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Transcriptomics as a predictor of
biopharmaceutically favourable
glycan profiles
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Gary Finka2, A. Jamie Wood1,3 and Daniel Ungar1*

1Departments of Biology, University of York, York, United Kingdom, 2Biopharm Process Research,

GlaxoSmithKline Research and Development, Stevenage, United Kingdom, 3Departments of
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N-glycosylation plays a crucial role in defining the pharmacological properties and

efficacy of therapeutic proteins, commonly referred to as biologics. The inherent

complexity and lack of a templated process in glycosylation leads to a wide

variation in glycan structures, posing significant challenges in achieving

consistent glycan profiles on biologics. This study leverages omics technologies

to predict which cell lines are likely to yield optimal glycosylation profiles, based on

the existing knowledge of the functional impact of specific glycan structures on the

pharmacokinetics, immunogenicity, and stability of therapeutic antibodies. The

study highlights that bulk RNA-sequencing data holds predictive power for

glycosylation outcomes in of monoclonal antibodies (mAbs). For instance,

Alg5 is identified to be predictive, before beginning a mAb production run, of

mAbs bearing higher levels of Man5. This is inferred to increase glycosylation site

occupancy on endogenous proteins, thereby intensifying competition for

glycosylation enzymes in the Golgi and indirectly influencing mAb glycan

processing. Additionally, the elevation of the UDP-Gal transporter in cell lines

expressing mAbs with a single galactose residue is also observed intranscriptomic

data prior to beginning a production run. These findings suggest that early-stage

transcriptomics can aid in the streamlined development of cell lines by enabling

pre-emptive adjustments to enhance glycosylation. The study also underscores

thatwhile transcriptomic data can predict certain glycosylation trends,more crucial

factors affecting glycan profiles, such as enzyme localization within the Golgi

apparatus and endogenous competition for glycosylation machinery, are not

captured within the transcriptomic data. These findings suggest that while

transcriptomics provides valuable insights, enzyme localization and intracellular

dynamics are critical determinants of glycosylation outcomes. Our study starts to

address the relevant mechanisms essential for improving cell line development

strategies and achieving consistent glycosylation in biologics production.

KEYWORDS

glycosylation, transcriptomics, monoclonal antibodies, cell line development,

biopharmaceutical production

Introduction

Cell line development (CLD) is a pivotal step in biopharmaceutical manufacturing,

focused on developing and identifying a single, high-producing clone from a large pool of

candidates. This process is essential for generating stable cell lines that consistently express

therapeutic monoclonal antibodies (mAbs) at high levels, meeting all necessary quality and
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regulatory standards. The selection and optimisation of the cell line

involves rigorous screening, process development, and scaling to

ensure production of clinical grade material suitable for therapeutic

use (Munro et al., 2017). One aspect of the screening process is

ensuring that critical quality attributes of the mAbs, such as

glycosylation status, meet stringent criteria (Sha et al., 2016).

Glycosylation is a crucial post-translational modification of IgG

antibodies produced by mammalian cells, such as the Chinese

hamster ovary (CHO) cell lines commonly used in

biopharmaceutical production (Li et al., 2010). Specifically, IgG1

molecules contain a single conserved N-linked glycan at

Asn297 decorating each of the two heavy chains. During N-

glycan synthesis, various sugar moieties can be added, resulting

in the formation of varied glycan structures, such as Man5, G0-GN,

G0, G0F, G1F among others (Figure 1).

The co-existence of these structures in the final IgG preparation

yields a heterogenous mixture of glycoforms, each of which can

differently impact the efficacy, stability, and immunogenicity of

mAbs. They do this by modulating the binding affinity of the IgG to

Fcγ receptors which in turn influences different antibody related

functions including complement-dependent cytotoxicity (CDC) and

antibody-dependent cell-mediated cytotoxicity (ADCC) (Jefferis,

2009). Glycoform distributions during mAb production can be

influenced by both glycosylation engineering and cell culture

conditions (Serrato et al., 2007; Nettleship et al., 2009; Sou et al.,

2017). Importantly, glycan structures attached to the mAbs are

determined by the expression and arrangement of glycosylation

machinery components within the host cell line (Fisher et al.,

2019b). Controlling glycosylation during CLD is therefore

essential, as particular glycoforms may be necessary to achieve

optimal therapeutic efficacy whilst other glycoforms may need to

be minimized or eliminated to ensure drug safety.

