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ABSTRACT 26 

Rising antimicrobial resistance (AMR) is an enormous challenge for global 27 

healthcare systems. The effects of elevated CO2 (eCO2) on AMR are poorly 28 

characterized. Using a free-air CO2 enrichment system and high-throughput 29 

qPCR arrays, we investigated the response of soil antibiotic resistome and 30 

bacterial communities to eCO2 (ambient + 200 ppm) in soils amended with 31 

sulfamethazine (SMZ) at 0.1 and 1 mg kg-1 via chemical-organic fertilizer (COL, 32 

COH). Results showed that under ambient condition, COH significantly 33 

enhanced the diversity of high-risk antibiotic resistance genes (ARGs), relative 34 

abundance of low risk ARGs, unassessed ARGs and total ARGs compared to 35 

COL. Nevertheless, eCO2 mitigated the effects of COH, with no significant 36 

difference found between COL and COH on the above high risk, low risk, 37 

unassessed and total ARGs. Meanwhile, eCO2 decreased the relative 38 

abundance of spcN, ermA, olec, oprD, sulA-olP, tetB, tetT and vanXD in COL, 39 

and alleviated the enrichment of pikR2, ampC, lunC, oprD and pncA caused by 40 

the application of SMZ at 1 mg kg-1. Correlation and network analysis 41 

illustrated that changes of certain bacteria biomarkers and horizontal gene 42 

transfer of integrase gene were associated with the altered response of ARGs 43 

abundance to eCO2. This study adds knowledge of the potential risk of 44 

antibiotic resistance in agricultural exposure scenarios under increasing CO2 45 

concentration.  46 

Keywords: Antibiotics resistance genes; Free-air CO2 enrichment; 47 

Sulfamethazine; Soil bacterial community; Chemical-organic fertilizer. 48 
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1. Introduction 49 

Antimicrobial resistance has been highlighted as a major challenge 50 

threatening human health in the 21st century (Carr et al., 2020; Wang et al., 51 

2021). It has been estimated that 4.95 million peoples’ deaths associated with 52 

bacterial antimicrobial resistance (AMR) in 2019, including 1.27 million deaths 53 

attributable to bacterial AMR (Antimicrobial Resistance, 2022). International 54 

action plans are needed to better understand and prevent the risks caused by 55 

antimicrobial resistance in the environment (UNEP, 2017). Agricultural soil is a 56 

major sink for antibiotic resistance genes (ARGs) due to the intensive 57 

anthropogenic activities, such as fertilization (Cerqueira et al., 2019; Li et al., 58 

2022; Sanz et al., 2022). Chemical-organic fertilization can maintain and even 59 

enhance the crop yields (Bi et al., 2009), but it’s a main pathway for the release 60 

of antibiotic resistant microorganisms and ARGs into agricultural soil (Karkman 61 

et al., 2019; Zhu et al., 2013). Meanwhile, this practice could also introduce a 62 

suite of chemicals known to be drivers of AMR such as antibiotics and metals 63 

(Holzel et al., 2012; Zhao et al., 2010). Although significant effects on the soil 64 

resistome following fertilization have been found, the risk of soil ARGs under 65 

elevated CO2 levels remains largely unclear (Li et al., 2022; Rzymski et al., 66 

2024). 67 

By 2100, the rising carbon dioxide (CO2) level will reach between 430 ppm 68 

and 1000 ppm (IPCC, 2021). Elevated CO2 (eCO2) can promote carbon flow, 69 

alter soil biophysical properties and microbial communities, the combined 70 

effect of which has the potential to alter the environmental risks of soil 71 

resistome (Liao et al., 2019a; Liao et al., 2019b; Qiu et al., 2023a; Qiu et al., 72 

2023b). It has been found that eCO2 may impact the spread of ARGs through 73 

influencing cell contact and plasmid transfer (Liao et al., 2019b). However, 74 

several researches into the effects of eCO2 on soil ARGs have reported 75 

disparate observations. For example, eCO2 has no obvious effect on the total 76 
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relative abundance of efflux pumps genes (Qiu et al., 2023a), whereas 77 

decreased the relative abundance of aminoglycoside resistance genes, 78 

tetracycline resistance genes, sulfonamide resistance genes in agricultural soil 79 

