
This is a repository copy of Scene complexity and the detail trace of human long-term 
visual memory.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/220966/

Version: Published Version

Article:

Kyle-Davidson, Cameron, Solis, Oscar, Robinson, Stephen et al. (2 more authors) (2025) 
Scene complexity and the detail trace of human long-term visual memory. Vision 
Research. 108525. ISSN 0042-6989 

https://doi.org/10.1016/j.visres.2024.108525

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Contents lists available at ScienceDirect

Vision Research

journal homepage: www.elsevier.com/locate/visres

Scene complexity and the detail trace of human long-term visual memory
Cameron Kyle-Davidson ∗, Oscar Solis, Stephen Robinson, Ryan Tze Wang Tan, Karla K. Evans
University of York, Dept. of Psychology, York, YO10 5NA, UK

A R T I C L E I N F O

Keywords:
Long-term visual memory
Complexity
Neural networks
Scene perception
Scene memory
Scene detail

A B S T R A C T

Humans can remember a vast amount of scene images; an ability often attributed to encoding only low-fidelity
gist traces of a scene. Instead, studies show a surprising amount of detail is retained for each scene image
allowing them to be distinguished from highly similar in-category distractors. The gist trace for images can be
relatively easily captured through both computational and behavioural techniques, but capturing detail is much
harder. While detail can be broadly estimated at the categorical level (e.g. man-made scenes more complex
than natural), there is a lack of both ground-truth detail data at the sample level and a way to operationalise
it for measurement purposes. Here through three different studies, we investigate whether the perceptual
complexity of scenes can serve as a suitable analogue for the detail present in a scene, and hence whether
we can use complexity to determine the relationship between scene detail and visual long term memory for
scenes. First we examine this relationship directly using the VISCHEMA datasets, to determine whether the
perceived complexity of a scene interacts with memorability, finding a significant positive correlation between
complexity and memory, in contrast to the hypothesised U-shaped relation often proposed in the literature.
In the second study we model complexity via artificial means, and find that even predicted measures of
complexity still correlate with the overall ground-truth memorability of a scene, indicating that complexity and
memorability cannot be easily disentangled. Finally, we investigate how cognitive load impacts the influence
of scene complexity on image memorability. Together, findings indicate complexity and memorability do vary
non-linearly, but generally it is limited to the extremes of the image complexity ranges. The effect of complexity
on memory closely mirrors previous findings that detail enhances memory, and suggests that complexity is a
suitable analogue for detail in visual long-term scene memory.

Introduction

Human visual long-term memory (VLTM) has a large storage ca-
pacity, with the capability to encode thousands of distinct images. If
tasked to view 10000 images, a human, on average, could be expected
to remember the majority of the images they were shown (Standing,
1973). Initially, this vast storage was thought to be due to the storing
of gist traces: low-level, rapidly extracted information which carries
global properties which allow for image categorisation. However, more
recent work has shown that significant idiosyncratic detail survives
the encoding process. Brady, Konkle, Alvarez and Oliva show that
even when remembering large number of objects (Brady et al., 2008),
performance in recognising the shown object remains high even when
shown objects drawn from the same category. The ability to recognise a
specific, previously seen object remains intact even with a large num-
ber of similar objects held in memory. Memory performance remains
high with up to 16 same-category exemplars held in visual long-term
memory (Konkle et al., 2010a). This performance is not exclusive to
objects; in a later study Konkle et al. shows observers thousands of
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scene images, finding that memory performance remains high even
with 64 same-category scenes held in memory. Moreover, this ability is
robust: a doubling in exemplar amount results in only a 2% decrease in
recognition accuracy. Despite having seen thousands of scenes, enough
detail is preserved for each scene to allow an observer to determine
they have previously seen a specific scene (i.e, a kitchen with these
idiosyncrasies rather than another kitchen). This degree of recognition
would be impossible if only a gist trace was stored. Generally, there is
clear evidence that more than an impoverished gist trace of an object
or scene persists in visual long term memory, (Brady et al., 2011;
Cunningham et al., 2015; Guevara Pinto et al., 2020) instead, detail
is encoded and preserved.

The gist component of human visual long-term memory has been
the focus of much research (Larson et al., 2014; Oliva, 2005; Oliva
& Torralba, 2006), and is reasonably well understood. In contrast,
how the detail present in a scene interacts with that same scenes
overall memorability is less known. Some scenes are filled with clutter,
objects, and textural variations. Others might be comparatively plain:
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consider the difference between a picture taken of a living room with
that of an empty field - what impact does the presence or lack of
detail in these respective scenes impact their memorability? Answering
this question is difficult, largely due to the difficulty in extracting a
reasonable representation of ‘detail’. While the gist of a scene can
be probed with rapid serial visual presentation, and extracted with
straightforward computational statistical measures, no singular method
exists for finding the detail component. Recently, a study by Evans
and Baddeley (2018) proposes a two-level processing model for scene
memory, employing visual complexity as an analogue for scene detail.
The initial processing stage of the two-level model is based on gist,
extracting general image features, whereas the second stage facilitates
encoding of idiosyncratic scene elements. This work reveals that dif-
ferences in image detail appear to affect how well a given image is
remembered. Images of man-made scenes (indoor scenes etc, assumed
highly detailed) are better remembered than natural scenes (outdoors,
low detail). However, at the time of the study, there was not a ground-
truth per-sample measure of detail for each individual scene, limiting
further analysis of the relationship between detail and human memory.

Over the past decade the study of human visual memory has ben-
efited from advances in the computer sciences. From detecting the
dimensions associated with an image being remembered or forgot-
ten (Bylinskii et al., 2015; Isola et al., 2011a, 2011b), to developing
large scale neural networks for image memorability analysis (Khosla
et al., 2015; Koch et al., 2020), to identifying and predicting the
regions which cause a scene to be memorable (Akagunduz et al., 2019;
Kyle-Davidson et al., 2019), computational techniques have aided psy-
chological study into human memory. More recently, computational
methods have been applied towards understanding of perceptual scene
complexity, to understand which components of a scene image con-
tribute towards a human believing that a viewed scene is either com-
plex, or is simple (Kyle-Davidson et al., 2023). The level of complexity
in a scene is driven by both low-level image properties as well as the
semantic content of a scene; and hence is a highly tempting candidate
to serve as an operationalisation of detail. It may be that the level
of complexity in a scene, as perceived by a human has a direct in-
teraction with the memorability of that scene, on a per-scene (rather
than categorically grouped, such as man-made vs natural) basis, due to
complexity capturing some degree of the detail trace of VLTM.

