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Abstract

Automatic sung speech recognition is a relatively under-

studied topic that has been held back by a lack of large and

freely available datasets. This has recently changed thanks to

the release of the DAMP Sing! dataset, a 1100 hour karaoke

dataset originating from the social music-making company,

Smule. This paper presents work undertaken to define an eas-

ily replicable, automatic speech recognition benchmark for this

data. In particular, we describe how transcripts and align-

ments have been recovered from Karaoke prompts and timings;

how suitable training, development and test sets have been de-

fined with varying degrees of accent variability; and how lan-

guage models have been developed using lyric data from the

LyricWikia website. Initial recognition experiments have been

performed using factored-layer TDNN acoustic models with

lattice-free MMI training using Kaldi. The best WER is 19.60%

– a new state-of-the-art for this type of data. The paper con-

cludes with a discussion of the many challenging problems that

remain to be solved. Dataset definitions and Kaldi scripts have

been made available so that the benchmark is easily replicable.

Index Terms: Lyrics, Singing, Speech Recognition, Lyrics

Transcription, DAMP.

1. Introduction

Until recently, automatic recognition of sung speech has re-

ceived little attention from the speech research community. The

lack of work in this area is partly due to sung speech recogni-

tion applications having less immediate importance, but also –

and perhaps not unrelatedly – it is also due to a lack of readily

available data. This is unfortunate because, aside from appli-

cations in music retrieval and indexing, sung speech recogni-

tion is a challenging problem worthy of study in its own right.

For example, when singing the clarity of the speech is often of

secondary importance, so sung speech can share many of the

characteristics of other poorly intelligible speech signals (e.g.,

dysarthric speech). It can act as a stress test of state-of-the-art

acoustic modelling (AM) techniques.

Until recently, sung speech recognition has relied on small

datasets, and typically, datasets where the speech has been

mixed with musical accompaniment (where the acoustic mod-

elling problem becomes secondary to the more severe challenge

of source separation) [1, 2, 3, 4, 5].

The earliest notable work on sung speech recognition is that

of Mesaros and Virtanen [1] as recently as 2010. A mono-

phone Gaussian mixture model (GMM)- hidden Markov model

(HMM) model was trained on material from the CMU Arctic1

speech database. The work employed just 30 minutes of man-

ually annotated monophonic singing recordings divided into 49

fragments (19 males and 30 females) with a length between

1http://www.festvox.org/cmu arctic/

20 and 30 seconds each fragment. The musical fragments

were used for constrained maximum likelihood linear regres-

sion (CMLLR) adaptation obtaining over 87% WER for bi-

gram and over 100% error for tri-gram. More recently, Kruspe

[2] trained a fully connected DNN-HMM model with three hid-

den layers on the DAMP multiple Performance [6] solo-singing

data set. This dataset was released without transcriptions or

timing information demanding an error-prone process of auto-

matic force alignment against lyric texts obtained from Smule

website, reporting phonemes error rates of about 77% on large

test set. Other recent work [3] has investigated a state-of-the-art

time delay neural network - bidirectional long short-term mem-

ory (TDNN-BLSTM) model trained on 110 manually annotated

vocal-only singing recordings from YouTube, using 39 Mel fre-

quency cepstral coefficients (MFCC) plus deltas features. To

compensate for the small amounts of training data, acoustic

models were first pre-trained on 100 hours of spoken speech and

then adapted. However, the best WERs achieved were 73.09%.

Other attempts at sung speech recognition have all resulted in

similarly poor recognition performances [4, 5].

The problems of data availability, encountered in these ear-

lier works, have potentially been solved by the release in 2018

of the Stanford Digital Archive of Mobile Performances anno-

tated database DAMP Sing! 300x30x2 [7]. The database is

a collection of 18,670 karaoke performances made by users

of the Smule mobile karaoke application. This size of this

dataset gives it the potential to transform research in this area.

This paper reports work undertaken to build a state-of-the-art

ASR benchmark from this dataset, including preprocessing and

alignment stages, training and test set definitions, language

model construction and baseline system building using state-

of-the-art acoustic modelling via the Kaldi toolkit [8].

The remainder of the paper is structured as follows. Section

2 describes how the raw data has been processed to construct

a balanced ASR task with separate training, development and

evaluation data. Section 3 describe the construction of suitable

language models. We present the experimental results of a refer-

ence ASR system in Section 4. Finally, Section 5, concludes by

discusses remaining challenges and priorities for future work.