(Xu et al., 2021; Xu et al., 2023), while increased that of multidrug ARGs 80 

(Wang et al., 2023). These may associate with the concentration and types of 81 

antibiotics, the fertilizer used, heavy metal concentration and properties of 82 

agricultural soil. Therefore, the effect of increasing CO2 levels on the soil 83 

antibiotic resistome is yet to be comprehensively investigated. Notably, not all 84 

ARGs pose a serious threat to public health (Zhang et al., 2021), more 85 

attention is needed to focus on the “high-risk” ARGs that with high mobility and 86 

enriched in human-associated environments under rising CO2 levels (Zhu et 87 

al., 2018). 88 

Sulfonamides are broad-band bacteriostatic antibiotics that act against the 89 

reproduction of bacteria by inhibiting bacterial folate synthesis, and are utilized 90 

to protect animal health worldwide (Li et al., 2021; Schauss et al., 2009). 91 

Previous studies have reported that sulfonamides are widely detected in the 92 

animal residues, and pose a great selection pressure on soil microbes, 93 

enriched the diversity and abundance of soil ARGs (Chen et al., 2023; Wohde 94 

et al., 2016; Wu et al., 2023). Therefore，the soil ARGs would be exposed to 95 

the combined pressure of increasing CO2 levels and sulfonamide residues 96 

under future. Nevertheless, the effects of eCO2 on the soil antibiotic resistance 97 

in soil amended with sulfamethazine via chemical-organic fertilization, 98 

especially using realistic agricultural exposure scenarios are poorly explored, 99 

which hampers our understanding on the evolution and development of 100 

antibiotic resistance under climate change conditions. Here, a free-air CO2 101 

enrichment (FACE) platform was carried out in the paddy field. Using 102 

high-throughput qPCR (HT-qPCR) with 296 primer sets and illumina 103 

sequencing (Zhu et al., 2013), we aimed to determine whether eCO2 could 104 
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change the effect of sulfamethazine on the antibiotic resistome of soil 105 

amended with chemical-organic fertilizer.  106 

2. Materials and methods 107 

2.1. Materials 108 

Organic fertilizer was pig manure compost collected from an organic 109 

fertilizer company. It contained an average N of 1.20%, P of 2.61% (as a 110 

weight % P2O5) and K of 1.15% (as a weight % K2O), Cu of 310.5 mg kg-1, Pb 111 

of 35.6 mg kg-1, Zn of 2053.5 mg kg-1, Ni of 21.9 mg kg-1 and pH of 8.1. The soil 112 

used for the experiment was classified as Shajiang Aquic Cambosols (Zhu et 113 

al., 2016) and obtained from adjacent farmland (top 20 cm). The 114 

characteristics of soil were as follows: sand, 57.8%; silt, 28.5%; clay, 13.7%; 115 

pH, 6.4; total nitrogen content, 1.11 g kg−1; organic matter content, 18.6 g kg-1. 116 

The concentrations of antibiotics including SMZ, sulfadiazine, sulfamerazine, 117 

sulfamethoxazole, sulfamethoxypyridazine, ciprofloxacin, enrofloxacin and 118 

ofloxacin in organic fertilizer and soil were below the routine limit of 119 

quantification by 0.67 μg kg-1and 0.08 μg kg-1, respectively. Organic fertilizer 120 

was amended with sulfamethazine (C12H14N4O2S, CAS 57-68-1, purity ≥ 98%) 121 

in this study.  122 

2.2. FACE platform 123 

The FACE platform was established in the Village of Zongcun, Jiangsu 124 

Province, China (119°42′0″ E, 32°35′5″ N), a typical Chinese rice production 125 

area with an average temperature of 24.9 °C during the rice season. Previous 126 

study has provided a detailed description of the FACE platform (Zhu et al., 127 

2015). It comprised three ambient CO2 plots (aCO2, ~370 ppm) and three 128 

FACE plots (eCO2, aCO2 + 200 ppm). An octagonal ring tube (with a diameter 129 

of 12.5 m) was placed around each FACE plot and released pure CO2 gas 130 

above the rice canopy during its growth. The CO2 level of FACE plot was 131 

managed by a computer program using an algorithm based on wind direction 132 

https://www.aladdin-e.com/zh_cn/catalogsearch/result/?q=57-68-1
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and speed. Each ambient plot was distanced 90 m away from FACE plot and 133 

