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ABSTRACT

The efficient analysis of power grids is a crucial yet computationally

challenging task in integrated circuit (IC) design, given the shrink-

ing power supply voltage of ultra deep-submicron VLSI design.

Different from the conventional modified nodal analysis technique,

this paper introduces MAUnet, an innovative machine-learning

model that redefines state-of-the-art full-chip static IR drop pre-

diction. MAUnet ingeniously integrates multi-scale convolutional

blocks, attention mechanisms, and U-Net architecture to optimize

prediction accuracy. The multi-scale convolutional blocks signifi-

cantly enhance feature extraction from image-based data, while the

attentionmechanism precisely identifies hotspot regions. TheU-Net

architecture, on the other hand, enables scalable image-to-image

prediction applicable to circuits of any size. Uniquely, MAUnet also

incorporates a pioneering fusion method that synergies both power

grids and image-based data. Additionally, we introduce a low-rank

approximation transfer learning technique to extend MAUnet’s ap-

plicability to unseen test cases. Benchmark tests validate MAUnet’s

superior performance, achieving an average error of less than 6%

relative to the average IR drop on three benchmarks. The perfor-

mance enhancements offered by our proposed method are substan-

tial, outperforming the current state-of-the-art method, IREDGe,

by considerable margins of 29%, 65%, and 68% in three canoni-

cal benchmarks. Transfer learning is validated to enable model to

achieve effective improvement on real circuit test cases. Compared

to commercial tools, which often require hours to deliver results,

the proposed method provides orders of magnitude speed-up with

negligible error in practice.
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1 INTRODUCTION

As technology nodes continue to scale down, there is a concomi-

tant reduction in supply voltage and an increase in current density.

These phenomena collectively narrow the power supply noise mar-

gin, amplifying the significance of meticulous power supply noise

analysis in electronic design automation (EDA). Two principal types

of power supply noise emerge in this context: IR drop and transient

voltage drop. The former arises from resistive behavior in inter-

connects, while the latter is a consequence of both inductive and

capacitive interactions within interconnects. These noise forms can

adversely affect gate performance and may even precipitate timing

violations. More critically, voltage overshoot can lead to irreversible

device damage and chip malfunction. Given these potential reper-

cussions, this paper prioritizes the analysis of IR drop, which holds

considerable sway over both the performance and the reliability of

the chip [1].

Estimating power supply noise in contemporary semiconductor

chips presents a formidable computational challenge, particularly

with respect to IR drop. A prevailing approach to address this is

Modified Nodal Analysis (MNA), which leverages Kirchhoff’s Cur-

rent Law to formulate a system of linear equations. The system

is characterized by a conductance matrix, a node voltage vector,

and a current source vector. Solving this extensive system of equa-

tions yields the node voltages across the entire power delivery

network. However, the challenge exacerbates as integration den-

sity escalates; the linear equation system can swiftly balloon to

encompass millions of voltage nodes and interconnect segments,

thereby making the process both computationally intensive and

memory-demanding. Various algorithms and techniques have been

proposed tomitigate this computational burden, including themulti-

grid method [2], random walk algorithms [3], and the boundary

element method [4]. Nevertheless, the computational overhead re-

mains substantial, particularly for chips featuring non-uniform and

irregular power grid designs.

The incorporation of Machine learning (ML) methodologies has

heralded new avenues for expediting IR drop analysis via data-

driven approaches. Despite the promise, extant ML-based solutions

have largely been restricted to more abstract models of the power

delivery network (PDN). In the work presented in [5], a voltage

drop predictor was devised by extracting local attributes of the PDN

and integrating them within an XGBoost framework. However, the

generalizability of this approach to full-chip analysisÐespecially

for larger chips with intricate floor-plan structuresÐremains an
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open question. Alternatively, the study in [6] employed a convolu-

tional neural network (CNN)-based strategy for full-chip IR drop

prediction. This approach partitions the chip’s power maps into

discrete units and makes predictions based on the features of these

units. Despite its merits, the method introduces complexities asso-

ciated with the selection of the window size. Smaller windows risk

violating the principle of locality, as cited in [7], whereas larger

windows contribute to models that are both memory-intensive and

time-consuming during the training and inference phases. More-

over, this study does not adequately address the influence of pad

positions on IR drop, which could be a confounding factor affecting

prediction accuracy. The work in [8] introduces the IREDGe model,

designed to predict full-chip IR drop by employing the current maps,

PDN density maps, and effective distance (eff-dist) maps. These

maps serve to characterize the PDN topology and pad distribution

respectively. Being an image-to-image model, IREDGe conducts

the prediction in a single pass, which may compromise the model’s

prediction accuracy.