Known control mechanisms such as the expression, regulation,

and intracellular localisation of N-glycosylation enzymes and sugar

nucleotide transporters, play a significant role in shaping the glycan

profiles observed in mAbs. A summary of N-glycosylation enzymes

relevant for this study can be found in Supplementary Table 1.

N-glycosylation, in particular, is initiated in the cytosol, with

precursor glycan structures assembled onto the ER membrane

before being transferred to the nascent protein in the lumen of

the endoplasmic reticulum (ER). Subsequently, glycosylation

enzymes, such as glycosyltransferases and glycosidases, are

responsible for the sequential trimming and addition of sugar

moieties as the glycan structures traverse the ER and Golgi

apparatus (Figure 1). Within the Golgi lumen, the spatial

organisation of these enzymes, particularly within distinct Golgi

cisternae, directly influences the glycan composition of secreted

mAbs (Ferrara et al., 2006). For instance, the compartmentalisation

of glycosyltransferases within different cisternae determines the

accessibility of glycans to specific enzymes, thereby affecting the

maturation and complexity of the N-glycan structures. Additionally,

the dynamic expression levels of these enzymes, as well as the

availability of nucleotide sugar donors influenced by the activity

of specific sugar nucleotide transporters in the Golgi membrane,

further add layers of complexity to the N-glycosylation process. This

regulation is mediated by various cellular pathways, including

FIGURE 1

Glycan processing during lipid-linked oligosaccharide synthesis and post transfer to protein. Enzyme abbreviations: mannosidase I (Man1),

mannosidase II (Man2), fucosyltransferase 8 (Fut88), N-acetylglucosaminyltransferases I-V (Mgat1-5), galactosyltransferases (GalT), sialyltransferases

(SiaT), lipid-linked oligosaccharide (LLO). The glycans which will be discussed in this work have been boxed in red and their used nomenclature indicated.

Of note: Key enzymes for this work are highlighted in red, while thosemarked with an asterisk also participate in O-glycan and glycolipid processing,

competing for enzyme activity.
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transcriptional and post-transcriptional mechanisms that control

the expression of genes encoding these enzymes. Variations in the

expression of N-glycosylation related genes can lead to significant

heterogeneity in glycan profiles, which in turn impacts the biological

activity and therapeutic efficacy of mAbs.

Given the complexity of N-glycosylation, the challenge lies in

identifying the genetic and cellular determinants that drive the

production of desired glycoforms. One promising approach is to

leverage high-throughput transcriptomic analyses to identify cell

lines with more favourable glycan profiles. Transcriptomics provides

a comprehensive overview of gene expression patterns, offering the

potential to pinpoint key regulatory genes involved in glycan

biosynthesis and processing. By correlating gene expression data

with glycan profiles, it may be possible to predict genetic

determinants that influence the glycosylation outcomes of mAbs.

This study aims to explore the relationship between gene expression

and glycosylation patterns in mAb production, with the goal of

identifying key genetic factors that contribute to desirable glycan

profiles. By leveraging a multiomics approach and computational

modelling, we seek to identify the regulatory mechanisms that

underpin glycan processing and optimise the production of

therapeutic mAbs. Understanding these interactions will not only

enhance the quality of biopharmaceuticals but also provide valuable

insights into the fundamental biology underpinning the

glycosylation of mAbs.

