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Abstract: Wepropose a newmethod to tackle the integrability problem for evolutionary
differential–difference equations of arbitrary order. It enables us to produce necessary
integrability conditions, to determine whether a given equation is integrable or not,
and to advance in classification of integrable equations. We define and develop symbolic
representation for the difference polynomial ring, difference operators and formal series.
In order to formulate necessary integrability conditions, we introduce a novel quasi-
local extension of the difference ring. We apply the developed formalism to solve the
classification problem of integrable equations for anti-symmetric quasi-linear equations
of order (−3, 3) and produce a list of 17 equations satisfying the necessary integrability
conditions. For every equation from the list we present an infinite family of integrable
higher order relatives. Some of the equations obtained are new.

1. Introduction

The problem to determine whether a given equation is integrable (testing for integra-
bility) and the much more difficult problem to give an exhaustive description of all
integrable cases for a certain type of equations up to invertible transformations (the clas-
sification problem) are central in the theory of integrable systems. In this paper we study
evolutionary differential–difference equations

ut = F(u p, . . . , uq) (1)

for a function u = u(n, t) of one discrete variable n ∈ Z and a continuous independent
variable t ∈ C. Here we use the standard notations

ut = ∂t (u), uk = Sku(n, t) = u(n + k, t)

and S is the shift operator. We take the existence of an infinite algebra of (infinitesimal)
symmetries of Eq. (1) as the definition of its integrability. There are many alternative
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views on integrability, including existence of multi-soliton solutions, “regular dynam-
ics”, Painlevé property of finite dimensional reductions, integrable continuous limits,
etc., which are useful but difficult to formalise or inconclusive. The symmetry approach
provides us with a rigorous framework enabling to formulate necessary integrability
conditions suitable for solution of the classification problem for equations of arbitrary
order.

In the case of partial differential equations (PDEs) the symmetry approach has proved
to be successful for classification of evolutionary equations and system of equations [1–
3]. Its further development, the perturbative symmetry approach for PDEs, based on
the natural degree grading structure and symbolic representation of the differential ring
[4–7] enabled us to extend the method to nonlocal and/or non-evolutionary equations
such as the Benjamin–Ono equation and the Camassa–Holm equation [8–10]. Symbolic
representation was successfully used for global classification of integrable scalar homo-
geneous evolutionary equations [6]. We refer to, for example, the review paper [11] and
the recent book [12] for detail discussion of classification problems for integrable PDEs
and related publications.

The classification of integrable differential–difference equations has not enjoyed the
same success as for partial differential equations so far. The first classification result was
obtained by Yamilov in 1983 [13] for general differential–difference equations of order
(−1, 1):

ut = f (u−1, u, u1),
∂ f

∂u1
�= 0,

∂ f

∂u−1
�= 0.

The integrability conditionswere based on the existence of higher order generalised sym-
metries and conservation laws. Since then this method has been developed further and
used for the classification of other important types of differential–difference equations,
including Toda and relativistic Toda-type equations [14].

Recently, Garifullin, Yamilov and Levi gave a partial classification result for the
five-point differential–difference equations [15,16]. They produced a complete list of
quasi-linear equations of order (−2, 2), i.e. equations of the form

ut = A(u−1, u, u1)u2 + B(u−1, u, u1)u−2 + C(u−1, u, u1), (2)

admitting a symmetry of order (−4, 4). Their impressive classification list contains 31
equations up to autonomous point transformations, including some newequations,which
are all proved to be integrable by the following-up study. Their list contains equations of
two types, namely equations which admit symmetries of orders (−n, n) for all n ∈ N,
and equations which admit only even order of symmetries (−2n, 2n), n ∈ N. Thus the
resulting list depends on the assumption on the order of a symmetry that equation (2)
admits. This list would represent a complete classification of integrable equations, if it is
shown that any integrable equation (2) necessarily admits a symmetry of order (−4, 4).
The latter is a challenging problem which cannot be tackled by the methods used in
[15,16].

To formulate integrability conditions which are suitable for any lacunae in the se-
quenceof symmetries,wedevelophere aperturbative symmetry approach for differential–
difference equations. The adaptation of methods previously used for PDEs is far not
straightforward. It requires building a symbolic representation of difference rings and
rings of differenceoperators, quasi-local extensions of rings and formal pseudo-difference
series with quasi-local coefficients. For a differential–difference equation admitting an
infinite algebra of symmetriesAdler proved existence of a formal recursion operator [17].
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We define a canonical formal recursion operator and prove its existence and uniqueness
for an integrable equation. In symbolic representation its coefficients can be found explic-
itly for any equation, but if the equation admits an infinite algebra of symmetries then the
coefficients must be quasi-local. Quasi-locality of the coefficients of the canonical for-
mal recursion operator are universal integrability conditions for differential–difference
equations of arbitrary orders. We demonstrate the power of our method by solving the
classification problem for an important family of quasi-linear differential–difference
equations of order (−3, 3).

The paper starts with basic algebraic setting for the study of evolutionary differential–
difference equations and algebras of their symmetries. In Sect. 2we discuss various grad-
ings for the difference polynomial ring and its evolutionary derivations, difference op-
erators, and formal pseudo-difference series. An introduction to the symmetry approach
is given in Sect. 3. Approximate symmetries and approximate integrability are defined
in Sect. 3.2. In Sect. 4, we define symbolic representation of the difference polynomial
ring, difference operators and formal series and formulate criteria of approximate inte-
grability using symbolic representation. For a given evolutionary differential–difference
equation, either polynomial or represented by a formal series, we give a recursive for-
mula for the coefficients of its symmetries (Theorem 2). The coefficients are uniquely
determined by the linear part of the symmetry. This result can be used to test the exis-
tence of fixed order symmetries and to derive the necessary integrability conditions if
the linear part of a symmetry is known.

For integrable PDEs the coefficients of a formal recursion operator must belong to
differential field. These necessary integrability conditions are independent of possible
lacunae in the hierarchy of symmetries. The proof is based on the existence of fractional
powers of formal pseudo-differential series with coefficients in the differential field [1–
3]. In the case of difference operators or difference formal series, fractional powers
with coefficients in the difference ring (or field) may not exist [18]. It motivates us to
introduce a quasi-local extension of the difference ring (Sect. 5.1). Then the universal
integrability conditions can be formulated as the conditions on the coefficients of the
canonical formal recursion operator: the coefficients must be quasi-local (Sect. 5.2).

In Sect. 6 we give a complete classification integrable differential–difference equa-
tions of the form

ut = u3 f (u2, u1, u) − u−3 f (u−2, u−1, u) + g(u2, u1, u) − g(u−2, u−1, u), f (0, 0, 0) �= 0, (3)

where f, g are polynomial functions or formal series. We list only equations (3) which
do not admit symmetries of order (−1, 1) and (−2, 2). The latter are known equations,
since they are members of integrable hierarchies studied in [14–16]. Our list consists on
17 equations satisfying necessary integrability conditions (Theorem 5). We claim that
the list is complete and have shown that all equations from the list are integrable. They
either can be reduced to known integrable equations by difference substitutions, or admit
Lax representations. To the best of our knowledge, the list contains two genuinely new
equations:

ut = (u2 + 1)(u3

√
u2
1 + 1

√
u2
2 + 1 − u−3

√
u2−1 + 1

√
u2−2 + 1). (4)

ut = u(u2u3 + uu1 − uu−1 − u−2u−3) − u(u2 + u1 − u−1 − u−2), (5)

For each of these 17 equations, we found an infinite family of integrable equations
of arbitrary high order. For instance, Eq. (4) is a member of the family of integrable
equations
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ut = (1 + u2)(un

n−1∏
k=1

√
1 + u2

k − u−n

n−1∏
k=1

√
1 + u2−k), n ∈ N. (6)

Equation (4) is the 3–relative (i.e. n = 3) of this family. The 2–relative (n = 2) was
discovered in classification of (−2, 2) order integrable equations [15,16] and 1–relative
is the well known modified Volterra equation. For any two distinct values of k the
corresponding k–relative non-linear equations from the same family belong to distinct
hierarchies. In Sect. 6.3 we have shown that Eq. (6) has a Lax representation Lt = [A, L]
with

L = Q−1P, A = L+ − (L+)
†, Q = u − u1

√
1 + u2 S−1, P =

(
u
√
1 + u2

1 S − u1

)
Sn−1,

where L+ is the part with non-negative powers of S in the Laurent formal difference
series L and † denotes the formal adjoint operator.

We conclude the paper with a short summary and discussion. In particular, we include
Adler’s Lax representation (with his kind permission [19]) for the integrable family of
equations which includes equation (5).

2. Derivations, Difference Operators and Formal Series

The main objects of our study are evolutionary differential–difference equations and
algebras of their symmetries. Although the phase space of such systems is infinite di-
mensional, each equation of the system relates a finite number of dynamical variables
which we will treat as independent. In order to develop a rigorous theory we will use
elements of the theory of difference rings, difference operators and formal series, in-
cluding their symbolic representation. It will also enable us to introduce quasi-local
extensions of the difference rings and formulate verifiable integrability conditions for
differential–difference equations.

2.1. Difference ring and its evolutionary derivations. We define the polynomial ring
R = C[u] and the corresponding field of fractions F = C(u) of the infinite set of
(commutative) variables u = {un | n ∈ Z}. We will often omit index zero at u0. The set
of all monomialsM�\(R) = {um1

n1 um2
n2 · · · umk

nk | ni ∈ Z, mi ∈ Z�0} is the additive basis
in R.

There is a natural automorphism S of the field F , which we call the shift operator,
defined as

S : a(uk, . . . , ur ) �→ a(uk+1, . . . , ur+1), S : α �→ α, a(uk, . . . , ur ) ∈ F , α ∈ C.

The field F equipped with the automorphism S is a difference field.
The reflection T of the lattice Z defined by

T : a(uk, . . . , ur ) �→ a(u−k, . . . , u−r ), T : α �→ α, a(uk, . . . , ur ) ∈ F , α ∈ C,

is another automorphism of F . The composition ST ST = Id is the identity map. Thus
the automorphisms S, T generate the infinite dihedral group D∞ and the infinite cyclic
subgroup generated by S is normal in D∞. The automorphism T defines a Z2 grading
of the difference field F :

F = F0 ⊕ F1, F0 · F0 = F0, F0 · F1 = F1, F1 · F1 = F0, (7)
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where Fk = {a ∈ F | T (a) = (−1)ka}. The ring R ⊂ F inherits the same grading
R = R0 ⊕ R1.

A derivation ∂ in the field F is a C–linear map ∂ : F �→ F satisfying Leibniz’s law

∂(a · b) = ∂(a) · b + a · ∂(b), a, b ∈ F .

A set of all derivations in F is denoted D�∇(F). Let ∂, ∂ ′ ∈ D�∇(F) be two
derivations in F then their commutator [∂, ∂ ′] ..= ∂ ◦ ∂ ′ − ∂ ′ ◦ ∂ ∈ D�∇(F) is also a
derivation. Any three derivations ∂, ∂ ′, ∂ ′′ ∈ D�∇(F) satisfy the Jacobi identity

[∂, [∂ ′, ∂ ′′]] + [∂ ′, [∂ ′′, ∂]] + [∂ ′′, [∂, ∂ ′]] = 0,

and therefore D�∇(F) is a Lie algebra over C. A formal sum

X =
∑
n∈Z

f (n) ∂

∂un
, f (n) ∈ F (8)

is a derivation in F . Its action on X : F �→ F is well defined, since any element a ∈ F
depends on a finite subset of variables, and thus the sum X (a) contains only a finite
number of non-vanishing terms.

Partial derivatives ∂
∂ui

∈ D�∇(F) are commuting derivations satisfying the condi-
tions

S ∂

∂ui
= ∂

∂ui+1
S, T ∂

∂ui
= ∂

∂u−i
T . (9)

A derivation X ∈ D�∇(F) is said to be evolutionary if it commutes with the shift
operator S. For an evolutionary derivation it follows from the condition X ◦ S = S ◦ X
and (9) that all coefficients f (n) in (8) can be expressed f (n) = Sn( f ) in terms of one
element f ∈ F , which is called the characteristic of the evolutionary derivation. We
will use notation

X f
..=
∑
i∈Z

S i ( f )
∂

∂ui
. (10)

for the evolutionary derivation corresponding to the characteristic f .
Evolutionary derivations form a Lie subalgebra of D�∇(F). Indeed,

αX f + β Xg = Xα f +βg, α, β ∈ C,

[X f , Xg] = X[ f,g],

where [ f, g] ∈ F denotes the Lie bracket

[ f, g] = X f (g) − Xg( f ), (11)

which is bi-linear, skew-symmetric and satisfying the Jacobi identity. Thus F is a Lie
algebra with Lie bracket defined by (11). Evolutionary derivations with characteristics
belonging to the ring R form a subalgebra of D�∇(R).

The reflection T acts naturally on evolutionary derivations

T : X f �→ XT ( f ) = T · X f · T .

The polynomial ring R is degree graded

R =
∞⊕

n=0

Rn, (12)
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where Rn is the set of all homogeneous polynomials of degree n. The degree grading
(12) and T –parity (7) are compatible and thus R is a bi-graded ring

R =
∞⊕

n=0

Rn
0 ⊕ Rn

1, Rn
k = Rn ∩ Rk . (13)

The homogeneous parts Rn
k are additive groups and Rn

kRm
� = Rn+m

(k+�) mod 2.
It follows from the definition of the Lie bracket (11) that the Lie algebra R is also

degree graded and bi-graded

[Rn,Rm] ⊂ Rn+m−1 , [Rn
p,Rm

q ] ⊂ Rn+m−1
(p+q) mod 2. (14)

Every element f of the polynomial ring R can be uniquely represented as a sum of
homogeneous components f = ∑

k�0 f (k), f (k) ∈ Rk (some of the components may

be equal to zero). The selection of the k–th homogeneous component f (k) is a projection
πk : R �→ Rk defined by

πk( f ) = πk

⎛
⎝∑

i�0

f (i)

⎞
⎠ = f (k). (15)

Obviouslyπkπs = δs,kπk . Similarly one candefineprojectors to bi-gradedhomogeneous
components.

