
This is a repository copy of Killing four birds with one Gaussian Process: The relation
between different test-time attacks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/220986/

Version: Accepted Version

Proceedings Paper:
Grosse, K., Smith, M.T. and Backes, M. (2021) Killing four birds with one Gaussian
Process: The relation between different test-time attacks. In: 2020 25th International
Conference on Pattern Recognition (ICPR) Proceedings. 2020 25th International
Conference on Pattern Recognition (ICPR), 10-15 Jan 2021, MIlan, Italy. Institute of
Electrical and Electronics Engineers (IEEE) , pp. 4696-4703. ISBN 9781728188096

https://doi.org/10.1109/icpr48806.2021.9413290

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Killing Four Birds with one Gaussian Process:

The Relation between different Test-Time Attacks

Kathrin Grosse

CISPA

Saarland Informatics Campus

Michael T. Smith

Department of Computer Science

University of Sheffield

Michael Backes

CISPA Helmholtz Center

for Information Security

Abstract—In machine learning (ML) security, attacks like
evasion, model stealing or membership inference are generally
studied in individually. Previous work has also shown a relation-
ship between some attacks and decision function curvature of the
targeted model. Consequently, we study an ML model allowing
direct control over the decision surface curvature: Gaussian
Process Classifiers (GPCs). For evasion, we find that changing
GPC’s curvature to be robust against one attack algorithm
boils down to enabling a different norm or attack algorithm to
succeed. This is backed up by our formal analysis showing that
static security guarantees are opposed to learning. Concerning
intellectual property, we show formally that lazy learning does not
necessarily leak all information when applied. In practice, often
a seemingly secure curvature can be found. For example, we are
able to secure GPC against empirical membership inference by
proper configuration. In this configuration, however, the GPC’s
hyper-parameters are leaked, e.g. model reverse engineering
succeeds. We conclude that attacks on classification should not
be studied in isolation, but in relation to each other.

I. INTRODUCTION

Security researchers study a plethora of attacks on machine

learning (ML). In general, each attack is studied individually.

For example, Evasion attacks, or adversarial examples, are

small perturbations added to a sample, which is subsequently

misclassified. Examples for targeted systems include, but

are not limited, to Malware detectors [1], [2], vision for

autonomous driving that misclassifies traffic signs [3], and

robot visual systems [4]. Securing models against evasion was

shown to lead to an arms race [5], [6].

Other attacks harm the intellectual property of the model

owner. In model stealing [7], [8], the attacker copies a model’s

functionality without consent of the owner. In model reverse

engineering [9], hyper parameters of the model are inferred

illegitimately. Another attack retrieves the data that was used

to train the classifier, called membership inference [10], [11].

This corresponds to a privacy breach for the subjects in the

data, and/or a financial loss for the owner of the data.

A relationship between decision function curvature and

membership inference was shown in [10]. An analogous

relationship for evasion has been found in linear models like

support vector machines [12] and used for mitigations in

deep neural networks [13], [14]. These findings raise several

questions. Are all test-time attacks related to decision function

curvature? Do changes in curvature have the same effect on

all attacks? To answer these questions, we need a model

where curvature can be configured. Such a model are Gaussian

processes (GPs): Choosing a long lengthscale before training

yields for example a GP with a flat decision surface.

Studying GP yields two more benefits. GP are often applied

in medical settings [15], [16], [17]. Risk assessment for leaked

data or learned parameters is thus crucial. Furthermore, GPs

provide the means for a rigorous analysis: After training, a GP

yields a closed form expression, where classification depends

directly on both parameters learned and used training data.

Contributions. Our formal analysis confirms vulnerability

towards evasion at test time once the GP has learned. Due

to its mathematical form, GP allows to analytically compute

the lengthscale iff the training data is known and only one

lengthscale used. We further conduct a broad empirical study

of vulnerability on six data sets, focusing on decision func-

tion curvature. To this end, we introduce two model reverse

engineering attacks, one for GP’s lengthscale, one for the

kernel. Decision function curvature often only changes the

kind of attack that succeeds. In evasion, highly optimized

attacks tend to fool a steep curvature. This steep curvature

also leaks the data. On the other hand, one-step evasion attacks

are more effective on flat curvature. This flat curvature also

leaks parameters like the lengthscale. In contrast, leakage of

the kernel occurs at any lengthscale. We conclude that attacks

on classification should not be studied in isolation: mitigating

one attack might just enable a different attack.

II. RELATED WORK

To the best of our knowledge, few works have studied the

relationship between different attacks. Most works focus on

deep learning, and on at most two attacks. For example Suciu

et al. [18] study evasion and training time attacks jointly.

Song and Mittal [19] show that neural networks that are

robust against evasion are more vulnerable against membership

inference. Along these lines, there are defenses taking into

account several attacks on deep learning [20], [21]. We instead

focus on an in depth study of the relationship between several

attacks, and are unaware of any similar work.

Most formal works of test-time attacks focus on eva-

sion [22], [23], [24]. Our formal evasion analysis for GP is

in the finite sample setting. Wang et al. [22] instead give an

analysis in the infinite sample limit on k-nearest-neighbors. A

formal approach related to membership inference is the recent

work on differential privacy for GP (see for example [25]). On

the other hand, empirical evasion security has been studied on

GP [26], [27], [28]. GPC also allows one to bound evasion

vulnerability [29], [30]. We are not aware of any works

studying model reverse engineering or model stealing on GPs.