Methods

Dataset generation

To generate the datasets used in this study, clonal antibody-

producing cell lines were cultivated using GSK’s proprietary

platform process within the ambr®15 miniature bioreactor

system. Four different mAbs were considered in this study. Cell

samples were collected at key time points during fed-batch

production runs, specifically days 0, 6, and 10. Transcriptomic

analysis was conducted using bulk RNA sequencing, with RNA

counts generated against the Ensembl genome (CriGri_1,

GeneModelVersion: 104). For glycan profiling, N-glycan analysis

was performed using capillary electrophoresis on the GlycanAssure

instrument, following the manufacturer’s protocol for glycan release

and labelling.

Multiomic approach for examining
relationship between transcription and
glycosylation

Experiments were analysed in R (version 4.3.1). Principal

component analysis and k-means clustering were completed

using the package stats (version 4.3.0) with visualisation of elbow

plots requiring the library factoextra (version 1.0.7). The package

mixOmics (version 6.24.0) (Rohart et al., 2017) was used to identify

predictive genes within clusters. A k-fold cross-validation approach

was employed to evaluate the predictive performance of multiomic

data integration. Specifically, 10-fold cross-validation was used,

splitting the dataset into training and testing subsets for each

fold. For each fold, datasets for day 0, day 6, and day

10 transcriptomics and glycan profiling were split into training

and testing sets. Sparse Partial Least Squares (sPLS) models were

generated for each pair of time points (day 0 vs. day 6, day 0 vs. day

10, day 6 vs. day 10), and correlations between the components were

calculated to inform the design of the matrices.

A block-sPLS-DA model was then built using the “block.splsda”

function from the mixOmics package, with the design matrix

specifying the relationships between the datasets. The number of

components was optimised using 10-fold cross-validation with the

‘perf’ function, and the optimal number of features to retain for each

dataset was determined using the “tune.block.splsda” function. The

final model was trained with the optimal parameters, and

predictions were made on the test sets.

The performance of the model was evaluated using the function

“auc” on the final models and the function “plotLoadings” allowed

for visualisation of the most influential genes within each cluster.

Computational modelling of glycan
processing

A custom computational model developed using Java was

previously described (Fisher et al., 2019b; West et al., 2022).

Briefly, the model combines the simulation of glycan processing

via a Gillespie algorithm based stochastic simulation algorithm

(SSA) with iterative parameter adjustment of the used

glycosylation reactions via approximate Bayesian computation

(ABC) to match experimental data.

The SSA processes 10,000 input glycans through simulated

cisternae to generate a glycan profile. The summary statistic used

to compare empirical to simulated glycan profiles was calculated

using the square difference method, which emphasises dominant

glycan species in the profile, at each evaluation of the MCMC chain

in the ABC approach.

High performance computing was used to run 30 parallel fitting

procedures. The Gelman-Rubin R statistic (Gelman and Rubin,

1992) and Mann-Whitney U tests were used to assess the

similarity of the parallel runs and the significance of shifts in

parameter distributions, respectively.

Results

In this study, we aimed to identify glycosylation-related genes that

could serve as predictive markers during CLD for identifying cell lines

with the potential to produce mAbs displaying more favourable

glycan profiles. Our analysis started with bulk RNA-seq data

encompassing the expression levels of 12,935 genes across

53 samples, with each sample measured twice. The sample is

representative of 3 distinct time points within the 15 days mAb

production process, at which transcriptomic analysis was completed:

the cell line at the start of the production run (henceforth referred to as

day 0), day 6, and day 10. Each sample is associatedwith amAb glycan

profile that was collected on day 15, meaning that there is one glycan

profile associated with the 3 separate RNA-seq data sets (Figure 2).

The full set of data can be separated into two distinct projects, each

focusing on a different mAb.
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Principal component analysis (PCA), conducted on the entire

dataset, revealed distinct clustering of samples according to the

project of origin, indicating that the variance in N-glycan

composition was primarily driven by the specific mAb being

produced (Figure 3). Given this clear separation, we opted to

analyse the two projects independently to ensure that the

relationship between gene expression and glycosylation patterns

was fully explored within the context of each unique mAb.

To investigate intra-project differences in glycan profiles, we

applied k-means clustering to the N-glycan data from each project.