2.2. Difference, pseudo-difference operators and formal series. Let a(un, . . . , um) be a
non-constant element ofF , and we assume that n � m are the minimal and the maximal
index respectively in the sequence of its arguments. Then X f (a) can be represented by
a finite sum

X f (a) =
m∑

i=n

∂a

∂ui
S i ( f ) = a∗[ f ],

where

a∗ ..=
m∑

i=n

∂a

∂ui
S i (16)

is the Fréchet derivative of a(un, . . . , um) and a∗[ f ] is the Fréchet derivative of a in the
direction f . Using the Fréchet derivative we can represent the Lie bracket (11) in the
form:

[ f , g] = g∗[ f ] − f∗[g]. (17)

It is obvious that

(Sa)∗ = S · a∗ =
m∑

i=n

S
(

∂a

∂ui

)
S i+1 and (T a)∗ = T · a∗ =

m∑
i=n

T
(

∂a

∂ui

)
S−i .
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Definition 1. A difference operator B of order ord B := (n, m) with coefficients in F
is a finite sum of the form

B = b(m)Sm+b(m−1)Sm−1+· · ·+b(n)Sn, b(m)b(n) �= 0, b(k) ∈ F , n ≤ m, n, m ∈ Z.

(18)
The total order of B is defined as OrdB = m − n. The total order of the zero operator
is minus infinity Ord 0 := −∞ by definition.

The Fréchet derivative (16) is an example of a difference operator of order (n, m)

and total order Ord a∗ = m − n. For a non-constant element f ∈ F the order and total
order are defined as ord f∗ and Ord f∗ respectively.

Difference operators form a unital ring F[S,S−1] of Laurent polynomials in S with
coefficients in F , where multiplication is defined by

aSn · bSm = aSn(b)Sn+m = abnSn+m . (19)

This multiplication is associative, but non-commutative.
From the above definition it follows that if A is a difference operator of order ord A =

(p, q), then ord (Sn ·A·Sm) = (p+n+m, q+n+m) and the total orderOrd (Sn ·A·Sm) =
Ord A = q − p. For any A, B ∈ F[S,S−1] we have Ord (AB) = Ord A + Ord B.

For a difference operator B given by (18), we define its adjoint operator B† as

B† = S−m · b(m) + S−m+1 · b(m−1) + · · · + S−n · b(n).

Note that ord B† = (−m,−n) and Ord B† = Ord B.
Below we define pseudo-difference (or rational) operators and skew-fields of formal

series.

Definition 2. A rational (pseudo–difference) operator M is defined as M = AB−1 for
some A, B ∈ F[S,S−1] and B �= 0. The set of all rational operators is

F = {AB−1 | A, B ∈ F[S,S−1], B �= 0}.

Definition 3. The sets FL of Laurent and FM of Maclaurin formal difference series with
coefficients in F are

FL =
{ ∞∑

n=k

a(−n)S−n | a(m) ∈ F , k ∈ Z

}
, FM =

{ ∞∑
n=k

a(n)Sn | a(m) ∈ F , k ∈ Z

}
.

These sets equipped with addition and composition rules for difference operators are
skew fields [20]. The skew field F is a minimal subfield of the skew fields FL and FM ,
containing F[S,S−1]. A rational operator can be expanded in the Maclaurin or Laurent
series and thus represented by an element of FM or FL respectively. The skew fields FL
and FM are isomorphic. The isomorphism is given by the reflection map T .

For L ∈ FL , we denote its part with non-negative powers of S by L+, which is a
difference operator.

A rigorous theory of pseudo-difference operators with detail proofs and applications
to integrable differential–difference equations can be found e.g. in [20].



A. V. Mikhailov, V. S. Novikov, J. P. Wang

3. Perturbative Symmetry Approach

With an evolutionary differential–difference equation

ut = F(un, . . . , um), F(un, . . . , um) ∈ F , (20)

we associate the evolutionary derivation X F ∈ D�∇(F) (the vector field corresponding
to the dynamical system (20)). Thus, there is a bijection between evolutionary derivations
of F and differential–difference equations.

Derivation X F enables us to differentiate any element a ∈ F in the direction of F .
It follows from the chain rule that under the evolution (20) we have

at = a∗[F] = X F (a). (21)

In what follow we will study generators of infinitesimal symmetries of evolutionary
equations and for brevity will call them symmetries.

Definition 4. We say that G(u p, . . . , uq) ∈ F is a symmetry of (20) if [G, F] = 0.

If G is a symmetry of (20), Eq. (20) is invariant mod ε2 under the near identity
transformation û = u + εG. The evolution equation associated to this symmetry is

uτ = G(u p, . . . , uq), (22)

which is compatible with (20). These can be used as equivalent definitions for symmetry.
Let G1 and G2 be any two symmetries of Eq. (20). It follows immediately from

the Definition 4 and the Jacobi identity that the Lie bracket G3 = [G1, G2] is also a
symmetry of (20). Thus, symmetries of Eq. (20) form a subalgebra of the Lie algebra
D�∇(F) which will be denoted AF

AF
..= {G ∈ F | [F, G] = 0}.

The existence of an infinite dimensional commutative Lie algebra of symmetries is
a characteristic property of integrable systems.

Definition 5. Adifferential–difference equationut = F (20) is called integrable if its Lie
algebra of symmetries AF is infinite dimensional and contains symmetries of arbitrary
high total order.

An infinite hierarchyof commuting symmetries of an integrable differential–difference
equation (20) can be constructed using a recursion operator 
 (if 
 is known), namely,
Gk = 
(Gk−1), where 
 ∈ F is a rational pseudo-difference operator with coefficients
in F satisfying the equation

X F (
) − [F∗,
] = 0. (23)

Example 1. The Volterra equation

ut = F, F = u1u − uu−1, F∗ = uS + u1 − u−1 − uS−1

has order ord(F) = (−1, 1) and total order Ord(F) = 2. Its recursion operator


 = AB−1, A = u(S + 1)(uS − S−1u), B = u(S − 1)
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generates the infinite hierarchy of symmetries Gk = 
k(F) with

G1 = 
(u1u − uu−1) = A(1 − S)−1(u1 − u−1) = A(u + u−1 + γ1)

= u(u1u2 + u2
1 + uu1 − uu−1 − u2−1 − u−2u−1) + γ1F, (24)

G2 = 
2(u1u − uu−1) = u(u1u2u3 + u1u2
2 + 2u2

1u2 + uu1u2 + u3
1 + 2uu2

1 + u2u1

−u2u−1 − 2uu2−1 − u3−1 − uu−1u−2 − 2u2−1u−2 − u−1u2−2 − u−1u−2u−3) + γ1G1 + γ2F,

(25)

where γk ∈ C are arbitrary constants (C = Ker(B)).

To find a recursion operator for a given equation is a difficult problem. There is a
regular way to solve it if the equation has a Lax representation. A discussion of this
problem and many explicit examples of pseudo-difference recursion operators can be
found in [20,21].

3.1. Testing for integrability: symmetry approach. The goal of the symmetry approach
is to find necessary conditions for the existence of an infinite dimensional Lie algebra
of symmetries for a given equation. Originally, it was proposed and developed by A.B.
Shabat and his team, and applied to study of partial differential equations [1–3]. The
formalism enables them to develop an explicit test for integrability and solve a number
of classification problems by producing complete lists of integrable partial differential
equations. Later on the symmetry approach has been extended to some non-evolutionary
PDEs [10], integro-differential equations [8,9] and recently to partial–difference and
differential–difference equations [17,18]. The method is inspired by the observation
that the existence of an infinite algebra of symmetries implies existence of a formal
solution 
 of Eq. (23) in terms of a formal series. The conditions of solvability of
the equation can be explicitly formulated and provide us with necessary conditions of
integrability.

In the case of differential–difference equations, an important result was obtained by
Adler [17].

Theorem 1 (Adler [17]). If an evolutionary differential–difference equation (20) admits
symmetries

uτ = G(u p, . . . , uq) (26)

with q arbitrarily large then Eq. (23) admits a solution 
L ∈ FL of the form


L = F∗ +
∞∑

k=0

a(−k)S−k, a(−k) ∈ F .

If Eq. (20) admits symmetries (26) with −p arbitrarily large then Eq. (23) admits a
solution 
M ∈ FM of the form


M = F∗ +
∞∑

k=0

b(k)Sk, b(k) ∈ F .
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Solutions 
L and 
M of (23) are called formal recursion operators (formal symme-
tries in [17]) for the equation.

Let us consider the implications from the first part of the above statement. In order
to determine the coefficients a(−k) of 
L for an Eq. (20), we substitute 
L , F, F∗ in
(23). In the resulting formal Laurent series each coefficient should vanish. Collecting
the coefficients at the powers Sm−k, k = 0, 1, . . . we obtain a triangular system of
difference equations for a(−k):

Sm−k : Mm,k(a
(−k)) = Cm,k, k = 0, 1, . . . (27)

where

Mm,k
..= ∂ F

∂um
Sm − S−k

(
∂ F

∂um

)

and the terms Cm,k depend on the function F(un, . . . , um), its partial derivatives and the
coefficients a(0), a(−1), . . . , a(1−k) only. For example

Cm,0 = X F

(
∂ F

∂um

)
=

m∑
i=n

S i (F)
∂2F

∂ui∂um
, (28)

Cm,1 = X F

(
∂ F

∂um−1
+ a(0)δm,1

)
+

∂ F

∂um−1

(
a(0) − Sm−1(a(0))

)
. (29)

According to Theorem 1, for integrable equation (20) a solution of the triangular system
(27) exists and a(−k) ∈ F . Thus the necessary integrability conditions for Eq. (20) are
conditions of solvability in F of the system (27) with respect to the coefficients a(−k).
The latter can be formulated as the conditions that Cm,k belong to the image spaces of
the linear difference operators Mm,k , i.e., Cm,k ∈ ImMm,k, k = 0, 1, . . .. In the case
k = 0 it reduces to the problem of membership in the space Im (S − 1), which has a
well known solution. Namely, if a ∈ C

⊕
Im (S − 1) then δu(a) = 0. Here δu is the

variational derivative

δu(a) ..=
∑
n∈Z

S−n
(

∂a

∂un

)
= ∂

∂u

∑
n∈Z

Sn(a).

There is an algorithmic way to solve the membership problem for the spaces ImMm,k

and if Cm,k ∈ ImMm,k, k = 0, 1, . . . to find the coefficients a(−k) ∈ F recursively.

Example 2. Let us consider Eq. (20) with F = f (u)(u1 − u−1), where f (u) ∈ F . In
this case m = 1, ∂ F

∂u1
= f (u) and

C1,0 = X F ( f (u)) = f ′(u) f (u)(u1 − u−1), M1,0 = f (u)(S − 1).

The first necessary integrability condition C1,0 ∈ ImM1,0 leads to

f ′(u)(u1 − u−1) ∈ Im (S − 1).

Thus

δu
(

f ′(u)(u1 − u−1)
) = f ′′(u)u1 + S−1( f ′(u)) − f ′′(u)u−1 − S( f ′(u)) = 0
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Taking the partial derivative with respect to u1 we get f ′′(u) = S( f ′′(u)), therefore
f ′′(u) is a constant (an element of C) and thus f (u) = αu2 +βu +γ , where α, β, γ ∈ C

are arbitrary constants. The resulting equation

ut = (αu2 + βu + γ )(u1 − u−1)

is known to be integrable.

In this example the first integrability condition enables us to give a complete descrip-
tion of all integrable differential–difference equations of the form ut = f (u)(u1−u−1).

In Theorem 1 the order of local formal recursion operators depends on the given
equation and there is no simple way to find expressions for the coefficients a(−k), b(k)

explicitly. In Sect. 5 using symbolic representation wewill proof the existence of the uni-
versal (canonical) quasi-local formal recursion operators and present explicit recursive
formulae for its coefficients.

3.2. Approximate symmetries and integrability. The notion of approximate symmetry
depends on the topology of a differential or difference ring associated with its grading
structure. In the context of integrability of asymptotic expansions approximate symme-
trieswere introduced and studied in [37]. A natural definition of approximate symmetries
in symbolic representation is based on the degree grading of the corresponding differen-
tial ring. It has beenoriginally introduced in [8,9] andproved to be successful for studying
of evolutionary and non-evolutionary partial differential and integro-differential equa-
tions. In this section our definition of approximate symmetries for differential-difference
equations is based on the degree grading of the polynomial ring R defined by (12).