III. BACKGROUND

We introduce GP, give a short summary of adversarial

learning and finally describe our threat model.

A. Gaussian Process Classification

We use Gaussian Process Classification (GPC) [31] for two

classes using the Laplace approximation. The goal is to predict

the labels Yt for the test data points Xt accurately.

We specify k as covariance function or kernel and introduce

GP regression (GPR). Assuming the data is produced by a GP,
[

Ytr

Yt

]

= N

(

0,

[

Ktr Ktt

K⊤
tt Kt

])

, (1)

where Ytr are the training labels, Ktr is the covariance of the

training data, Kt of the test data, and Ktt between test and

training data. Having represented the data, we now review how

to use this representation for predictions. As we use a Gaussian

model, our predictions are Gaussian too, with a predictive

mean and a predictive variance which we define now. At a

given test point x′, assuming a Gaussian likelihood function,

the predictive mean y∗t of the latent function on test data is

y∗t = K⊤

x′K−1

tr Ytr , (2)

where K⊤

x′ is the vector with the covariances from test point

x′ to each training point in Xtr. K−1

tr is the inverse of Ktr.

Classification, unlike regression, has binary outputs and

requires a different likelihood and associated link function. We

can approximate this in a variety of ways. One of the simplest

is the Laplace approximation whose simplicity allows us to

formally analyze the GPC. Finally, whenever we write GP, we

refer to properties that both GPC and GPR share.

B. Adversarial Machine Learning at Test Time

We review all test time attacks dealt with in this paper:

evasion, model reverse engineering, membership inference,

and conclude with model stealing.

In evasion, the attacker computes a small perturbation δ for

a trained classifier f(Xt) = Yt and a sample x such that

min δ : f(x) 6= f(x+ δ) (3)

the minimal δ changes the classification of x. Many algorithms

exist to craft adversarial examples. We now recap the algo-

rithms used in our evaluation. The fast gradient sign method

(FGSM) [32] is an untargeted one-step attack. A step adds the

gradient of the model’s loss w.r.t. the input x′ to the original

sample. The step size is parametrized by ǫ. The Jacobian-based

saliency map approach (JSMA) [33] picks iteratively a pixel

for perturbation that maximizes the output for the target class

and minimizes the output for all other classes.

Finally, the Lx attacks [34] formulate evasion as an iterative

optimization problem. The basis, or L2 attack is formalized as

the following optimization problem

min
δ

‖ 0.5(tanh(δ) + 1) + x ‖2 +sg(0.5(tanh(δ) + 1)) ,

TABLE I: Attackers knowledge according to the FAIL model.

The symbol X denotes ‘known’ or ‘is altered’, X the opposite.

Attacker F A I L

Evasion X X X X

Model Extraction l/lengthscale X X X X

Model Extraction k/kernel X X X X

Membership Inference X X X X

Model Stealing X X X X

where tanh ensures that the box-constraint to enforce that no

feature is set to higher values than in benign data. Term s
trades-off the constraint and function g. This function repre-

sents how confidently the network f misclassifies x+δ. Other

variants of this attack minimize the L0 or L∞ norms [34].

We now review attacks harming intellectual property (IP).

In model reverse engineering, given a trained classifier

with black box access, the attacker tries to infer hyper-

parameters of the model using specifically crafted queries [9].

For GPs, possible parameters to be targeted are for example

the lengthscale(s) and the chosen covariance function.

Membership inference describes an attack which aims to

learn whether or not some samples were used to train the

model [35], [10], [11]. Such attacks are generally run in a

black box setting, and exploit differences in confidence for

trained and unseen data. In contrast to deep learning, a GP

is not forced to be overly confident on training data, so

these attacks are non-trivial. In our evaluation, we use both

confidence (predictive mean) and the predictive variance to

deduce this information—a slight variation of known attacks.

A model stealing attack aims to reproduce the full black-

box model [8], [7]. For GPs, this amounts to finding out all

parameters learned during training and which training data was

used, as this information defines the GP completely. For GPs,

this attack is a combination of the previous two attacks.

C. Threat Model

We specify the different adversaries of our empirical study.

In the FAIL [18] model, F denotes the attacker’s knowledge

about the features. A denotes knowledge about the algorithm

applied and I about the training data. L summarizes whether

changes to the data by the attacker are constrained. A succinct

overview for each attack is given in Table I.

Evasion. Our attacker knows and changes all features, but

is oblivious about the training data and the algorithm.

Model reverse engineering (l). The attacker only knows a

GPC with an RBF kernel is used. The data knowledge varies

from black-box to white box, without modifying samples.

Model reverse engineering (k). The second attacker only

knows GPC is applied. Yet, she uses the zero and the ones

vector as input, and is thus not constrained on features.

Membership inference. We assume a worst case scenario,

where the attacker obtained a large fraction of data labeled

as part of the training set. The attack is not tailored for the

learning algorithm, and does not alter the input.

Model stealing. In our setting, model stealing on a GP can

be seen as a combination of the previous two attacks.