This approach allowed us to categorise the samples into distinct

clusters based on their glycosylation patterns, of which one cluster

could be more favourable in terms of mAb therapeutic efficacy, as

explained below. In project A, the data was best separated into two

clusters, while project B required three clusters to achieve a

meaningful division (Figure 4i). Overlaying the assigned clusters

onto a PCA plot of the glycan profiles for each respective project

(Figure 4ii) showed that in project A the two clusters were clearly

distinguished, with the separation predominantly driven by the

abundance of either Man5 or G0F glycan structures. This

observation was supported by the PCA loadings, which

highlighted these glycans as key contributors to the variance

between clusters, and further confirmed by the quantified glycan

profile distributions (Figure 4iii). Between these two clusters the G0F

cluster is considered the more favourable therapeutic entity due to

enhanced clearance of Man5 containing mAbs (Schlesinger

et al., 1978).

For project B, the three distinct clusters were characterised by

the abundance of G0, G0F, and G1F glycans (Figure 4ii, 4iii). The

G1F cluster is likely the most advantageous, primarily due to the

presence of the terminal galactose residue. This galactose residue has

been shown to influence key effector functions of mAbs, including

enhanced binding to C1q and Fcγ receptors, which in turn boosts

complement-dependent cytotoxicity (CDC) and Fcγ receptor

activation. Furthermore, G1F glycans contribute to structural

stability of the CH2 domain of antibodies, which is crucial for

optimal interaction with immune effector molecules (Aoyama et al.,

2019). These properties suggest that the G1F cluster in project B may

lead to mAbs with superior therapeutic efficacy.

To assess the predictiveness of specific glycosylation-related

genes in determining the cluster assignments within each project,

we employed mixOmics for multivariate analysis of the RNA-seq

data. This analysis focused specifically on genes related to

glycosylation to refine our understanding of how these genes

contribute to the observed glycan profiles. The analysis was

narrowed to relevant genes by compiling a list of 184 glycogenes

through a comprehensive literature search (Togayachi et al., 2008).

From this initial list, we further refined our focus to 76 genes that are

relevant to N-linked glycosylation. Using transcriptomic changes in

this curated set of 76 genes, we tested their ability to predict cluster

assignments within each project using mixOmics. Robustness of the

predictive effects was ensured by performing 10-fold cross validation

on the project-specific datasets. The data was partitioned into ten

sets, where 9 were used for training the model, and the remaining set

was used for testing. This process was repeated such that each of the

10 sets served as the test dataset at least once. Genes were considered

to have strong predictive power if they were consistently selected in

7 or more of the 10 cross-validation iterations.

FIGURE 2

Schematic timeline of mAb production highlighting when sampling was completed.

FIGURE 3

Variance between glycan profiles is predominantly as a result of

the project from which the sample originates. Principal component

analysis of glycans displayed on the mAbs collected on day 15 of

production runs. Each data point corresponds to a single glycan

profile, and the samples are coloured by project. n = 53.
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After completing the 10-fold cross validation, we evaluated the

models’ performance using receiver operating characteristic (ROC)

curves, which were generated for each of the three sampling days to

visualise the discriminative ability of the models. The area under the

ROC curve (AUC) was calculated to quantify the accuracy of the

classifiers in distinguishing between the different clusters, with an

AUC of 1 signifying optimal distinguishing power and a score of

0.5 indicating performance equivalent to random change

(Figure 5I). Across both project A and project B, the models

generally performed well, with AUC values consistently above

0.5, indicating that they were better than random at

distinguishing between the clusters.

However, it is important to note that not all time points

performed equally well. In project A, for example, the classifier at

day 6 showed a noticeably lower performance compared to day

0 and day 10. This reduced performance at day 6 could be attributed

to a high level of intercorrelation between genes at this time point,

potentially complicating the model’s ability to accurately

differentiate between clusters (Supplementary Figure S1ii). The

best predictive power, for project A, was observed at day 0,

where the classifier achieved an average AUC value of 0.97. This

may have significant implications for CLD, as RNA analysis of a cell

line may have predictive power for an optimised glycan profile

without the need for a production run.

