
This is a repository copy of Re-engineering the EPOCH PIC code in C++.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/221009/

Version: Published Version

Conference or Workshop Item:
Bennett, Keith, Morris, Stuart, Goffrey, T. et al. (4 more authors) (2024) Re-engineering the
EPOCH PIC code in C++. In: High Power Laser Christmas Meeting, 16-18 Dec 2024,
Abingdon.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Re-engineering the EPOCH PIC code in C++

K. Bennett, S. Morris, T. Goffrey, T. Arber - University of Warwick
S. A. Wright, A. Naden, S. Bulut - University of York

 The Extendable PIC Open Collaboration (EPOCH)
• EPOCH [1] is a relativistic EM-PIC code, which takes a simple text-file as input.
• EPOCH is written in F95 with MPI and scales to 32,000 cores on ARCHER2

• It has evolved since 2015 to include QED, radiation, ionisation, collisions, and cylindrical geometry.
• The code has been cited in over 1300 publications

References:
[1] T. D. Arber, Plasma Phys. Control
Fusion, 57(11). (2015)

Acknowledgements:
This project was supported by the
EPSRC grants EP/W03008X/1 and EP/
W029111/1

3D simulation of a laser in underdense
plasma (wakefield)

Setup of a 3D plasma-filled metal cone
target for fast ignition simulation

2D simulation of a foil burn-through ex-
periment (species density plotted)

Ions

Electrons

Scaling tests

 Project progress

• Advantages:
• C++ templating: allows 1D, 2D and 3D in the same code
• Derived classes: easily add features, like new physics packages

• Modern HPC tools:

• Will be easier to implement run-time diagnostics

• Reads the same input decks as the FORTRAN code

• New documentation and examples provided

C++ upgrade

C++ structure

• Performance tested up to 32 cores against FORTRAN code

• Scaling comparable between two codes, with C++ 30-40% faster
• Comparison performed on 2D laser hole-boring example

Simulation parameters

(500 x 500) cells

(25 x 25) µm2 window

x BC: open

y BC: periodic

50 ppc (40 e-, 10 C6+)

1022 Wcm-2 Gaussian beam

5 µm ionised C target

Pre-plasma, 2 µm scale

100 fs simulated time

Simulation runtime as a function of MPI
core count for FORTRAN and C++ code

versions

• Both codes yield the same hole-boring results:

Simulation class

• Holds fields and species list
• Runs simulation

• Templated for 1D, 2D, 3D

Deck class

• Stores lines from input deck

• Maths parser evaluates terms

physics_package_manager class

• Stores physics package list
• Each package in same format

• Code is structured into classes, stored in a main Simulation class

• Various structures used to hold multiple derived lists

• Derived lists use polymorphism to allow easy extendibility

Core PIC
algorithm

Lasers and
boundaries

Input deck
reader

GPU
support

Physics
packages

Documentation Diagnostics
Load

balancer
Cylindrical

PIC

• Visualisation of code progress. Green tasks are complete, yellow are works in progress, red are yet to start.

• CPU/GPU portability library

• High performance parallel data input/output

• Portable particle/mesh data conventions

Plasma Metal

Speed

Ey

Particles

Field
strength