IV. FORMAL ANALYSIS OF VULNERABILITY

We take advantage that a GP allows a formal analysis. First,

we show that learning or generalization enables evasion vul-

nerability on GP. We then study the interplay of model reverse

engineering, membership inference, and model stealing.

A. Evasion Attacks

We first define a classifier that cannot be fooled by an

adversarial example. In the following, we show that a classifier

fulfilling this definition, and hence a static security guarantee,

is opposed to learning. We briefly define rejection of a

classifier. A classifier can reject a sample, in the sense that

it does not assign the given sample to any predefined class.

To define a secure classifier, we chose a covariance with

compact support [36]: as the distance from the training data

increases, it reaches 0. Furthermore, there is a ρ such that for

all training points, iff point x′ is in the closed ball B(xi, ρ)
around a training point xi ∈ Xtr with radius ρ, then x′ cannot

be an example of another class than xi’s class yi. In other

words, all points in the ρ-ball around x are of the same class.

We formalize the secure classifier

f(x′) =

{

yi iff x′ ∈ B(xi, ρ)

reject otherwise

that cannot be fooled: Changing a sample enough to be

classified as a different class means to alter x′ so much that

x′ ∈ B(xj , ρ) where yi 6= yj . Then, by our definition, x′

is a valid instance of this other class and not an adversarial

example. This secure classifier is equivalent to a GP given the

following conditions: First, GP has a rejection option based on

ρ. Second, writing k(xi, xj) for the covariance between xi and

xj , there is no point x′ such that for two distinct xi,xj ∈ Xtr

both k(xi, x
′) > 0 and k(xj , x

′) > 0.

In other words, we require that GP is able to reject a

sample. This can be achieved by setting a threshold on GP’s

similarity. Condition two states that the similarity between

any two training points is zero, independent of their class.

Such a GP, however, has as covariance matrix the identity

matrix, as the similarity between any two points is zero. Such

a covariance matrix does not allow any learning [37]. The

details of this equivalence can be found in a long version

of this paper. Assuming that the second condition does not

hold, training points jointly influence classification and the

GP generalizes.

Theorem 1. Either GP’s covariance K is similar to the

identity matrix I , or K 6= I and learning occurs. Then, GPR

potentially classifies areas outside the ρ-balls. Hence, for a

test point x′ and its corresponding output p, p > ρ or p < −ρ
although k(xi, x

′) < ρ, where xi is the closest training point.

Training data known

yes no yes no

Lengthscales known Lengthscales known

yes no

White box Model reverse

engineering

Membership

inference

Model

stealing

Fig. 1: The relationship of IP based attacks on GP models.

Proof. To be classified, we need a classification output p >
ρ or p < −ρ. We start with the first case, and write

p ≤
∑

i

(ρ− κi) ∗ [K
−1]i ∗ 1 , (5)

where [K−1]i is the sum over the inverted covariance matrix

column corresponding to point i. Before inversion, this column

contains the similarities between i and all other training points.

So far, we have ignored that we need a test point to obtain

this prediction. Without loss of generality, we pick x′ which

maximizes the sum under the restriction that x′ is in none of

the ρ-balls: hence ρ− κi, the covariance to ρ-balli is κi.

There are two cases. In the first, p ≥ ρ and we classify

outside the ρ-ball. In the second, p = 0 or 0 < p < ρ. As we

choose the maximal x′, there are no other points for which

p > ρ. Then GPR is still secure: no area outside the ρ-ball

is classified, as the output is below the defined threshold. It

remains to be shown, however, that there is no contradiction

for the opposite class. We proceed analogously with an x′′

that is chosen to minimize the sum. �

We used in the proof that the minimal output of a point

chosen to maximize the sum is zero. Analogously, the maximal

value when minimizing the sum is zero as well. This holds due

to the abating property of the kernel: As we move away from

the data, eventually all similarities become zero, thus the sum

is zero as well. We conclude that generalization enables test

time attacks such as evasion or adversarial examples.

B. Attacks against Intellectual Property

As GPs are an instance of lazy learning, in general all

training points and parameters are used during inference.

Intuitively, this should ease extraction for the attacker. As we

show here, this need not be the case. We briefly recap the

attacker’s goal in each attack. In model reverse engineering,

she wants to obtain the lengthscale(s), in membership infer-

ence the full or partial training data, and in model stealing

both lengthscale(s), and full training data. These attacks are

strongly related for GPs, as visible in Figure 1.

We refresh how classification is computed in GPR (intro-

duced in eq. (2)). The posterior mean y∗ is given as

y∗t = KT
x′K−1

tr Ytr =
∑

i

k(x′ −Xi) ∗K
−1

i ∗ Yi , (6)

where we iterate over the n training data points. The covari-

ance metric k is parametrized using l and σ2 when using the

RBF kernel. As lazy learning is used, one might suspect that

we can simply extract the stored parameters and training data.

For example, independent from the used kernel, we unfold this

sum and add the observed output of a GP to obtain an equation

system. For simplicity, assume that Az = yo, where z refers

to the parameter the attacker wants to retrieve, and yo is the

output observed from the targeted GP. Further A denotes the

matrix specified in equation 6, without z.