In contrast, for project B, the AUC values across the three time

points were more closely aligned, indicating that the model’s ability

to distinguish between clusters remained relatively consistent over

time. However, when examining the performance across different

clusters, the model was most effective at distinguishing the G1F

cluster, as indicated by higher AUC values.

FIGURE 4

Subdivision of the projects into clusters with different glycoforms using k-means clustering. i) Elbow plots displaying the variance explained as a

function of the number of clusters in the data. ii) PCA plot showing the clusters and the different loadings which are prominent within that cluster. iii)

Glycan profiles of the clusters depicted in part ‘ii’. WCSS = Within cluster sum of squares.
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In project A, a total of 33 genes were identified as being

predictive of cluster assignments across the three time points

(Figure 5ii). z Specifically, 9 genes were predictive at day 0,

21 genes at day 6, and 3 genes at day 10. Given the

comparatively lower performance of the model at day 6, the

genes identified at this time point were excluded from further

evaluation, though they are detailed in Supplementary Figure S2.

A corroborative finding in project A is the elevation of

Man2a1 levels in the G0F cluster compared to the

Man5 cluster. This observation aligns with the known

biochemical pathways of glycosylation, where elevated levels of

mannosidase II promote the conversion of intermediate glycans

(i.e., Man5) into more complex structures, such as G0F. Two

different isomers of the earlier acting mannosidase, mannosidase

I, showed distinct patterns between the two clusters: Man1c1 was

elevated in the G0F cluster, while Man1a was more prevalent in

the Man5 cluster. The two isomers act onMan9 glycan precursors

by trimming terminal mannose residues until Man5 is formed.

The elevated levels of Man1c1 in the G0F cluster are logical, as the

faster this trimming occurs, the more time there is for Man5 to be

further processed by other enzymes into more complex glycans.

Conversely, the elevation of Man1a within the Man5 cluster is

unexpected and does not align with the anticipated glycosylation

pathway. However, given that Man1a has the smallest

contribution to the Man5 component, its influence might be

minimal and is currently not a primary focus for analysis.

Similarly, the involvement of Mgat5, which is involved in the

branching of glycans to make tri- and tetra-antennary glycans,

does not have a clear biological explanation in this context.

Alg5, which is involved in synthesis of the oligosaccharide donor

used for initiation of N-glycan biosynthesis in the ER, does not

directly influence glycan processing in the Golgi, and thereby the

ratio of different glycoforms (Heesen et al., 1994). Instead, Alg5 will

affect the occupancy of glycosylation sites on a range of endogenous

proteins within the cell. Increased expression of Alg5 leads to greater

site occupancy (Gallo et al., 2022), which in turn increases the

competition for glycan processing enzymes in the Golgi, potentially

reducing glycan processing on the mAb, thus increasing the

proportion of Man5.

In project B (Figure 5ii), several genes associated with the early

stages of glycosylation, prior to the action of oligosaccharide transfer

to the protein, exhibit elevated levels in the G0 and G0F clusters.

These genes, including Dpm1, Alg11, Alg8, and Alg5, are likely

contributing to the same effect observed in the Man5 cluster of

project A. Higher expression of these genes increases site occupancy

on host proteins and thereby competition for the Golgi glycan

processing machinery. This may result in the mAb glycans not

being processed to their full potential, leading to less complex glycan

structures.

The presence of sialyltransferases (St3gal1 and St6gal2) in the

G1F cluster could be another indication of competition. Elevated

levels of these sialyltransferases may increase their competition with

galactosyltransferases for host protein substrates (mAbs are

generally not sialylated). This competition could free up

galactosyltransferases for the modification of mAb glycans within

the G1F cluster, thereby enhancing the galactosylation of these

glycans. Finally, increased expression of the UDP-Gal transporter

(UDP-Gal T) in the G1F cluster is consistent with our

FIGURE 5

Evaluation and visualization of the final mixOmics models and the genes responsible for predictiveness. i) Area Under the Curve (AUC) plots