Informed by existing literature, we introduce MAUnet, a state-

of-the-art ML model tailored for full-chip static IR drop prediction.

Our model ingeniously integrates multi-scale convolutional blocks,

the attention mechanism, and the U-Net architecture to deliver

optimized predictive performance. The multi-scale convolutional

blocks facilitate the extraction of a rich set of feature representa-

tions. Concurrently, the attention mechanism serves to isolate and

suppress irrelevant features, thereby sharpening the model’s focus

on accurate IR drop prediction, especially for values exhibiting

deviations from the mean. Through this harmonized combination,

denoted as łM+A+Už, our method sets a new standard by requiring

fewer training data and yielding higher accuracy. Most notably,

it also exhibits the ability to transfer learned knowledge across

real circuit data. Furthermore, we introduce a feature extraction

method that combines power grids and feature maps to improve

the input features and enhance the model accuracy consistently.

The contributions of this work are as follows:

(1) We introduce MAUnet, an advanced deep learning model

for full-chip static IR drop prediction that synergistically

combines multi-scale convolutional blocks, the attention

mechanism, and the U-Net architecture.

(2) We present a general power delivery network (PDN) topol-

ogy feature extraction, which substantially and uniformly

boosts predictive capability.

(3) We propose an efficient fine-tuning strategy to enable pre-

trained model transfer to real circuit test cases.

(4) Our method shows excellence in four indicators compared to

SOTA, especially after adding additional extracted features.

Overall, it achieves improvements of 35%, 66%, and 69% on

three benchmarks.

2 PRELIMINARIES AND RELATED WORK

2.1 Conventional IR Drop Computation

MNA offers a systematical apparatus to analyze complex circuit

networks, which can include both passive and active components,

e.g., voltage sources and controlled current sources. When applied

to PDN for the purpose of computing IR drop, the network can be

modeled as a resistive network augmented with current and voltage

sources.

MNA generalizes classical nodal analysis by incorporating ad-
ditional equations that allow for the representation of a broader
range of components like voltage sources. By exploiting Kirchhoff’s
current law, we can establish a system of linear equations capturing
the network’s behavior. Formally, for a network with 𝑁 nodes, 𝐵
branches, and 𝑉 independent voltage sources, the MNA equations
can be written as:

[

𝐺 𝐵

𝐵𝑇 𝐷

] [

V

I

]

=

[

I𝑒𝑥𝑡
E

]

(1)

where𝐺 is the conductance matrix, 𝐵 and 𝐵𝑇 are incidence matrices

relating nodes to branches, 𝐷 is a diagonal matrix often used for

controlled sources, V is the node voltage vector, I represents the

currents in the independent voltage sources, I𝑒𝑥𝑡 is the vector of

external currents entering each node, and E is the vector of voltage

sources in the network. Once this system of equations is assembled,

solving it yields the nodal voltages, providing insights into the IR

drop across the PDN. This methodology serves as a foundation for

more sophisticated analyses and improvements, including those

enabled by machine learning algorithms, as it presents an efficient,

albeit classical, approach for IR drop computation.

For modern chip design, the power delivery network contains

millions nodes and branches, which results in huge memory and

time overhead when solving Eq.1. Although many techniques have

been proposed, such as multi-grid technique [1], random walk

method [2] and boundary element method [3]. Solving the large

scale equation system above is still a challenging task especially

for non-uniform and irregular grids.

2.2 Introduction to U-Net

U-Net [9] is a classic convolutional network architecture first pro-

posed in the field of image segmentation. It consists of two paths: a

contracting path on the left and an expansive path on the right. In

each step of contracting path, the number of features is doubled by a

union of two convolution kernels, ReLU and max pooling. In the ex-

pansive pathway, an upsampling is performed by a up-convolution

operation, which reduces the number of features by half. After that,

these upsampling features are concatenated with those copped

downsampling features from the corresponding contracting steps,

this process is so-called skip connection. By superimposing upsam-

pling, the feature size is restored step by step. After restoring to the

original size, the final layer undergoes a 1x1 convolution to output

the result.