Complexity itself has a rich history, from original theoretical work
(Birkhoff, 1933) to definitions based in line drawing detail (Snodgrass
& Vanderwart, 1980) or verbal texture descriptions (Heaps & Handel,
1999). More modern approaches approximate the amount of informa-
tion in an image with entropy calculations (Cardaci et al., 2009; Yu
& Winkler, 2013), kolmogorov complexity (Kolmogorov, 1965; Rigau
et al., 2007) or foveal clutter (Rosenholtz et al., 2007). State of the art
approaches currently use machine learning models to generate com-
plexity ratings for arbitrary images (Corchs et al., 2016; Kyle-Davidson
et al., 2023; Nagle & Lavie, 2020). However, there have been few
comparisons between complexity and memorability, with primary focus
on comparisons of complexity and aesthetic measures (Sun et al., 2015;
Van Geert & Wagemans, 2020, 2021), preference (Althuizen, 2021;
Berlyne et al., 1968; Güçlütürk et al., 2016), or usefulness (Foster,
2010). Often, there appears to be an inverted U-shape relationship
between complexity and these other perceptual characteristics. Cer-
tainly for aesthetics and preference metrics, low complexity and high
complexity stimuli are less preferred, and less aesthetic, compared to
their medium-complexity cousins. When it comes to memory, there is
some evidence that an inverted U-shaped, non-linear relation also exists
between stimulus memorability and stimulus complexity. Carlisle et al.
find that images of medium complexity are best remembered in short
term scene memory (Carlisle et al., 0000). Oliva et al. likewise suggest
that long-term visual memory for scenes is not linear against complex-
ity, and instead follows a similar inverted U, with medium complexity
scenes being better remembered (Oliva, 2004). In contrast, a recent
work comparing memory scores from a large dataset (though not

scene focused) find that computational complexity measures correlate
positively and solely linearly with hit rate (Saraee et al., 2020), with no
evidence for non-linear behaviour. Nonetheless, there are suggestions
of traceable neural correlates both for complexity (Güçlütürk et al.,
2018), and for the impact of complexity on memory, with Chai et al.
(2010) finding that complexity directly modulates activity in regions
responsible for memory formation.

In this paper, we propose investigating the degree to which ground-
truth complexity (drawn from human observers) interacts with ground-
truth memorability data, and hence the impact of detail on how ef-
fectively a scene is remembered, or forgotten. We aim to narrow
down whether complexity and memory vary together linearly, or non-
linearly, over a broad scene dataset. In study 1, we evaluate the direct
relationship between one and two-dimensional memorability and com-
plexity data for scenes, and test the theory of two pathway encoding in
visual long term memory. In study 2, we test whether a similar relation-
ship also appears in an artificially predicted complexity measure, using
a deep neural network to generate complexity ratings. Should predicted
complexity ratings for an image align with the memorability of the
image, this is indicative that complexity cannot be captured without
also capturing the detail trace relevant to human memory. Finally, in
study 3 we investigate the larger-scale relationship between complexity
and memorability, giving rise to some general conclusions on how the
level of detail present in a scene impacts the ability to remember that
scene, and the mechanisms which appear to drive that memorability.

1. Study 1 - The relationship between complexity & memorability

To examine the relationship between complexity and memorability
we draw upon two datasets which provide ground-truth memory, and
ground-truth complexity data respectively for the same scene images.
The recent development of this dataset has made the following anal-
ysis possible; prior to this, no datasets existed which provided both
ground-truth memorability and complexity data for the exact same
images.

The scene component of the dataset consist of 800 varied scene im-
ages across eight different categories (100 images per category). These
categories span commonly encountered scenes, such as kitchens, living
rooms, golf courses, amusement parks, and airport terminals, among
others. Each image is 700 by 700 pixels, and preprocessed to minimise
occurrences of overt text, recognisable landmarks, and faces looking
directly at the camera. For both memorability and complexity data,
both single-score overall data is provided, as well as two-dimensional
annotations which indicate either regions relevant to the memorability
of that scene, or regions relevant to the degree of complexity present in
that scene. In this section we provide a brief overview of the methods
used to obtain this data. Full details can be found in the relevant cited
works.

Memorability data

The memorability dataset we use is VISCHEMA (Akagunduz et al.,
2019). The VISCHEMA dataset consists of 800 scene images, evenly
distributed among eight different categories. During the study phase
of the experiment, participants (𝑛 = 90) were asked to remember 400
scene images randomly selected from the dataset. These 400 images
were selected randomly, but constrained to ensure each image was seen
as close to an equal number of times during the study as a whole. Each
scene image was presented for three seconds. During the test phase,
participants were shown another 400 images, of which 200 images
were repeats from the study phase, and 200 images were foils that
were not shown in the preceding phase. If the observer believes they
have seen the displayed image before, they were instructed to press
a button to indicate this. They were then asked to annotate up to
three regions on the image that caused them to recall having seen
that image previously. From this data, for each image an overall hit
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Fig. 1. VISC-C Complexity maps with complex regions in blue and simple regions in red.

rate, false alarm rate, and d-Prime was calculated. The annotation data
reveals the two-dimensional regions of the scene that are indicated by
an observer to be responsible for the scene being remembered (true
memorability), or which cause an observer to believe they have seen
that scene before, when in fact they have not (false memorability). In
total, for the 800 scene images, this dataset comprises 800 single-score
memorability ratings, and 800 two-dimensional maps which indicate
the memorable and falsely memorable regions of the scene.