illustrating the performance of the mixOmics models for predicting glycan profiles. Each plot displays the model’s discriminative ability across different

clusters, with higher AUC values indicating better predictive performance ii) Bar plots showing the genes contributing to the model’s predictiveness. The

bars represent genes that are elevated in the cluster shown above each plot. The length of each bar corresponds to the gene’s absolute contribution

to the prediction, highlighting their relative importance in the model. See Figure 1 for the definition of LLO synthesis.
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understanding of glycosylation: increased transport of galactose into

the Golgi apparatus would provide more substrate for the

galactosylation, thus promoting the formation of G1F glycan

structures. It is interesting to note though that UDP-Gal T levels

are predictive before the start of mAb production on day 0.

To verify the mechanistic interpretations behind these

mixOmics predictions, a stochastic simulation of glycosylation

was performed, coupled with approximate Bayesian computation

(ABC) fitting to assess changes in levels and localisations of key

N-glycan processing enzymes across the Golgi apparatus in the

different project A and B clusters (Figure 6).

The only significant difference predicted by the computation

between the Man5 and the G0F clusters in project A was a reduction

in N-acetylglucosaminyltransferase 1 (Mgat1) levels. This reduction

in Mgat1 fits well with the observed glycan profile clustering, as

lower Mgat1 levels would decrease the conversion of Man5 to more

complex glycans. However, it is important to note that this change in

Mgat1 expression was not captured by the mixOmics analysis, likely

due to the RNA-seq data showing only a slight difference in

Mgat1 expression between the clusters (with mean values of

11.5 in the G0F cluster and 12.2 in the Man5 cluster). This

suggests that the predicted reduction in Mgat1 activity may not

be solely due to differences in RNA expression. The discrepancy

between RNA levels and the predicted enzyme activity could be due

to several factors. For example, the same RNA levels may lead to

varying amounts of Mgat1 protein due to differences in translation

efficiency, post-translational modifications, or other Golgi-related

factors, such as enzyme localization or substrate availability.

Although a change in Mgat1 expression was not picked up by

the mixOmics analysis, the decrease in Man2a1 (the immediate next

enzyme after Mgat1 in N-glycan processing) in the Man5 cluster

could represent the same biological effect.

In project B, there are three key comparisons to be made:

between the G0 and G0F clusters, the G0 and G1F clusters, and

the G0F and G1F clusters. The simulation revealed a consistent

reduction in both Mgat1 and Fut8 levels in the G0 cluster compared

to the G0F and G1F clusters. The reduction in Mgat1 likely serves to

decrease the flux that drives the conversion of G0 glycans, resulting

in their retention. The reduction in Fut8 is an obvious prediction

that would lead to fewer fucosylated glycans, as observed in

the G0 cluster.

The primary difference between the G0F and G1F cluster is, as

expected, in the level of galactosylation. The G1F cluster shows

higher levels of galactosyltransferase (GalT) compared to the G0F

cluster, which is consistent with what is expected. Furthermore, this

could be captured in the mixOmics analysis by the increase in the

UDP-Gal T as predicted in Figure 4. As the SSA/ABC model only

captures overall enzymatic activity, other factors such as substrate

availability are subsumed within the activity value. As such, the

increased galactosylation activity could be capturing the predicted

increase in galactose residues.

Interestingly, the simulation predicted an increase in

Mgat1 levels in the G0F cluster compared to the G1F cluster.

This increase is coupled with the added complexity that the flux

data suggest Mgat1 action to occur earlier in the Golgi with a

reduction in activity in later cisternae. On the surface, this pattern

seems counterintuitive, as one might expect that increased early flux

would allow more time for subsequent galactosylation to occur.

However, a deeper look into the role of fucosylation provides a

plausible explanation.