received no additional CO2 (Zhu et al., 2015).  134 

2.3. Experiment design 135 

For each CO2 concentration, two treatments were set, which included 136 

COL and COH: soils amended with SMZ via chemical-organic fertilizer. SMZ in 137 

methyl alcohol was added to organic fertilizer. After methyl alcohol evaporated, 138 

the spiked organic fertilizers were gradually mixed thoroughly with soils, 139 

leading to a final soil concentration of 0.1 mg kg-1 (COL) and 1 mg kg-1 (COH) 140 

dry weight. The concentrations of SMZ used in this experiment are within the 141 

same order of magnitude of sulfonamides concentration reported in soil from 142 

agricultural fields and animal feedlots (Ji et al., 2012). Each treatment had four 143 

replicates and each pot was filled with 4 kg soil. Rice plants (Oryza sativa L. cv. 144 

Wuyunjing 23) were manually transplanted into two hills (two plants per hill) in 145 

each pot on 22 June and harvested on 30 October. The water management 146 

was as follows: soils in pots were submerged in water from June 19th to July 147 

21st; manually wet-dry cycles from July 22nd to August 10th; then submerged 148 

again and no irrigation after October 20th. Organic fertilizer was applied before 149 

transplanting, chemical fertilizer was applied at the tillering and heading stages. 150 

The application of chemical fertilizer with organic fertilizer was based on 151 

studies that demonstrated this practice could maintain or even improve the 152 

crop yield (Bi et al., 2009; Singh et al., 2016). Further information about 153 

nitrogen treatments is detailed in Table S1. 154 

2.4. Soil sampling, physiochemical parameters analysis and DNA 155 

extraction 156 

After harvest, rhizosphere soil samples were collected by mixing 157 

subsamples from five different points, sealed in sterile plastic bags and 158 

transported to the lab on ice. Soil SMZ concentrations were analysed by liquid 159 

chromatography-tandem mass spectrometry (Xu et al., 2021). The average 160 
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SMZ concentrations of COL and COH soils were 10.6-12.7 μg kg-1 and 161 

106.5-114.6 μg kg-1, respectively (Table S2). Soil heavy metal contents were 162 

determined by atomic absorption spectrometry. Total phosphorus and nitrogen 163 

contents were analysed according to previously reported methods (Bremner, 164 

2009; Han et al., 2012).  165 

Soil DNA was extracted with a Fast DNA Spin Kit (MP Biomedicals, CA) 166 

following the manufacturer instructions. A Nano Drop ND-1000 167 

spectrophotometric (Wilmington, DE) was used to measure the DNA 168 

concentration and quality. Soil DNA was stored at −80°C for Illumina 169 

sequencing analysis and HT PCR. 170 

2.5. Soil bacterial communities analysis 171 

To assess the soil bacterial communities in different treatments, the 16S 172 

V4-V5 region was amplified using the primer pair F515/R907 (Chen et al., 173 

2017). All samples were run on a Miseq 300 instrument with Illumina MiSeq Kit 174 

v2 by Majorbio (Shanghai, China). The high-quality sequencing data was 175 

analyzed by Qiime version 1.9.1 (Caporaso et al., 2010). The UPARSE was 176 

used to cluster Operational taxonomic units (OTUs) at 97% similarity level 177 

(Edgar, 2010). The alpha-diversity was performed based on the OTU table 178 

with a random sampling depth of minimal sequencing number among samples 179 

(Yuan et al., 2016). Difference in abundant bacterial taxa among treatments 180 

was determined using the linear discriminant analysis effect size (LEfSe) 181 

method (Segata et al., 2011). All raw sequences sets have been deposited into 182 

