UNIVERSITY of York

This is a repository copy of Re-engineering the EPOCH PIC code in C++.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/221009/</u>

Version: Published Version

Conference or Workshop Item:

Bennett, Keith, Morris, Stuart, Goffrey, T. et al. (4 more authors) (2024) Re-engineering the EPOCH PIC code in C++. In: High Power Laser Christmas Meeting, 16-18 Dec 2024, Abingdon.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Re-engineering the EPOCH PIC code in C++

K. Bennett, S. Morris, T. Goffrey, T. Arber - University of Warwick, S. A. Wright, A. Naden, S. Bulut - University of York

The Extendable PIC Open Collaboration (EPOCH)

• EPOCH [1] is a relativistic EM-PIC code, which takes a simple text-file as input.

- EPOCH is written in F95 with MPI and scales to 32,000 cores on ARCHER2
- It has evolved since 2015 to include QED, radiation, ionisation, collisions, and cylindrical geometry.
- The code has been cited in over 1300 publications

3D simulation of a laser in underdense plasma (wakefield)

Setup of a 3D plasma-filled metal cone target for fast ignition simulation

2D simulation of a foil burn-through experiment (species density plotted)

C++ upgrade

- Advantages:
- C++ templating: allows 1D, 2D and 3D in the same code
- Derived classes: easily add features, like new physics packages
- Modern HPC tools:
 - **kokkos** CPU/GPU portability library

- High performance parallel data input/output
- Portable particle/mesh data conventions
- Will be easier to implement run-time diagnostics
- Reads the same input decks as the FORTRAN code
- New documentation and examples provided

Scaling tests

- Performance tested up to 32 cores against FORTRAN code
- Scaling comparable between two codes, with C++ 30-40% faster
- Comparison performed on 2D laser hole-boring example

It's

hew

C++ structure

- Code is structured into classes, stored in a main Simulation class
- Various structures used to hold multiple derived lists
- Derived lists use polymorphism to allow easy extendibility

Deck class	physics_package_manager class
 Stores lines from input deck 	 Stores physics package list
 Maths parser evaluates terms 	 Each package in same format

Simulation class

- Holds fields and species list
- Runs simulation
- Templated for 1D, 2D, 3D

Pre-plasma, 2 µm scale

100 fs simulated time

Simulation runtime as a function of MPI core count for FORTRAN and C++ code versions

Both codes yield the same hole-boring results:

• Visualisation of code progress. Green tasks are complete, yellow are works in progress, red are yet to start.

Acknowledgements:

This project was supported by the EPSRC grants EP/W03008X/1 and EP/ W029111/1

Project progress

References:

[1] T. D. Arber, *Plasma Phys. Control Fusion*, 57(11). (2015)