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 The Extendable PIC Open Collaboration (EPOCH) 
• EPOCH [1] is a relativistic EM-PIC code, which takes a simple text-file as input.  
• EPOCH is written in F95 with MPI and scales to 32,000 cores on ARCHER2 

• It has evolved since 2015 to include QED, radiation, ionisation, collisions, and cylindrical geometry. 
• The code has been cited in over 1300 publications 
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Scaling tests 

 

 

 

 

 

 

 

 

 

 

 

 Project progress 

 

• Advantages: 
• C++ templating: allows 1D, 2D and 3D in the same code  
• Derived classes: easily add features, like new physics packages 

• Modern HPC tools: 

• Will be easier to implement run-time diagnostics 

• Reads the same input decks as the FORTRAN code 

• New documentation and examples provided  

 

 

C++ upgrade 

C++ structure 

• Performance tested up to 32 cores against FORTRAN code 

• Scaling comparable between two codes, with C++ 30-40% faster 
• Comparison performed on 2D laser hole-boring example 

Simulation parameters 

(500 x 500) cells 

(25 x 25) µm2 window 

x BC: open 

y BC: periodic 

50 ppc (40 e-, 10 C6+) 

1022 Wcm-2 Gaussian beam 

5 µm ionised C target 

Pre-plasma, 2 µm scale 

100 fs simulated time 

 

Simulation runtime as a function of MPI 
core count for FORTRAN and C++ code 

versions 

• Both codes yield the same hole-boring results: 

Simulation class 

• Holds fields and species list 
• Runs simulation 

• Templated for 1D, 2D, 3D 

Deck class 

• Stores lines from input deck 

• Maths parser evaluates terms 

physics_package_manager class 

• Stores physics package list 
• Each package in same format 

• Code is structured into classes, stored in a main Simulation class 

• Various structures used to hold multiple derived lists 

• Derived lists use polymorphism to allow easy extendibility 
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• Visualisation of code progress. Green tasks are complete, yellow are works in progress, red are yet to start. 

• CPU/GPU portability library 

• High performance parallel data input/output 

• Portable particle/mesh data conventions 
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