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Directional distributions and the half-angle

principle

John T. Kent

Abstract Angle halving, or alternatively the reverse operation of angle doubling, is

a useful tool when studying directional distributions. It is especially useful on the

circle where, in particular, it yields an identification between the wrapped Cauchy

distribution and the angular central Gaussian distributions, as well as a matching of

their parameterizations. The operation of angle halving can be extended to higher

dimensions, but its effect on distributions is more complicated than on the circle.

In all dimensions angle halving provides a simple way to interpret stereographic

projection from the sphere to Euclidean space.

Key words: angular central Gaussian distribution, gnomonic projection, Möbius

transformation, multivariate t distribution, stereographic projection, wrapped Cauchy

distribution

1 Introduction

The wrapped Cauchy (WC) distribution on the circle is a remarkable distribution

that appears in a wide variety of seemingly unrelated settings in probability and

statistics. The angular central Gaussian (ACG) distribution is another important

distribution in directional statistics. It was used by Tyler (1987a,b) to construct and

study a robust estimator of a covariance matrix, or more generally a scatter matrix,

for q-dimensional multivariate data. Hence, it is a pleasure to include this paper in

a volume dedicated to Dave Tyler’s many contributions to statistical methodology.

As noted in Kent & Tyler (1988), the ACG distribution in q = 2 dimensions

(i.e. on the circle) can be identified with the WC distribution after angle doubling.

Equivalently, WC distribution can be identified with the ACG distribution after
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2 John T. Kent

angle halving. Hence algorithms to estimate the parameters of one distribution can

be used with little change to estimate the parameters of the other distribution. Several

algorithms to compute the maximum likelihood estimates based on the EM algorithm

have been explored in Kent & Tyler (1988) and Kent et al. (1994). See also Arslan

et al. (1995) for further discussion.

The current paper extends the analysis as follows:

• to use angle halving on the circle to recast the Möbius transformation in terms of

a rescaled linear transformation of the plane, a result which additionally allows

us to match the parameterizations of the WC and ACG distributions;

• to extend angle halving to higher dimensions and to show the connection between

gnomonic projection and stereographic projection;

• to note that the ACG distribution under gnomonic projection maps to a multivari-

ate Cauchy distribution; and to contrast it with the spherical Cauchy distribution

of Kato & McCullagh (2020), which under stereographic projection maps to a

multivariate t-distribution;

• to summarize some further properties of the WC distribution.

To set the scene for the main investigation of the paper, recall some basic properties

of the WC and ACG distributions on the circle S1, with points on the circle represented

by either an angle 0 ≤ θ < 2π or a unit vector (cos θ, sin θ)T . The WC distribution,

written WC(λ), has probability density function (p.d.f.)

fWC(θ; λ) = (2π)−1 1 − λ2

1 + λ2 − 2λ cos θ
, θ ∈ S1. (1)

Here 0 ≤ |λ | < 1 is a concentration parameter. The distribution has been centered

to have its mode at θ = 0 if λ > 0 and θ = π if λ < 0; it reduces to the uniform

distribution if λ = 0.

The ACG distribution on S1, written ACG(b), has probability density function

(p.d.f.)

fACG(ϕ; b) = (2π)−1b/{b2 cos2 ϕ + sin2 ϕ}
= π−1b/{b2(1 + cos 2ϕ) + (1 − cos 2ϕ)}
= π−1b/{(1 + b2) − (1 − b2) cos 2ϕ}, ϕ ∈ S1. (2)

Here 0 < b < ∞ is a concentration parameter. The density is antipodally symmetric,

f (ϕ) = f (ϕ + π). The distribution has been centered to have its modes at ϕ = 0, π

if b < 1 and ϕ = ±π/2 if b > 1; it reduces to the uniform distribution if b = 1.

If

b = (1 − λ)/(1 + λ), (3)

it can be checked that (2) is the same as (1) under the angle doubling relation θ = 2ϕ.

That is, if Φ is a random angle following the ACG(b) distribution and (3) holds,

then Θ = 2Φ is a random angle following the WC(λ) distribution. The relation (3)

between b and λ will be assumed throughout the paper.
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The paper is organized as follows. Basic transformations of the circle are defined

and examined in Section 2. These transformations are used in Section 3 to obtain

the ACG and WC distributions on the circle as transformations of the uniform

distribution. Angle-doubling is extended to the sphere in Section 4 and interpreted

through two projections in Section 5. The spherical version of the ACG distribution

is studied in Section 6 and a spherical analog of the WC distribution is constructed

in Section 7. Section 8 gives a discussion of transformation groups on the sphere

and shows how the ACG and spherical Cauchy distributions can be obtained as

transformations of the uniform distribution. Finally, Section 9 summarizes some

further derivations and motivations for the WC distribution on the circle.