2. The Sing! dataset ASR task

We first describe the Damp Sing! dataset and then preprocess-

ing steps that have been taken to prepare the data as a speech

recognition task.

2.1. The Sing! dataset

DAMP Sing! 300x30x2 (Sing!)[7] is the third karaoke perfor-

mances database released by Smule2 and made available in the

DAMP repository. Like the first two releases, the data originates

2http://www.smule.com
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from Smule’s collaborative karaoke mobile application. How-

ever, the new release is more suitable for ASR than the previous

two. The first release, DAMP Vocal performance (multiple per-

formance), is a large collection of 34,620 interpretations (i.e.,

performances) covering 302 different songs. However, there is

a big imbalance in the number of performances per song, and

the data is made hard to use by a lack of timing information to

align lyrics to the performance. The second DAMP Vocal per-

formance (balanced) database [9] is an extension of the previous

release containing 24,874 interpretations from 5,429 singers but

it covers just 14 song arrangements. Although this dataset is

acoustically rich, with only 14 songs, it is does not have enough

linguistic variability to train robust speech models. It is better

suited to studying singer variability than speech recognition.

The latest Smule data release, Sing! provides 18,676 in-

terpretations from 13,154 singers covering 5,690 songs with a

equal number of interpretations per gender separated by coun-

try of the singers. Further, it also provides the lyric prompts

that were presented to the performer along with the prompt tim-

ings, thus it is much easier to align the song lyrics to the sig-

nals. The data was collected and processed by Smule during

the second half of 2017 and released in early 2018, by selecting

the two most popular singers (male and female), from the 300

most popular song arrangements, from 30 countries. The pop-

ularity of the song arrangements was determined by counting

the number of interpretations, and the interpretation popularity

was determined by counting numbers of listens and votes cast

by users of the Smule app. It can be assumed that the up-voted

interpretations are well sung, good quality recordings.

When using the Smule mobile application, users sing along

to a karaoke accompaniment track playing on their device.

Users will typically use their headphones so that their voice is

captured in isolation of the accompaniment. This means the

data can be used to study sung speech recognition in isolation

of the challenges of musical source separation. Research can

instead focus on the challenges of sung speech recognition it-

self. To test this assumption a sample of 100 randomly selected

recordings were previewed. It was found that for 88% of these

recordings users were wearing headphones while for 12% they

were not as evident by the absence or presence of the accompa-

niment audio. Of the accompaniment-free data, about 15% had

appreciable levels of noise from the environment (i.e., perform-

ers were using the application in a noisy location).

2.2. Preprocessing of the prompt data

The Sing! data provides the text prompts that were shown to

performers along with the time that they were displayed. For

most songs, these are in a convenient utterance-level format,

i.e., one prompt and time-stamp per phrase to be sung (typically

a single line from the song lyrics). For some songs though, the

prompts are presented in the data as a sequence of words and/or

syllables with separate timestamps per unit and with no marker

to indicate where utterances start and end. To recover the tim-

ings for the start of each utterance, we automatically reconstruct

utterance-level prompts from these word/syllable level prompts,

by matching the words and syllables to the lines of the song

lyrics that can be recovered from the Smule website. This is

made possible by a unique Smule song label.

As was mentioned above, Sing! is a collection of multi-

language recordings from karaoke vocal tracks. For our work

we are currently only interested in songs sung in English.

The meta-data does not provide a language identifier, so Non-

English songs are identified by using the CLD2 Naive Bayesian

Classifier trained on text from web pages. Specifically, any song

for which less than 60% of the sentences are classified as non-

English were removed from the dataset. Inspection showed this

process to be robust and after filtering the 18,676 songs in the

original release, 4,460 English songs remained.

2.3. Audio alignment and segmentation

The alignment stage aims to produce a sequence of segmented

utterances and their corresponding transcription, using the

prompt data (words and prompt timing) and the unsegmented

audio performance as input.

There are three main challenges for the alignment process.

First, there is often a mismatch between the prompted lyrics and

the words actually sung by the performer. This occurs because

singers will omit, change or insert entire phrases, either by mis-

take or to generate a personal interpretation. Second, there can

be considerable differences between the prompt timings and the

onsets of the corresponding utterances. Generally, prompts ap-

pear early to allow the singer time to prepare, but the lead time

is not always equal. Further, singers may start utterances con-

siderably late if they are not familiar with the song. Finally,

there is not a one-to-one correspondence between utterance-

level prompts and sung utterances. A continuously sung utter-

ance may span more than one prompt, i.e., there is not a natural

pause at the end of every line of a song. This is especially true

for experienced singers who know the song lyrics and do not

need to pause to read or prepare.