The interested reader will have noticed, however, that this

equation system solves for unknowns in the number of training

points whereas we need an equation system solving along

the features dimensionality. In terms of the above equation,

we are actually interested in AT z = yu, where yu is an

output per feature (where feature and data point dimension

are swapped, or XT). Hence, yu is not an output for any

GP trained on X: it corresponds to a label per feature. In the

original task, the features are “lost” in the Hilbert space of the

kernel (covariance), and the attacker has no equation system

since there is no yu.

The existing equation system can only be used to determine

the lengthscale iff there is only one global lengthscale set,

and the GP has no other unknown parameter. Otherwise, the

equation system is not properly specified, and no analytic

computation is possible. We thus conclude that lazy-learning,

albeit counter-intuitively, is not less privacy resilient that other

classifiers. Instead, however, the attacker can take advantage

that GPs are deterministic. A GP with the same parameters and

data always yields the same output. In the following, empirical

section we evaluate this type of attack.

C. Conclusion

GP, as it learns, is vulnerable to evasion attacks. Concerning

IP-related attacks, we can exclude the possibility that the

attacker analytically determines training data or lengthscales,

with the exception of a single learned parameter for all

dimensions (for example in a linear kernel).

V. EMPIRICAL STUDY OF VULNERABILITY

We now describe our complementary empirical study. We

start with the setting including data-sets, implementation, and

parameters. Afterwards, we detail the results on evasion, model

reverse engineering and membership inference.

A. Experimental Setting

We first describe the general setting. Specifics are given

jointly with the corresponding attacks.

Data and implementation. Our study encompasses sev-

eral data-sets, including security tasks such as Malware (Hi-

dost [38], Drebin [39]) and Spam detection [40]. Additionally,

we investigate fake banknote detection by [40], the MNIST

benchmark data set [41], and the SVHN data set [42]. We use

Python and GPy for the Gaussian Process approaches [43].

We show further information on the trained GPCs in Fig. II,

such as the number of training samples and lengthscales used

and achieved accuracies. To obtain adversarial examples, we

TABLE II: Number of samples used in training n, lengthscales

l and accuracies (rejection if y∗t = 0, written Accr).

short l long l

Data-set n l Accr Acc l Accr Acc

Hidost 500 .5 98.4 98.4 1.9 97.7 99.6

Drebin 750 .5 54.4 94 1.9 94.8 94.8

Spam 500 .3 92.6 91.7 5 92.7 90.2

Bank 500 .3 100 100 2 100 100

MNIST91 500 1 98.9 98.3 8 99.5 99.5

MNIST38 500 1 93.4 93.4 8 97.4 97.1

SVHN91 1500 8 85.4 88.5 16 83.8 87.6

SVHN10 1500 8 88.7 88.7 16 88.7 88.7

use Tensorflow [44] and the Cleverhans library 1.0.0 [45] for

DNN, and other public implementations [34], [27].

Parameter choices. We train our GPC using the RBF

kernel with a predefined lengthscale. This GPC is fitted until

convergence or for 100 iterations. For each task, we chose two

lengthscales that achieve similar accuracy (see Table II). More

details on how we determined the two used lengthscales can

be found in a long version of this paper.

B. Evasion / Adversarial Examples

We expect that a GP with a long lengthscale misclassifies

fewer adversarial examples: A larger perturbation δ is needed

to cause the same change in the output.

Setting. To obtain adversarial examples independent of the

specific curvature, we do not craft on the GPCs tested. We

instead transfer FGSM, JSMA and Lx attacks from deep

neural networks, linear SVM and a GPC substitute. Our inten-

tion is to study a wide range of attacks, including optimized,

unoptimized, one-step and iterative attacks as well as different

metrics (L0, L2, and L∞). We summarize all attacks based on

the Jacobian in JBM, sort FGSM according to ǫ and plot the

Lx attacks according to the norm optimized (for example L2

for the L2-norm attack).

We compare how well the previously chosen lengthscales

recover the correct class when facing adversarial examples.

In our plots, a value above zero denotes that the shorter

lengthscale classified more data correctly, where the numbers

are difference in absolute percent. Below zero, a longer

lengthscale (flat curvature) performed better.

Results. We plot the results of our experiments in Fig.

2. A short lengthscale generally classifies more adversarial

examples as their original class. In particular on L∞ attacks

(with ǫ > 0.01), a short lengthscale performs better. A long

lengthscale is advantageous for optimized attacks like L2.

We also investigate how lengthscale affects rejection, as

our preliminary results show only a slight advantage for steep

curvature GPs without rejection. In Fig. 3, a negative number

denotes how much absolute percent the reject performs better

compared to a classifier without reject. A positive number

means that accuracy for rejection is worse. There is no

difference in vulnerability to evasion for a long lengthscale.

For a short lengthscale, the effect is positive or neutral, with

MNIST91

MNIST38

Malware

Spam

Bank

SVHN91

SVHN10

JB
M

ǫ =
.0
01

ǫ =
.0
1

ǫ =
.1

ǫ =
.2

ǫ =
.3

ǫ =
.4 L 0 L 2

L∞

−60

−40

−20

0

20

40

D
if
fe

re
n
c
e

in
A

c
c
u
ra

c
y

Fig. 2: Vulnerability and Curvature in GPC. Above zero

denotes that more examples are correctly classified by a GPC

with long l, below zero with short l.