For some standard background on directional distributions, see, e.g., Mardia &

Jupp (2000) and Chikuse (2003). For basic results from multivariate analysis, see,

e.g., Mardia et al. (1979). A fundamental reference is McCullagh (1996), which goes

further than the current paper in exploring how the family of WC distributions is

closed under the group of Möbius transformations on the unit circle. See also Downs

(2009) for a broader discussion of Möbius transformations. The use of the Möbius

transformation in directional regression models was proposed in Downs & Mardia

(2002) and Downs (2003).

2 Basic operations on the circle

A point on the circle can be written as an angle ϕ, where without loss of generality,

ϕ ∈ (−π, π]. The point can also be expressed as a unit vector

x = (x1, x2)T = (cos ϕ, sin ϕ)T = ±(1, r)T /
√

1 + r2, r = tan ϕ, (4)

or as a complex number x1 + ix2 = C(x). It is convenient to denote the mappings

between vector and angular representations by

ϕ = Arg(x), x = vec(ϕ). (5)

For later use note that the derivatives of the mappings between ϕ and r = tan ϕ

are given by

dr/dϕ = sec2 ϕ = 1/ cos2 ϕ = 1 + r2, dϕ/dr = 1/(1 + r2). (6)

Another important representation of an angle, where this time the angle is denoted

θ, is in terms of the tangent of the half-angle, s = tan(θ/2). Square both sides and

use the double angle formulas to get

s2
= tan2(θ/2) =

sin2(θ/2)

cos2(θ/2)
=

1 − cos θ

1 + cos θ
, (7)

which can be inverted to give
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cos θ =
1 − s2

1 + s2
,

so that 1 + cos θ = 2/(1 + s2).

Throughout the paper we assume that θ and ϕ are related by the double angle

condition, θ = 2ϕ, so that r = s. However, it is helpful to use both notations r and s

to emphasize that r is obtained from ϕ and s is obtained from θ.

Three important mappings from S1 to itself are as follows.

(a)Squaring, denoted D(x), where D stands for the doubling of the angle. In vector

form the transformation is defined by

D(x) = (x2
1 − x2

2, 2x1x2)T , x ∈ S1. (8)

If y = D(x), then in complex arithmetic y1 + iy2 = (x1 + ix2)2. Further, if

ϕ = Arg(x) and θ = Arg(y) are the two points in angular coordinates, then

θ = 2ϕ. Hence squaring is a two-to-one mapping of S1 to itself.

(b)The rescaled diagonal linear transformation, denoted L(x; b), where b > 0 is a

scaling constant. In vector form the transformation is defined by

L(x; b) = (x1, bx2)T /

√

x2
1
+ b2x2

2
. (9)

That is, the second component of x is scaled by a factor b, and the resulting vector

is rescaled to be a unit vector. The rescaled diagonal linear transformation can

also be described as follows. If z = L(x; b) then

tan Arg(z) = b tan Arg(x). (10)

(c)The diagonal Möbius transformation, denoted M (y; λ). In vector form the trans-

formation is defined for λ > 0 by

M (y; λ) = (2λ + (1 + λ2)y1, (1 − λ2)y2)T /(1 + λ2
+ 2λy1), y ∈ S1. (11)

If w = M (y; λ) where Arg(y) = θ and Arg(w) = η, then θ and η are related by

tan η/2 = b tan θ/2, (12)

where b and λ are related by (3). That is, the Möbius transformation is the

same as the rescaled diagonal linear transformation after the angles θ and η

are divided by 2. The Möbius transformation is most commonly defined using

complex arithmetic,

C(M (y; λ)) =
y1 + iy2 + λ

λ(y1 + iy2) + 1
, y ∈ S1 (13)

where for our purposes here, 0 < λ < 1 is restricted to being real.
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These transformations can be combined to give the following result, which it is

helpful to call the fundamental diagonal Möbius identity:

M (D(x); λ) = D(L(x; b)), x ∈ S1, (14)

where b and λ are related by (3). That is, a rescaled diagonal linear transforma-

tion followed by squaring is the same as squaring followed by a diagonal Möbius

transformation.

The identity in (14) has been stated for diagonal case. However, it is possible to

construct a more general version by allowing rotations before and after the relevant

transformation. Let

Rα =

[

cos α − sin α

sin α cos α

]

(15)

denote a 2 × 2 rotation matrix by an angle α. Also, recall that any 2 × 2 matrix B

with positive determinant can be written using the singular value decomposition as

B = cRαdiag(1, b)RT
β (16)

where c > 0 and b > 0. Note that if x = vec(ϕ), then RT
β
x = vec(ϕ − β) and

D(RT
β
x) = R2T

β
D(x) = vec(2(ϕ − β)).