Complexity data

The complexity data we use in this analysis comes from the
VISCHEMA-C dataset (Kyle-Davidson et al., 2023). This dataset con-
tains single-score complexity ratings and two-dimensional complexity
maps for the exact same scene images as used in the VISCHEMA dataset.
Together, this provides a comprehensive corpus that allows for analysis
of memory and perceptual complexity data. The complexity data was
gathered via Prolific, an online experimentation platform (Prolific,
0000). Participants were shown a continuous stream of 200 randomly
drawn scene images. The randomisation of each image stream was
balanced to ensure the same number of participants viewed each image.
The order of the stream was randomised to avoid context effects.
Participants were first asked to rate the complexity of the image be-
tween 0 (very simple) and 100 (highly complex) on a sliding scale.
Once they had rated the image numerically, they were then asked
to annotate either the complex or the simple regions of the images,
by being asked to draw free-form boxes around these regions. The
same participant was not tasked with annotating both simple and
complex regions for the same scene image. Participants showed a
good degree of consistency between complexity ratings (𝑟 = 0.84).
Complexity ratings also correlated well with the annotations given by
the participants (multiple linear regression, 𝑅2 = 0.6). This relationship
was established by combining the two-dimensional annotation data
from each participant which saw a given scene image into a ‘complexity
map’ (Fig. 1) for that scene. These maps were then decomposed into
two single-dimensional metrics. These were: (a.) Coverage: which de-
scribes how much of the image was covered by the simple or complex
annotations from the participants (e.g., one might imagine a highly
complex image to be complex throughout the scene rather than in
one localised area) and (b.) intensity, which measures the degree of
overlap between annotations (e.g., are the participants labelling the
same areas as complex?), which is indicative of annotation consistency.
These metrics show a high degree of correlation with the complexity
score given by the participants, and shows that the annotations reliably
capture the perceived areas of complexity or simplicity within that
scene (Kyle-Davidson et al., 2023).

Results and discussion

We first compared the ground-truth complexity ratings with the
corresponding ground-truth d-prime score for that image, and find a

Fig. 2. Pearson’s correlation between ground-truth human complexity ratings and
ground-truth human memorability scores.

significant positive correlation (Fig. 2). That is, as the participants’
complexity ratings increase, so too do the memorability ratings for
those scenes.

However, d-prime alone does not necessarily tell the whole story;
is the rise in memorability as complexity ratings increase carried by
hit rate, false alarm rate, or both? To determine this we compare
complexity ratings separately with both the hit-rate and false alarm
rate for each image, shown in Fig. 3. Both the relationship between
complexity ratings and hit rate, and complexity ratings and false alarm
rate, is significant. A rise in complexity ratings corresponds with a
rise in hit rate as well as with a decrease in false alarm ratings. This
suggests that complexity (and correspondingly, detail), has a role in
both increasing the likelihood of recognising an image, and decreasing
incidences of false recognition. A greater level of detail appears to
help prevent a viewed scene being confused with a previously encoded
scene, due to the greater levels of idiosyncratic information that can be
encoded, which corresponds with the data presented in studies of Evans
and Baddeley (2018). This helps to separate the encoded image from
the viewed image and helps reduce false recognition. The detail present
may also facilitate correct recognition by providing more features that
can be encoded and later recalled.

To gain further understanding of the relationship between image
complexity and memorability we can investigate how the complex
and simple image regions influence the hit rate and false alarm rate of
image memorability. Is a scene more memorable because participants
agree more on the complex regions of the image, or because more of the
image itself is considered complex? Analysing the two-dimensional data
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Fig. 3. Pearson’s correlation between human complexity ratings and scene hit rates (left) and false alarm rates (right).

Table 1
Relationship between scene memorability (hit rate, false alarm rate) and metrics for
describing two-dimensional scene complexity.

Complex region
intensity

Complex region
coverage

Simple region
intensity

Simple region
coverage

Hit Rate 0.025 0.011 −0.083* −0.012
False Alarm
Rate

−0.089* 0.025 0.124*** 0.101**

Bold values are significant with * denoting 𝑝 < 0.05, ** 𝑝 < 0.005, and *** 𝑝 < 0.0005.

allows us to take a step towards determining the mechanisms by which
complexity influences memorability by revealing how complexity and
memorability interact spatially. Paired with two-dimensional memora-
bility data, for example, we can ask whether a generally memorable
scene region is also generally complex — or vice-versa. To investigate
this we start by comparing (1.) the average intensity of the complex
or simple regions, which is representative of observer consistency, and
(2.) the percentage of the image covered in annotations, with the scenes
memorability. We show these relationships in Table 1.

Complex region intensity (observer agreements in annotations, i.e.
overlap on a specific region) does not show any significant relationship
with the hit rate of image memorability (r = 0.025; p = 0.484) but
does with the false alarm rate (r = −0.089; p = 0.011). This pattern
indicates that the more agreement there is between observations on the
annotations of the complex regions in the image, the fewer false alarms
in image recognition. The relationship with the 2-D map intensity of
‘simple’ labelled regions shows a complimentary, but different pattern
of results. We find a significantly negative relationship with the hit rate
(r = −0.083, p = 0.019) and a positive relationship with false alarm rate
(r = 0.124, p = 0.0001). Generally, the more agreed-on simple regions
in the scene, the lower the hit-rate, and the greater the false-alarm
rate. In contrast, the scene coverage of simple or complex annotations
compared to hit and false alarm rate shows less consistent results and
is less informative. The complex region coverage shows no significant
relationship with either hit or false alarm rate. However, the simple
region map coverage does show a significant positive relationship with
false alarm rate (r = 0.101, p = 0.004), though no relation with hit rate
(r = −0.012, p = 0.727).

All of these relationships can be better summarised if one conducts
a series of multiple linear regression (MLR) analyses considering one
of the memorability metrics (DPrime, hit rate, false alarm rate) with
a series of complexity metrics (Complex/Simple channel intensity,
and human complexity ratings). We show the results of the MLR in
Table 2. We exclude the complex/simple coverage factors to reduce
multicollinearity, as well as results that include all available factors (‘af-
Adjusted R-Squared’). We find that perceived complexity of an image

Table 2
Results of multiple linear regression, with Complex and Simple coverage removed to
avoid multicollinearity concerns. Coefficients for each variable are shown, as is the
coefficient of multiple regression (R) and variance explained (R-squared), as well as
the variance explained when including all factors (af-Adjusted). All regressions are
significant. Complexity can explain a small, but significant portion of variance inherent
in memorability data for DPrime, hit rate, and false alarm rate.

D-Prime Hit rate False alarm rate
Constant 1.000 0.3156 0.098
Complex Intensity −0.051 −0.096* −0.014
Simple Intensity −0.360 0.01 0.061*
Complexity Scores 1.431*** 0.355*** −0.042

R 0.244 0.23 0.136
R-squared 0.06 0.053 0.018
Adjusted R-Squared 0.056 0.049 0.015
af-Adjusted R-Squared 0.068 0.06 0.027
Observations 800

Significant values shown in bold, p < 0: ***, 0.05: *.

can explain a small, yet significant, portion of variance in memorability
scores such as d prime (5.6%); hit rate (4.9%) and false alarm rate
(1.5%). Interestingly, the complexity measures explain much less of the
variance in false alarms than in hit rates, likely a result of the greater
degree of human variation in false alarms. The data from the multiple
regression analysis supports the initial findings, that for memorability
defined by d-prime, a significant predictor is the human complexity
score ratings. Breaking this apart into hit rate and false alarm rate re-
veals that for hit rate, the primary predictor remains human complexity
ratings, while for false alarms the most critical factor is the observers
agreement on simple regions in the image. This reinforces our earlier
finding that more simple scenes are more vulnerable to false alarms.