In order to define approximate symmetries let us consider an evolutionarydifferential–
difference equations

ut = F, F ∈ R. (30)

Then F can be uniquely represented as a sum of its homogeneous components

F = F (0) + . . . + F (N ),

where F (k) ∈ Rk or zero, N is the degree of the polynomial F . It follows fromDefinition
4 that a polynomial G = G(0) + . . . + G(M) is a symmetry if the Lie bracket [F, G] =
0 vanishes. Due to the degree grading structure of the Lie algebra (14), the latter is
equivalent to a sequence of homogeneous equations

p∑
k=0

[F (k), G(p−k)] = 0, p = 0, 1, 2, . . . , N + M . (31)

Here we assume that F (k) = 0 if k �∈ {0, . . . N } and G(k) = 0 if k �∈ {0, . . . M}. If all
N + M + 1 equations are satisfied, then G is a symmetry. If in the (31) the first s + 2
equations with 0 � p � s +1 are satisfied, then G is called s–approximate symmetry (or
approximate symmetry of degree s) of the equation (we ignore the remaining equations).
It follows from the Jacobi identity that the Lie bracket of two s–approximate symmetries
is also a s–approximate symmetry and therefore approximate symmetries of degree s
form a closed Lie algebra As

F

As
F

..= {G ∈ R | πk([F, G]) = 0 for k = 0, 1, . . . , s}.
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In other words, the move from symmetries to approximate symmetries of degree s is the
transition from definitions and computations made in terms of the ring R to the quotient
ring R�Is+1, where

I = 〈u〉 ⊂ R (32)

is the maximal ideal generated by the variables u. Namely, we say that G ∈ R is
s–approximate symmetry of Eq. (30) if [F, G] ∈ Is+1. We will also need difference
operators and formal series with coefficients in the quotient rings R�Is+1, but their
definitions will be more natural in symbolic representation which will be introduced in
the next section.

Remark 1. There are no obstructions to replace the polynomial ring R = C[u] by the
ring R̄ of formal series

R̄ = C[[u]] =
{ ∞∑

k=0

f (k)

∣∣∣∣∣ f (k) ∈ Rk

}
(33)

in variables u and to consider equations and their symmetries given by the Maclaurin
expansion or just formal series. The above definition of s–approximate symmetries
remains correct since only a finite number of equations (31)

πk([F, G]) = 0, k = 0, 1, . . . , s, F, G ∈ R̄

has to be verified.

Definition 6. Adifferential–difference equationut = F, F ∈ R̄ is called s–approximate
integrable if its Lie algebraAs

F is infinite dimensional and contains s–approximate sym-
metries of arbitrary high total order. The equation is called formally integrable, if it is
s–approximate integrable for arbitrary large s.

From Definitions 5 and 6 it follows that integrable equations are formally integrable.
The conversemaynot be true sincewedonot assume any convergence of formal series for
the equation and its formal symmetries. Conditions of s–approximate integrability can
be explicitly written and verified. These are strong necessary conditions for integrability
and they proved to be suitable for classification of integrable equations. In the next section
we will formulate criteria of s–approximate integrability using symbolic representation,
which will enable us to test for integrability a fixed equation as well as to progress in
solution of classification problem for integrable differential–difference equations.

In what follows, we will restrict ourselves by equations ut = F and symmetries G
without a constant term (π0(F) = 0, π0(G) = 0). Let R′ denote a subspace of formal
series without a constant term

R′ ..= (1 − π0)R̄ =
∞⊕

n=1

Rn . (34)

Having N linearly independent symmetries containing a constant term we can always
construct N − 1 linear combinations without constant term. A constant term in F can
often be removed by a simple invertible transformation of variables. Thus the restriction
to the linear space R′ (34) of formal series with no constant terms does not really affect
the generality, but considerably reduces unnecessary stipulations in each case.
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4. Symbolic Representation

Symbolic representation is widely used in theory of pseudo-differential operators. It has
been first applied in the area of integrable systems byGel’fand andDickey [4] and further
developed for classification problems in works of Beukers, Sanders, Wang, Mikhailov,
Novikov and van der Kamp [5–11,22–26]. In this section, we will extend the methods
of symbolic representation to the ring of difference polynomials, difference operators
and formal series. Similar to the differential case, the symbolic representation can be
viewed as a simplified notation for a Fourier transform (Z -transform).

4.1. Symbolic representation of difference polynomials. To define the symbolic repre-
sentation R̂ = ⊕R̂n of the degree graded difference ring (and Lie algebra) R̄ = ⊕Rn

of formal series, we first define an isomorphism of the C–linear spaces ϕ : Rn �→ R̂n

and then extend it to the difference ring and Lie algebra isomorphism equipping R̂ with
the multiplication, derivation and Lie bracket. The isomorphism of the C–linear spaces
ϕ : Rn �→ R̂n is uniquely defined by its action on monomials.

Definition 7. The symbolic form of a difference monomial terms is defined as

ϕ : α �→ α, ϕ : αui1ui2 · · · uin ∈ Rn �→ ûnα〈ξ i1
1 ξ

i2
2 · · · ξ in

n 〉�n ∈ R̂n, α ∈ C,

where 〈·〉�n denotes the average over the permutation group�n of n commuting variables
ξ1, . . . , ξn :

〈a(ξ1, · · · , ξn)〉�n = 1

n!
∑

σ∈�n

a(ξσ(1), · · · , ξσ(n)).

Notations ξ1, ξ2, . . . are reserved for the variables in symbolic representation. We
will omit �n in the group average 〈·〉�n , assuming that the average is taken over the
permutation group of n variables ξk where n is shown as the degree of ûn .

A few examples:

uk
ϕ�−→ ûξ k

1 , un ϕ�−→ ûn, u1u2
ϕ�−→ û2〈ξ1ξ22 〉�2 = û2

2
(ξ1ξ

2
2 + ξ21 ξ2),

αuu2
p + βu3

q
ϕ�−→ û3

(α

3
(ξ

p
2 ξ

p
3 + ξ

p
1 ξ

p
2 + ξ

p
1 ξ

p
3 ) + βξ

q
1 ξ

q
2 ξ

q
3

)
, α, β ∈ C.

With this isomorphism a homogeneous polynomial f ∈ Rn is in one-to-one cor-
respondence with the term f̂ = ûna(ξ1, . . . , ξn) ∈ R̂n , where the coefficient function
a(ξ1, . . . , ξn) is n-variable symmetric Laurent polynomials, i.e., a(ξ1, . . . , ξn) ∈ �n .

Here �n
..= C[ξ1, ξ−1

1 , . . . , ξn, ξ−1
n ]�n .

The projector πk (15) selects the k-th homogeneous component of an element f ∈
R̄, πk( f ) ∈ Rk . Its symbolic representation π̂k is induced by the condition π̂kϕ = ϕπk .
Let

f =
∑
n�0

f (n) ∈ R̄, πk( f ) = f (k) ∈ Rk, ϕ( f (n)) = ûnan(ξ1, . . . , ξn),
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then

π̂k

⎛
⎝∑

n�0

ûnan(ξ1, . . . , ξn)

⎞
⎠ = ûkak(ξ1, . . . , ξn).

The action of automorphisms S, T in symbolic representation is given by

S( f )
ϕ�−→ ûna(ξ1, . . . , ξn)(ξ1 · · · ξn) , T ( f )

ϕ�−→ ûna(1/ξ1, . . . , 1/ξn) ,

and thus ϕ : Sk( f ) �→ ûna(ξ1, . . . , ξn)(ξ1 · · · ξn)
k .

Definition 8. Let f ∈ Rn, ϕ( f ) = ûna(ξ1, . . . , ξn) and g ∈ Rm, ϕ(g) = ûmb(ξ1, . . . , ξm),
then ϕ( f g) = ϕ( f ) � ϕ(g) where

ϕ( f ) � ϕ(g) = ûn+m〈a(ξ1, . . . , ξn)b(ξn+1, . . . , ξn+m)〉�n+m . (35)

If f ∈ R0 = C, then ϕ( f g) = f ϕ(g). The representation of difference monomials
(Definition 7) can be deduced from ϕ : uk �→ ûξ k

1 and this multiplication rule (35).

The Abelian group R̂ = ⊕R̂n equipped with the � multiplication is isomorphic to
the graded ring R̄.

4.2. Difference operators in the symbolic representation. We assign the symbol η cor-
responding to the shift operator S in the symbolic representation with the action

η(û pa(ξ1, . . . , ξp)) = û pξ1ξ2 · · · ξpa(ξ1, . . . , ξp).

and the composition rule (corresponding to S ◦ f = S( f )S):

η ◦ ûna(ξ1, . . . , ξn) = ûn(

n∏
j=1

ξ j )a(ξ1, . . . , ξn)η ,

and thus ηk ◦ ûna(ξ1, . . . , ξn) = ûn(
∏n

j=1 ξ j )
ka(ξ1, . . . , ξn)ηk .

Now we can extend the symbolic representation to difference operators with coeffi-
cients in R̄

ϕ : A =
q∑

k=p

f(k)Sk �→ Â =
q∑

k=p

ϕ( f(k))η
k, f(k) ∈ R̄. (36)

Here the coefficients f(k) are formal series

f(k) = αk +
∞∑

n=1

f (n)
(k) , αk ∈ C, f (n)

(k) ∈ Rn,

and thus

ϕ( f(k)) = αk +
∞∑

n=1

ûn Ak,n(ξ1, . . . , ξn), Ak,n(ξ1, . . . , ξn) ∈ �n .



Perturbative Symmetry Approach for Differential–Difference Equations

After substitution of ϕ( f(k)) in (36) and the change of the order of summation, the
symbolic representation operator Â = ϕ(A) can also be written in the form

Â =
∞∑

n=0

ûn An(ξ1, . . . , ξn, η), An(ξ1, . . . , ξn, η) =
q∑

k=p

Ak,n(ξ1, . . . , ξn)ηk . (37)

In the non-commutative ring of difference operators in the symbolic representation
there is a natural degree grading (in powers ûn). The projector π̂s on the homogeneous
component can be extended to operators (37)

π̂s( Â) = ûs As(ξ1, . . . , ξs, η).

Symbolic representation enables us to solve immediately the problem to find the
pre-image of the Fréchet derivative. For example, let F = u(u1 − u−1), then F∗ =
uS + (u1 − u−1) − uS−1 and

ϕ(F) = û2 1

2
(ξ1 + ξ2 − ξ−1

1 − ξ−1
2 ), ϕ(F∗) = û(ξ1 + η − ξ−1

1 − η−1)

In general for f ∈ Rn we have a symbol ϕ( f ) = ûna(ξ1, . . . , ξn), where a is a
symmetric Laurent polynomial, and

f∗
ϕ�−→ (

ûna(ξ1, . . . , ξn)
)
∗ = nûn−1a(ξ1, . . . , ξn−1, η) .

Similar to the differential polynomial case [8], the symbol of the Fréchet derivative is
always symmetric with respect to all permutations of its variables, including the variable
η.

Proposition 1. An operator (37) is a symbolic representation of the Fréchet derivative of
an element of R̄ if and only if each term ûn An(ξ1, . . . , ξn, η) is a Laurent polynomial in
its variables and is invariant with respect to all permutations of its variables, including
the variable η.

Given the Fréchet derivative f̂∗ in the symbolic representation, we can immediately
reconstruct ϕ( f )+α by replacing ûn−1 → ûn/n and η → ξn in each term, where α ∈ C

is an arbitrary constant.
The composition rule for difference operators in symbolic representation (37) follows

from

ûn An(ξ1, . . . , ξn, η)◦ ûm Bm(ξ1, . . . , ξm , η) = ûn+m〈An(ξ1, . . . , ξn, η

m∏
i=1

ξi+n)Bm(ξn+1, . . . , ξn+m , η)〉
(38)

and the linearity. In particular, the action of difference operators on elements of R̂ follows
from

ûn An(ξ1, . . . , ξn, η)(ûmbm(ξ1, . . . , ξm)) = ûn+m〈An(ξ1, . . . , ξn,

m∏
i=1

ξi+n)bm(ξn+1, . . . , ξn+m)〉.
(39)



A. V. Mikhailov, V. S. Novikov, J. P. Wang

Now we are going to define the action of evolutionary derivations on elements of
the ring and difference operators in symbolic representation. A differential–difference
equation

ut = f, f =
∑
m�0

f (m), f (m) ∈ Rm

defines the evolutionary derivation ∂t = X f = ∑
m�0 X f (m) . Let ϕ( f (m)) = ûmbm

(ξ1, . . . , ξm) and for an element g ∈ Rn, ĝ = ϕ(g) = ûna(ξ1, . . . , ξn). Then

ĝt
..= ϕ(X f (g)) =

∞∑
m=0

ûn+m−1n〈a(ξ1, . . . , ξn−1,

m−1∏
i=0

ξn+i )bm(ξn, . . . , ξn+m−1)〉�n+m−1 .

Similarly for a difference operator Â = ϕ(A) (37) we obtain

Ât
..= ϕ(X f (A)) =

∞∑
m=0

( ∞∑
n=1

ûn+m−1n〈An(ξ1, . . . , ξn−1,

m−1∏
i=0

ξn+i , η)bm(ξn, . . . , ξn+m−1)〉�n+m−1

)
.

(40)
Finally we consider the symbolic representation of the Lie bracket. Let

f ∈ Rn, f
ϕ�−→ ûna(ξ1, . . . , ξn) and g ∈ Rm, g

ϕ�−→ ûmb(ξ1, . . . , ξm), then in symbolic
representation the Lie bracket [ f, g] (17) takes form

[ f, g] ϕ�−→ ûn+m−1 〈mb(ξ1, . . . , ξm−1, ξm · · · ξn+m−1)a(ξm, . . . , ξn+m−1)

−na(ξ1, . . . , ξn−1, ξn · · · ξn+m−1)b(ξn, . . . , ξn+m−1)〉�n+m−1
(41)

In particular, if f ∈ R1, f
ϕ�−→ ûω(ξ1) and g ∈ Rm, g

ϕ�−→ ûmb(ξ1, . . . , ξm), then

[ f, g] ϕ�−→ − ûm (ω(ξ1 · · · ξm) − ω(ξ1) − · · · − ω(ξm)) b(ξ1, . . . , ξm). (42)

Proposition 2. Let ut = F be a linear equation (F ∈ R1), then its linear space of
symmetries coincides with R1.