Define more general versions of the rescaled diagonal linear and Möbius trans-

formations by

L(x; B) = Bx/| |Bx | | = RαL(RT
β x; b),

M (x; λ, exp(2iα), exp(2i β))) = R2
αM (R2T

β x; λ), (17)

where | |x | |2 = xT x. In complex notation, the Möbius transformation becomes

M (y; λ, exp(2iα), exp(2i β))) = exp(2i(α − β))
y1 + iy2 + λ exp(2i β)

λ exp(−2i β)(y1 + iy2) + 1
.

Note the L now depends on the matrix B and M now depends on a real number

and two complex numbers. The more general version of the fundamental Möbius

identity becomes

M (D(x); λ, exp(2iα), exp(2i β)) = D(L(x; B)). (18)

3 Transformations of distributions on the circle

LetΦ∗ follow a uniform distribution on the circle, with density f (ϕ∗) = 1/(2π), −π <
ϕ∗ < π. Let R∗ = tanΦ∗ and X∗ = vec(Φ∗) denote the corresponding tangent of the

angle and the Euclidean coordinates. Consider the rescaled diagonal linear transfor-
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mation X = L(X∗; b), where b > 0, and let Φ = Arg(X ) and R = tan(Φ) denote the

corresponding angular and tangent values.

The inverse transformation between X and X∗ is X∗ = L(X ; 1/b). Then the p.d.f.

of Φ is given by

1

2π

dϕ∗

dϕ
=

1

2π

dϕ∗

dr∗
dr∗

dr

dr

dϕ

=

1

2π

1

1 + r∗2
b−1(1 + r2)

=

1

2πb

cos2 ϕ

cos2 ϕ + b−2 sin2 ϕ

1

cos2 ϕ

=

b

2π

1

b2 cos2 ϕ + sin2 ϕ
= fACG(ϕ; b), (19)

where we have used the fact that r∗2 = b−2r2
= b−2 sin2 ϕ/ cos2 ϕ, and 1/(1 + r2) =

cos2 ϕ. In other words Φ follows the ACG(b) distribution.

If Φ∗ follows a uniform distribution, then so does Θ∗ = 2Φ∗. Hence

Θ = Arg(M (vec(Θ∗), λ)) = 2Φ = 2Arg(L(vec(Φ∗), b))

has p.d.f. (19) as a function of ϕ (the factor 1/2 from the Jacobian dϕ∗/dθ∗ cancels

the factor 2 which arises since the mapping from ϕ∗ to θ∗ is two-to-one). After

writing the p.d.f. in terms of θ, the wrapped Cauchy density fWC(θ; λ) in (1) is

obtained, where λ is related to b by (3).

In particular, if 0 < λ < 1, i.e. 0 < b < 1, the diagonal Möbius mapping

Y = M (Y ∗, λ) pulls probability mass towards the direction θ = 0; similarly the

rescaled diagonal linear mapping X = L(X∗; b) pulls probability mass towards the

directions ϕ = 0 and π. Hence the WC distribution for Y has a mode in the zero

direction and the ACG distribution for X has its modes in the directions 0 and π.

In summary, both the ACG and WC distributions can be obtained from suitable

transformations of the uniform distribution. For simplicity, attention has been focused

on the centered distributions in this section, but rotations of the modal direction can

be easily included.

4 Basic operations on the sphere

To deal with higher-dimensional spheres, more notation is needed. Let Sq−1 = {x ∈
R
q : xT x = 1} denote the unit sphere in Rq, q ≥ 2, in unit vector notation. The

surface area of Sq−1 is given by

πq = 2πq/2/Γ(q/2). (20)
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A point x ∈ Sq−1 can be written in the polar form about the north pole e1 =

(1, 0, . . . , 0)T as

x = ±
[

cos ϕ

sin ϕ u

]

, 0 ≤ ϕ ≤ π, (21)

where u is a unit (q − 1)-dimensional vector. If q = 2 then u = ±1 is just a scalar.

Using the polar representation (21), the surface measure on Sq−1, written [dx],

say, can be written recursively as

[dx] = sinq−2 ϕ dϕ [du]. (22)

When q = 2, the formula simplifies to [dx] = dϕ. However, note (2) used a slightly

different convention for ϕ; the scalar u = ±1 was not present and the angle ϕ was

allowed to range through the whole circle, −π < ϕ ≤ π.
For all dimensions q ≥ 2, changing ϕ to π − ϕ and u to −u changes x to −x.