the NCBI's Sequence Read Archive under project accession number 183 

PRJNA758632 (SRR15686232-235, 237-246, 248-257, 259-262).  184 

2.6. Soil ARGs analysis 185 

To determine the ARGs profile in soil, HT-qPCR was performed using the 186 

SmartChip Real-time PCR system (Warfergen Inc. USA) as described 187 

previously (Su et al., 2015; Zhu et al., 2013). The 296 (285 ARGs, 10 MGEs 188 

https://dataview.ncbi.nlm.nih.gov/object/SRR15686264
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and one 16S rRNA gene) primers and specfiec operation steps used for this 189 

study were refer to Xiang et al.(2019). ARG copies/16S rRNA gene copies 190 

were used as the normalized abundance of ARGs. The risk rank of ARGs were 191 

evaluated according to human-associated-enrichment, gene mobility, and host 192 

pathogenicity (Zhang et al., 2021). Based on the study, the high and low risk 193 

ARGs were defined as Rank Ⅰ (21) and Ⅱ (3), Rank Ⅲ (10) and Ⅳ (26), 194 

respectively. The detail information of ARGs risk levels was shown in Table 195 

S3. 196 

2.7. Statistical analysis 197 

Data averages and analysis were obtained from IBM SPSS Statistics 26. 198 

One-way ANOVA and T-test were employed to analyze treatment differences. 199 

Spearman’s correlation analysis was calculated using SPSS software and 200 

displayed by using the pheatmap package within R 3.5.2. Network analysis 201 

was performed using the psych package within R to investigate co-occurrence 202 

patterns between bacterial taxa and ARGs. Gephi 0.9.2 was then employed to 203 

visualise the results (Bastian et al., 2009). 204 

3. Results and discussion 205 

3.1 Diversity of soil antibiotic resistance genes 206 

An average total of 65-77 genes were detected in all samples (Table 1). 207 

The main resistance mechanisms of these ARGs were efflux pump (42%) and 208 

antibiotic deactivation (39%) (Fig. S1). Under aCO2, compared with that in 209 

COL, the number of detected high risk ARGs increased in COH, with an 210 

increase in the number of Rank Ⅰ ARGs. Comparably, the number of detected 211 

high risk ARGs and Rank Ⅰ ARGs have little change between COL and COH 212 

groups under eCO2. Our results indicated that eCO2 potentially alleviated the 213 

stimulation effect of SMZ concentration on the diversity of high risk ARGs.  214 

3.2 Abundance of soil antibiotic resistance genes 215 

The normalized abundance of ARGs ranged from 0.012 to 0.015 copies 216 
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per 16S rRNA (Fig. 1). Under aCO2, the total ARGs abundance in COH was 217 

higher than that in COL. Comparably, the total ARGs abundance has little 218 

change between COL and COH groups under eCO2. For ARGs risk grades, 219 

high risk ARGs abundances were 0.0016-0.0020 copies per 16S rRNA, low 220 

risk ARGs abundances ranged from 0.004 to 0.006 copies per 16S rRNA and 221 

unassessed ARGs abundances ranged from 0.005 to 0.008 copies per 16S 222 

rRNA (Fig. 1C and Fig. 1D). Under aCO2, COH showed higher abundance of 223 

low risk ARGs and unassessed ARGs than those in COL. Comparatively, no 224 

significant difference was found between COH and COL under eCO2. These 225 

results indicated that the SMZ promoted the abundance of ARGs, while eCO2 226 

potentially mitigated the stimulation effect of SMZ concentration on the ARGs 227 

abundance in soil amended with chemical-organic fertilizer. 228 

The ARG subtypes with statistically significant difference between 229 

treatments were listed in Table S4. Under aCO2, the normalized abundances of 230 

ten ARG subtypes and two MGE subtype (intl-1LC, tnpA-05) in COH were 231 

significantly higher than those in COL (Table S4 and Fig. 2). Comparatively, 232 

under eCO2, COH changed the abundance of four ARG subtypes compared to 233 

COL. Comparing treatments under aCO2 with that under eCO2, the eCO2 234 

decreased the normalized abundance of spcN, ermA, olec, oprD, sulA-olP, 235 

tetB, tetT and vanXD in COL. Besides, eCO2 partially alleviated the enrichment 236 