U-Net is inherently a fully convolutional network, which means

it can accept input images of varying sizes, allowing it to handle

images with diverse dimensions. Besides, U-Net’s distinctive char-

acteristic lies in its skip connection structure, which helps preserve

features from initial layers. CNNs typically lose fine-grained in-

formation as they advance from layer to layer, but U-Net’s skip

connections enable it to maintain and exploit low-level details and

local features throughout the network. These make U-Net a power-

ful choice for a variety of image processing tasks, especially where

accommodating different input sizes and preserving detailed infor-

mation are critical.

2.3 Introduction to Attention Mechanism

Attention is a technique used to emphasize relevant activation

during training, thereby reducing the computational resources allo-

cated to irrelevant activation and enhancing the network’s general-

ization capabilities. In essence, it enables the network to selectively
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focus on specific portions of an image, and broadly attention mech-

anisms can be categorized into two types: hard attention and soft

attention. Hard attention operates by either cropping the image

or iteratively proposing regions to emphasize relevant areas. Con-

versely, soft attention operates by assigning different weights to

various parts of the image. High-correlation regions receive larger

weight values, while low-correlation regions are assigned smaller

weights. As the model undergoes training, greater emphasis is

placed on regions with higher weight values. The model also learns

to adjust these weights to improve its ability to discern which parts

of the input require attention.

3 THE PROPOSED MAUNET IR DROP
PREDICTION APPROACH

3.1 MAUnet: M For Multi-Scale

As is the classic network architecture in the field of image seg-

mentation, U-Net has had many variants and has been used for

regression prediction problems [10]. One common way of improve-

ment is to enhance the receptive field of the convolution kernel.

The initial U-Net employed a fixed receptive field for its convolu-

tion kernel, potentially resulting the performance of the network

depends on the choose of convolution kernel size. Small receptive

field of convolution kernel may lead to redundant features, while

larger may ignore the target details. Thus, constructing multi-scale

convolutional blocks with different receptive fields composed of

convolution sequences and multiple convolution kernels is an ef-

fective way to deal with it. The work in [11] proposed multi-scale

convolutional blocks based on several commonly used convolution

kernels to improve the ability of U-Net receptive field, which help

to extract more diverse information and better feature maps.
In the context of PDN analysis, the IR drop at each location relies

on both local and global power information. Typically, the convolu-
tion process captures the spatially correlated distribution by sliding
an appropriately sized averaging window over the input image. In
this process, the influence of local, adjacent and global features
on nodes is mainly extracted by the receptive field of convolution
kernel. Consequently, crafting extensive receptive fields can aid
prediction tasks that depend on intricate spatial information. In
light of these considerations, this paper introduces the multi-scale
convolutional blocks [11] in the down sampling process to enhance
the feature extracting. Each block consists of two convolution ker-
nels with different receptive fields achieved by employing multiple
kernel sizes. Assuming the input of the multi-scale convolution
block is 𝑥 , and the output of block is 𝑇 , the calculation process can
be simplified as follows:

𝑥1 = 𝑤32 (𝑤31𝑥 + 𝑏31 ) + 𝑏32,

𝑥2 = 𝑤72 (𝑤71𝑥 + 𝑏71 ) + 𝑏72,

𝑋 = 𝐶𝑎𝑡 [𝑥1, 𝑥2 ],

𝑇 = 𝑤𝑓 𝑋 + 𝑏𝑓 .

(2)

𝑥1 and 𝑥2 are the output of multi-scale convolutional blocks with

kernel size 3 and 7. The choice of block kernel sizes 3 and 7 stems

from experiments conducted in [11], demonstrating suitability of

this combination in prediction tasks.

3.2 MAUnet: A For Attention

In the standard U-Net architecture, skip connections are employed

to combine spatial information from the down-sampling path with

the up-sampling path to retain better spatial features. Nonethe-

less, it is commonly observed that the features from initial layers

exhibit a poorer feature representation compared to the features

from deeper network. To address this issue, the incorporation of

a soft attention mechanism [12] can help suppress the activation

of irrelevant regions within down sampling features. Specifically,

the attention mechanism operates through an attention gate that

takes two inputs: 𝑔, representing the features from deeper layers,

and 𝑥 , representing the features from the earlier layers. By employ-

ing a series of convolution kernel, followed by ReLU and Sigmoid

activation functions, relevant portions of the initial features are

assigned higher weights, while less relevant portions receive lower

weights. The detailed structure of the attention gate is depicted in

Fig. 1. Given the soft attention mechanism’s capability to auto-

Figure 1: The attention gate proposed in [12].

matically prioritize more relevant features, we apply it to the skip

connection part of downsampling and upsampling. This strategic

integration can enhance the feature representation where it matters

most, thereby allowing our model to more effectively concentrate

on critical regions, such as hotspots.

