 

The use of four networks leverages how blast waves decay with distance from the charge, 

allowing reduced ranges of peak overpressure to be provided to each network during training. 

This removes the need for a single network to learn the entire parameter space. The choice of 

network separation given in Table 3’s shortest path distance requirement column means that 
generally N1 predicts values above 1500 kPa, N2 predicts between 200 and 1500 kPa, N3 

between 100 and 200 kPa, and N4 between 0 and 100 kPa. 

Table 3. Training dataset variables for each network. 

Network 

number 

Shortest path distance 

(𝒔) requirement 

Data augmentation 

approach 

Number of 

datapoints 

1 𝑠 ≤     - 44904 

2 1.5 < 𝑠 ≤   Gaussian noise added to 

incoming values, 10% 

and 15%. 

594864 

3 4 < 𝑠 ≤   566154 

4 6 < 𝑠 495594 

 

Table 2 showed that N1 does not use any incoming values in its input, instead all predictions 

for this network rely on the directional lasers and shortest path distance. This allows the tool, 

comprising of all four networks, to generate initial predictions without any other data from 

empirical or numerical sources. The results from N1 are used to calculate the incoming values 

of the first points being predicted by N2 as the wave expands beyond 1.5 m/kg1/3. This 

continues with the final values from N2 initiating N3, and N3 initiating N4. 

Random gaussian noise is added to the incoming value inputs to networks 2, 3 and 4. This 

aims to improve the robustness of the predictions being made by these models when they are 

provided with incoming values that rely on previous ML predictions that could have some error. 

A similar technique is used with recurrent or graph neural networks that can be used to predict 

time series data [14]. Here, the magnitude of the noise for each value is calculated from profiles 

with standard deviations of 10% and 15% of the value itself. The triples the size of the dataset 

that extracted from the 40 training models to give the datapoint counts listed in Table 3. 

 

Performance Evaluation 

Performance of the trained tool is evaluated by generating predictions for a domain that was 

not used in the training process. This challenges the networks with unseen sets of inputs whilst 

also testing the tool’s ability to use incoming values that are derived from its own predictions 

rather than known CFD points. 

Figure 5 shows the randomly generated domain. Based on the obstacle positions, there are 

regions that require predictions of free air propagation, clearing, channelling and shielding. 
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  comparison of the  L tool’s predictions to an equivalent walair++ simulation is shown in 
Figure 6, where values are capped at 600 kPa to enhance the clarity of the domain beyond the 

near-field region. It shows that agreement between the methods is very good, particularly in 

areas of intense pressure build up on the surface of the obstacles. 

Unlike previous rapid analysis tools for urban environments, this approach is also shown to 

capture channelling and some shielding with good qualitative agreement, particularly around 

(3, 6), (2, 2) and (9, 2) [x, y]. The addition of interaction angles and incoming values is proved 

y
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Figure 5. New domain that was not used in the training dataset. Used as a use case test 

of the developed ML tool. 

Figure 6. Comparison of the ML predictions and a CFD simulation of the same domain. 
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to be effective in expanding the capability of the ML models to understand the relationship 

between the magnitude of the blast wave and the local surroundings of the POI. However, 

larger inaccuracies are still observed in shielded regions such as at (7,0.5) [x, y]. 

Quantitatively assessing the results, Table 4 provides the mean absolute error and percentage 

error for each network as well as the overall domain performance when compared to CFD. As 

discussed in [7], solely assessing the percentage error can ignore the success of the ML tool 

due to the relative magnitudes of the errors being calculated. For example, a 36.5% error for 

N4 corresponds to a mean absolute error of under 4 kPa. The high percentage error is 

therefore due to how most points being predicted by this network are under 20 kPa, in highly 

shielded regions of the domain. 

Table 4. Use model performance metrics. 

Network number Mean absolute error (kPa) Percentage error (%) 

1 62.2 4.8 

2 19.6 17.2 

3 5.9 22.2 

4 3.9 36.5 

Overall 16.2 22.4 

 

The calculated MAE values are excellent considering the ranges of values being predicted by 

each network, however, performance of the networks deteriorated as the predictions 

progressed away from the charge. This is due to incoming values being used as inputs with 

larger errors than expected for the networks that are responsible for predictions at larger 

distances from the charge (N3 and N4). Adding more noise to the training inputs to further 

expand the training process may help to reduce this effect. 

 

Conclusions 

This paper has introduced a novel Machine Learning (ML) tool that builds upon work previously 

published by the author to predict the peak overpressure in urban areas following the 

detonation of an explosive. This is achieved by training ML models with intersection angles 

and distances from    directional ‘lasers’ that are projected from point of interest, and three 

peak overpressure values that indicate the strength of the approaching blast wave. This 

combines an understanding of the local geometry with an appreciation for how the blast wave 

has propagated through space in a sequential and expansive manner. 

It was shown that for an unseen domain, with peak overpressures ranging from 1 over 5000 

kPa, predictions can be generated with a mean absolute error of 16.2 kPa when compared to 

a CFD simulation. This provides good quantitative agreement alongside an excellent 

qualitative representation of the threat posed to the environment in under 30 seconds. 

Future work will explore how the performance of the approach can be improved through 

adjusting the input features further, before tuning neural network hyperparameters and altering 

the network structure. The tool will then be expanded to predict other blast parameters, 

ultimately allowing for rapid risk-based assessments of threats to urban environments. With 

this, users will be able to understand specific threat scenarios of interest, where existing CFD 

solvers such as walair++ can be used for detailed analysis. 
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