Hence when studying antipodally symmetric p.d.f.s, it is sufficient to restrict ϕ to

the range 0 ≤ ϕ < π/2.

Let y be another point in Sq−1 with polar representation

y =

[

cos θ

sin θ u

]

. (23)

If u is the same as in (21) and θ = 2ϕ, then y can be said to be obtained from x by

doubling the angle, where “angle” here means the colatitude ϕ. Write

y = Dq (x) (24)

by analogy with the corresponding operation (8) on the circle.

In dimensions q > 2 the concept of doubling the angle is less general than the

squaring operation on the circle (q = 2) given in (8). In particular, when q > 2 the

operation of doubling the angle has a Jacobian which depends on the choice of north

pole; see (32).

For use below, consider the following linear function of a q-dimensional unit

vector y,

P(y) = P(y; λ, µ0) = 1 + λ2 − 2λ yT µ0, (25)

and partition the unit vector µ0 = (µ1, µ
T
2

)T in terms of a scalar and a (q−1)-vector.

Using (21) and (23), P(y) can be rewritten as a quadratic function of x as follows,

P(y) = 1 + λ2 − 2λ yT µ0

= (1 + λ2) − 2λµ1 cos θ − 2λ(µT2 u) sin θ

= (1 + λ2)(cos2 ϕ + sin2 ϕ) − 2λµ1(cos2 ϕ − sin2 ϕ) − 4λ(µT2 u) sin ϕ cos ϕ

= (1 + λ2)(x2
1 + xT2 x2) − 2λµ1(x2

1 − xT2 x2) − 4λ(µT2 x2)x1

= (1 + λ2 − 2λµ1)x2
1 + (1 + λ2

+ 2λµ1)xT2 x2 − 4λ(µT2 x2)x1

= Q(x), say, (26)
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a homogeneous quadratic form xT Ax with matrix

A =

[

1 + λ2 − 2λµ1 −2λµT
2

−2λµ2 (1 + λ2
+ 2λµ1)Iq−1

]

(27)

Since µ
T
0
µ0 = 1, and |λ | < 1, it can be checked that A is positive definite.

5 Projections from the sphere to Euclidean space

In this section we look at two standard tangent projections from the sphere to

the Euclidean space. It is convenient to set up the definitions and notation for all

dimensions q ≥ 2. We can then specialize to the case q = 2 and describe how the

projections are connected to the transformations of Section 3.

The first is gnomonic projection, taking the open hemisphere Hq−1 = {x ∈ Sq−1 :

x1 > 0} to Rq−1. If x is a unit q-vector in the open hemisphere, it can be written

in the form (21) where 0 ≤ ϕ < π/2 and u is a unit (q − 1)-vector. As in (4), let

r = tan ϕ. Then the gnomonic projection is defined by

v = r u =
sin ϕ

cos ϕ
u =

sin ϕ

x1

u. (28)

The second is stereographic projection, taking the sphere Sq−1, minus the point

at −e1, to Rq−1. If y ∈ Sq−1 is a unit vector other than −e1, write it in the form (23),

where −π < θ < π. As in (7), let s = tan(θ/2). Then the stereographic projection of

y is defined by

w = su =
sin(θ/2)

cos(θ/2)
u =

sin θ

1 + y1

u (29)

since sin θ = 2 sin(θ/2) cos(θ/2) and 1 + y1 = 1 + cos θ = 2 cos2(θ/2).

If y is obtained from x by angle doubling, then the two projections are identical.

That is, if θ = 2ϕ, then r = s and v = w. However, the mapping of the uniform

measure on the sphere to Euclidean space is different for the two projections. For

gnomonic projection, the polar coordinate representation v = r u states that r is the

radial part of v so that Lebesgue measure in the tangent space Rq−1 is related to the

uniform measure on the sphere by

dv = rq−2dr [du]

= (sin ϕ/ cos ϕ)q−2(dr/dϕ) dϕ [du]

= cos−q ϕ{sinq−2 ϕ dϕ [du]}
= cos−q ϕ [dx], (30)

using (22) and dr/dϕ = sec2 ϕ. On the other hand, for stereographic projection, the

polar coordinate representation w = s u implies
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dw = sq−2ds [du]

= {sin(θ/2)/ cos(θ/2)}q−2 (ds/dθ) dθ [du]

=

1

2
{sin(θ/2)/ cos(θ/2)}q−2{cos(θ/2)}−2 sin−(q−2) θ{sinq−2 θ dθ [du]}

=

(

1

2

)q−1

cos−2(q−1) (θ/2)[dy] (31)

since ds/dθ = (1/2) sec2(θ/2) and sin θ = 2 sin(θ/2) cos(θ/2). Except on the circle

q = 2, the two differentials involve different powers of cos(θ/2) = cos ϕ.