3.3 MAUnet: U For U-Net

Adapting the multi-scale convolutional blocks and the attention

mechanism, we name this model MAUnet, and the whole flowchart

of MAUnet is shown as Fig. 2. MAUnet uses different numbers

of filters for downsampling, specifically 16, 32, 64 and 128, and

the corresponding numbers for upsampling are 64, 32, 16. In the

downsampling pathway, these filters are essentially the multi-scale

convolutional blocks, incorporating kernel sizes of 3 and 7. And the

filters in upsampling process named Up-conv, which utilize kernels

of sizes 4x4 and 3x3 for feature upsampling. Then the expanded

features and down sampling features are directed to the attention

gate. Following this, the expanded features are concatenated with

the output of the gate, undergo convolution, and are then passed

on to the next filter.

Current 
Map 128

64 64
32 32

1616
IR Drop 

Map

PDN 
Map

Eff-dist 
Map

Concatenation & conv

Multi-scale Block

SSF-ADA

Max Pooling

Attention Gate Skip Connection

Gatting SignalUp-conv

Figure 2: The flowchart of MAUnet proposed in this work,

which integrates multi-scale convolutional blocks and atten-

tion mechanism.
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3.4 Deep Features Extraction for PDN

In our architecture, we extend the feature extraction process beyond

the conventional currentmaps, PDNdensitymaps, and eff-dist maps

methodologies described in [8]. We also incorporate insights from

[5] to derive supplementary design information from the power

grids, elevating the granularity of our analysis.

The power grid serves as a nuanced electrical model gener-

ated through SPICE simulations, encapsulating the intricacy of

the PDN’s topology. For each node 𝑝 in this grid, we gather es-

sential data, including spatial coordinates, adjacent resistors, and

the interconnect topology. Furthermore, the model provides vital

metrics such as via positions, pad locations, and current source

attributes.

One of the innovative aspects of our approach lies in themapping

between the feature maps and the power grids. In this mapping, the

coordinates of a pixel directly relate to a specific sector within the

power grid. Using the Nangate 45nm technology as an example, the

SPICE-defined units of the power grids (where 2000 units equate

to 1µm) are converted into image-based coordinates by a factor of

2000, thereby facilitating a seamless transition from grid-based to

image-based representations.

To streamline the extraction process for vias, resistances, and

pitches, we propose the following structured methodology:

(1) Vias: Components characterized as resistors with connec-

tions spanningmultiple layers undergo a coordinate transfor-

mation. After the transformation, vias are precisely mapped

to specific pixels on the feature maps.

(2) Resistance (R): For resistors connected within the same

layer, a coordinate transformation maps them onto the fea-

ture maps. The pixel value is then set equal to the corre-

sponding resistance. In the case of overlapping features, an

additive approach is employed to approximate the combined

resistance.

(3) Pitch: Utilizing the connection data of layer-specific resis-

tors, we ascertain the precise coordinates of these connecting

points. Points sharing the same x/y coordinates are deemed

to be part of the same pitch, enabling us to derive pitch data

layer-by-layer. For efficiency, our analysis can be restricted

to key layers of interest.

This comprehensive feature extraction process equips us with a rich

dataset that not only captures the fundamental characteristics of

the PDN but also integrates supplementary information to enhance

predictive modeling.

3.5 Transfer to Real Simulation
Due to intellectual property (IP) considerations within the field of

IC design, there is a scarcity of publicly available benchmarks for

real circuits, particularly for advanced technology nodes. However,

a significant development in this regard is the BeGAN network

introduced in the work referenced as [13]. This innovation enables

the generation of a substantial number of benchmarks that closely

resemble real circuit benchmarks, thus addressing the scarcity issue.

The main difference between real benchmarks and BeGAN bench-

marks is the source of current maps, the former uses current maps

from physical design simulations, and the latter generates real-like

current maps using the BeGAN network. Although both types have

high similarity, their subtle difference can lead to variations in IR

drop values.

Here, we introduce a transfer learning approach aimed at refining

models initially trained on BeGAN benchmarks by incorporating a

limited amount of real circuit data. The transfer learning strategy

utilizes scale and shift feature adapter (SSF-ADA) proposed in [14],

which mainly introduces scale factors and translation factors to

modulate features for efficient fine-tuning of parameters. We intro-

duce a SSF-ADA following each multi-scale convolution block in

upsampling, which normally participates in the training process.