Proof. Let us assume that G = G(1) + G(m) + G(m+1) + · · · for some m > 1, where
G(k) = πk(G) is a symmetry, i.e. [F, G] = 0 and thus [F, G(m)] = 0. It follows from
(42) with f = F, g = G(m) that b(ξ1, . . . , ξm) = 0, and therefore G(m) = 0. ��
Proposition 3. Let G ∈ R′ be a symmetry of equation ut = F ∈ R′ with a non-zero
linear term F (1) = π1(F) �= 0. Then G also has a non-zero linear term π1(G) �= 0.

Proof. Let us assume that G = G(m) + G(m+1) + · · · and G(m) �= 0 for some m > 1.
Thus πm([F, G]) = [F (1), G(m)] = 0. A contradiction follows from (42) with f =
F (1), g = G(m), so that b(ξ1, . . . , ξm) = 0, and therefore G(m) = 0. ��
Proposition 4. Any two symmetries G1, G2 ∈ R′ of equation ut = F ∈ R′ with a
non-zero linear term F (1) = π1(F) �= 0 commute [G1, G2] = 0.

Proof. The commutator of two symmetries H = [G1, G2] is a symmetry and it does
not have a linear part π1(H) = 0. It follows from Proposition 3 that H = 0. ��
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4.3. Symmetries in the symbolic representation. Symbolic representation enables us
to reduce the problem of description of symmetries for a given differential–difference
equation

ut = F, F
ϕ�−→ ûω(ξ1) + û2a2(ξ1, ξ2) + û3a3(ξ1, ξ2, ξ3) + · · · , ω(ξ1) �= 0 (43)

to the multivariate polynomial factorisation problem.

Theorem 2. Let G ∈ R′ be a symmetry of Eq. (43). Then the coefficients Ak of its
symbolic representation

G
ϕ�−→ û�(ξ1) + û2A2(ξ1, ξ2) + û3A3(ξ1, ξ2, ξ3) + · · · (44)

can be determined recursively:

A2(ξ1, ξ2) = G�(ξ1, ξ2)

Gω(ξ1, ξ2)
a2(ξ1, ξ2); (45)

Am(ξ1, ..., ξm) = 1

Gω(ξ1, ..., ξm)

(
G�(ξ1, ..., ξm)am(ξ1, ..., ξm)

+
m−1∑
j=2

j
〈
A j (ξ1, ..., ξ j−1, ξ j . . . ξm)am+1− j (ξ j , ..., ξm)

−a j (ξ1, ..., ξ j−1, ξ j . . . ξm)Am+1− j (ξ j , ..., ξm)
〉
Σm

)
, m = 3, 4, · · · (46)

where

Gκ(ξ1, ..., ξm) = κ(

m∏
i=1

ξi ) −
m∑

i=1

κ(ξi ), κ = ω,�. (47)

Proof. The proof of this theorem is straightforward. Using (41) we can compute the
Lie bracket between F and G. It is obvious that its linear part vanishes. When the Lie
bracket vanishes up to R̂2, we have

û2 (ω(ξ1ξ2)A2(ξ1, ξ2) + a2(ξ1, ξ2)(�(ξ1) + �(ξ2)) − �(ξ1ξ2)a2(ξ1, ξ2)

−A2(ξ1, ξ2)(ω(ξ1) + ω(ξ2))) = 0,

which leads to the expression of A2(ξ1, ξ2) as (45). The Lie bracket vanishing up to R̂m

is equivalent to formula (46). ��
Theorem 2 states that a symmetry G of equation (43) is uniquely determined by its

linear part �(ξ1). For a given Laurent polynomial �(ξ1) all coefficients An(ξ1, ..., ξn)

in the formal series (44) can be found recursively. It does not mean that any evolutionary
equation has a symmetry. The terms in (44) must represent symbols of difference poly-
nomials, i.e. the coefficients Am(ξ1, . . . , ξm) must be symmetric Laurent polynomials.
In general, the coefficients Ak , presented in Theorem 2 are symmetric rational functions
(45), (46)—they have denominators Gω (except the caseω(ξ1) = const �= 0, see remark
below). In order to define symbols of difference polynomials, these denominators must
cancel with appropriate factors in the numerators. Factorisation properties of the Laurent
polynomials G� (47) impose constraints on possible choices of �(ξ1). We call a linear
term û�(ξ1), �(ξ1) ∈ �1 admissible for the equation with the symbolic representation
(43) if it is the linear term of a symmetry (44). A linear combination of symmetries is
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again a symmetry, thus the set of all admissible linear terms forms a vector space over
C. We denote this space by VF . For integrable equations (Definition 5) the algebra of its
symmetries and the vector space VF are infinite dimensional.

If the coefficients Ak, k = 2, 3, . . . , s (45), (46) are Laurent polynomials, then G
(44) is s–approximate symmetry of the equation. When the sequence of the coefficients
Am truncates, we obtain a polynomial symmetry for the equation (43) (Example 4).

Remark 2. If ω(ξ1) is a nonzero constant ω(ξ1) = α �= 0, then Gω(ξ1, · · · , ξm) =
(1 − m)α is also a non-zero constant. In this case it follows from Theorem 2 that all
coefficients Am(ξ1, . . . , ξm), m = 2, 3, . . . are symmetric Laurent polynomials and
therefore equation

ût = αû + û2a2(ξ1, ξ2) + û3a3(ξ1, ξ2, ξ3) + · · · , α ∈ C
∗ (48)

admits a formal symmetry (44) for any choice of a Laurent polynomial�(ξ1). Therefore
Eq. (48) is formally integrable for any choice of the coefficients ak(ξ1, . . . , ξk) ∈ �k . It
is not surprising, since there exist formal and formally invertible change of variables

v̂ = û + û2b2(ξ1, ξ2) + û3b3(ξ1, ξ2, ξ3) + · · · , bk(ξ1, . . . , ξk) ∈ �k,

such that in terms of the new variable v̂ Eq. (48) and its symmetry become linear

v̂t = αv̂, v̂τ = �(ξ1)v̂,

and thus integrable.

Example 3. Consider the Narita–Itoh–Bogoyavlensky equation [27]

ut = f = u
n∑

i=1

(ui − u−i ) (49)

The right hand side of the equation does not contain a linear term, but it can be created
by a shift ui → ui + 1, i ∈ Z, and so we can consider

ut =
n∑

i=1

(ui − u−i ) + u
n∑

i=1

(ui − u−i ). (50)

The symbolic representation of the equation is

ût = ûω(ξ1) + û2a2(ξ1, ξ2),

ω(ξ1) = P(ξ1) − P(ξ−1
1 ), P(ξ1) := ξn

1 + ξn−1
1 + · · · + 1 = ξn+1

1 − 1

ξ1 − 1
,

a2(ξ1, ξ2) = 1

2
(P(ξ1) + P(ξ2) − P(ξ−1

1 ) − P(ξ−1
2 )).

It is known that Eq. (50) possesses a symmetry with linear term of the form û�k(ξ1)

[28], where

�k(ξ1) = (P(ξ1))
k − (P(ξ−1

1 ))k, k = 2, 3, . . .

that is, û�k(ξ1) ∈ V f for k ∈ N.
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Taking an admissible linear term for a given equation, one can use Theorem 2 to
determine the symmetry starting with this linear term.

Example 4. Let us consider the Volterra equation

ut = u(u1 − u−1) ∈ R2 (51)

In order to introduce a linear term to this equation we make a change of variables
ui → ui + 1:

ut = u1 − u−1 + u(u1 − u−1)

In the symbolic representation the equation can bewritten as ût = ûω(ξ1)+û2a2(ξ1, ξ2),
where

ω(ξ1) = ξ1 − 1

ξ1
, a2(ξ1, ξ2) = 1

2

(
ξ1 + ξ2 − 1

ξ1
− 1

ξ2

)

We compute a symmetry starting with �(ξ1) = ξ21 − 1
ξ21

∈ R̂1. Its quadratic terms are

A2(ξ1, ξ2) = G�(ξ1, ξ2)

Gω(ξ1, ξ2)
a2(ξ1, ξ2) = 1

ξ1ξ2
(1 + ξ1)(1 + ξ2)(ξ1ξ2 + 1)a2(ξ1, ξ2)

For cubic terms we then obtain

A3(k1, k2, k3) = 1

ξ21 ξ22 ξ23
(ξ1ξ2ξ3 − 1)

〈
ξ21 ξ2 + ξ1ξ2ξ

2
3 + ξ1ξ

2
2 ξ23 + ξ1ξ

2
2 ξ33

〉
Σ3

and all terms of degrees higher than 3 vanish. In variables uk this symmetry is

uτ = u2 − u−2 + uu2 + uu1 + u2
1 + u1u2 − u−1u−2 − uu−2 − u2−1 − uu−1

+u2u1 + uu2
1 − uu2−1 − u−1u2 + uu1u2 − uu−1u−2.

After changing variable ui → ui − 1, we get the symmetry for the Volterra chain
(compare with G1 in Example 1)

uτ = u(u1u2 + u2
1 + uu1 − uu−1 − u2−1 − u−1u−2) − 4u(u1 − u−1).

Theorem 2 can be used as a test for integrability if �(ξ1) is assumed. In this case
the integrability conditions are that the coefficient functions A2(ξ1, ξ2), A3(ξ1, ξ2, ξ3),

etc are Laurent polynomials. A negative result (i.e. the coefficient functions fail to be
Laurent polynomials) might be inconclusive if the assumption about �(ξ1) was wrong.

Most interesting integrable systems possess an infinite hierarchy of local conservation
laws. Let us recall that a difference polynomial (or a formal series) ρ is a density of a
local conservation law for the equation ut = F (43) if ρt ∈ (S − 1)R′. In order to
exclude trivial densities, i.e. elements of (S − 1)R′, the densities are defined on the
quotient space (the C-linear space of functionals) ρ ∈ R′

�(S − 1)R′. In the symbolic
representation the condition that a term ûkak(ξ1, . . . , ξk) is in the image of (S − 1)
means that ak(ξ1, . . . , ξk) can be presented as a product of ξ1ξ2 · · · ξk − 1 and a Laurent
polynomial.

The existence of local conservation laws imposed constraints on the linear part of
equations and their symmetries.



A. V. Mikhailov, V. S. Novikov, J. P. Wang

Proposition 5. Suppose equation ut = F (43) possesses a conserved density ρ without
a linear term, then ω(ξ) + ω(ξ−1) = 0.

Proof. Let the conserved density ρ = ρ(k) + ρ(k+1) + · · · have a nontrivial contribution
with lowest degree k ≥ 2 and ρ(k) ϕ�−→ ûka(ξ1, ..., ξk), where the coefficient a(ξ1, ..., ξk)

is not divisible by ξ1ξ2 · · · ξk −1 and a Laurent polynomial (otherwise ρ(k) ∈ Im(S−1)).
Then

X F (1) (ρ
(k)) ∈ (S − 1)R′, X F (1) (ρ

(k))
ϕ�−→ ûka(ξ1, ..., ξk) (ω(ξ1) + · · · ω(ξk)) ,

and should exists aLaurent polynomialb ∈ �k such thatω(ξ1)+· · · ω(ξk) = (ξ1ξ2 · · · ξk−
1)b(ξ1, ..., ξk). Setting ξ1 = . . . = ξk = 1 in the latter equation we find kω(1) = 0,
and thus ω(1) = 0. Choosing now ξ1 = ξ, ξ2 = ξ−1 and ξ� = 1 for � > 2 we have
ω(ξ) + ω(ξ−1) + (k − 2)ω(1) = 0, and therefore ω(ξ) + ω(ξ−1) = 0. ��
Remark 3. If an evolutionary equation (43) possesses at least two conserved densities
in R′, then we can omit the condition “possesses a conserve density ρ without a linear
term”, since there always exists a linear combination of the densities which does not
have a linear term.

For a given Eq. (43), to find the vector space VF of its admissible linear terms is a non-
trivial problem. In the differential case this problem was completely solved for scalar
polynomial homogeneous evolutionary partial differential equations [6], for systems
of two-component equations [22,23,26,29], as well as for odd order non-evolutionary
equations [30]. In next session we are going to formulate the necessary integrability
conditions in the universal form independent on the structure of the vector space of its
admissible linear terms.

5. Integrability Conditions for Differential–Difference Equations

In the case of partial differential equations universal integrability conditions can be
formulated in terms of a formal recursion operator [1–3]. Namely, the existence of an
infinite hierarchy of symmetries implies the existence of a first order formal pseudo-
differential series with the coefficients in the corresponding differential field, satisfying
the same equations as the recursion operator. Universality means that this fact does not
depend on unknown a priory possible gaps in the hierarchy of symmetries. Later on this
theory has been reformulated in the symbolic representation [8], which enables us to
deal with some integro-differential and non-evolutionary equations [9–11]. Universality
follows from the existence of fractional powers of formal pseudo-differential series. In
the differential–difference case a fractional power represented by a difference formal
series with coefficients in the difference field F or ring R̄ may not exist [18]. To tackle
the problemwe introduce in this section a quasi-local extension of the difference ring R̄.
It will enable us to formulate universal integrability conditions for differential–difference
equations in the symbolic representation.

5.1. Quasi-local extension of the difference ring R̂. In Sect. 4.2 we have shown that
formal difference series with coefficients from R̄ in the symbolic representation take the
form

Â =
∞∑

n=0

ûn An(ξ1, . . . , ξn, η), An(ξ1, . . . , ξn, η) ∈ �n[η±1], (52)
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where �n[η±1] = C[ξ±1
1 , . . . , ξ±1

n ]�n [η±1] is a set of Laurent polynomials in the vari-
able η, whose coefficients are symmetric Laurent polynomials in variables ξ1, . . . , ξn .
The composition law for difference operators in the symbolic representation is given by
(38).