Since dv = dw both represent Lebesgue measure in Rq−1, (30) and (31) can be

combined to describe effect of angle doubling on the sphere,

[dy] = 2q−1 cosq−2 ϕ [dx]. (32)

The reason for the cosine factor is straightforward to understand intuitively. For

example, consider the case q = 3 corresponding to the usual sphere. For a constant

value of a colatitude ϕ, the longitude can range between 0 and 2π, and the corre-

sponding points on the sphere lie on a small circle of circumference 2π sin ϕ. If ϕ

is near π/2, the corresponding small circle for x is near the equator, a circle with

circumference 2π. However, the corresponding value of θ = 2ϕ is near π and the

corresponding small circle for y lies near the south pole with circumference close to

0. The cosine factor in (32) accounts for this change in circumference.

Figure 1 illustrates the two projections on the circle, where θ = 2ϕ. The

gnomonic projection of ϕ is obtained by following the ray from the origin O through

(cos ϕ, sin ϕ)T to the vertical line tangent to the circle at B. Stereographic projection

of θ is obtained by following the ray from A through (cos θ, sin θ)T to the same

vertical line and dividing the result by 2. Note the stereographic projection of θ is

the same as the gnomonic projection of ϕ.

The diagonal transformations on the circle in Section 2 can be given simple

interpretations in terms of these projections. First, the rescaled diagonal linear trans-

formation of a a unit vector vec(ϕ) can be obtained by applying the following three

transformations:

(a)gnomonic projection, ϕ→ tan ϕ;

(b)scale change, tan ϕ→ b tan ϕ; and

(c)inverse gnomonic projection, b tan ϕ→ atan(b tan ϕ).

Similarly, the diagonal Möbius transformation of a unit vector vec(θ) can be obtained

by applying the following three transformations:

(a)stereographic projection, θ → tan(θ/2);

(b)scale change, tan(θ/2) → b tan(θ/2); and

(c)inverse stereographic projection, b tan(θ/2) → 2atan{b tan(θ/2)}.

If θ = 2ϕ, these two mappings are essentially the same as one another, thus confirm-

ing the fundamental Möbius identity (14).
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Two projections

ϕϕ
θ

r

2r

OA B

Fig. 1 Two projections, gnomonic and stereographic, from the circle to the vertical line tangent to

the circle at point B. If ϕ = θ/2, then r = tanϕ = tan θ/2 is both the gnomonic projection of ϕ

and the stereographic projection of θ.

6 The ACG distribution on the sphere

This section takes a closer look at the ACG distribution on the sphere Sq−1, q ≥ 2

and in particular derives its behavior under gnomonic projection. First it is useful to

recall some results about quadratic forms.

6.1 Review of quadratic forms in the multivariate normal distribution

Let x = (xT
1
, xT

2
)T be a q-dimensional vector partitioned into two parts of dimensions

q1 and q2. Similarly partition a q × q positive definite matrix as

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

.

If x follows a multivariate normal distribution, x ∼ Nq (0,Σ), then x1 ∼ Nq1
(0,Σ11)

and x2 |x1 ∼ Nq2
(Σ21Σ

−1
11
x1,Σ22.1) (e.g. Mardia et al., 1979, p. 63), where Σ22.1 =

Σ22 − Σ21Σ
−1
11
Σ12. Writing the joint density of x as a product of a marginal and a

conditional density, f (x) = f1(x1) f (x2 |x1) yields an identity for quadratic forms,

Q = Q1 +Q2.1 (33)
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where

Q = xTΣ−1x

Q1 = xT1 Σ
−1
11 x1, (34)

Q2.1 = (x2 − Σ21Σ
−1
11 x1)TΣ−1

22.1(x2 − Σ21Σ
−1
11 x1).

If q1 = 1, q2 = q − 1, then x1 = x1 is a scalar, Σ11 = σ11 is a scalar and

Σ21 = σ21 is a vector. This case will be useful in the next section when studying

gnomonic projection.

6.2 Basic properties of the ACG distribution

This section reviews some basic facts about the ACG distribution. Let Σ be a

symmetric q×q positive definite matrix with inverseΩ = Σ−1. The ACG distribution

on Sq−1 is defined by the density (with respect to the uniform measure on Sq−1) by

fACG(x) = fACG(x;Ω) = π−1
q |Ω|1/2/(xTΩx)q/2, (35)

where πq is given in (20). The parameter Ω is defined up to a multiplicative scalar.