The alignment process attempts to deal with the above chal-

lenges using a rule-based algorithm. The algorithm matches

a sequence of utterance-level prompts with a sequence of

non-silence signal segments extracted from the recordings.

Utterance-level prompts are recovered using the process de-

scribed in the previous section. An end-time is associated with

each prompt taken as the start time of the following prompt.

The non-silence signal segments are extracted from the signal

using a simple energy-based activity detector using an energy

envelope produced using the Pydub3 implementation. The al-

gorithm uses a 20 ms window and a 1 ms frame step and classi-

fies frames as either silence or non-silence according to whether

the windows rms energy is lower or higher than -25 decibels

(dB) below the maximum signal amplitude. Silences of less

than 20 ms (e.g., within word silences) are converted to non-

silence. Then all non-silence segments are located (i.e., se-

quence of non-silence frames bounded by silence). The start

and end time of each segment is noted.

In the alignment algorithm we use the start and end times

to pair utterances prompts to corresponding signal segments.

However, in some cases it is necessary to join two or more non-

silence segments to match with a single prompt. This occurs

when an utterance has been split by the existence of a small

silence (e.g. due to aspiration). In other cases it is necessary

to prompt texts to match a single utterance, i.e., when the per-

former sings more than one line without an intervening pause.

To achieve this the algorithm proceeds as follows:

1. Prompts that do not intersect with any existing non-

silence segment are discarded (the singer failed to sing

the lyric).

2. Non-silence segments that do not intersect with any ex-

isting prompts are discarded, (i.e., typically extraneous

noise such as coughing).

3https://github.com/jiaaro/pydub
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3. Wherever more the one non-silence segment intersects

with the same prompt, the segments are joined.

4. Wherever more than one prompt intersects with the same

non-silence segment, the prompts are joined.

5. If every segment does not intersect with only one prompt

return to step 4

6. Non-silence segments are now paired to their intersect-

ing prompt.

After running the algorithm, a sample of 100 segments was

examined to evaluate the quality of the alignment. It was found

that for 60% the segments were correctly aligned to the prompt,

i.e., with correct timings and with prompts that provided the

correct transcription. A further 32% were only partially correct.

In these cases, the segment-to-prompt association was correct,

but in the singer there was the addition, removal or substitu-

tion of a word or words with respect to the prompted lyric. In

8% of the segments alignment had totally failed. Typically in

these cases prompts were being aligned to segments containing

only background noise introduced by failure of the earlier voice

activity detection stage.

Due to these imperfections our baseline alignment process-

ing is only used for generating the training data. To ensure that

accurate recognition performances can be measured, for the test

data, a gold standard has been constructed using human anno-

tators to correct the alignment timings and to re-transcribe the

speech.

2.4. Training and test set definition

First, taking advantages of the singer country information, we

split the data into three datasets, DSing1, DSing3 and DSing30,

that progressively introduce performances from a broader set of

countries. DSing1, is constructed using the subset of record-

ings from singers registered as users in Great Britain. DSing3

is constructed from the subset of recordings from singers reg-

istered in one of the three native English speaking countries,

namely, Great Britain, USA and Australia. Finally, the largest

data set, DSing30, is constructed using singers from all 30 coun-

tries available in the Sing! dataset. Note, in all cases only the

English songs are being used, i.e., DSing30 will contain many

recordings sung in English by non-native English speakers.

The data in DSing1 is further split into train, test and devel-

opment sets including 80%, 10% and 10% of the data respec-

tively. Care has been taken to ensure that the sets are disjoint

with respect to both singers and arrangements, i.e., no singer

or arrangement seen in one set is seen in any other set. This

is made complicated by the many-to-many association between

singers and arrangements and some data has to be lost to meet

this constraint. Any arrangements occurring in the DSing1 de-

velopment and test set are removed from DSing3 and DSing30

so that these dataset can be used for training. The final size of

each DSing training datasets is presented in table 1. For each

training dataset the gender balance is roughly equal.

Table 1: Description of the DSing training sets.

Set Singers Songs Utterances Hours

DSing1 352 434 8,794 15.1

DSing3 1,050 1,343 25,526 44.7

DSing30 3,205 4,324 81,092 149.1

For the construction of gold standard evaluation data,

roughly 600 utterances were randomly selected from the data

assigned to development and test sets. For these utterances the

alignments were corrected by humans and the prompts were re-

placed with human transcriptions of the words that were actu-

ally sung. Utterance were discarded if they were found to be

contaminated with the background track (i.e., where users were

not wearing earphones) and care was taken to keep a maximum

of 20 utterance per speaker. This process resulted in 482 utter-

ances covering 40 speakers (27 female and 13 males) for the

development set and 480 utterances covering 43 speakers (30

females and 13 males) for the test set. The gold standard evalu-

ation data is summarised in Table 2.