FIGURE 6

SSA/ABCmodel predictions illustrating the necessary glycosylation gene changes for achieving different glycan profiles. i) Gene expression changes

required to model one cluster’s glycan profile relative to another, for both Project A and Project B. Each plot shows the predicted alterations in

glycosylation gene expression needed to shift from one glycan cluster to another, highlighting specific genes and their relative changes ii) Localization of

Mgat1 flux in Project B. The plot visualizes the predicted spatial distribution of Mgat1 activity within the Golgi apparatus.
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Fucosylation can compete with galactosylation and can inhibit it

when both processes target the same glycan. In the G0F cluster, the

observed shift of Mgat1 activity to an earlier stage may be a

compensatory mechanism to facilitate fucosylation in the absence

of significant competition. By enabling Mgat1 to act earlier, the

glycan structure is primed for fucosylation sooner, maintaining the

window of opportunity for galactosylation to occur later in the

Golgi. However, it’s important to include a disclaimer here.

Fut8 operates at a slower rate compared to other glycosylation

enzymes. This slower reaction rate needed to be accurately

represented in the simulation, but since enzyme activity and

concentration are intertwined in our model, a workaround was

implemented. We introduced an artificial enzymatic process,

equivalent to a hidden Markov state that temporarily restricts

access to the glycan until fucosylation is complete. While this

approach successfully decouples fucosylation’s slow rate from

other reactions, it also introduces a potential artefact where

unprocessed glycans may be retained across the Golgi longer

than expected, resulting in fewer overall modifications.

While the simulation suggests that Mgat1 acts earlier in the G0F

cluster to facilitate fucosylation and limit galactosylation, this result

should be interpreted cautiously. The key takeaway is that

fucosylation is likely competing with galactosylation. This

dynamic helps to explain the less elaborated glycan structures

observed in the G0F cluster. The interaction between fucosylation

and galactosylation, rather than Mgat1 alone, is likely driving these

differences.

Discussion

Our study identified glycosylation related genes as predictive

markers for cell lines that produce mAbs with favourable glycan

profiles. By correlating gene expression patterns with glycan profiles,

we provided insights into potential genetic determinants of glycan

heterogeneity. However, our findings also highlight a critical

limitation: the link between transcriptomic data and glycosylation

outcomes is not a straightforward relationship.

The predictive relationship between transcriptomics and

glycomics observed in our study aligns with findings from

previous research, such as the work by Nairn et al. (2012). Their

study revealed correlations between transcript expression and glycan

abundance in various animal tissues, suggesting that transcript levels

of glycosylation related genes could influence the overall glycan profile

(Nairn et al., 2012). In our study, we similarly observed that distinct

clusters of glycan profiles could be predicted from transcriptomic

data. However, as Nairn et al. noted, not all glycan structures

correspond directly to transcript levels of the biosynthetic enzymes

responsible for their production. This implies that other regulatory

mechanisms are also at play. This is particularly obvious when we

examine the insights gained from the SSA/ABC modelling. One key

finding was the role of Mgat1 in determining the differences between

favourable and unfavourable glycan profiles. The modelling

demonstrated that it was not just the activity level of Mgat1, which

may be influenced by transcriptomic levels, but rather it’s localisation

across the Golgi cisternae that played a pivotal role in influencing

glycan profiles (Bailey Blackburn et al., 2016; Fisher et al., 2019a). This

observation emphasises the importance of considering enzyme

localisation, something which cannot currently be predicted from

transcriptomic data. It may be possible to gain further mechanistic

insight with a larger set of genes which also includes trafficking

machinery, but this is currently unavailable and certainly beyond the

scope of this study.

Our study has identified differential responses at the protein-

specific level which are consistent with the hierarchical nature of

N-glycosylation described by Arigoni-Affolter et al. (2024). While

cellular N-glycome changes could be correlated with glycosylation

enzyme expression, individual mAbs exhibited unique glycosylation

patterns that were likely influenced in concert by their specific protein

structure with the local glycosylation environment. This is another

level of specificity that cannot be captured by the transcriptomic data

and is currently also very hard to model using the SSA/ABC model.