When transferring a pre-trained model to a real circuit dataset, we

selectively unfreeze parameters associated with SSF-ADA within

the downsampling path. Simultaneously, we maintain the trainabil-

ity of parameters in the deep layers within the upsampling layer.

Parameters in all other layers remain frozen. The update of SSF-

ADA is used to adjust the extraction method of down-sampling

features, while deep layers in the up-sampling path can be updated

with all parameters to adapt to the different IR drop distributions.

4 EXPERIMENT RESULTS

4.1 Experimental setup

To assess MAUnet, we use three open-source benchmarks [15] as

our primary data. The benchmarks include the IR drop information

of three technology nodes: Nangate 45nm, Asap 7nm, and Skywater

130nm PDK. Nangate 45nm has three kinds of feature maps we

need for training, and the other two contain only the power grids

and current maps. We supplement eff-dist maps and PDN density

maps by applying the method proposed by [8]. The samples of these

three datasets are 1000,1000 and 418.

We intend to compare to the SOTA IR drop prediction method,

PowerNet [6], which is based on CNN. In their method, a full power

map is partitioned into tiles, and a sliding window technique is

employed to perform IR drop predictions for each tile. However,

we found that we could not afford the time costÐwe applied it to

Nangate 45nm, where the map sizes change from 200 to 900. When

we choose the window size=31 disclosed by this method, we find

that a forward pass time of completing an overall prediction of

PowerNet on a 204 × 204 map on NVIDIA GA100 is 372.3s. As we

have 1000 samples, it at least takes 4 days to complete a round of

training. Therefore, we can not implement the results of PowerNet

here.

We partition each set of benchmarks into a training set and a test

set, following an 8:2 ratio. Each dataset is max-min normalized and

used to train the MAUnet. The details about parameters settings are

shown in Tab. 1. To evaluate the performance of our MAUnet, we

use the mean absolute error (MAE), F1, the correlation coefficient

(CC) and the structural similarity index (SSIM) to measure our

prediction accuracy. F1 is a binary classification metric utilized to

assess the prediction performance of hotspot regions. This metric

utilizes a threshold to differentiate pixels with voltage drop values

exceeding a specific threshold observed in each benchmark. In this

context, we employ 80% of the maximum IR drop as the threshold.

That is, the node with the top 20% is defined as positive class. Then,

We use TP, TN, FN standing for true positive, true negative, false

positive and false negative. F1 can be calculated as: 𝐹1 = 2∗𝑃/(𝑃+𝑅),

where 𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) and 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ). The specific
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calculation of CC and SSIM are as follows:

𝐶𝐶 (𝐴, 𝐵) =

∑𝑛
𝑖=1 (𝐴𝑖 , 𝜇𝐴 ) (𝐵𝑖 − 𝜇𝐵 )

√︁
∑𝑛

𝑖=1 (𝐴𝑖 − 𝜇𝐴 )2
∑𝑛

𝑖=1 (𝐵𝑖 − 𝜇𝐵 )2
,

𝑆𝑆𝐼𝑀 (𝐴, 𝐵) =
(2𝜇𝐴𝜇𝐵 +𝐶1 ) (2𝜎𝐴𝐵 +𝐶2 )

(𝜇2
𝐴
+ 𝜇2

𝐵
+𝐶1 ) (𝜎

2
𝐴
+ 𝜎2

𝐵
+𝐶2 )

,

(3)

where the 𝜇𝐴 and 𝜇𝐵 are the means of matrix A an B, 𝜎𝐴 and 𝜎𝐵
are the corresponding variances. 𝜎𝐴𝐵 is the covariance, and 𝐶1, 𝐶2

are the hyperparameters.

Table 1: Parameter settings in MAUnet.

Parameters Settings

Model

parameters

Filters [64,32,12,64]

Maxpooling filter size 2x2

Multi-scale block filters [3,7]

Training

parameters

Epoch 400

Optimizer ADAM

Loss function MAE

Learning rate 1e-3

Decay rate 0.6

Decay step 50

4.2 Compared to IREDGe

We mainly compare our work with the IREDGe proposed in [8].

The specific structure of IREDGe is exactly the same as that shown

in the paper. We conducted three independent experiments on each

of the three datasets. For each test sample in these nine experi-

ments, we calculated the relative error, the distribution of which

is illustrated in Fig. 3. It can be seen that the prediction accuracy

of MAUnet is much better than IREDGe. Fig. 4 shows the F1 dis-

tribution comparison of three datasets, overall, MAUnet exhibits

a more favorable F1 probability distribution compared to IREDGe.