JB
M

ǫ =
.0
01

ǫ =
.0
1

ǫ =
.1

ǫ =
.2

ǫ =
.3

ǫ =
.4 L 0 L 2

L∞

−60

−50

−40

−30

−20

−10

0

10

20

D
if
fe

re
n
c
e

in
A

c
c
u
ra

c
y

Low l High l

Fig. 3: Vulnerability, Lengthscale and rejection option in GPC.

Above zero denotes that more examples are correctly classified

or rejected by a GPC without a rejection option.

only two negative cases. These two cases stem from the highly

imbalanced Hidost data set. By chance, the assignment of the

forced classification was in favor of the larger class.

Conclusion. Only classifiers with steep decision functions

benefit from rejection. We hypothesize that a short lengthscale

allows for larger areas where the rejection area is actually used,

whereas a long lengthscale leads to confident classification in

areas where no benign data was seen.

C. Model Reverse Engineering

Model reverse engineering refers to the retrieval of hyper-

parameters of the model. We introduce two new attacks to

reverse engineer GP’s lengthscale and kernel.

Setting (lengthscale). We pick the same lengthscales as

before and evaluate whether the attacker is able to determine

the lengthscale of a target GP. The attack is a binary search

to obtain l. The distance between the outputs of two GPs

shrink as the lengthscale chosen by the attacker, la, approaches

the original lengthscale l. We evaluate three settings: Training

GPC on the same data as the victim, mixed (half/half) and

disjoint data. In each setting, we train 50 GPCs, starting with

a lengthscale la=0 = l/2 and increasing the lengthscale in

MNIST91

MNIST38

Malware

Drebin

Spam

Bank

SVHN91

SVHN10

l/2 l l + (l/2)

(a) Short l, mixed data.

l/2 l l + (l/2)

(b) Long l, mixed data.

l/2 l l + (l/2)

(c) Short l, disjoint data.

l/2 l l + (l/2)

(d) Long l, disjoint data.

Fig. 4: Normalized, absolute differences in output for different

data sets when binary searching a GP’s lengthscale. x-axis is

La; hence at l, lengthscales are equivalent.

50 steps of (1/50)l. We then compute the absolute difference

between the outputs of the GPCs on hold out, unused test data.

Results (lengthscale). As GPs are deterministic, all dis-

tances decrease towards the original l when the training data

is fully known. We thus omit plotting these results, and study

the more interesting cases of mixed data.

For mixed data (upper plots of Fig. 4), the results are less

clear. In general, distances decrease towards l. Given a long

lengthscale, the distances are smallest around l. An exception

are SVHN and Spam, where the distances remain constant

for all las. On Drebin, the distances are smallest around l +
(l/2). The results vary for a short lengthscale: for some data

sets (MNIST91, Bank) the distance is closest to l, For others

(including SVHN and Malware), the smallest distance is l/2.

In case of disjoint data sets (bottom plots of Fig. 4),

the results are even less pronounced. The distances slightly

decrease towards the original lengthscale, yet the average

minimum is at a lengthscale > l. In case of a short lengthscale,

there are no differences at all. An exception are the two

MNIST tasks, where again the minimum is > l.
In general, a lengthscale can be approximated using binary

search. More concretely, the estimate is close when the original

lengthscale is long: The difference to the original lengthscale is

then between 0.006l and 0.008l. This corresponds to wrongly

estimating the largest lengthscale of SVHN by 1.28 (17.28
instead of 16.0) or the smallest (Bank) by 0.16 (estimating

2.16 instead of 2.0). For a short lengthscale, the estimate for

MNIST91’s lengthscale is around 1.04 instead of 1. For cases

except MNIST91, the estimate is inaccurate or indeterminable.

Setting (kernel). The goal of the attacker is to determine the

kernel used in a black-box GPC. We assume the victim uses

one of the following kernels, RBF (with the same lengthscales

as before), linear, or polynomial. We exclude the results

Poly

Linear

RBFL

RBFS

M
N

IS
T
9
1

M
N

IS
T
3
8

M
a
lw

a
re

D
re

b
in

S
p
a
m

B
a
n
k

S
V

H
N

9
1

S
V

H
N

1
0

Fig. 5: Stealing the kernel of a GPC (columns), Xdenotes

successful extraction. × denotes a failed attack, (X) that the

attack succeeded only in an easy-to-defeat variant. Some cases

were not evaluated (/) as test accuracy was too low.

on Drebin with the linear and polynomial kernel, as their

accuracies are close to a random guess.

Attack Description (kernel). An RBF-kernel will output

close to zero far away from seen data. Hence, we input the

target GPC a zero and ones sample and deduce an RBF-kernel

is used if the output is close to 0.5. We also use a more

extreme, easy to defeat variant of this attack where the given

samples contain only features equivalent to ±10. To preserve

feature meaning, we could also compute an unusual, far away

sample. Due to the diversity of our data-sets, we leave this

variant for future work.

In case neither output is 0.5, we run a second round of

queries. We assume a linear kernel is limited in its expressivity,

and leads to less confidently classified data. We thus submit

a batch of test points, and classify a kernel as polynomial

(nonlinear) if the distribution of outputs is bi-modal with most

values scattered around 0 and 1. We hence compute the mean

of the values above and below 0.5. The threshold for the

decision is that both means are further apart than 0.7. This

threshold was determined on the additional credit data-set [40],

which is otherwise not used in this evaluation.

