

This is a repository copy of Co-application of rhenium, vanadium, uranium and molybdenum as paleo-redox proxies: Insight from modern and ancient environments.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/220942/</u>

Version: Supplemental Material

Article:

Li, S., Wignall, P.B. and Poulton, S.W. orcid.org/0000-0001-7621-189X (2025) Coapplication of rhenium, vanadium, uranium and molybdenum as paleo-redox proxies: Insight from modern and ancient environments. Chemical Geology, 674. 122565. ISSN 0009-2541

https://doi.org/10.1016/j.chemgeo.2024.122565

This is an author produced version of an article published in Chemical Geology, made available under the terms of the Creative Commons Attribution License (CC BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Depositional	Location	Bottom water	Water depth	Data aguna	
environment		H₂S /O₂ (μM)	at study site (m)	Data source	
Silled basins with	Landsort Deep	12	440	Noordmann et al., 2015; Häusler et al., 2018	
	Saanich Inlet	20	28-234	Crusius et al., 1996	
weakly euxinic to	Cariaco Basin	50	1350	Calvert et al., 2015	
bottom water	Black Sea	145-348	380-2164	Ravizza et al., 1991; Lüschen, 2004; Crusius et al., 1996	
	Kyllaren Fjord	4000	10, 28	Noordmann et al., 2015	
Oxygen minimum zone settings with various O2 contents	Namibian margin	41	83	Brüchert et al., 2003; Borchers et al., 2005	
	Chilean margin	0.1-220	126-798	Nameroff et al., 2002	
	Arabian Sea	0.1-83	885-3010	Morford and Emerson, 1999; Vollebregt et al., 2023; Dellwig et al., 2	
	Peru margin	4.5-67.5	85-1357	Böning et al., 2004	
	Pakistan margin	5	135-2111	Crusius et al., 1996	
	Mexico margin	5-12	97-1020	Nameroff et al., 2002	
	NW US margin	25-100	110-1994	Morford and Emerson, 1999	
	Washington margin	40	434-3866	Morford et al., 2005	
Open ocean oxic settings	Japan Sea	200	817, 1473	Crusius et al., 1996	
	African margin	200-240	1445, 2981, 3804	Morford and Emerson, 1999	
	Skagerrak	230	380, 695	Bennett and Canfield, 2020	
	Long Island Sound	250	9, 18	Bennett and Canfield, 2020	
	Svalbard	280	115-329	Bennett and Canfield, 2020	

 Table 1. Modern redox-sensitive environments considered in this study.
 Water depths are included for context.

Table 2. Characteristics of RSTM enrichment factors in modern marine sediments. Broad descriptions (i.e., low, moderate, high) are subjective and relate to median ± one standard deviation for each particular elemental enrichment factor. As discussed in the text, some redox groupings have particularly variable ranges either within or amongst different locations, limiting their use as a single defining characteristic. Namibian data are not included in the weakly euxinic U_{EF} category due to abnormal characteristics (see text for details).

	Funitaio	Anovio	Highly Dysoxic	Weakly Dysoxic	Oxic	Oxic
	Euxinic	Anoxic	(<30 µM O ₂)	(30-90 μM O ₂)	(90-200 μM O ₂)	(> 200 µM O ₂)
U _{EF} *	High (2.4 ± 1.8)	High (2.3 ± 0.6)	Moderate (1.4 ± 2.0)	Low (1.1 ± 0.6)	Low (1.2 ± 0.3)	Low (1.0 ± 0.3)
Mo _{EF} *	High (26 ± 17)	Moderate (5.0 ± 2.1)	Moderate (1.1 ± 12.4)	Low (0.77 ± 1.8)	Low (1.1 ± 0.2)	Low (0.90 ± 0.27)
Re _{EF} *	High (85 ± 99)	High (119 ± 24)	High (49 ± 100)	Moderate (18 ± 24)	Moderate (57 ± 19)	Low (12 ± 22)
V _{EF} *	High (1.6 ± 0.3)	Low (1.2 ± 0.1)	Low (1.2 ± 0.3)	Low (1.3 ± 0.1)	Low (1.1 ± 0.1)	Low (1.2 ± 0.4)

Table 3. Characteristics of RSTM ratios in modern marine sediments. Broad descriptions (i.e., low, moderate, high) are subjective and relate to median ± one standard deviation for each particular elemental ratio. As discussed in the text, some redox groupings have particularly variable ranges either within or amongst different locations, limiting their use as a single defining characteristic. Namibian data are not included for Re/U and Mo/U ratios in the weakly euxinic category due to abnormal characteristics (see text for details).

	Fundada	Anoxic	Highly Dysoxic	Weakly Dysoxic	Oxic	Oxic
	Euxinic		(<30 µM O ₂)	(30-90 μM O ₂)	(90-200 μM O ₂)	(> 200 µM O ₂)
Re/Mo (ppb/ppm)	Very low (0.32 ± 0.52)	Low (3.8 ± 2.3)	High (18 ± 16)	Moderate (8.7 ± 19)	Moderate (9.0 ± 2.3)	Low (2.5 ± 4.4)
Re/U (ppb/ppm)	Low (1.3 ±1.5)	High (5.1 ± 1.9)	High (5.3 ± 8.2)	Moderate (2.4 ± 1.7)	Moderate (3.9 ± 0.73)	Low (1.0 ± 1.7)
Re/V (ppb/ppm)	High (0.20 ± 0.22)	High (0.20 ± 0.26)	High (0.22 ± 0.24)	Low (0.05 ± 0.06)	moderate (0.12 ± 0.04)	Low (0.02 ± 0.06)
Mo/U	High (4.6 ± 3.4)	Moderate (1.1 ± 0.5)	Low (0.45 ± 1.4)	Low (0.28 ± 1.7)	Low (0.46 ± 0.14)	Low (0.39 ± 0.36)