Importantly, in the case of therapeutic mAbs the well-known site-

specific processing of the attached N-glycans is significantly different

from the “average” endogenous processing requirements in the Golgi

(Rudd and Dwek, 1997). Therefore, changes in endogenous glycan

processing reactions that would normally not act on mAbs can have

unforeseen consequences on mAb glycan processing due to altered

competition with enzymes that do act on mAbs.

Moreover, despite the strong correlations and predictiveness

observed between transcriptomics and glycan profiles, several caveats

must be considered. A major limitation of using transcriptomic data to

predict glycan outcomes is the realisation that changes in mRNA levels

do not always translate directly into changes in protein levels. Protein

levels within the cell are governed by a balance of synthesis and

degradation processes, with transcriptomics only capturing the first

half of this lifecycle (Liu et al., 2016). This disconnect may lead to

discrepancies between predicted and actual glycosylation patterns, as

enzyme activity, and not solely protein abundance, is influenced by

factors such as intracellular localisation within the Golgi cisternae and

post-translational modifications. Additionally, enzyme interactions,

relative abundances, and substrate competition play critical roles in

determining flux through various branches of the N-glycosylation

pathway. For instance, while our analyses focus on N-glycosylation,

it is worth noting that key substrates, like UDP-Gal, are involved in

multiple glycosylation pathways, including O-glycosylation and

glycolipid synthesis. The production of a single protein at high

levels, such as when producing a therapeutic mAb, may alter

cellular physiology and impact flux through these other

glycosylation pathways. The inherent complexity and

interdependence of the processes present challenges in predicting

glycan outcomes based solely on transcriptomic data. However,

despite these challenges, the insights gained from our analyses lay

the groundwork for more refined predictive models.

Nonetheless, the findings from our study could have significant

implications for CLD, particularly in optimising cell lines early on in

the production timeline. A noteworthy observation from project A

was that the highest predictive power was achieved prior to beginning

the production run. This early time point’s strong predictive capability

suggests that critical determinants of glycan heterogeneity may be

established early in the culture process. For CLD, this means that early

transcriptomic profiling could be a powerful tool for selecting cell lines

likely to yield desirable glycosylation patterns later in the production

process. In particular, higher levels of Alg5 and the UDP-Gal

transporter in candidate cell lines are indicative of being able to

produce mAbs with higher therapeutic efficacy.
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One of the key genes identified at this early time point was Alg5.

Although Alg5 does not directly influence glycan processing in the

Golgi apparatus, it’s prominent influence on glycosylation could result

from its ability to increase occupation of glycosylation sites on a range

of endogenous proteins within the cell (Gallo et al., 2022). This

increased site occupancy can create competition for glycan

processing enzymes in the Golgi, thereby reducing the processing

of glycans on mAbs. For CLD, this suggests that monitoring and

modulating Alg5 expression early in the cell culture process could be

critical in controlling the glycan profile of mAbs. Specifically, limiting

Alg5 expression might reduce competition for glycosylation enzymes,

thereby enhancing the processing of mAb glycans into more complex

and therapeutically favourable forms.

In addition to Alg5, UDP-Gal T also emerged as a significant

predictive marker in project B. Specifically, UDP-Gal T was notably

predictive for the G1F cluster prior to beginning the production run.

High expression of UDP-Gal T facilitates the addition of galactose,

which is essential for generating more G1F glycans. Therefore,

monitoring and optimising UDP-Gal T expression early in the

culture process could further improve glycan profiles by

promoting the formation of complex, galactosylated glycans that

are advantageous for therapeutic efficacy.

Future work should focus on integrating proteomic data in

addition to the transcriptomics used here to provide a more

comprehensive view of factors influencing glycan heterogeneity.

Additionally, exploring the subcellular localisation of glycosylation

enzymes and their interactions with specific glycoproteins could offer

deeper insights into the mechanisms driving glycosylation patterns.

Understanding these processes will not only enhance the production

of therapeutic mAbs with desirable glycan profiles but also contribute

to the broader field of glycoscience, providing valuable knowledge on

the regulation of protein glycosylation in eukaryotic cells.
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