We train different GPCs, each using a different kernel (RBF

kernel with several learned lengthscales, linear, polynomial

kernel). The attacker determines, with the above heuristics,

the used kernel. Our results are depicted in Fig. 5.

Results (kernel). In the majority of cases, the attack

succeeds independent of lengthscale or kernel used. In three

of eight cases, the linear kernel is wrongly determined as

nonlinear, indicating that it confidently classified the data

against our expectation. In one case, on the spam data, the

polynomial kernel is wrongly determined as RBF kernel. There

are also some cases on the Bank and SVHN data-sets where

the RBF kernel is only correctly predicted if we use the ±10-

filled samples. Otherwise, the attacker’s classification is that

the victim uses the polynomial kernel on bank, or the linear

kernels on the SVHN tasks.

There are very few differences between using full test data,

500, 50, or as few as 10 samples for the linear/nonlinear query.

Only on the Bank data-set the linear kernel was classified as

polynomial kernel using 50 samples or less. All other results

remained consistent.

Conclusion. Empirically, the lengthscale can be recovered

easily if the training data is (partially) known. This relates

to the GP being deterministic. Otherwise, the attacker can

reasonably well approximate the lengthscale given that the

targeted GPC has a long lengthscale. We hypothesize that

the long lengthscale is easier to extract as it is less prone to

small changes in the data distribution. The kernel is, instead,

easy to deduce independent of the lengthscale. Our attack

currently fails if the linear kernel fits the data well (MNIST,

Malware) or the polynomial kernel’s decision boundary passes

the origin or the ones vector. With a long lengthscale, the

RBF kernel (Bank, SVHN) outputs relatively large values

even far away from the data. Yet, we find no absolute value

for this to happen. Another natural defense to our attack are

custom-based kernels. We leave this cases for future work, and

conclude that our heuristic works well for the given data-sets

and the kernel set {RBF, linear, polynomial}.

D. Membership Inference

We investigate how good an attacker can determine which

points were used in training. First, we study the general setting.

Afterwards, we investigate particular settings influencing the

attackers success: overfitting, distribution drift, and sparsity.

To study a worst case scenario, the attacker has an oracle

that labels a large fraction of the training data as such. This

attacker is slightly stronger than the shadow models used

in [35]. The attacker trains a fresh classifier that predicts

membership for unseen data points.

Setting. The target GPs are trained using the same length-

scales as before. We then build a data-set using the output of

the GPs and membership labels indicating if a data point was

used in training. The data-set is split randomly in test data (50
points) and training data (the remainder). The training data is

used to train a fresh classifier. We tested DNN, decision trees,

random forests and AdaBoost classifiers. We apply random

forest classifiers, as they performed consistently best. We

report accuracy and random guess accuracy on the test data.

Results. We train the random forests on predictive mean

(dots), variance (triangle) (Fig. 6a), mean and variance

(squares), or the unnormalized, latent mean (stars) (Fig. 6b).

Overall, using only the predictive mean and a long lengthscale

(larger markers), no data set is vulnerable, with the exception

of the two Malware data sets. For mean and variance and

latent mean settings, the attacker succeeds in both cases on

all SVHN tasks or when using a small lengthscale, with the

exception of non-vision tasks. The attacker is also successful

on the Malware data sets with a long lengthscale.

On the bank and spam data, the attack is never successful.

In general, a shorter lengthscale is more vulnerable. On the

Malware data sets, the inverse holds: here, a short lengthscale

benefits the defender. Before we focus on these cases, however,

D
re

bi
n

H
id
os

t

Ban
k

Spa
m

M
N
IS

T17

M
N
IS

T18

M
N
IS

T8

SVH
N
10

SVH
N
89

SVH
N
89

0.4

0.5

0.6

0.7

0.8

0.9

1.0
A

c
c
u
ra

c
y

(a) Classifier trained on variance (triangles) or mean (dots).

D
re

bi
n

H
id
os

t

Ban
k

Spa
m

M
N
IS

T17

M
N
IS

T18

M
N
IS

T8

SVH
N
10

SVH
N
89

SVH
N
89

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y

(b) Training on mean and variance (square) or latent mean (star).

Fig. 6: Lengthscale and membership inference on GPC. Bigger

symbols denote a long, small symbols a short lengthscale of

targeted GPC. x denotes random guess.

we investigate what enables the attacks on the SVHN data and

why a short lengthscale is beneficial for the adversary.

Overfitting, distribution drift, and sparsity. We compare

training and test accuracies to measure overfitting. On the

bank data, training and test accuracy are both 100%. On all

other data-sets, the difference between test and train accuracy

is smaller for a long lengthscale. Hence, slight overfitting oc-

curs at short lengthscales, and enables membership inference.

To analyze distribution drift, we measure the standard

deviation over the distances between training and test data.

As GP adapts the similarity during training, we expect the

test data to cause larger variance in the distance if the data is

distributed differently. All SVHN and the MNIST8 settings

with a small lengthscale show a variance two magnitudes

larger between test and training data than among either. Thus,

the attack was enabled as training and test data were different

from the perspective of GPC. This might imply that the model

is not expressive enough to model the data in detail.