Finally, given that we also have two-dimensional image memorabil-
ity data, we can also directly compare the two sets of maps (complexity
& memorability). The memorability map data contains both a ‘true
schema’ channel; indicating regions that caused the scene to be cor-
rectly remembered, and a ‘false schema’ channel, indicating regions
that cause false remembering. The complexity data contains a ‘complex’
channel indicating complex regions, and a ‘simple’ channel indicating
simple regions. The results are shown in Table 3, with all the Pearsons
2D correlation statistically significant. The strong positive correlation
for regions labelled as perceptually complex with ‘true schema’ and
‘false schema’ regions suggests that the more perceptually complex a
region is, the more likely we are to remember it — or believe we
have seen it before. For perceptually simple regions the relationship
with memorability (though statistically significant) is much weaker and
negatively correlated. This suggests that the perceptually simpler the
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Fig. 4. Relationship between clutter (left) and symmetry (right) computational metrics and scene d-prime. All correlations significant.

Table 3
Comparing correlation of two-dimensional regions between memorability data and
complexity data.

Memorability False memorability
Complexity Simplicity Complexity Simplicity

𝜌 0.5 −0.06 0.34 −0.05

All values significant.

region is perceived to be, the less likely it is for that region to be
correctly or falsely be remembered as seen. To summarise; complex
regions also tend to be memorable or falsely memorable, while simple
regions are both less likely to be remembered and less likely to cause
you to believe you have seen a scene when in fact, you have not.

Computational metrics
Prior work has shown that two computational images measures,

based on psychological studies, perform reasonably well at explain-
ing human perception of complexity. These measures are: (1.) visual
clutter, computed via region-adjacency graph segmentation, which cal-
culates the number of perceptually distinct regions in the scene, and
(2.) patch symmetry, which computes how symmetric the image ap-
pears to be in a sliding window at varying scales. We compare how
well these algorithmic complexity measures relate to the ground-truth
memorability ratings of the VISCHEMA images by calculating the Pear-
son’s correlation between these metrics (computed for each image) and
the d-prime of each image. The results are shown in Fig. 4.

We find visual clutter, which is positively correlated with complex-
ity, is also positively correlated with memorability as measured by
d-prime. Symmetry, negatively correlated with perceived complexity,
is likewise also negatively correlated with memorability. Generally, the
more clutter and less symmetry present in a scene, the more memorable
that scene, and vice versa.

Clearly there is a relationship between the perceived complexity of
a scene image and that images memorability. This relationship appears
both in direct comparisons of the ground truth data, is visible in explo-
rative modelling, and even shows up when comparing computational
measures of scene complexity with memorability. Generally we find
that the more complex the scene, the more memorable that same scene.
This relationship is carried both in the hit rate and the false alarm rate
of a given scene; the more complex the image, the greater the likelihood
of a correct recognition, and the lower the chance of an incorrect
recognition. A greater level of detail present in a scene may provide
more potential features that can be encoded during the first time the
image is viewed, which helps to both correctly identify a repeat of
the scene, while also helping to filter out incorrect matches that lead
to false recognition. Interestingly, prior work only finds that detail

(considered between groups of manmade vs natural scenes) is only
carried in false alarm rates (Evans & Baddeley, 2018). By considering
complexity at an image level, rather than a category level, our approach
allows for the capturing of complexity values that might be lost through
grouping; for example, the existence of simple man-made images and
complex outdoor scenes. This allows us to reveal the impact of detail
on both false alarm rates and hit rates.

From the two dimensional data we find that when multiple par-
ticipants indicate the same region as complex in a scene, that scene
is also more likely to have reduced instances of incorrect recognition.
For the simple channel, the data shows an inverse pattern; the more
agreement on simple regions in the scene, the more likely that image
is to be falsely recognised. This also carries a small, but significant
reduction in hit-rate. Generally, it appears (when considered solo) that
the simple regions in the image have more to do with the memorability
of that image than the complex regions. However, this is not necessarily
a complete picture. Examining the relationship between complexity-
based annotations and memorability-based annotations, it is evident
that the complexity of the region appears to drive the memorability
of that same region. In essence, while simplicity appears to drive false-
alarms up, when an image is correctly recognised, the regions that have
caused this correct recognition are, in part, related to the complexity
of that region. Even in a simple image, which should have a greater
incidence of false alarms, the effect which causes correct recognition
of that image is still partially to do with the complex regions present
inside that scene. This makes sense, given the prior data on complexity;
even simple images can contain potentially complex regions, a detail
visible in the 2D data.

So far, this data suggests that complexity is a suitable operational-
isation for the level of detail present in the scene. Previous work
suggests that scene detail allows for recognition of an image amongst
similar distractors, and leads to a reduction in false alarms. This is
precisely the pattern we find for the interaction between complexity
and memorability. This relationship is powerful enough to be carried in
computational measures of complexity. We do not necessarily suggest
that complexity is the entire detail trace; there could certainly be
elements of ‘detail’ that are not captured in single-score and two-
dimensional metrics of ‘complexity’ - however, complexity appears to
be a suitable enough analogue to explain a small but significant portion
of variance in memorability.

2. Study 2 - predicted complexity & memory

There is a clear relationship between the ground-truth memora-
bility and ground-truth complexity data. To further verify this, we
can explore whether a similar relationship arises in predicted com-
plexity values. Essentially, we can ask whether the features that a
machine learning model learns to use to predict the complexity of an
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Fig. 5. Complexity prediction neural network derived from Kyle-Davidson et al. (2023).

Fig. 6. Relation between ground-truth memorability data and neural-network predicted
complexity values.

image also associate with the ground-truth memorability of the image.
If so, model-predicted complexity ratings (for images that were not
used to train the model) should show some degree of relation with
memorability. This would imply that complexity and memorability
are intrinsically intertwined — the model cannot learn to predict
complexity without incorporating the relationship between complex-
ity and memorability. If the model can learn this, it suggests that
features which drive human complexity ratings may be intrinsically
related to human memorability ratings. We are able to evaluate this
due to recent development of neural network models for complexity
prediction (Kyle-Davidson et al., 2022, 2023).