Here we define a set of formal series

A =
{ ∞∑

n=0

ûn An(ξ1, . . . , ξn, η)

∣∣∣∣∣ An(ξ1, . . . , ξn, η) ∈ C(ξ1, . . . , ξn, η)�n

}
, (53)

where An(ξ1, . . . , ξn, η) are rational functions in its variables, symmetric with respect
to permutations of the ξ–variables. The natural addition and the composition rule (38)
define on A a structure of a non-commutative ring. Obviously, difference operators in
the symbolic representation and formal difference series, such as (52) belong toA, but in
general elements of A do not represent formal difference series or difference operators.

Definition 9. Let An = An(ξ1, . . . , ξn, η) be a rational function of its variables. The
term ûn An is called L–local (M–local), if the coefficients An,k(ξ1, . . . , ξn) of its power
expansion in the variable η at infinity An = ∑

k�pn
An,k(ξ1, . . . , ξn)ηk (resp. at zero

An = ∑
k�qn

An,k(ξ1, . . . , ξn)ηk) are symmetric Laurent polynomials in the variables
ξ1, . . . , ξn .
A formal series

A =
∞∑

n=0

ûn An(ξ1, . . . , ξn, η) (54)

is called L–local (M–local) if all its terms are L–local (resp. M–local). The formal series
A (54) is called local if it is L- and M-local.

Example 5. The following terms are local, they both M–local and L–local:

û A1(ξ1, η)= û
η(η + ξ1)

η − 1
, û2 A2(ξ1, ξ2, η)= û2 η(ηξ1ξ

2
2 + ηξ21 ξ2 − ηξ21 − ηξ22 − ηξ1 − ηξ2 − 2ξ1ξ2)

2(η − 1)(ηξ1 − 1)(ηξ2 − 1)
.

They correspond to the first two terms of the canonical formal recursion operator (we
define it in Sect. 5.2) 
 = η + û A1(ξ1, η) + û2A2(ξ1, ξ2, η) + · · · for the Volterra chain
ut = u1 − u−1 + u(u1 − u−1).

The term û2(η + ξ1 + ξ2)
−1 is L–local, but not M–local.

Let Â ∈ A be a formal series of the form

A = ηN +
∑
p≥1

û pap(ξ1, . . . , ξp, η), (55)

where N is a positive integer, and let us formally seek its N–th root

B = η +
∑
p≥1

û pbp(ξ1, . . . , ξp, η) (56)

such that B N = A. Using the composition rule (38) and taking projections on the
homogeneous components π̂s(B N − A) = 0, s = 0, 1, 2, · · · , we obtain:

π̂1 : ηN−1�N (ξ1)b1(ξ1, η) − a1(ξ1, η) = 0, (57)

π̂s : ηN−1�N (ξ1ξ2 · · · ξs)bs(ξ1, . . . , ξs, η) + fs − as(ξ1, . . . , ξs, η) = 0, (58)
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where function �N is defined as

�N (ξ) ..= 1 + ξ + · · · + ξ N−1 = (1 − ξ N )(1 − ξ)−1, (59)

and the functions fs are completely determined by b1, . . . , bs−1. For example

f2 =
N−2∑
n=0

〈
N−n−2∑

m=0

ξn
1 ξn+m

2 b1(ξ1, ηξ2)b1(ξ2, η)

〉

�2

ηN−2.

Relations (57), (58) form a triangular system of equations which enable us to find the
rational functions b1(ξ1, η), b2(ξ1, ξ2, η), . . . successively

b1(ξ1, η) = a1(ξ1, η)η1−N

�N (ξ1)
, b2(ξ1, ξ2, η) = a2(ξ1, ξ2, η) − f2

ηN−1�N (ξ1ξ2)
, . . . .

For every A of the form (55) we can find a unique formal series (56) satisfying the
equation B N = A.

Let A be a local series. Then from the relations (57), (58) it follows that the elements of
B are generally no longer local. If�N (ξ1) does not divide a1(ξ1, η) then the coefficients
of the power expansion of b1(ξ1, η) in η as η → 0 and in η−1 as η → ∞ contain
�N (ξ1) in their denominators and thus fail to be Laurent polynomials in ξ1 and therefore
they do not represent symbols of difference polynomials. Similarly, the coefficients of
the expansions of b2(ξ1, ξ2, η) may contain �N (ξ1), �N (ξ2) and �N (ξ1ξ2) in their
denominators, etc. It motivates us to define �N -quasi-local extension of the difference
ring R̂.

The action of the pseudo-difference operator θN = �−1
N (η) on ûkak(ξ1, . . . , ξk) ∈ R̂

is given by

θN (η)(ûkak(ξ1, . . . , ξk)) = ûk ak(ξ1, . . . , ξk)

�N (
∏k

i=1 ξi )
.

Let us define the sequence of the ring extensions

Ř(0) = R̂, Ř(s+1) = Ř(s)

⋃
θN (Ř(s)), s = 0, 1, 2 . . . .

Here the horizontal line denotes the ring closure as Abelian groups and with respect
to the � product (35). The index s in Ř(s) shows the maximal “nesting” degree of θN .
Obviously

Ř(0) = R̂ ⊂ Ř(1) ⊂ Ř(2) ⊂ · · · .

The quasi-local extension of the ring R̂ is defined as the limit

Ř = lim
s→∞ Ř(s) . (60)

Saying that a ∈ Ř we mean that there exists such non-negative integer s that a ∈ Ř(s).
Elements of Ř(s), s � 1 are called quasi-local. The quasi-local extension defined above
depends on the choice of the integer N .
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Definition 10. An element û pa(ξ1, . . . , ξp, η) ∈ A is called �-quasi-local if the first �

terms û pai (ξ1, . . . , ξp) of its power expansion in η−1 at η → ∞

û pa(ξ1, . . . , ξp, η) = û pa1(ξ1, . . . , ξp)η
q + û pa2(ξ1, . . . , ξp)η

q−1 + · · ·

are quasi-local.
A formal series A = φ(η)+

∑
p≥1 û pap(ξ1, . . . , ξp, η), φ(η) ∈ C[η, η−1] is called

�-quasi-local if all its terms are �-quasi-local. It is called quasi-local if it is �-quasi-local
for all �.

Above we defined the Laurent quasi-locality considering power series expansions in
η−1. Similarly we can define the Maclaurin quasi-local formal series using the power
expansion in η (cf. Definition 9). In Sect. 5.2, as well as in applications to the problem
of classification of integrable equations of the form (73) in Sect. 6.1 it will be sufficient
to use concepts of Laurent quasi-locality only (which will be addressed as quasi-locality
for shortness if N is defined).

The above computation of the N -th root of a formal series A (55) can be recast in
the following Proposition.

Proposition 6. Let

A = ηN +
∑
p≥1

û pap(ξ1, . . . , ξp, η), N ∈ N

be a formal series whose first k terms ûa1(ξ1, η), . . . , ûkak(ξ1, . . . , ξk, η) are �-quasi-
local. Then there exists a unique formal series

B = η +
∑
p≥1

û pbp(ξ1, . . . , ξp, η)

satisfying the equation B N = A, and first k terms of series B are �-quasi-local.

The above proposition admits an immediate generalisation:

Proposition 7. Let P(η) = ∑
M≤k≤N

ckη
k, cN cM �= 0, where M and N are integers, and

A = P(η) +
∑
p≥1

û pap(ξ1, . . . , ξp, η)

be a formal series whose first k terms ûa1(ξ1, η), . . . , ûkak(ξ1, . . . , ξk, η) are �-quasi-
local. Then there exists a unique formal series

B = η +
∑
p≥1

û pbp(ξ1, . . . , ξp, η)

satisfying the equation P(B) = A, and first k terms ûb1(ξ1, η), . . . , ûkbk(ξ1, . . . , ξk, η)

are �-quasi-local.
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5.2. Canonical formal recursion operator. We now proceed to the construction of the
universal formof necessary integrability conditions forfinite order evolutionarydifferential–
difference equations, i.e., equations whose right hand side is either a polynomial or a
formal series in a finite number of variables u−n, . . . , un :

ut = f (u−n, . . . , un), f =
∑
i≥1

f (i), f (1) �= 0, f (i) ∈ Ri ∩ C[u−n, . . . , un].
(61)

In symbolic representation Eq. (61) takes the form

ût = f̂ = ûω(ξ1) +
∑
i≥2

ûi ai (ξ1, . . . , ξi ), ai ∈ �i . (62)

We shall assume that ω(ξ1) �= const (see Remark 2).

Definition 11. A quasi-local formal series


̂ = φ(η) +
∑
p≥1

û pφp(ξ1, . . . , ξp, η), φ(η) ∈ C(η),

is called a formal recursion operator for Eq. (62) if 
̂ satisfies the equation


̂t − f̂∗ ◦ 
̂ + 
̂ ◦ f̂∗ = 0 . (63)

Equation (63) is linear in 
̂ and for any rational function φ(η) it has a unique solution
in terms of a formal series with rational coefficients. Namely, the following theorem
holds:

Theorem 3. Let


 = φ(η) +
∑
p≥1

û pφp(ξ1, . . . , ξp, η), φ(η) ∈ C(η), φp(ξ1, . . . , ξp, η) ∈ C(ξ1, . . . , ξp, η) (64)

be a formal series with rational coefficients satisfying equation (63). Then, for any choice
of a rational function φ(η), the coefficients of the series can be recursively determined
from the following system:

φ1(ξ1, η) = 2
φ(ξ1η) − φ(η)

Gω(ξ1, η)
a2(ξ1, η), (65)

φp(ξ1, . . . , ξp, η) = (p + 1)
(φ(ξ1 · · · ξpη) − φ(η))ap+1(ξ1, . . . , ξp, η)

Gω(ξ1, . . . , ξp, η)
+

1

Gω(ξ1, . . . , ξp, η)

×
⎡
⎣

p−1∑
s=1

s〈φs(ξ1, . . . , ξs−1, ξs · · · ξp, η)ap−s+1(ξs , . . . , ξp)〉

+
p∑

s=2

s
(〈φp−s+1(ξ1, . . . , ξp−s+1, ξp−s+2 · · · ξpη)as(ξp−s+2, . . . , ξp, η) 〉

−〈as(ξ1, . . . , ξs−1, ξs · · · ξpη)φp−s+1(ξs , . . . , ξp, η)〉)] , p = 2, 3 . . . .

(66)
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Proof. The proof follows immediately from the observation that equations

π̂p(Dt (
) − f̂∗ ◦ 
 + 
 ◦ f̂∗) = 0, p = 1, 2, . . .

can be solved recursively with respect to φp(ξ1, . . . , ξp, η), p = 1, 2, . . .. ��
Theorem 3 does not mean that any Eq. (62) possesses a formal recursion operator,

since it does not guarantee that the formal series obtained is quasi-local. Below we
are going to show that for integrable equations, i.e., equations possessing an infinite
hierarchy of symmetries, the obtained series must be quasi-local. Therefore conditions
of quasi-locality of the terms û pφp(ξ1, . . . , ξp, η), p = 1, 2, . . . obtained in Theorem 3
are necessary integrability conditions for Eq. (62).

Let 
̂ be a formal recursion operator, then powers of 
̂ and linear combinations of
powerswith constant coefficients are also formal recursion operators. Indeed, they satisfy
Eq. (63) and are quasi-local. A constant is a (trivial) recursion operator. Moreover, for
any formal recursion operator 
̂with non-constant φ(η) there exist a unique quasi-local
formal series


 = η +
∑
p≥1

û pφp(ξ1, . . . , ξp, η) (67)

satisfying the equation 
̂ = φ(
) (Proposition 7). It is easy to see that 
 also satisfies
Eq. (63). A formal recursion operator with φ(η) = η we say it is canonical.

The following Theorem shows that the existence of a canonical formal recursion
operator follows from integrability of equation (62) (Definition 5).

Theorem 4. Assume that Eq. (62) is integrable. Then a canonical formal series (67)
satisfying Eq. (63) is quasi-local.

Proof. According toDefinition5 there is an infinite sequenceof symmetries of increasing
orders for Eq. (62). Let G be a symmetry. By Definition 4 we have [G, f ] = 0 and
therefore

([G, f ])∗ = (G∗)t + G∗ ◦ f∗ − ( f∗)τ − f∗ ◦ G∗ = 0,

where ∂τ = XG is the derivation defined by the evolutionary equation uτ = G. In
symbolic representation it reads

(Ĝ∗)t − f̂∗ ◦ Ĝ∗ + Ĝ∗ ◦ f̂∗ = ( f̂∗)τ , (68)

where

Ĝ∗ = �(η) +
∑
p≥2

pû p−1Ap(ξ1, . . . , ξp−1, η)

is the symbolic representation of the Fréchet derivative of a symmetry G, and

f̂∗ = ω(η) +
∑
p�1

∑
k�n

pap,k(ξ1, . . . , ξp−1)η
k û p−1

is the symbolic representation of the Fréchet derivative of Eq. (62). It follows from
Proposition 3 that symmetries have non-vanishing linear part and thus �(η) �= 0.

We denote the highest power of η of a Laurent formal series by deg+η . We have

deg+η( f̂∗) = n and deg+η(Ĝ∗) = N , where N can be chosen arbitrary large. We substitute
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f̂∗ and Ĝ∗ in equation (68), and notice that the degree of η in the right hand side of the
equation is deg+η( f̂∗)τ � n but

deg+( f̂∗ ◦ Ĝ∗) = deg+(Ĝ∗ ◦ f̂∗) = N + n.