If Ω has spectral decomposition Ω = Γ∆ΓT where Γ is an orthogonal matrix

containing the eigenvectors and ∆ is a diagonal matrix containing the eigenvalues,

then it is possible to separate out the orientation and the concentration parts of the

model. The ACG distribution is antipodally symmetric, fACG(x) = fACG(−x).

If q = 2 andΩ = diag(b2, 1) is a diagonal matrix with 0 < b < 1, then the density

in polar coordinates reduces to (2). A similar expansion can be carried out in higher

dimensions q > 2. Suppose Ω is partitioned as

Ω =

[

ω11 ω
T
21

ω21 Ω22

]

and partition a unit vector x ∈ Sq−1 as in (21). The quadratic form becomes

xTΩx = ω11 cos2 ϕ + 2 sin ϕ cos ϕ (ωT
21u) + sin2 ϕ uTΩ22u. (36)

If, in addition, ω21 = 0, then ω11 is an eigenvalue. If ω11 is the smallest eigenvalue,

then the density has its modes at ϕ = 0, π.

6.3 ACG distribution under gnomonic projection

Next consider gnomonic projection of the ACG distribution. Equations (33) and (34)

can be used to show that the ACG distribution on the sphere is transformed to a

multivariate Cauchy distribution in Rq−1. To verify this result, recall the identities
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in (4). Then the quadratic form Q = Q(x) = xTΣ−1x in (36), after dividing by

cos2 ϕ = 1/(1 + r2), becomes

(1 + r2)Q = ω11 + 2vTω21 + vTΩ22v

= ω11 − ωT
21Ω

−1
22ω21 + (v +Ω−1

22ω21)TΩ22(v +Ω−1
22ω21)

= σ−1
11 + (v − σ21/σ11)TΣ−1

22.1(v − σ21/σ11), (37)

using the identities σ21/σ11 = −Ω−1
22ω21, σ−1

11
= ω11 −ωT

21
Ω
−1
22ω21 and Σ−1

22.1
= Ω22

for the inverse of a partitioned matrix (e.g., Mardia et al., 1979, p. 459). Without

loss of generality we can rescale Σ so that σ11 = 1.

The (q − 1)-dimensional multivariate t-distribution, with location parameter µ,

scatter matrix B and degrees of freedom κ > 0, written tq−1(µ, B, κ), has density

proportional to

f (v) ∝ {1 + κ−1(v − µ)TB−1(v − µ)}−(q−1+κ)/2 (38)

(e.g. Mardia et al., 1979, p. 57). If κ = 1 the distribution is known as the multivariate

Cauchy distribution.

Using (30), (35) and (37) to give the p.d.f. of the ACG(Σ) distribution after

gnomonic projection yields

fACG,gnomonic(v) ∝ Q−q/2 cosq ϕ = Q−q/2(1 + r2)−q/2,

with respect to Lebesgue measure dv in the tangent plane, which is the same as

(38) with κ = 1. That is, the gnomonic projection follows a multivariate Cauchy

distribution tq−1(σ21,Σ
−1
22.1
, 1).

7 The spherical Cauchy distribution

Kato & McCullagh (2020) have defined the spherical Cauchy (SC) distribution on

Sq−1 to have the p.d.f.

fSC(y; λ, µ0) = π−1
q

{

1 − λ2

P(y; λ, µ0)

}q−1

, y ∈ Sq−1, (39)

where πq is given in (20) and P(y; λ, µ0) is given in (25). Here 0 ≤ λ < 1 is a

measure of concentration and µ0 is a unit q-vector representing the modal direction.

When q = 2, the SC distribution reduces to the WC distribution (1).

Write µ0 = (µ1, µ
T
2

)T where µ1 is a scalar and µ2 is a (q − 1)-vector and

µ2
1
+ µ

T
2
µ2 = 1. Then, similarly to the expansion in (26), the quantity P(y) in (25)

can be written in stereographic coordinates v as
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P = P(y) = 1 + λ2 − 2λyT µ0

= (1 + λ2) − 2λ(µ1 cos θ + uT µ2 sin θ)

=

1

1 + r2
{(1 + λ2)(1 + r2) − 2λ[(1 − r2)µ1 + 2vT µ2)]}

=

1

1 + r2
{γ + δr2 − 4λvT µ2}

=

1

1 + r2
{γ − (4λ2/δ)µT2 µ2 + δ(v − (2λ/δ)µ2)T (v − (2λ/δ)µ2)}

=

γ∗

1 + r2
{1 + (v − m)T (v − m)/σ2}, (40)

where in the fourth line

γ = 1 + λ2 − 2λµ1, δ = 1 + λ2
+ 2λµ1,

and in the final line

γ∗ = γ − (4λ2/δ)µT2 µ2 = (1 − λ2)/δ, m = (2λ/δ) µ2, σ = (1 − λ2)/δ.