Deep neural network architecture

The neural network (Fig. 5) consists of a pre-trained VGG16 back-
bone for object detection, followed by four additional convolutional
layers. The input to the network is a 224 × 224 × 3 scene image,
and the output is a single score between 0 and 1.0 which indicates
the level of complexity present in the scene. The network is fully
convolutional, employing global max pooling in the last layer to reduce
the feature dimensionality prior to the score output. The network uses
ReLU activations throughout, aside from the final output which uses a
sigmoid activation. In total the network is trained for 100 epochs with
an RMSProp optimiser, with a learning rate of 0.0001. The loss function
is straightforward mean-squared error between the predicted outputs
and the ground-truth human data. To predict complexity scores eight-
fold cross validation is used, each time predicting scores for an unseen
portion of the data. The training was conducted with a single NVIDIA
V100 GPU.

Results

The DNN has good prediction of complexity scores, with predicted
scores achieving a Spearman’s correlation of 𝜌 = 0.67 with human
complexity ratings. This allows for a reasonable comparison between
predicted complexity scores and ground-truth memorability for those
images (Fig. 6). It appears that computational measures of complex-
ity, such as neural networks, sufficiently capture human complexity
perception to also capture the relationship between complexity and
memorability. That is, the relationship between complexity and mem-
orability is robust enough that even predicted data shows a significant
positive correlation (𝑟 = 0.124). This mirrors the ground-truth human
data, and together suggests converging evidence that the relationship of
the data as a whole is linear; that as the complexity of a scene increases,
so does the overall memorability of that scene. This linearity apparent
in both ground-truth and predicted data suggests that there are no
deleterious effects of detail in scene images, and that the presence of
increasing levels of detail only aids in the later recognition of that
scene.

3. Study 3 - complexity & memory under load

The linearity of the complexity–memory relationship is surprising.
While it makes sense that low-detail images are more poorly remem-
bered due to lack of idiosyncratic detail, leading to easier confusion
with similar distractors, one might expect that scenes that contain great
levels of detail to also suffer a decrease in memory performance, due
to the presence of a greater number of features, which could make
encoding more difficult, and false alarming more likely. This would
lead to the hypothesised inverted-U shape common to relationships be-
tween image characteristics. However, no evidence of this non-linearity
is so far apparent. There are several potential reasons that so far the
relationship has appeared linear. First, the complexity–memorability
relationship may actually be linear. However, it seems unlikely that
by increasing the detail in a scene image one can also increase that
scenes memorability an eventual plateau. It is more likely this effect is
due to one of two conditions: 1. Constraints on the dataset used, or 2.
Noise inherent in human complexity/memorability data. Before making
conclusive statements, these two conditions should aim to be ruled out.

While the dataset spans a broad collection of scene categories,
it certainly does not contain examples of every possible scene. The
multidimensional space defined by complexity and memorability scores
is immense, and given that any scene image will lie somewhere in
this space, it is highly unlikely that our dataset spans the entire range
of possible complexity values for the entire possible space of scene
images. We may be capturing a locally linear portion of a globally non-
linear relationship. To determine if this is the case, we can artificially
modulate the effect of complexity on human memory by introduc-
ing a factor of cognitive load into the repeat-recognition experiment.
The increased load during the study phase of the experiment leads
to difficulty encoding proportional to the level of load introduced.
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This is effectively similar to introducing scene images to the dataset
which are comparatively more difficult to remember, without having
to actually obtain novel scenes, memorability, and complexity data.
Note that we are not attempting to modulate complexity via load —
but memorability. Prior work has shown that the additional difficulty
imposed by load consequently means that the image features which
contribute to or detract from a scenes memorability will have a greater
impact on whether that scene will actually be remembered; that is,
memory for images with lower levels of idiosyncratic detail will be
disproportionately affected by load (Evans & Baddeley, 2018). Load
hence broadens this ‘local portion’ of the complexity–memory space we
are able to explore; capturing a wider range of the relationship. For the
second condition, we can reduce the impact of noise on the complexity–
memorability data by performing binning along the complexity axis
— examining the average memorability of scenes that lay within a
certain range of complexity (for example, between 0 and 15, 15 and 30,
etc.). This will allow us to observe any larger dynamics within the data
without these potentially small effects being drowned out by human
noise.

Experimental design

Participants
The participants were undergraduate students from the University

of York, recruited via opportunistic sampling, either by word-of-mouth,
or via the University’s Psychology Human Participant Pool System
recruitment portal (SONA). 24 participants were recruited for each of
the 3 conditions, for a total of 72 participants, based upon prior work
which also investigated the effect of load on scene memorisation (Evans
& Baddeley, 2018). We use Cohens F to perform an a-priori power
analysis, finding a Critical F value of 3.98 and minimum sample size
of 14. The mean age of participants was 20. Ten participants identified
as male, while the rest identified as female.

Stimuli and apparatus
The experiment was coded using MATLAB R2021a and the Psy-

chophysics Toolbox (Brainard & Vision, 1997) and ran on Microsoft
Windows 10, using a Dell XPS computer. The images and instructions
were presented on a Dell UltraScan P1110 CRT monitor with a face
diameter of 21 inches, a resolution of 1280 × 1024, and a refresh rate of
85 Hz. Any auditory stimuli were played through a pair of headphones.

The visual stimuli were taken from the VISCHEMA image set, which
is composed of 800 images of a range of scene categories. To ensure
that images were used as targets and foils equally between participants,
and reduce the chances of floor-performance due to fatigue, these
images were randomly allocated to one of four equally-sized sets,
each containing 200 images. Each participant was assigned a set of
images as targets and a set of images as foils in a systematic way for
counterbalancing. Images were presented at a size of 14.9◦ by 14.9◦ of
visual angle.

The auditory stimuli was created by using voice recordings of
research assistant SR reading out three digit numbers.

Procedure
Before the experiment began, participants were randomly assigned

to the low-load, medium-load, or high-load conditions. Participants
read an experiment information sheet, and were verbally briefed about
the nature of the task by the experimenter. Participants were presented
with another set of instructions on screen that explained the task in
detail. In the study phase of the experiment participants had two task
to complete. One was a verbal task of repeating or counting back out
laud from a three digit number during the span of every 5 trails. The
other one was visual to try and remember the images they were seeing
each for 3 s.