Table 2: Description of the hand-corrected ’gold standard’ de-

velopment and test datasets.

Set Singers Songs Utterances Hours

dev 40 66 482 0.7

test 43 70 480 0.8

3. Language models

To construct an in-domain language model, we select lyrics

from LyricsWikia, a free wiki website that stores the lyrics of

about 2 millions songs4). The selection is made to match the

style of music found on the Smule karaoke app. We first select

the lyrics of all songs by all artists featured in the DSing3 train-

ing set (LMSmule). We then add lyrics from all artists from

the Billboard ‘The Hot 100’ for the 31st December of the years

2015 to 2018 (LMSmule+).

To avoid the inclusion of the lyrics of the songs in the Sing!

test sets we discard arrangements that share more than half of

their sentences with one of the test set songs. This filtering

is based on content rather than song title because song title in

the Smule data and LyricsWikia are not always easily compara-

ble. For example, arrangements in Smule can have a suffix de-

scribing some characteristic of the arrangement (e.g., bohemian

rhapsody short version) which will not match with the official

song title. We also took care when selecting songs to avoid

songs being included multiple times, as can happen when songs

appear on multiple albums covered by different artists.

A series of text normalisation steps was applied to the raw

lyrics: numbers are converted to text; non-lyric text is removed

(e.g., labels such as ‘verse’ and ‘chorus’); non-ASCII characters

are replaced using NFKD unicode normalisation. Some lyrics

contain words with atypical spellings where letters have been

repeated to indicate that the singer should sustain the sound

(e.g. in Celine Dion’s ‘Love Can Move Mountains’ the word

LOOOOOOVE and in Coldplay’s ‘How You See The World’

the word YOUOOOOOOOOOOH). These letter repetitions can

be detected and corrected with the use of a dictionary.

The language model lyrics selection process results in a to-

tal of 44,287 song lyrics from a list of 456 artists with 125 of

those artists featuring in the DSing3 training set. In total there

are 1,747,731 lyric lines consisting of 11.5 million tokens and

91,654 unique words. A lexicon of size 28K was defined by se-

lecting the most frequently occurring words. This was found to

encompass 92% of the DSing1 training dataset vocabulary and

97% of the development dataset. Pronunciations were obtained

4http://lyrics.wikia.com/wiki/Special:Statistics
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from the CMU pronunciation dictionary which covered 80% of

the words. For the remaining words, pronunciations were auto-

matically generated using the Phonetisaurus G2P [10] toolkit.

A 3-gram and 4-gram MaxEnt LM were built using the

SRILM [11] toolkit with dev set perplexities of 103 and

100 respectively, when trained on LMSmule. Retraining on

LMSmule+ resulted in lower perplexities of 73 and 60 respec-

tively proving the benefits of expanding the corpus with the Bill-

board song lyric data. For comparison, the 3-gram full and 4-

gram full LMs from LibriSpeech [12] has perplexities of 206

and 196 respectively on Smule data.

4. Experimental results

In this section we presents the results obtained using a GMM-

HMM and a factorised TDNN [13] state-of-art acoustic model.

The acoustic features used are 13 MFCC plus delta, delta-

delta and energy, with 25 milliseconds frame length and 15 mil-

liseconds of overlapping. We firstly trained a GMM-HMM tri-

phone speaker adapted GMM on top of fMLLR. This model

was used to apply a cleanup process (standard in Kaldi5) on the

acoustic training set to remove bad utterances from the training

data, (e.g., filtering out those with an incorrect transcription).

This process removed about 10% of the training utterances. Us-

ing the ‘clean’ taining data we train a factorised TDNN with

lattice-free MMI [14]. For all experiments, the LM employed is

a 3-gram MaxEnt model trained on the LMSmule+ data using a

28K word vocabulary(see Section 3).

In an initial experiment the acoustic model was trained on

clean-100 LibriSpeech training acoustic material (100h of an-

notated audiobooks) [12] to test the performance of the recog-

niser when trained on well-labeled, but out-of-domain spoken

speech data. We compare this mismatched baseline with results

achieved when training on the three Smule Sing! karaoke DS-

ing training datasets described previously, i.e., DSing1, DSing3

and DSing30. For each system, performance is measured us-

ing the gold standard dev and test sets described in Section 2.4.