In addition the identities vT v = r2uT u = r2, cos2 ϕ = 1/(1 − r2), cos θ = (1 −
r2)/(1 + r2), and sin θ = 2 sin ϕ cos ϕ = (2 tan ϕ)/(1 + r2) have been used.

Using the change of variables formula (31), the distribution of the stereographic

projection of y has density

fγ,stereo(v) ∝ P−(q−1) cos2(q−1) (θ/2) = {(1 + r2)P}−(q−1),

which as a function of v can be identified with the density of the multivariate t-

distribution tq−1(m, (q − 1)−1σ2Iq−1, q − 1) distribution with κ = q − 1 degrees of

freedom. Note the identification is valid even if µ0 , e1, i.e. even if the mode of the

SC distribution does not lie in the direction of the first coordinate axis. This result

was proved in Kato & McCullagh (2020); see also McCullagh (1996) for a deeper

study of the circular case.

Note the factor (1 + r2)−(q−1) in the density has the right power to combine with

P−(q−1) in the density. This property explains why the SC distribution was defined

by raising P to the power −(q − 1), and not some other power, in (39).

When q , 2, the SC distribution can never be identified with the ACG distribution

under angle doubling. In particular, the gnomonic projections of an ACG distribution

follows a multivariate Cauchy distribution (i.e. a multivariate t-distribution with 1

degree of freedom). In contrast, the stereographic projection of an SC distribution

follows a multivariate t-distribution with q − 1 degrees of freedom.

Finally, an anonymous referee has noted that there is another definition of a

spherical Cauchy distribution as an exit distribution in diffusion theory. Consider a

q-dimensional Brownian motion starting at the point λµ0, where 0 ≤ λ < 1 and µ0

is a unit vector. The position of the Brownian motion when it first hits the sphere

Sq−1 has the density
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fBMSC(y; λ, µ0) = π−1
q

1 − λ2

P(y; λ, µ0)q/2
, y ∈ Sq−1, (41)

((e.g., Durrett, 1984, Section 1.10)) where P(y; λ, µ0) is given in (25) and where

the subscript BMSC stands for Brownian motion spherical Cauchy. Except on the

circle, q = 2, (41) is different from (39) and its stereographic projection cannot be

identified with any t-distribution.

8 Transformation groups on the sphere

This section extends some results involving the rescaled linear and Möbius transfor-

mations from the circle to higher dimensional spheres Sq−1, q > 2.

Start with the general rescaled linear transformations of the form

x → Bx/| |Bx | |, x ∈ Sq−1, (42)

where B(q × q) is nonsingular with positive determinant. It is easy to see that

these transformations form a group under composition where the group operation

corresponds to matrix multiplication. This group can be used to facilitate simulation.

For example, if x is uniformly distributed on Sq−1 and B = Ω−1/2
= Σ

1/2, then

Bx/| |Bx | | follows the ACG distribution in (35).

Of special interest are the rescaled diagonal linear transformations for which B

is assumed to have the form

B = diag(1, bIq−1), b > 0. (43)

That is, the scaling factor for the first coordinate direction is different from the

common scaling factor for the other coordinate directions. If x = (cos ϕ, sin ϕ uT )T

as in (21), the rescaled diagonal linear transformation of x can be written as

Lq (x; b) = (cos ϕ∗, sin ϕ∗ uT )T , where vec(ϕ∗) = L(vec(ϕ); b)

in terms of the corresponding transformation L on the circle in (9).

It is also possible to extend Möbius transformations to higher dimensions. In

this case it is simplest to start with the diagonal Möbius transformations. If y =

(cos θ, sin θ uT )T as in (23), the diagonal Möbius transformation of y can be written

as

Mq (y; λ) = (cos θ∗, sin θ∗ uT )T , where vec(θ∗) = M (vec(θ); λ)

in terms of the corresponding transformation M on the circle in (11). This transfor-

mation can be used to facilitate simulation. If y is uniformly distributed on Sq−1, then

Mq (y; λ) follows the spherical Cauchy distribution (39). See also Downs (2009),

who used this property to motivate the definition of the spherical Cauchy distribution.

It is also possible to define a general Möbius transformation consisting of three

operations: (a) a rotation, followed by (b) a diagonal Möbius transformation, followed
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by (c) another rotation. Although it is not immediately obvious, the set of general

Möbius transformations forms a group under composition.