The study phase of the experiment began with the presentation
of an auditory stimulus: a male voice reading a three-digit number.

Participants were required to complete a different task depending on
the condition they were allocated to. These were: repeat the three-
digit number out loud (low-load), count backwards from the number
by one (medium-load), or count backwards from the number in threes
(high-load) until the next number was presented. Experimenters kept
track of participants’ performance on the load task and noted any
mistakes. While participants were completing their load task, they were
simultaneously presented with a sequence of 5 images. Each image
was presented for 3 s, before switching to the next image in the
sequence. After the 5 images, a fixation cross was presented for 3 s,
followed by the auditory presentation of the subsequent number in the
sequence. This number sequence was randomly generated prior to the
experiment. This process was repeated until all 200 images in their set
were presented.

The test phase of the task was a two-alternative forced choice task in
which participants were sequentially shown the 200 images presented
during encoding, randomly intermixed with 200 unfamiliar images.
They were instructed to press the ‘a’ and ‘k’ keys to indicate if the image
was familiar or unfamiliar respectively. After the participant provided
a response, the computer provided feedback regarding the accuracy of
their answer. The next image in the sequence was presented upon a
keypress. This process was repeated until all 400 images were shown
and rated.

Analysis
To reduce the impact of noise and investigate large scale dynamics,

the complexity data for each scene was automatically divided into
evenly spaced bins across the entire range of possible complexity val-
ues. The memorability data was then averaged for each corresponding
bin, giving the average memorability value for a range of scenes of
similar complexity. In total, this results in 21 evenly spaced bins. When
examining memorability behaviour at the extremes of complexity (low
or high), we collect data from the lowest seven or highest seven bins,
which comprises 33% of the bins. This range was selected to encompass
the majority of the non-linear behaviour observed.

Linear and Polynomial regression models are fit to the data using
ordinary least squares (OLS) for parameter selection, allowing for good-
ness of fit metrics to be compared between the models. To further
confirm the results, we perform cross-validation, using the models for
predictive purposes. We first divide each set of memorability data
(binned by complexity) into a train and test set. The training set
includes approximately 70% of the data of that bin, while the test set
contains 30%. We then fit a set of Polynomial models from degree 2
(quadratic) to degree 11, and a linear model on the training set. We
then predict the memorability values of the test set and compare to the
ground-truth memorability data, using mean-squared error. This allows
us to determine whether non-linear predictors offer better ground-truth
predictive power than the equivalent linear predictor trained over the
same data. We run the cross-validation 1000 times for each model
and declare a non-linear predictor as superior should the mean-squared
error of the predictor over the test set be lower than the linear predictor
over the same data.

Results

Comparing human complexity data to human memorability data
across all load-levels (Fig. 7) reveals an intriguing pattern. While the re-
lationship appears mostly linear for scenes that display ‘medium’ levels
of complexity, the relationship is distinctly non-linear for scenes that lie
in the extremes of complexity; either highly simple, or highly complex.
As scenes become very simple, or very complex, we see an increase in
memorability that deviates from the ‘expected’ linear change. Highly
complex scenes appear to allow for a boost in memorability for that
scene; though this effect diminishes for scenes that are considered the
most complex in the dataset. Likewise, very simple images appear to
be able to be remembered better than their slightly more complex
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Fig. 7. Relationship between complexity and d-prime averaged over all loads (left) and broken down by load level (right). The data is fit with both a polynomial curve of degree
6 (blue), and a polynomial curve of degree 1 (a line, orange) for visualisation purposes. The data is follows a linear relationship except at the high and low complexity extremes;
which deviate distinctly from simple linearity.

Fig. 8. Relationship between complexity and participant hit-rate (left) and false alarm (right) rate over all loads.

neighbours, with some indication that as scenes become extremely
simple, memory performance falls. To determine statistically whether
the data follows a linear or non-linear pattern we fit two models to the
data, one linear model (polynomial of degree 1) and a set of non-linear
models. Using these models we conduct an Ordinary Least Squares
regression, and find that while a linear model captures the relation
between complexity and memorability well (𝑅2, 0.774, likely due to the
linear portion of the data) a polynomial model of degree 6 captures
the relationship better (𝑅2, 0.912. This difference is more pronounced
for hit rate (linear 𝑅2 = 0.563, non-linear 𝑅2 = 0.815) and even more
obvious for false alarm rates (linear 𝑅2 = 0.387, non-linear 𝑅2 = 0.855).

Breaking this relationship down into hit rate and false alarm rate
(Fig. 8) we see that while hit rate, for the most part, follows a generally
linear trend, the picture for false alarm rate is more varied. Generally,
scenes at the extremes of complexity, have false alarm rates that deviate
strongly from the linear pattern shown by scenes that are neither highly
simple nor highly complex. This is most obvious for the highly complex
scenes, which show a significant (Kruskal–Wallis H-test, H = 6.6 p
< 0.02) reduction (Mann–Whitney U, U = 78.0, p < 0.01) in false
alarms compared to less complex images, though a similar effect is
apparent for simplistic scenes. The presence of load does result in
the characteristic decrease in memory performance, though we note
that even for the high load conditions the observed D-Prime remains
significantly different from chance (1-sample t-test, p < 0.01).

Examining the relationship across all load levels reveals a similar
pattern occurring within each load (Fig. 7, right). Generally, scenes
with low-medium to high-medium complexity follow a linear trend
with regard to their memorability, irrespective of the level of load

the participant was under. However, very low and high complexity
scenes begin to deviate from this linearity. Generally, high complexity
and low complexity scenes are remembered best, up until the level of
complexity in the image crosses a certain threshold, and memorability
decreases. This appears most prominently in the low and medium load
conditions, showing an initial peak in memorability before a return
to linearity, before becoming non-linear again as complexity increases.
Interestingly, high load (3-back counting) appears to flatten this rela-
tionship back towards linear compared to lower levels of load. As the
data from each load level is drawn from entirely separate groupings
of participants, this suggests that the appearance of non-linear patterns
in the complexity–memorability relationship is not a statistical fluke —
and that complexity values in the extremes do indeed have a non-linear
bearing on how well a given scene is remembered.