Thus, at least first N terms p Ap,k(ξ1, . . . , ξp−1)η
k û p−1, k = N , N−1, . . . , 1, p ∈ Nof

the expansion Ĝ∗ satisfy the homogeneous linear equation (63) with φ(η) = �(η). Such
solution to Eq. (63) exists and is unique (Theorem 3). Thus we can identify these terms
with φp−1,k(ξ1, . . . , ξp−1)η

k û p−1 in the expansion of φp−1(ξ1, . . . , ξp−1, η). Since Ĝ∗
is local, the obtained solution 
 is N -local.

It follows from Proposition 7 that there exist N -quasi-local (canonical) series of the
form (67). Moreover this series is quasi-local since N can be taken arbitrary large. ��

Theorem 4 is constructive, and it provides necessary integrability conditions for
Eq. (62), independent on the symmetry structure of the equation. The fact of existence
of a formal recursion operator can also be proved using Adler’s Theorem 1. It follows
from Theorem 1 as well as from Theorem 3 that for equations of order (−N , N ) the
coefficients of the formal recursion operator
 (64) belong to�N -quasi-local extension.
Theorem 1 also suggests that there exists a rational function φ(ξ1) such that 
 (64) is
local. Indeed, upon expanding the coefficients of the formal recursion operator 
L in
Theorem 1 in powers of u and collecting the coefficient at u0 we find φ(η) such that
the resulting formal recursion operator (64) is local. We conjecture that φ(η) = ω(η)+,
that is, the polynomial part of the Laurent polynomial ω(ξ1), results in a local 
. For
example, in the case of the Narita–Itoh–Bogoyavlensky equation (49) with n = 2 we
can set

φ(η) = η2 + η + 1,

and for the first coefficient ûφ1(ξ1, η) of the formal recursion operator (64) we have

φ1(ξ1, η) = η
(
η3ξ1 + η2ξ1 + η2 + ηξ31 + ηξ21 + ξ21

)

(η − 1) (ηξ1 + ξ1 + 1)
,

and therefore ûφ1(ξ1, η) is local.
Theorem3 shows the advantage of symbolic representation. It provides explicit recur-

rence formulae (65) and (66) for the coefficients of a formal recursion operator. We can
use it to tackle the classification problem of integrable differential–difference equations.
For a given family of equations of form (62) the process is as follows:

• Use (65) and (66) to find a few first coefficients φp(ξ1, . . . , ξp, η).
• Find constraints on the equations imposed by the quasi-locality conditions of

û pφp(ξ1, . . . , ξp, η).

We illustrate the procedure in the following simple examples.

Example 6. Let us describe all integrable equations of the form

ut = u2 + αu + u(u2 + βu1 + γ u), α, β, γ ∈ C. (69)

Its symbolic representation is of the form (62) with

ω(ξ1) = ξ21 + α, a2(ξ1, ξ2) = 1

2
(ξ21 + ξ22 ) +

β

2
(ξ1 + ξ2) + γ
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and as(ξ1, . . . , ξs) = 0, s > 2. Using Theorem 3 we recursively compute the coeffi-
cientsφ1, φ2 of the formal recursion operator startingwithφ(η) = η. The first coefficient
reads as

φ1(ξ1, η) = η (ξ1 − 1)
(
η2 + βη + ξ21 + βξ1 + 2γ

)

η2(ξ21 − 1) − ξ21 − α
,

and its power expansion in η at η → ∞ is of the form

φ1(ξ1, η) = η + β

ξ1 + 1
+

ξ41 + βξ31 + 2γ ξ21 − βξ1 + α − 2γ

(ξ1 − 1) (ξ1 + 1) 2
η−1 + O(η−2).

We see that the element ûφ1(ξ1, η) is 1-quasi-local as

û
η + β

ξ1 + 1
∈ Ř(1),

and the ring extension is performed by using the operator θ2 = (1 + η)−1. The second
term in the expansion contains ξ1 − 1 in the denominator, and therefore

û
ξ41 + βξ31 + 2γ ξ21 − βξ1 + α − 2γ

(ξ1 − 1) (ξ1 + 1) 2
η−1

is quasi-local if and only if ξ1 − 1 divides ξ41 + βξ31 + 2γ ξ21 − βξ1 + α − 2γ . The latter
occurs if and only if α = −1. Then, if α = −1, the first term of the formal recursion
operator reads as

ûφ1(ξ1, η) = û
η
(
η2 + βη + ξ21 + βξ1 + 2γ

)

(η − 1)(η + 1) (ξ1 + 1)
,

and it is easy to see that this term is �2-quasi-local.
Let α = −1. We now consider the power expansion in η at η → ∞ of the second

coefficient φ2(ξ1, ξ2, η):

φ2(ξ1, ξ2, η) = − ξ1 + ξ2

2 (ξ1 + 1) (ξ2 + 1) (ξ1ξ2 + 1)
η − β (ξ1 + ξ2 + 2)

2 (ξ1 + 1) (ξ2 + 1) (ξ1ξ2 + 1)

+
P(ξ1, ξ2, β, γ )

2 (ξ1ξ2 − 1) ξ1ξ2 (ξ1 + 1) (ξ2 + 1) (ξ1ξ2 + 1) 2
+ O(η−2),

where P(ξ1, ξ2, β, γ ) is a polynomial in its variables. The third term in this expan-
sion is the obstruction to quasi-locality of û2φ2(ξ1, ξ2, η), unless ξ1ξ2 − 1 divides
P(ξ1, ξ2, β, γ ). We have

P(ξ1, ξ
−1
1 , β, γ ) = −

(
1 + ξ−1

1

)
2
(
2(γ + 1)ξ1 + β(1 + ξ21 )

)
.

So the division occurs if and only if β = 0 and γ = −1. The latter implies �2-quasi-
locality of the element û2φ2(ξ1, ξ2, η). The resulting Eq. (69) is

ut = u2 − u + u(u2 − u) = (u + 1)(u2 − u).

Upon the change of variables uk → uk − 1, k ∈ Z, it becomes the stretched Burgers
equation

ut = u(u2 − u),

which is integrable and can be linearised by a Cole-Hopf type transformation.
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Example 7. Let us find all integrable equations of the form

ut = u2 + αu1 − αu−1 − u−2 + u(u2 + βu1 − βu−1 − u−2), α, β ∈ C. (70)

Its symbolic representation is of the form (62), where

ω(ξ) = ξ2 + αξ − αξ−1 − ξ−2, a2(ξ1, ξ2) = 1

2
(ξ21 + ξ22 − ξ−2

1 − ξ−2
2 + β(ξ1 + ξ2 − ξ−1

1 − ξ−1
2 ))

and as(ξ1, . . . , ξs) = 0, s > 2. Using Theorem 3 we recursively compute the coeffi-
cients φ1, φ2, φ3 of the formal recursion operator starting with φ(η) = η. We have

φ1(ξ1, η) = η
(
βη2ξ1 + βηξ21 + η3ξ1 + η2 + ηξ31 + ξ21

)

(η − 1)
(
αηξ1 + η2ξ21 + η2ξ1 + ηξ21 + 2ηξ1 + η + ξ1 + 1

) ,

and it is easy to see that this term is quasi-local as all coefficients of its power expansion
at η → ∞ (as well as at η → 0) are �2-quasi-local.

The direct computation shows that the next coefficient φ2(ξ1, ξ2, η) is of the form

φ2 = �2(ξ1, ξ2, η, α, β)

(ηξ1 − 1) (ηξ2 − 1)
(
αηξ1ξ2 + η2ξ21 ξ22 + η2ξ1ξ2 + ηξ1ξ

2
2 + ηξ1 + ηξ21 ξ2 + ηξ2 + ξ1ξ2 + 1

) ,

where �2(ξ1, ξ2, η, α, β) is a polynomial in its arguments. From this it follows that the
second term û2φ2(ξ1, ξ2, η) is quasi-local.

The quasi-locality condition of next coefficient φ3(ξ1, ξ2, ξ3, η) imposes restrictions
on parameters α, β. The function φ3 can be represented as

φ3 = �3(ξ1, ξ2, ξ3, η, α, β)

�3(ξ1, ξ2, ξ3, η, α)
,

where �3, �3 are polynomials in their arguments. The polynomial �3 contains the
irreducible factor

(ξ1ξ2ξ3η)2Gω(ξ1, ξ2, ξ3, η) =
(
ξ21 ξ22 ξ23 − 1

) (
η4ξ21 ξ22 ξ23 + 1

)
+ αηξ1ξ2ξ3 (ξ1ξ2ξ3 − 1)

(
η2ξ1ξ2ξ3 + 1

)

+η2(−αξ22 ξ23 ξ31 − αξ22 ξ33 ξ21 − αξ32 ξ23 ξ21 + αξ2ξ
2
3 ξ21 + αξ22 ξ3ξ

2
1 + αξ22 ξ23 ξ1

−ξ22 ξ23 ξ41 − ξ22 ξ43 ξ21 + ξ22 ξ21 − ξ42 ξ23 ξ21 + ξ23 ξ21 + ξ22 ξ23 ).

The presence of this factor results in violation of the quasi-locality of the term û3φ3,
unless it cancels out by the numerator �3. The cancellation takes place if and only if
β = α and α = 0 or α = 1. If α = 0 then the resulting equation is

ut = u2 − u−2 + u(u2 − u−2) = (u + 1)(u2 − u−2),

which upon the change of variables uk → uk −1, k ∈ Z, becomes the stretchedVolterra
equation

ut = u(u2 − u−2).

In the case α = 1 we have

ut = u2 + u1 − u−1 − u−2 + u(u2 + u1 − u−1 − u−2) = (u + 1)(u2 + u1 − u−1 − u−2),

and after the same change of variables uk → uk −1, k ∈ Z, we obtain the Narita–Itoh–
Bogoyavlensky equation (49) when n = 2, that is,

ut = u(u2 + u1 − u−1 − u−2). (71)
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6. Classification of Integrable Differential–Difference Equations

Here we apply the previous section results to the problem of classification of anti-
symmetric quasi-linear integrable differential–difference equations of order (−n, n)

ut = un f (un−1, . . . , u1−n) − u−n f (u1−n, . . . , un−1) + g(un−1, . . . , u1−n) − g(u1−n, . . . , un−1),

(72)

where f, g are polynomial functions or formal series. Quasi-linear equations are called
equivalent if they are related by invertible transformations uk �→ αuk + β, t �→
γ t, α, γ ∈ C

∗, β ∈ C. The equivalence classesmay contain equationswith f (0, . . . , 0)
= 0 (see Example 4). In the classification list it is sufficient to present a single representa-
tive from each equivalence class. Integrable equations are members of infinite hierarchy
of symmetries. Each hierarchy has a seed which is hierarchy member of a minimal pos-
sible order. Thus instead of presenting all integrable equations of a certain fixed order,
we only present the seeds of integrable hierarchies removing the ones possessing lower
order symmetries.

In this section we give a complete list for equations of the form (72) when n =
3 satisfying necessary integrability conditions - the quasi-locality conditions for the
canonical formal recursion operator. The integrability for each equation from the list
is proved by either using difference substitutions or presenting Lax representations.
Moreover, we investigate the higher order integrable analogue for each equation from the
list. Similar to the Narita–Itoh–Bogoyavlensky lattice (49), there is a family of integrable
equations for any specific n ∈ N, and for any two different n, the corresponding flows
belong to distinct hierarchies (cf. Sect. 6.2). Finally we present a Lax representation for
a new integrable differential–difference hierarchy.

6.1. Classification results. In this session we present the exhaustive list of integrable
differential–difference equations of the form

ut = u3 f (u2, u1, u) − u−3 f (u−2, u−1, u) + g(u2, u1, u)

−g(u−2, u−1, u), f (0, 0, 0) = 1, (73)

where f, g are polynomial functions or formal power series.Weomit equations admitting
a symmetry of order (−1, 1) and (−2, 2), which have been studied in detail in [13,14].

Theorem 5. Every integrable differential–difference equation (73) with no symmetries
of order (−1, 1) and (−2, 2) can be obtained from one of the equations in the following
list

ut = u(u3 − u−3), (74)

ut = u2(u3 − u−3), (75)

ut = (u2 + u)(u3 − u−3), (76)

ut = u(u1u2u3 − uu1u2 + uu−1u−2 − u−1u−2u−3), (77)

ut = u(u2u3 − u1u2 + uu1 − uu−1 + u−1u−2 − u−2u−3), (78)

ut = u

(
u3u1

u2
− u−3u−1

u−2

)
+ u2

(
u2

u1
− u−2

u−1

)
, (79)
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ut = u

(
u3

u2
− u−3

u−2

)
+ u

(
u2

u1
− u−2

u−1

)
+ u1 − u−1, (80)

ut = u (u3 + u2 + u1 − u−1 − u−2 − u−3) , (81)

ut = u (u1u2u3 − u−1u−2u−3) , (82)

ut = u2 (u1u2u3 − u−1u−2u−3) , (83)

ut = (u2 + u) (u1u2u3 − u−1u−2u−3) , (84)

ut = u(u1u3 + uu2 − uu−2 − u−1u−3), (85)

ut = u(u2u3 + uu1 − uu−1 − u−2u−3), (86)

ut = u2(u1u2u3 − u−1u−2u−3) − u(u1u2 − u−1u−2), (87)

ut = u(u1u3 + uu2 − uu−2 − u−1u−3) − u(u2 + u1 − u−1 − u−2), (88)

ut = u(u2u3 + uu1 − uu−1 − u−2u−3) − u(u2 + u1 − u−1 − u−2), (89)

ut = (u2 + 1)(u3

√
u2
1 + 1

√
u2
2 + 1 − u−3

√
u2−1 + 1

√
u2−2 + 1), (90)

by shift uk �→ uk + const, re-scaling transformations uk → μuk, k ∈ Z, t →
νt, μ, ν ∈ C

∗ and, where necessary, a power expansion.