The predictive performance of IREDGe and MAUnet in regions

characterized by significant IR drop is illustrated in the Fig. 5. Since

the map sizes of Asap 7nm are typically smaller compared to the

others, it appears to offer a finer level of granularity. The display in

Fig. 5 reveals that MAUnet excels in accurately pinpointing hotspot

areas in comparison to IREDGe.

Figure 3: The distributions of relative errors on three bench-

marks under three random experiments.

4.3 Ablation Study of Feature Extraction

In order to verify the effectiveness of feature fusion, we compare

the performance of the model before and after adding features on

both IREDGe and MAUnet. The specific results are shown in Tab 2.

The experimental settings for adding extracted features only differ

in the number of input feature maps. For each model, we ensure

Figure 4: The F1 probability distribution of three samples

with average MAE on three benchmarks. The higher the fre-

quency of regions with high F1, the better ability the model’s

hotspot prediction achieves.

Figure 5: IREDGe and MAUnet performance in high IR re-

gions. The red areas represent the top 10% IR drop, the green

corresponds to the regions top 10%-20%, and the blue denotes

20%-30%. The three rows from top to bottom represents Asap

7nm, Nangate 45nm and Skywater 130nm PDK.

convergence to the desired range by conducting training for 400

epochs. It can be seen from the results that whether adding features

to the IREDGe or to MAUnet, the effect is better than the original

effect. By adding three additional extracted features, MAUnet can

achieve 32%, and 24% improvements on Nangate 45nm and Skywa-

ter 130nm PDK respectively, which illustrates the feature extraction

method we proposed has an important impact on supplementing

the topological information of the chip. Our method obtains the best

prediction error reaching 5.9%, 3.8%, and 1.6% of the average IR drop

on each benchmark. Combining features extraction, it outperforms

IREDGe by 29%, 65%, and 68% respectively.
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Table 2: Numerical Results of Three Nodes before and after Adding Extracted Features

Asap 7nm Nangate 45nm Skywater 130nm PDK

Method MAE (V) F1 CC SSIM MAE (V) F1 CC SSIM MAE (V) F1 CC SSIM

IREDGe 1.87E-3 0.786 0.708 0.602 1.25E-4 0.256 0.881 0.891 8.22E-5 0.877 0.809 0.896

IREDGe with DF 1.64E-3 0.809 0.789 0.639 1.15E-4 0.318 0.8937 0.8716 5.95E-5 0.933 0.908 0.948

MAUnet 1.23E-3 0.843 0.948 0.841 6.35E-5 0.580 0.980 0.982 3.43E-5 0.959 0.982 0.967

MAUnet with DF 1.33E-3 0.833 0.9721 0.941 4.33E-5 0.770 0.996 0.994 2.61E-5 0.976 0.994 0.991

4.4 Transfer Learning

In the preceding phase of our experiment, we have trained three

distinct models, each of them specialized in learning from their

respective training datasets. To assess the validity of our transfer

learning approach, we conducted the transferring experiments on

Nangate 45nm. We utilize a additional dataset consisting of 20

real circuit data samples from the Nangate 45nm. Out of these, we

separate 10 cases as fine-tuning cases, while the remaining 10 cases

are kept hidden for evaluating the prediction. Before ten sets of real

data participate in each set training, we perform upward, left-right

and diagonal flips on them. Fine-tuning settings are consistent with

training experiments mentioned above. Fig. 7 shows the MAE of

the trained Nangate 45nm model using by 10 fine-tuning cases

respectively. It’s evident that by applying transferring learning, the

predictive accuracy of the model has effectively improved on ten

unseen 10 samples. The maximum improvement can be achieved

by 60%, and the minimum improvement can be achieved by 4%. The

higher RMSE values observed in cases 5, 6, 7, and 8 can be attributed

to the fact that these cases were generated under extreme simulation

conditions.

Figure 6: The transferring performance of using five fine-

tuning cases on six hidden cases.

5 CONCLUSION

In this paper, a novel U-Net-based power supply noise prediction

technique is proposed, which combines multi-scale convolutional

blocks, attention mechanism, and U-Net to deliver SOTA perfor-

mance in IR drop prediction. Furthermore, we introduce a versatile

feature extraction method and an effective transfer learning scheme

to consistently boost the model performance. The limitation of this

work includes validation under more real-world testing cases and

large-size datasets.
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