Two cases of successful membership inference are left unex-

plained: the Malware data-sets, Hidost and Drebin. We suspect

that sparsity causes the vulnerability. The average percentage

of features > 0 on the full data-set is < 0.001%±0.0006 on

Drebin and ∼ 12%±3.8 on Hidost. Next is MNIST (1 vs 7

with around 14%±4.1, 1 vs 8 with ∼ 16%±6.5 and 8 with

∼ 18%±5.2). All other data-sets exhibit less sparsity (> 20%,

Spam) or well above 70% (all remaining data-sets).

The difference in sparsity between Hidost and MNIST is

D
re

bi
n

H
id
os

t
0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
re

bi
n

H
id
os

t
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 7: Accuracy of membership inference on a sparse GPC.

Bigger symbols denote a long, small symbols a short length-

scale on targeted GPC. x denotes random guess. Left plot:

Classifier trained on variance (triangles) or mean (dots). Right:

Training on mean and variance (square) or latent mean (star).

small, yet the discrepancy to robust data-sets (Bank, Spam) is

large. To account for sparsity, we apply a GPC using inducing

variables (GPy’s sparse GPC). Such a GPC also optimizes over

the training points: the training data is then not directly stored.

In Fig. 7, we investigate the same settings from the previous

study. The attacker’s accuracy is now on all settings close

to a random guess, with the exception of a short lengthscale

for Hidost on mean or variance, latent mean, or mean and

variance. For Drebin, a very small improvement over random

guess occurs when a short lengthscale is used and the attacker

accesses the GP’s predictive mean and variance.

Conclusion. Even under a strong attacker, membership

inference is not successful when there is no distribution drift,

overfitting is properly taken care of, or a sparse GP with a long

lengthscale is applied. Robustness of GPs towards membership

inference is somewhat expected, as a GP is not required to be

overly confident on training data. The effect of the lengthscale

is also intuitive. A short lengthscale allows each training point

only local influence, easing inference about membership. With

a long lengthscale, each point influences a large area, making

it harder to locate the exact training point.

VI. CONCLUSION

We investigated the security of GPs at test time towards

evasion, model reverse engineering, membership inference,

and model stealing. We conclude that attack vectors on classi-

fication should not be seen in isolation, as a mitigation towards

one attack might enable or ease another attack.

Formally, we show that evasion is enabled by learning, and

any learned GP is vulnerable. Against possible intuition, lazy

learning is not per se more vulnerable towards IP attacks. Still,

a re-computation of the lengthscale is possible if kernel and

the training data are fully known. Yet, no further parameters

can be analytically retrieved from given output.

We also study empirical vulnerability, and leveraged the

property of a GP to fit a model with a predefined decision

curvature. Our study encompasses six data-sets. Summarizing,

a short lengthscale leaks the data, and is vulnerable to opti-

mized evasion attacks. A long lengthscale leaks the parameters

of the GP, and is vulnerable to one-step attacks with large

ǫ. The kernel can be determined independent of the used

lengthscale. We conclude that attacks on classification should

not be studied in isolation, but in relation to each other.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers,

Christian Rossow, Thomas A. Trost, and David Pfaff for their

helpful feedback. This work was supported by the German

Federal Ministry of Education and Research (BMBF) through

funding for the Center for IT-Security, Privacy and Account-

ability (CISPA) (FKZ: 16KIS0753). This work has further

been supported by the Engineering and Physical Research

Council (EPSRC) Research Project EP/N014162/1.

REFERENCES

[1] P. Laskov et al., “Practical evasion of a learning-based classifier: A case
study,” in 2014 IEEE S&P, 2014, pp. 197–211.

[2] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, machine learning can be more
secure! a case study on android malware detection,” IEEE Transactions

on Dependable and Secure Computing, 2017.

[3] C. Sitawarin, A. Nitin Bhagoji, A. Mosenia, M. Chiang, and P. Mittal,
“DARTS: Deceiving Autonomous Cars with Toxic Signs,” ArXiv e-

prints, Feb. 2018.

[4] M. Melis, A. Demontis, B. Biggio, G. Brown, G. Fumera, and F. Roli,
“Is deep learning safe for robot vision? adversarial examples against the
icub humanoid,” in ICCV Workshops 2017, pp. 751–759.

[5] N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” pp. 3–14, 2017.

[6] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
pp. 274–283, 2018.

[7] N. Papernot, P. McDaniel, and I. J. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” CoRR, vol. abs/1605.07277, 2016.

[8] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in USENIX, 2016.

[9] S. J. Oh, M. Augustin, B. Schiele, and M. Fritz, “Towards reverse-
engineering black-box neural networks,” in ICLR, 2018.

[10] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in ACM SIGSAC

CCS, 2017, pp. 603–618.

[11] A. Salem, Y. Zhang, M. Humbert, M. Fritz, and M. Backes, “ML-
Leaks: Model and Data Independent Membership Inference Attacks and
Defenses on Machine Learning Models,” in NDSS, 2019.

[12] P. Russu, A. Demontis, B. Biggio, G. Fumera, and F. Roli, “Secure
kernel machines against evasion attacks,” in AISec@CCS. ACM, 2016.

[13] M. Hein and M. Andriushchenko, “Formal guarantees on the robustness
of a classifier against adversarial manipulation,” in NIPS, 2017.

[14] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against
adversarial examples,” in ICLR, 2018.