The proof of this classification theorem relies on the following result:

Proposition 8. Let

ut =
∑
p≥1

f p, fi ∈ Ri and ut =
∑
p≥1

f̃ p, f̃i ∈ Ri

be two integrable formal differential–difference equations of form (73), such that

• The linear terms are f1 = f̃1 = u3 + c2u2 + c1u1 − c1u−1 − c2u−2 − u−3;
• The quadratic and cubic terms coincide: f2 = f̃2, f3 = f̃3.

Then the formal differential–difference equations coincide, i.e. f p = f̃ p, ∀p ∈ N.

Proof. Since the formal differential–difference equations are integrable, they possess
the canonical formal recursion operators


 = η +
∑
p>0

û pφp(ξ1, . . . , ξp, η), 
̃ = η +
∑
p>0

û pφ̃p(ξ1, . . . , ξp, η),

such that all their terms are quasi-local. Moreover, since the linear, quadratic and cubic
terms of the formal differential–difference equations coincide, the linear and quadratic
terms of the formal recursion operators also coincide, i.e.

φ1(ξ1, η) = φ̃1(ξ1, η), φ2(ξ1, ξ2, η) = φ̃2(ξ1, ξ2, η).

Consider cubic elements of 
 and 
̃: û3φ3(ξ1, ξ2, ξ3, η) and û3φ̃3(ξ1, ξ2, ξ3, η), and let
û4a4(ξ1, ξ2, ξ3, ξ4) and û4ã4(ξ1, ξ2, ξ3, ξ4) be the symbolic representations of f4 and
f̃4. Then from (66) it follows that

φ3(ξ1, ξ2, ξ3, η) − φ̃3(ξ1, ξ2, ξ3, η) = 4
η(ξ1ξ2ξ3 − 1)(a4(ξ1, ξ2, ξ3, η) − ã4(ξ1, ξ2, ξ3, η))

ω(ξ1ξ2ξ3η) − ω(ξ1) − ω(ξ2) − ω(ξ3) − ω(η)
(91)
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since all the lower terms coincide. Here

ω(x) = x3 + c2x2 + c1x − c1x−1 − c2x−2 − x−3.

We can rewrite the right hand side of (91) as

4η(ξ1ξ2ξ3 − 1)
â4(ξ1, ξ2, ξ3, η)

g4(ξ1, ξ2, ξ3, η)
,

where

â4(ξ1, ξ2, ξ3, η) = ξ31 ξ32 ξ33 η3 (a4(ξ1, ξ2, ξ3, η) − ã4(ξ1, ξ2, ξ3, η)) ,

g4(ξ1, ξ2, ξ3, η) = ξ31 ξ32 ξ33 η3Gω(ξ1, ξ2, ξ3, η).

Here both â4(ξ1, ξ2, ξ3, η) and g4(ξ1, ξ2, ξ3, η) are polynomials in their arguments. One
can show that the polynomial g4(ξ1, ξ2, ξ3, η) is irreducible for any choice of param-
eters c1, c2 ∈ C. Moreover, the total degree of g4(ξ1, ξ2, ξ3, η) is 24, while the total
degree of â4(ξ1, ξ2, ξ3, η) is less than 24 since the equations are of form (73). Therefore,
the polynomial g4(ξ1, ξ2, ξ3, η) cannot divide â4(ξ1, ξ2, ξ3, η). It follows from Theo-
rem 4 that û3(φ3(ξ1, ξ2, ξ3, η) − φ̃3(ξ1, ξ2, ξ3, η)) is quasi-local, while the expression
4û3η(ξ1ξ2ξ3−1) â4(ξ1,ξ2,ξ3,η)

g4(ξ1,ξ2,ξ3,η)
is quasi-local if and only if â4(ξ1, ξ2, ξ3, η) = 0. Therefore,

a4(ξ1, ξ2, ξ3, η) = ã4(ξ1, ξ2, ξ3, η), and thus f4 = f̃4.
By the same argument, we can show that if fi = f̃i , i = 1, . . . , k, then fk+1 = f̃k+1,

for k ≥ 4.

Sketch of the proof of Theorem 5. The symbolic representation of a generic equation (or
formal series) (73) is of the form (62) with

ω(ξ) = P1(ξ) − P1(ξ
−1), as(ξ1, . . . , ξs) = Ps(ξ1, . . . , ξs) − Ps(ξ

−1
1 , . . . , ξ−1

s ), s = 2, 3, . . . ,

where

P1(ξ) = ξ3 + αξ2 + βξ, α, β ∈ C,

Ps(ξ1, . . . , ξs) =
〈

3∑
i1=0

2∑
i2,...,is=0

ci1...is ξ
i1
1 · · · ξ is

s

〉
, ci1···is ∈ C.

The algorithm can be split into three steps.
Step 1. The coefficients φ1, φ2, φ3 of the formal recursion operator with φ(η) = η

can be found explicitly (Theorem 3). It is easy to show that terms ûφ1, û2φ2 are quasi-
local for any α, β and constants ci1i2 , ci1i2i3 . The requirement of the quasi-locality of
the term û3φ3(ξ1, ξ3, ξ3, η) results in the system of polynomial equations on α, β and
ci1i2 , ci1i2i3 , ci1i2i3i4 - the necessary integrability conditions. The action of the re-scaling
groupuk → μuk, k ∈ Z, t → νt, μ, ν ∈ C

∗ onconstantsα, β and ci1i2 , ci1i2i3 , ci1i2i3i4
is of the form

α → α, β → β, ci1···is → μs−1ν−1ci1···is ,

and modulo the action of this group the set of solutions of the system of integrability
conditions is finite. Thus we obtain the finite list of 3-approximate integrable equations
of the form (73).
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Step 2.ByProposition 8 the requirement of quasi-locality of ûsφs(ξ1, . . . , ξs, η), s ≥
4 uniquely determines the terms ûsas(ξ1, . . . , ξs), s ≥ 4 and imposes further restric-
tions on the constants α, β, ci1i2 , ci1i2i3 , ci1i2i3i4 . The obtained sequence of coefficients
as(ξ1, . . . , ξs) either truncates at s = 5 or continues indefinitely. In the former case this
leads to polynomial equations of the above, and in the latter case, results in Eqs. (79)–
(90).

Step 3. Integrability of every equation from the list is shown below either by trans-
forming to a known integrable equation or by providing the Lax representation. ��

The equations in Theorem 5 can be split into the following four lists:

List 1: Equations related to the stretched Volterra equation: (74)–(79). It is obvious that
(74), (75) and (76) are from the Volterra equation of the form ut = (α + βu +
γ u2)(u1 − u−1), α, β, γ ∈ C. The other equations in this list are transformed
into (74), for which we write as

wt = w(w3 − w−3) (92)

for clarity, by the following transformations:

(77) : w = uu1u2; (78) : w = uu1; (79) : w = uu2

u1
.

List 2: Linearisable equations: (80), which is related to the linear equation wt = w3 −
w−3 by the transformation u = ww1w2.

List 3: Equations related to theNarita–Itoh–Bogoyavlensky equation: (81)–(86). Equa-
tion (81) is the well-known Narita–Itoh–Bogoyavlensky chain. All other are
related to it. To be clear, we write it in different variable

wt = w (w3 + w2 + w1 − w−1 − w−2 − w−3) . (93)

The transformations are as follows:

(82) : w = uu1u2; (83) : w = uu1u2u3; (84) : w = uu1u2(u3 + 1);
(85) : w = uu2; (86) : w = uu1.

List 4: Other equations: (87)–(90). Equations (87) and (88) appeared in [32] as discrete
Sawada-Kotera equations and they are related by u → uu1. Equations (89) and
(90) are new to best of our knowledge. We are going to show their integrability
in Sect. 6.3 by presenting their Lax representations.

6.2. Integrable hierarchies of higher orders. The Narita–Itoh–Bogoyavlensky (NIB)
lattice (49) is a family of integrable equations of order (−n, n), n ∈ N. For any two
distinct values of n, the corresponding flows do not commute and belong to different
integrable hierarchies. We shall call them n-relatives of the NIB family. Equations (51),
(71) and (81) are 1−, 2− and 3-relatives respectively. In this section, we explore higher
order relatives of all integrable equations listed in Theorem 5.

List 1: Equations (74), (75) and (76) are particular cases of the equation

ut = (α + βu + γ u2)(un − u−n), α, β, γ ∈ C
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which is obtained from the integrable Volterra type equation ut = (α + βu +
γ u2)(u1 − u−1) by stretching of the discrete variable.
The other equations in theList 1 can be transformed into (92) and their integrable
higher order relatives can transformed into

wt = w(wn − w−n). (94)

Equation (77) is the 3-relative of the family

ut = u

(
n∏

k=1

uk −
n∏

k=1

u−k

)
− u2

(
n−1∏
k=1

uk −
n−1∏
k=1

u−k

)
.

The latter can be mapped into (94) by the transformation w = ∏n−1
k=0 uk . When

n = 2, it reduces to equation (E.1′) in [31].
The family

ut = u
n−1∑
i=0

(−1)i (un−1−i un−i − ui+1−nui−n) ,

is transformed to (94) by setting w = uu1. It reduces to equation (E.1′) in [31]
when n = 2 and to Eq. (78) when n = 3.
Equation (79) is the 3-relative in the family

ut = u

(
n∏

l=1

u2l−1

u2l
u2n+1 +

n−1∏
l=0

u2l

u2l+1
u2n −

n−1∏
l=0

u−2l

u−1−2l
u−2n −

n∏
l=1

u1−2l

u−2l
u−2n−1

)
,

which reduces to wt = w(w2n+1 − w−2n−1) by the transformation w =∏n−1
l=0

u2l
u2l+1

u2n .

List 2: Equation (80) can be linearised. In general, we let u = ∏n−1
k=0 wk , where w

satisfies a linear equation wt = wn − w−n . Note that
uk+1
uk

= wn+k
wk

and u−k
u1−k

=
w−k
wn−k

for k > 0. Thus

ut =
n−1∑
k=0

u

wk
(wn+k − wk−n) = u

n−1∑
k=0

(
uk+1

uk
− w−1−k

wn−1−k
) = u

n−1∑
k=0

(
uk+1

uk
− u−1−k

u−k
).

(95)

Thus, 1-relative of the family (95) is a linear equation, 2-relative is a special
case of (E.8) in [31] and 3-relative is (80).

List 3: As we mentioned at the beginning of this section, equation (81) is 3-relative of
the NIB family (49), which here we write in different variable for convenience

wt = w (wn + · · · + w1 − w−1 − · · · − w−n) . (96)
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The families corresponding to equations (82)–(86) we denote as (82)n–(86)n .
They are can be transformed to (96) by polynomial maps:

(82)n : ut = u

⎛
⎝

n∏
j=1

u j −
n∏

j=1

u− j

⎞
⎠ , w =

n−1∏
j=0

u j ; (97)

(83)n : ut = u2

⎛
⎝

n∏
j=1

u j −
n∏

j=1

u− j

⎞
⎠ , w =

n∏
j=0

u j ; (98)

(84)n : ut = (u2 + u)

⎛
⎝

n∏
j=1

u j −
n∏

j=1

u− j

⎞
⎠ , w =

n−1∏
j=0

u j (un + 1); (99)

(85)n : ut = u

� n−1
2 �∑

i=0

(
u� n

2 �−i un−i − ui−� n
2 �ui−n

)
, w = uu� n

2 �; (100)

(86)n : ut = u

� n−1
2 �∑

l=0

(un−2l−1un−2l − u2l+1−nu2l−n), w = uu1. (101)

Here �·� and �·� are floor and ceiling functions respectively, and these can be
checked by direct computation. For example, for (99), we have

wt = w

n−1∑
k=0

(uk + 1)

⎛
⎝

n∏
j=1

u j+k −
n∏

j=1

uk− j

⎞
⎠ + wun

⎛
⎝

n∏
j=1

un+ j −
n∏

j=1

un− j

⎞
⎠

= w

n−1∑
k=0

⎛
⎝wk −

n−1∏
j=0

u j+k +
n−1∏
j=0

u j+1+k − wk−n

⎞
⎠ + w

⎛
⎝wn −

n∏
j=1

un+ j − w +
n−1∏
j=0

u j

⎞
⎠ ,

which is (96) after straightforward simplification.
The families (82) and (83) are two known modifications of the Narita–Itoh–
Bogoyavlensky family [27]. The family (99) can be found in a recent paper
[33] on discrete integrable equations of higher order.

List 4: Equation (87) and its family

ut = u2

(
n∏

k=1

uk −
n∏

k=1

u−k

)
− u

(
n−1∏
k=1

uk −
n−1∏
k=1

u−k

)
. (102)

have been previously found by Adler and Postnikov [32], where the authors
also presented the corresponding fractional Lax representation. This family
can be viewed as an inhomogeneous deformation of the modified Narita–Itoh–
Bogoyavlensky family (98). When n = 2l + 1, l ≥ 1 we can use the transfor-
mation w = uu1 which maps the family (102) into the family

wt = w

1∑
i=0

(
l∏

k=0

w2k+i −
l∏

k=0

w−2k−i −
l∏

k=1

w2k−i +
l∏

k=1

w−2k+i

)
. (103)

Equation (88) is 3-relative of the family (103).
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It seems that Eq. (89) has not appeared in the literature previously. It belongs to a
new family of integrable equations1

ut = u(S2n−1 − 1)

(
(u − 1)

n−1∏
l=1

u−l + (u1−2n − 1)
2n−2∏
l=n

u−l

)
. (104)

In the case of n = 1 it reduces to the Volterra chain (51), while its 3-relative
coincides with (89). One can also explicitly check that the 5- and 7-relatives of the
family, namely

ut = u(S5 − 1) ((u − 1)u−1u−2 + u−3u−4(u−5 − 1)) ,

ut = u(S7 − 1) ((u − 1)u−1u−2u−3 + u−4u−5u−6(u−7 − 1)) ,

possess quasi-local canonical formal recursion operators.
Equation (90) is another new equation. Its family andLax representationwe discuss
in the next Sect. 6.3.