The fundamental diagonal Möbius identity (14) on the circle between the rescaled

diagonal linear transformations and the diagonal Möbius transformations carries over

with little change. It becomes

Mq (Dq (x); λ) = Dq (Lq (x); b)), x ∈ Sq−1, (44)

where Dq is defined in (24). Further, the interpretation of this identity in terms of

gnomonic and stereographic projections given at the end of Section 5 carries over

immediately to higher dimensions.

However, two notes of caution are needed . First, it is not possible to usefully

extend (18) to give a version of the general Möbius identity in dimensions q > 2.

In particular, even if B = I is the identity matrix, the singular value decomposition

B = ΓΓT , where Γ is any rotation matrix, is not unique, leading to ambiguities in

the construction of the general Möbius transformation.

Second, it should be emphasized that the fundamental Möbius identity does

not lead to a natural pairing of distributions when q > 2. If x follows the ACG

distribution with B given by (43), and if y = Dq (x), then y does not follow a

spherical Cauchy distribution. The underlying reason is because the Jacobian term

in (32) is not constant.

9 Parameterizations and motivations for the wrapped Cauchy

distribution on S1

The WC(λ) distribution on the circle arises in a variety of settings in statistics. Here

we give a brief review. The standard one-dimensional Cauchy distribution with scale

parameter b2 and written t1(0, b2, 1) in (38), plays a key role in two of the settings.

(a)Angle doubling. This topic has been the main theme of the paper. In particular,

the WC(λ) distribution can be obtained from the ACG(b) distribution by angle

doubling, where b and λ are related by (3).

(b)Stereographic projection. As noted in Sections 6-7, the WC(λ) distribution can be

obtained from the Cauchy distribution by inverse stereographic projection when

b is related to λ by (3).

(c)Wrapping. If Z ∼ t1(0, b2, 1), set Θ = Z mod 2π. Recall the Cauchy distribution

has Fourier transform f̂ (t) = exp(−b|t |), t ∈ R, and its wrapped version has

Fourier coefficients f̂ (m), m ∈ Z. Since the WC(λ) distribution has Fourier

coefficients, λ |m |, m ∈ Z, it follows that Θ ∼ WC(λ) distribution with λ =

exp(−b). Note this value of λ is different from (b).

(d)AR(1) process. Consider the first-order autoregression AR(1) model in time series,

Xt+1 = λXt + ǫ t, t ∈ Z,
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Table 1 Various parameterizations of the wrapped Cauchy distribution

Number Parameter A B C Setting

1 0 ≤ λ < 1 1 − λ2 1 + λ2 2λ wrapped Cauchy, AR(1)

2 0 < b ≤ 1 2b 1 + b2 1 − b2 doubled ACG,

stereographic projection

3 0 < µ ≤ π/2 sinµ 1 cos µ angular rep

4 0 ≤ α < 1/2
√

1 − 4α2 1 2α CAR(1)

where the innovation sequence {ǫ t } consists of independent identically distributed

N (0, σ2
ǫ ) random variables with ǫ t independent of Xs, s < t. For |λ | < 1,

the model describes a stationary Gaussian process with spectral density (after

standardizing it to be a probability density) given by the WC(λ) density.

(e)CAR(1) process. Consider the first-order conditional autoregression CAR(1)

model, defined by the conditional distributions

Xt |{Xs, s , t} ∼ N (α(Xt−1 + Xt+1), σ2
η ),

indexed by t ∈ Z. For |α | < 1/2, this model defines a stationary process which

is the same as the stationary AR(1) process. The parameters are related by α =

λ/(1 + λ2).

(f) Exit distribution for Brownian motion. For a standard Brownian motion in the

plane starting from a point inside S1, the exit distribution on S1 has a wrapped

Cauchy distribution; see (41).

Several of these settings involve different ways to parameterize the WC distribu-

tion. Note that the WC(λ) density for 0 ≤ λ < 1 can be written in the form

fWC(θ; λ) =
1

2π

A

B − C cos θ
, θ ∈ S1, (45)

where A, B > 0 and C ≥ 0. Provided B2
= A2

+ C2, the density integrates to

1. Further, the density is unchanged if the parameters are multiplied by the same

scalar constant. Hence, there is only one free parameter. Table 1 lists some common

choices for A, B,C. Further, by interchanging A and C, as has already been done for

Parameterizations 1 and 2, the number of parameterizations can be doubled.

Parameterization 1 is the standard representation. As noted in (a), Parameteriza-

tion 2 is motivated by doubling the angle in the ACG distribution with its standard

parameterization. As noted in (b), it is also motivated by the standard parameteriza-

tion of the Cauchy distribution after inverse stereographic projection. Parameteriza-

tion 3 is the simplest algebraically. Parameterization 4 is motivated by the CAR(1)

model in (e).
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