While the hit rates (Fig. 9, left) are relatively varied across the load
levels, the false alarm rates (Fig. 9, right) show an interesting pattern:
a reduction, then rise in false alarm rates for scenes with a complexity
rating between 70–80. This gives rise to a characteristic ‘dish shape’
that appears in all load levels (with each load level having entirely
distinct sets of participants). Here, reasonably high complexity scenes
appear to cause a reduction in false alarm rates that deviates from
the standard linear decrement observed for the majority of the data.
Once the complexity increases further, the false alarm rate increases
again. This appears to suggest that a high level of detail, to a certain
extent, protects against false alarming. The effect of complexity on false
alarms appears to be the primary source of non-linearity in the relation
between memorability and scene detail.
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Fig. 9. Hit rate (left), false alarm rate (right), and complexity for all loads.

Fig. 10. Graphing complexity–memorability behaviour at the extremes of the complexity spectrum over load. We show d-prime behaviour (left column), hit rate behaviour (middle
column) and false alarm rate behaviour (right column). The top row of graphs are for low-complexity images, while the bottom row are for high-complexity images.

So far these correlations are exploratory. To check how reliable the
non-linearity of the complexity/memorability relationship is, we can
instead perform cross-validation, training both linear and non-linear
predictors on random subsets of the data. If the data truly does follow
a non-linear pattern, then a non-linear predictor will have a greater
accuracy then a linear predictor for the same subset of test data (data
not used to fit either model). Comparing a linear predictor to a non-
linear predictor for 1000 random subsets of the data, using polynomial
models with degrees from 2 to 11, we find that there is always a non-
linear predictor with superior performance to a linear predictor over
the same training data. This is indicative that the relationship is best
captured via techniques that account for non-linearity.

Behaviour at extremes
To explore this further we can examine the behaviour of the

complexity–memorability relationship only in the regions that display
empirical evidence of non-linearity. In Fig. 10 we graph load level,
against the average d-prime, hit rate and false alarm rate of scenes that
have either an unusually high or unusually low complexity, consider-
ing approximately 100 scenes for both the high and low complexity
conditions. For scenes with low complexity, as load increases, there is

an obviously linear decrease in memory performance, almost hitting
floor performance under high load. The more cognitive load present,
the worse you remember simple scenes. However, for highly complex
scenes, performance does not decrease linearly with load. While there
is an expected cost in memory performance when going from no load
to low load, further increasing the load does not immediately lead to
poorer memory performance for complex scenes. Instead, there is a
plateau in performance, only falling again when the load level increases
to high.

Breaking this down again into hit rate and false alarm rates, we
observe a similar pattern for both complex and simple scenes in the
hit rates. As load increases, hit rate increases, before plummeting
as the degree of load rises, likely due to the participants becoming
more liberal in their judgments. More interesting is the false alarm
behaviour. Here, for low complexity scenes as load increases, false
alarm rate increases. While this increase does not appear totally linear,
it is monotonic: the more load, the more likely you are to believe
you have seen a simple scene before, when in fact you have not. On
the other hand, for highly complex scenes, there is again a plateau in
false alarming between the low and medium load conditions. Generally,
replicating the data above, the differences in memorability between
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Fig. 11. Times out of 1000 that a non-linear predictor of degree n outperformed a linear predictor over the same data. Note that this is not exclusive — the linear model may
have been outperformed by one, many, or none of the non-linear models.

high and low complexity scenes appear to be primarily carried by the
false alarm rates. That is, you are less likely to remember having seen
a complex scene under loaded conditions, when in fact you never saw
that scene to begin with.

Cross-validation
We run a thousand-fold cross validation to determine the efficacy

of non-linear predictors vs linear predictors over random subsets of
the data. Generally, if the test data subset is best predicted by a
linear model, this serves as evidence that the relationship tends to-
wards linearity. Alternatively, if a non-linear performs better: the data
may tend towards non-linearity. While this test is not as robust as
identifying best-fit models on the entire dataset, it allows for further
sanity checking. We find that out of 1000 random train/test splits, in
approximately 80% of these splits a non-linear predictor outperforms
a linear predictor trained on the same training data, and over the
same test split. A breakdown of superior non-linear predictors is shown
in Fig. 11. Generally, the performance of a quadratic model tends
to beat linear, despite being the simplest non-linear model available.
However, even if we exclude quadratic models, a linear predictor is still
out-performed 69.8% of the time by an alternative non-linear model.

Discussion

Despite extensive research into both complexity perception and
visual long term memory, there is surprisingly little work exploring
the interaction between complexity and scene memory. There is some-
what more literature which examines the impact of detail on memory.
Generally, this has focused on the detail retained for objects present in
natural scene images (Hollingworth, 2005; Hollingworth & Henderson,
2002). However, more recently this has extended to examining the
level of detail retained for the scene image as a whole (Konkle et al.,
2010b), suggesting that the detail in the scene has an important role
in preventing a remembered scene from being confused by similar
distractors. However, ‘detail’ is a difficult metric to quantify. Here, we
suggest that scene complexity serves as a suitable analogue for the
more abstract ‘detail’ content present in an image, either capturing the
detail trace (even in part), or varying in concert with it. Complexity is a
natural tool for this task: it is difficult to imagine a natural scene which
is undetailed, yet complex — or simple, yet containing a vast amount
of detail. Recent work has made progress in both operationalizing
complexity, and furthering understanding of the perception of it (Kyle-
Davidson et al., 2023). However, when it comes to complexity and
memory, investigations have yielded somewhat conflicting informa-
tion: some evidence suggests medium complexity images are better
remembered (Carlisle et al., 0000; Oliva, 2004) compared to low or

high complexity images, whereas others suggest the relationship to be
strictly linear (Saraee et al., 2020). This may be partially due to lack of
data, smaller sample sizes, or due to complexity values being simulated.

In this work we attempt to address these shortcomings, analysing
the relationship between complexity and memory for a scene dataset
with a wide variety of categories and images, containing both ground-
truth complexity and ground-truth human memory data. Given the
interaction of complexity and other image characteristics, and earlier
work on complexity and memory, we hypothesise that we should find
a U-shaped relationship between complexity and memory for scenes.
That is, simple scenes may be easily forgotten, and extremely complex
scenes may fail to be encoded robustly. Instead, scenes of medium
complexity may be best remembered; having enough detail to be easily
separable from distractors, but neither too little idiosyncratic detail, or
too much. We attack this hypothesis via three different studies: first
examining the direct relationship between complexity and memory,
then via artificial neural networks, and finally by using load to stress
the impact of complexity on memory.