Remark 4. We have already seen that one low order equation may belong to several
integrable families. For example the Volterra equation (51) is 1-relative in (49) and
(104) families. Equation (86) belongs to the family (101) as well as the family

ut = u

⎛
⎜⎝(1 + S−� n

2 �)
� n−1

2 �∏
i=0

un−i − (1 + S� n
2 �)

� n−1
2 �∏

i=0

ui−n

⎞
⎟⎠ , w =

� n−1
2 �∏

i=0

ui .

which has the same w ancestor (96).

6.3. Integrable deformation of the Narita–Itoh–Bogoyavlensky lattice. In this section,
we study the integrability of the equation

ut = (1 + u2)(un

n−1∏
k=1

√
1 + u2

k − u−n

n−1∏
k=1

√
1 + u2−k), n ∈ N. (105)

It can be viewed as an inhomogeneous deformation of the Narita–Itoh–Bogoyavlensky
equation (98). Indeed, after the re-scaling uk → ε−1uk, t → εn+1t and in the limit
ε → 0 it turns into (98). In the case n = 2 its integrability was established in [34].

Theorem 6. Equation (105) possesses a Lax representation Lt = [A, L] with a rational
(pseudo-difference) operator L = Q−1P, where

Q = u − wu1S−1, P = (uw1S − u1)Sn−1, w =
√
1 + u2,

and a skew-symmetric difference operator A = L+ − (L+)
†. Here L+ denotes the

polynomial part of the Laurent representation for the rational operator L.

1 After we have completed this work, we found out that this equation and the family (104) were known
to V.E. Adler. He kindly sent us his unpublished notes, also containing their Lax representations. Under his
permission, we present the Lax representation in Sect. 7 for completeness.
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Proof. Note that

Q−1 = (1 − wu1

u
S−1)−1 1

u
= (1 +

wu1

u
S−1 +

wu1

u
S−1wu1

u
S−1 + · · · )1

u
.

Thus

L+ = a(n)Sn + a(n−1)Sn−1 · · · + a(1)S,

a(n) = w1, a(n−1) = uu1, a(n−l) = ww−1 · · · w2−lu1u1−l , 2 ≤ l ≤ n − 1.

These are the coefficients of positive shifts in A. For the negative parts, we have

a(−l) = −S−la(l) = −a(l)
−l .

The Lax equation Lt = [A, L] implies that there exists a difference operator B such
that

Pt = B P − P A, Qt = B Q − Q A, (106)

where the operator B = ∑n
l=−n b(l)Sl can be determined by A, P and Q. To do so, we

write down the equivalent equations for (106) according to the orders of S. Using the
equation for the operator Q, we get

Sn : b(n)un = ua(n); (107)
Sl : b(l+1)ul+2wl+1 − b(l)ul − u1wa(l+1)

−1 + ua(l) = 0, 1 ≤ l ≤ n − 1 or − n ≤ l ≤ −2;
(108)

S0 : ut = −b(1)u2w1 + b(0)u + u1wa(1)
−1; (109)

S−1 : u1tw + u1wt = b(0)u1w − b(−1)u−1 + ua(−1); (110)

S−n−1 : b(−n)u1−nw−n = u1wa(−n)
−1 = −u1ww−n . (111)

From (107), it follows that b(n) = uw1
un

. We substitute it into (108) for l = n − 1 and
obtain

b(n−1) = 1

un−1

(
b(n)un+1wn − u1wa(n)

−1 + ua(n−1)
)

= 1

un−1

(
uw1

un
un+1wn − u1w2 + u2u1

)
= uun+1w1wn

unun−1
− u1

un−1
.

When 1 ≤ l ≤ n − 2 notice that −u1wa(l+1)
−1 + ua(l) = 0. Thus in this case (108)

becomes

b(l)ul = b(l+1)ul+2wl+1,

which leads to

b(l) = un−1un

ulul+1
wl+1 · · · wn−1b(n−1) = 1

ulul+1

⎛
⎝

n−1∏
j=l+1

w j

⎞
⎠ (uun+1w1wn − u1un) .
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Similarly, from (111), we get b(−n) = − u1w
u1−n

. Substituting it into (108) for l = −n, we
have

b(−n+1) = 1

u2−nw1−n

(
b(−n)u−n + u1wa(1−n)

−1 − ua(−n)
)

= 1

u2−nw1−n

(
− u1w

u1−n
u−n − u1wu−nu1−n + uw1−n

)
= uu1−n − u1u−nww1−n

u1−nu2−n
.

(112)

When 1 − n ≤ l ≤ −2, notice that

−u1wa(l+1)
−1 + ua(l) = u1wSla(−l−1) − uSla(−l)

= u1w

(
n+l−1∏
k=0

wl−k

)
ul+1u−n − u

(
n+l−2∏
k=0

wl−k

)
ul+1u1−n

= −
(

n+l−2∏
k=0

wl−k

)
ul+1(uu1−n − u1u−nww1−n). (113)

Thus combining (112) and (113), using (108) we obtain, for 2 − n ≤ l ≤ −1,

b(l) = 1

ulul+1

⎛
⎝

l∏
j=2−n

w j

⎞
⎠ (uu1−n − u1u−nww1−n) .

We now eliminate b(0) from (109) and (110) and get

u1tw + u1wt − u1w

u
ut = wu1t − u1

uw
ut

= u1w

u

(
b(1)u2w1 − u1wa(1)

−1

)
− b(−1)u−1 + ua(−1)

= u1u2ww1

u
b(1) − u2

1w
2

u
a(1)
−1 − b(−1)u−1 − ua(1)

−1

= ww1

u

⎛
⎝

n−1∏
j=2

w j

⎞
⎠ (uun+1w1wn − u1un)

−1

u

⎛
⎝

n−2∏
j=1

w− j

⎞
⎠ (uu1−n − u1u−nww1−n) − u2

1w
2 + u2

u

⎛
⎝

n−2∏
j=1

w− j

⎞
⎠ uu1−n

=
(
wS − u1

uw

)
w2

⎛
⎝
⎛
⎝

n−1∏
j=1

w j

⎞
⎠ un −

⎛
⎝

n−1∏
j=1

w− j

⎞
⎠ u−n

⎞
⎠ ,

which is satisfied by the given equation. Finally, we check the obtained B is consistent
with the equation for the operator P in (106) by directly computation, and thuswe proved
the statement. ��
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Remark 5. In [34], Garifullin and Yamilov established the integrability properties of the
equation

ut = (u2 − 1)

(√
u2
1 − 1u2 −

√
u2−1 − 1u−2

)
,

which is the Eq. (105) when n = 2 under the scaling transformation. They provided its
Lax pair as Lψ = 0 and ψt = Aψ with

L = uw′
1S2 + u1S − λ

(
u1w

′S−1 − u
)

; w′ =
√

u2 − 1,

A = w′

u

(
w′(u1S + u−1S−1) − λ−1u−1S + λu1S−1

)
.

This can be linked to the Lax representation given in the theorem (after rescaling and
simple gauge). Let P = uw′

1S2 + u1S and Q = u1w
′S−1 − u. If we eliminate λ in A,

we get

A = w′2u1

u
S +

w′2u−1

u
S−1 − w′u−1

u
SP−1Q +

w′u1

u
S−1Q−1P

= w′2u1

u
S +

w′2u−1

u
S−1 − 1

u
S−1(u1w

′S−1 − u) + P−1Q +
1

u
(uw′

1S
2 + u1S) + Q−1P

= w′
1S

2 + uu1S + uu−1S−1 − w′−1S
−2 + P−1Q + Q−1P,

where the nonlocal part commutes with the fractional operator Q−1P and thus we can
discard it.

We prove that the hierarchy of commuting symmetries is well defined for any n ∈ N.
To do so, we use the r -matrix approach [35].We consider the Lie algebra denoted by g of
the formal Laurent series of the shift operator with the commutator [A, B] = AB − B A,
where A, B ∈ g. It is easy to see that any element

B = b(m)Sm + b(m−1)Sm−1 + · · · ∈ g

admits a unique decomposition of the form

B = B+ − (B+)
† + H,

where B+ is a difference operatorwith positive powers ofS.We denote the antisymmetric
part B+ − (B+)

† of any element B as g+ and the remaining part H as g−. It is obvious
that these both parts form Lie subalgebras. Thus we have the decomposition of the Lie
algebra

g = g+ ⊕ g−
into the direct sum of two Lie subalgebras. We define the projections

π± : g → g±
and the r -matrix r = 1

2 (π+ − π−). We now formulate the statement generating com-
muting symmetries, which can be proved in the standard way in the r -matrix approach
[35].

Corollary. The flows defined by the Lax equations ∂tp L = [π+(L p), L] commute
with each other.



Perturbative Symmetry Approach for Differential–Difference Equations

Proof. Let A(p) = π+(L p). Using Lax equations, we have

∂tq ∂tp L − ∂tp∂tq L = [∂tq A(p) − ∂tp A(q) − [A(q), A(p)], L].
So it is sufficient to show that

∂tq A(p) − ∂tp A(q) − [A(q), A(p)] = 0.

For l ∈ Z, we have ∂tp Ll = [A(p), Ll ] since
[ ∂tp Ll , L] = −[Ll , ∂tp L] = −[Ll , [A(p), L]] = [[A(p), Ll ], L] .

Thus

∂tq A(p) − ∂tp A(q) − [A(q), A(p)]
= π+(∂tq L p) − π+(∂tp Lq ) − [A(q), A(p)] = π+([A(q), L p]) − π+([A(p), Lq ]) − [A(q), A(p)]
= π+([−π−(Lq ), L p]) − π+([−π−(L p), Lq ]) − [Lq − π−(Lq ), L p − π−(L p)]
= π+(−[π−(Lq ), π−(L p)]) = 0.

This leads to ∂tq ∂tp L = ∂tp∂tq L as required. ��

7. Summary and Discussion

In order to give an exhaustive description of all integrable differential–difference equa-
tions of certain type one needs to find strong and verifiable necessary integrability con-
ditions. All previous attempts to tackle this problem were based on the integrability
conditions dependent on the symmetry structure of equations which may not be known
in advance. In this paper, we developed an approach establishing the universal integra-
bility conditions by introducing the notion of quasi-locality in the context of symbolic
representation. We proved that if an equation of the form

ut = f (u−n, . . . , un), f =
∑
i≥1

f (i), f (i) ∈ Ri , f (1) �= 0,

possesses an infinite dimensional algebra of its symmetries, then there exists a unique
quasi-local formal recursion operator 
 with symbolic representation


 = η +
∑
p≥1

û pφp(ξ1, . . . , ξp, η).

Moreover, the recursive formulae for all terms φp(ξ1, . . . , ξp, η) are explicitly given.
This is achieved by developing symbolic representation for the difference polynomial
ring, difference operators and formal series. The requirement of quasi-locality for all
terms φp(ξ1, . . . , ξp, η) leads to the necessary integrability conditions, which are inde-
pendent on the structure of the symmetry algebra.

We applied our new approach to classification of integrable equations of the form
(72). For n = 2, we reproduced all such type of integrable equations classified in [15,16]
without any assumption on the order of symmetries. Since there are no new equations,
we didn’t include them in this paper. For n = 3, we obtained a complete list of integrable
equations, which are not member of the lower order hierarchies. For each equation in
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the list we found an infinite family of integrable equations of arbitrary high order. We
proved their integrability either by providing a transformations to a known integrable
family, or by presenting a Lax representation.

Here, for completeness, we present a fractional Lax representation

Lt = [A, L], L = Q−1P, ⇔ Pt = B P − P A, Qt = B Q − Q A

for the new family of equations (104) found by Adler [19] in which

P =
(

n−1∏
l=0

ul

)
S2n + S; A = −

(
n−2∏

l=−n

ul

)
S2n−1 +

2n−2∑
j=0

(
(1 − u j−n)

2n−1∏
l=n+1

u j−l

)
+ S1−2n;

Q =
(

n−2∏
l=0

ul

)
S2n−1 + 1; B = −

(
2n−2∏
l=0

ul

)
S2n−1 +

2n−2∑
j=0

(
(1 − u j−2n+1)

2n−2∏
l=n

u j−l

)
+ S1−2n .

The global classification of integrable differential–difference equations still remains
a very challenging problem. In the case of scalar polynomial evolutionary equations, we
believe that there are new integrable hierarchies of high orders starting from any order.
The higher the order of equations is, the more integrable hierarchies there are. Thus it
is important to develop an approach to identify the transformations between integrable
equations and to develop the concept of integrable families which have been discussed,
but not yet rigorously defined in this paper.

Integrable differential–difference equations are generalised symmetries for discrete
integrable equations. The authors of [31] constructed autonomous quad-equations which
admit five-point differential–difference equations belonging to classification lists in [15,
16] as their symmetries. Recently it was shown that there exist multi-points integrable
discrete equations on a plain lattice related to Bäcklund–Darboux transformations for the
Narita–Itoh–Bogoyavlensky equation (49) [33,36]. It would be interesting to construct
discrete integrable equations for families discussed in Sect. 6.2, in particular, for the new
integrable families (104) and (105).
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