[15] T. Chen, J. Morris, and E. Martin, “Gaussian process regression for
multivariate spectroscopic calibration,” Chemometrics and Intelligent

Laboratory Systems, vol. 87, no. 1, pp. 59 – 71, 2007.

[16] M. D. Stevenson, J. Oakley, and J. B. Chilcott, “Gaussian process
modeling in conjunction with individual patient simulation modeling:
A case study describing the calculation of cost-effectiveness ratios for
the treatment of established osteoporosis,” Medical Decision Making,
vol. 24, no. 1, pp. 89–100, 2004.

[17] L. Clifton, D. A. Clifton, M. A. F. Pimentel, P. J. Watkinson, and
L. Tarassenko, “Gaussian processes for personalized e-health monitoring
with wearable sensors,” IEEE Transactions on Biomedical Engineering,
vol. 60, no. 1, pp. 193–197, Jan 2013.

[18] O. Suciu, R. Marginean, Y. Kaya, H. Daume III, and T. Dumitras, “When
does machine learning {FAIL}? generalized transferability for evasion
and poisoning attacks,” in USENIX, 2018, pp. 1299–1316.

[19] R. S. Liwei Song and P. Mittal, “Membership inference attacks against
adversarially robust deep learning models,” 2019.

[20] M. Juuti, S. Szyller, S. Marchal, and N. Asokan, “Prada: protecting
against dnn model stealing attacks,” pp. 512–527, 2019.

[21] E. Chou, F. Tramèr, G. Pellegrino, and D. Boneh, “Sentinet: Detect-
ing physical attacks against deep learning systems,” arXiv preprint

arXiv:1812.00292, 2018.
[22] Y. Wang, S. Jha, and K. Chaudhuri, “Analyzing the robustness of nearest

neighbors to adversarial examples,” in ICML, 2018, pp. 5120–5129.
[23] A. Fawzi, H. Fawzi, and O. Fawzi, “Adversarial vulnerability for any

classifier,” in NIPS, 2018, pp. 1186–1195.
[24] T. Tanay and L. D. Griffin, “A boundary tilting persepective on the

phenomenon of adversarial examples,” CoRR, vol. 1608.07690, 2016.
[25] M. T. Smith, M. A. Álvarez, M. Zwiessele, and N. D. Lawrence,

“Differentially private regression with gaussian processes,” in AISTATS,
2018, pp. 1195–1203.

[26] J. Bradshaw, A. G. d. G. Matthews, and Z. Ghahramani, “Adversarial
Examples, Uncertainty, and Transfer Testing Robustness in Gaussian
Process Hybrid Deep Networks,” ArXiv e-prints, Jul. 2017.

[27] K. Grosse, D. Pfaff, M. T. Smith, and M. Backes, “The limitations
of model uncertainty in adversarial settings,” Bayesian Deepl Learning

Workshop @NeurIPS, 2019.
[28] I. Bogunovic, J. Scarlett, S. Jegelka, and V. Cevher, “Adversarially robust

optimization with gaussian processes,” in NIPS, 2018, pp. 5765–5775.
[29] A. Blaas, L. Laurenti, A. Patane, L. Cardelli, M. Kwiatkowska, and

S. Roberts, “Robustness quantification for classification with gaussian
processes,” AIstats, 2020.

[30] M. T. Smith, K. Grosse, M. Backes, and M. A. Alvarez, “Adversar-
ial vulnerability bounds for gaussian process classification,” ML with

guarantees @NeurIPS, 2019.
[31] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine

learning. MIT Press, 2006.
[32] I. J. Goodfellow et al., “Explaining and harnessing adversarial exam-

ples,” in ICLR, 2015.
[33] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and

A. Swami, “The Limitations of Deep Learning in Adversarial Settings,”
in EuroS&P, 2016.

[34] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in IEEE S&P, 2017, pp. 39–57.

[35] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Security and

Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017, pp. 3–18.
[36] L. Remaki and M. Cheriet, “Kcs-new kernel family with compact

support in scale space: formulation and impact,” IEEE Transactions on

Image Processing, vol. 9, no. 6, pp. 970–981, 2000.
[37] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Mullers, “Fisher

discriminant analysis with kernels,” in IEEE Signal Processing Society

Workshop (Cat. No.98TH8468), Aug 1999, pp. 41–48.
[38] N. Šrndić and P. Laskov, “Hidost: a static machine-learning-based

detector of malicious files,” EURASIP Journal on Information

Security, vol. 2016, no. 1, p. 22, Sep 2016. [Online]. Available:
https://doi.org/10.1186/s13635-016-0045-0

[39] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: Effective and Explainable Detection of Android Malware
in Your Pocket.” in NDSS, 2014.

[40] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, November 1998.

[42] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in NIPS Workshop on Deep and Unsupervised Feature Learning, 2011.

[43] GPy, “GPy: A gaussian process framework in python,” http://github.
com/SheffieldML/GPy, since 2012.

[44] M. A. et al., “TensorFlow: Large-scale machine learning on heteroge-
neous systems,” 2015.

[45] I. J. Goodfellow, N. Papernot, and P. D. McDaniel, “cleverhans v0.1:
an adversarial machine learning library,” CoRR, vol. abs/1610.00768,
2016. [Online]. Available: http://arxiv.org/abs/1610.00768