Performances in terms of WER are summarised in Table 3.

Table 3: Dev and test WERs when training on LibriSpeech

(LS) or the three DSing datasets for both the GMM-HMM and

TDNN-F acoustic models and the 3-gram or 4-gram lyrics LM.

Train Set AM LM dev test

LS
GMM 3-gram 87.98 85.09

TDNN-F 3-gram 71.00 65.27

DSing1

GMM 3-gram 64.65 62.60

TDNN-F 3-gram 45.90 42.28

TDNN-F 4-gram 41.24 37.63

DSing3

GMM 3-gram 57.45 54.19

TDNN-F 3-gram 33.00 28.67

TDNN-F 4-gram 29.60 24.27

DSing30

GMM 3-gram 52.95 49.50

TDNN-F 3-gram 26.24 22.32

TDNN-F 4-gram 23.33 19.60

The highest WER was obtained when training on Lib-

riSpeech data, this was expected due to the different acoustical

nature of the data. With the smallest dataset DSing1 we ob-

tained a 42.3% WER which is comparable to the best results

5https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/
cleanup/clean and segment data.sh

reported for karaoke data [4] but without the need for speech-

to-singing adaptation of models trained non-singing material.

When expanding the training data to include Australian and US

recordings (DSing3) recognition performance improved signif-

icantly, falling from 42.3% to 28.7%. Rescoring with the 4-

gram LM reduced the WER further to 24.3%. Increasing the

training data set size from 15.4 hours to 44.7 hours has proved

extremely beneficial, despite the additional 29.3 hours being US

and Australian English with potential mismatch to the UK test

data. This is possibly because, for native English singers, ac-

cent variation is neutralised when singing [15] and there is a

tendency to move towards US pronunciation [16].

Expanding the training data further by adding in the ex-

tra 150 hours from DSing30 led to a further increase in per-

formance with WERs decreasing from 24.3% to 19.6%. The

WER decreases despite the introduction of the greater variabil-

ity of pronunciations that DSing30 possesses. This might be

explained by the tendency of non-native English speakers to

neutralise their accent during singing [17, 18].

5. Conclusions and Future Work

This paper has provided a new state-of-the-art open baseline for

sung speech recognition by building an easily replicable ASR

task from the recently released DAMP Sing! 300x30x2 Karaoke

performances vocal tracks database collected and distributed

by Smule. We have presented techniques for pre-processing

the Smule recordings including song-language classification,

energy-based utterance segmentation and segment-to-prompt

alignment. Further, we have defined training datasets (DSing1,

DSing3 and DSing30) starting with GB English, then adding

Australian and US English, and finally adding singers from non

English speaking countries. We have also described the steps

taken to build an in-domain LM collecting a set of lyrics from

LyricsWikia website, obtaining perplexities of 73 and 60 for 3-

gram and 4-gram LMs respectively.

We have built a Kaldi-based benchmark system using a

state-of-the-art TDNN-F acoustic model trained with LF-MMI.

This system has produced WERs of 42.3%, 28.7% and 22.3%

when trained with DSing1, DSing3 and DSing30 respectively

and using a 3-gram LM. When rescoring with 4-gram LM

WERs fall to 37.6%, 24.3% and 19.6% respectively. To the best

of our knowledge, the lowest WER 19.6% represents a new state

of the art performance for unaccompanied singing recognition.

There is still plenty of scope for further research. WERs

of around 20% are high compared with spoken speech tasks,

e.g., for LibriSpeech audiobooks [12] lowest WERs are 3.19%

[19]; for the TED talks corpus Tedlium [20] the lowest WER

is 6.5% [19], and for the WSJ corpus [21] WERs have reached

2.9% [22]. The challenge in sung speech recognition remains

the lower intelligibility compared with normal speech [23] (e.g.,

formants can be hard to determine when F0 is high; consonants

may be poorly articulated). New approaches to acoustic mod-

elling may be needed, e.g., conditioning phone discrimination

on pitch information, or on musical constraints such as beat or

tempo. Other progress may be achieved by making better use

of the weakly labelled training data, i.e., approaches that use

official song lyrics as a guide rather than as a ground truth.

We are making our system fully open with published Kaldi

recipes and scripts for reconstructing the segmentation and

datasets in the hope that this groundwork will stimulate the

community to make new progress in this challenging area (visit

https://github.com/groadabike/Kaldi-Dsing-task).
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