Perhaps most surprising is that despite prior hypotheses suggesting
that complexity and memorability should have some form of U-shaped
relationship (with medium complexity scenes remembered best), we
find that the relationship to be strongly linear. The more complex (i.e
the more detail), the better the scene is remembered. This holds both
for the single-score ratings given by human observers, as well as in
the two-dimensional maps attached to the scene images; regions that
are complex often have a significant overlap with regions that are
memorable. This suggests both that detail in a scene is advantageous,
and that even very high levels of detail are not detrimental. High
complexity in a scene may simply offer more idiosyncratic details to
be encoded, allowing the cognitive representation of that scene to
contain multiple distinctive features, which afford easy recognition of
that scene. This aligns well with both (Evans & Baddeley, 2018; Konkle
et al., 2010b), who suggest that high-fidelity encoding result in minimal
levels of interference. As high levels of complexity would support high-
fidelity encoding, it makes sense that higher complexity images are
better remembered; an image of a field may be easily confused with
other images of fields, or even forgotten entirely. A detailed image of
a living room is less likely to be confused with other living rooms.
This divide between the memorability of man-made and natural scenes
is well known (Evans & Baddeley, 2018), and it is unlikely to be
coincidence that simple scenes tend to be natural, and complex scenes
man-made (Kyle-Davidson et al., 2023). It hence appears that during
the encoding process, the available idiosyncratic detail that can be
encoded is relatively greater for highly complex scenes vs average
complexity scenes. This leads to a greater likelihood of a higher-fidelity
memory trace for that more complex scene. Later, during retrieval, the
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presence of the improved trace enables you to both identify that the
re-occurring scene is a repeat (rise in hit rates), while simultaneously
insulating you from the effect of similar distractors (fall in false-alarm
rates).

The relationship between complexity and memorability is robust
enough to appear even in simulated data. A neural network trained
to predict complexity for scene images, even over scenes it was never
trained on, still shows a linear positive relationship between predicted
complexity scores and ground-truth memorability scores for those im-
ages. This implies that the same scene features a neural network
might use to predict complexity are in some fashion related to the
memorability of that scene. That is, memorability and complexity are
not easily disentangled: by learning to predict one, you also learn
(to a lesser degree) to predict the other. Finding the same pattern is
encouraging - for a large-scale scene dataset, it seems highly likely that
the memorability of a scene is related to its memorability. However,
like the ground-truth human data, there is little evidence of any form of
non-linearity, and no inverted U shape suggesting medium-complexity
scenes are the most memorable.

It is possible that the data we are obtaining is a result of the scene
dataset being used. While the entire space of scenes may contain a non-
linear relationship between memorability and complexity, we are using
only capable of using a small portion of that space. It may be that in
this portion the relationship is broadly linear; only becoming non-linear
at complexity values outside of the ranges available in our scenes. To
explore this further, we examine the effect of cognitive load on the
complexity–memorability relationship. Load during the memorisation
phase increases the impact of detail, and effectively increases the range
of complexity values available. We also employed histogram binning to
gain a low noise overview of the data. We find that the relationship
between complexity and memorability is indeed highly linear (even
under high load) except for two critical sample sets: scenes of unusually
high or low complexity. Scenes with complexity values that lay closer
to the mean (complexity is Gaussian distributed, (Kyle-Davidson et al.,
2023)) generally follow a linearly increasing trend. However, there are
significant deviations from this at the extremes. Here, low complexity
and high complexity scenes appear more memorable than might be
expected from a linear relationship. This is especially obvious in the
high-complexity cases. The effect appears to be majority driven by the
impact of complexity on false alarms. Generally, increased complexity
(i.e detail) reduces the likelihood of false alarming on a scene. At a
certain high level of detail, this likelihood plummets, before rising
again as the scenes become yet more detailed; moving beyond this
‘sweet spot’. If we examine the extremes specifically over load, we find
that while d-prime for low complexity scenes decreases linearly as load
increases, for highly detailed images we observe a ‘plateauing’ effect,
where additional load does not result in a decrease in d-prime. Again,
this is carried in the false alarms.

Evans and Baddeley (2018) suggest that the encoding process of
visual long-term memory consists of two separate processes. One of
these processes occurs very rapidly, extracting a general description of
a scene, whereas the other trace is slower, but extracts idiosyncratic
detail. This trace is affected by both intention to remember and vulner-
able to executive load, and is responsible for detecting a target from
similar distractors. Critically, this ‘detail trace’ allows for robustness
against false positives; effects which manipulate this detail process
appear in the false alarms, rather than in the detections. Encourag-
ingly, this aligns closely with the data we find when considering the
relationship between memorability and complexity: high complexity
images are more robust against false alarms than their low complexity
counterparts. Indeed, most effects of complexity appear in the false
alarm data rather than in the hit rate data. This is precisely what
would be expected if complexity captured the detail trace. Furthermore,
where Evans and Baddeley (2018) finds that memory performance for
less detailed images is dependent upon availability of executive capac-
ity, here we also show that as load increases, memory performance falls

sharply for simple scenes, yet stabilises for scenes with high degrees of
complexity. Effectively, high complexity in a scene image appears to
provide a protective effect against false alarming, even under loaded
conditions. Whereas in Evans and Baddeley (2018) these differences
were shown on a categorical level, here we find a similar pattern for
data with ground-truth complexity scores for each scene.

In conclusion, given our results, there is significant evidence that
perceptual complexity can serve as a suitable analogue for the detail
trace in visual memory. While we find little evidence that scene com-
plexity and scene memorability follow an inverted U shaped curve,
we do find that the relationship is non-linear, but more complex than
prior literature might suggest. Scenes with high levels of complexity
and remembered better than the linear trend would suggest, whereas
scenes with very high levels of complexity fall back to the linear trend.
Likewise, scenes with a minimal (but above floor) level of complexity
are more easily remembered than scenes slightly more complex. In
short: for the majority of scenes, as complexity increases, so does the
overall memorability of that scene, likely due to enhanced interaction
with the visual long-term memory ‘detail process’. It is this pattern
which drives the initially found linearity in the data. However, there
are deviations from this towards the extremes: highly complex and
highly simple scenes. We find that complexity itself protects against
false alarming, aligning closely with the findings of both Evans and
Baddeley (2018), Konkle et al. (2010b). Our data both indicates that
detail can be successfully operationalised at the sample level, rather
than the categorical level, allowing for future fine-grained analysis,
and also supports the two-stage processing model for visual long-term
memory.
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