of five ARG subtypes (ampC, pikR2, oprD, ttgB, pncA) caused by the 237 

application of SMZ at 1 mg kg-1, but it increased the normalized abundance of 238 

cphA and tetPB. 239 

A total of 3-6 MGEs were detected for each sample, with the normalized 240 

abundance of MGEs varied from 0.004 to 0.006 copies per 16S rRNA. Under 241 

aCO2, the abundances of integrase gene in COH were significantly higher than 242 

those in COL (Fig. 1B). Comparatively, under eCO2, COH showed little effect 243 

on integrase genes compared to COL.  244 
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Overall, the application of SMZ at 1 mg kg-1 via chemical-organic fertilizer 245 

significantly increased not only the diversity of soil high risk ARGs but also the 246 

relative abundance of low risk ARGs and unassessed ARGs, compared to 247 

SMZ at 0.1 mg kg-1 via same fertilizer. The increased ARGs possibly caused 248 

by the susceptible microorganisms developing resistance via the horizontal 249 

transfer of genetic material that encodes resistance (Alt et al., 2021; Chen et 250 

al., 2017; Ghosh and LaPara, 2007). However, eCO2 alleviated the stimulation 251 

effect of SMZ concentration on diversity of Rank Ⅰ ARGs, abundance of low 252 

risk ARGs and unassessed ARGs. Rank Ⅰ ARGs represent genes contributing 253 

to new or multidrug resistance in pathogens at present (Zhao et al., 2023). 254 

These indicated that eCO2 might partly alleviate the stimulation effect of SMZ 255 

concentration on antibiotic resistance crisis in soil amended with 256 

chemical-organic fertilizer. The impact of eCO2 on ARGs abundance under 257 

natural conditions should be explored in the future works. 258 

3.3 Compositions and co-occurrence networks of soil bacteria 259 

The effect of SMZ concentration was not statistically significant with 260 

respect to the bacterial alpha-diversity index under both aCO2 and eCO2 (Fig. 261 

3A). Meanwhile, eCO2 had an insignificant effect on the dominant bacteria (> 262 

10%) of soil amended with SMZ via chemical-organic fertilizer (Fig. 3B). This 263 

may be related to the fact that soil respiration constantly kept soil [CO2] higher 264 

than aCO2, and the direct effect of eCO2 on soil dominant bacteria may be 265 

negligible (Qiu et al., 2023b). LEfSe was performed to find robustly differential 266 

species (biomarkers) between treatments (Fig. 3C). Results showed that 267 

COH.A resulted in higher abundance of o_Micrococcales, o_Fusobacteriales, 268 

f_Sandaracinaceae, c_Fusobacteriia and g_Lacunisphaera. This may be 269 

related to the fact that some potential ARGs hosts were affiliated with order 270 

Fusobacteriales (Jia et al., 2020). Meanwhile, COH.F led to the higher 271 

abundance of f_Kineosporiaceae, f_Intrasporangiaceae, f_Paludibacteraceae, 272 
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f_Veillonellaceae, f_Xanthobacteraceae, f_Magnetospirillaceae, 273 

f_Geodermatophilaceae and g_Roseimarinus. Similarly, Luo et al. (2021) also 274 

observed that eCO2 significantly increased the abundance of 275 

Xanthobacteraceae in soil. The effect of eCO2 on soil bacteria may be 276 

influenced by the exposure time of eCO2, eCO2 concentration, cultivated 277 

plants and soil properties (Qiu et al., 2023b). Our results indicated that eCO2 278 

does not have a major impact on the main phylum composition of bacterial 279 

communities, although eCO2 can increase carbon source and the abundance 280 

of specific bacteria (Qiu et al., 2023b). 281 

Furthermore, responses of bacterial co-occurrence patterns to eCO2 was 282 

shown in Fig. 3D and Fig. 3E. The eCO2 network contained fewer 283 

total/negative edges than did the aCO2 network (Table S5). The edges 284 

represent the strong and significant correlations between two functional 285 

species (nodes) (Newman, 2006; Yu et al., 2018). Less edges led by eCO2 286 

suggested eCO2 might weak the interactions among species (Newman, 2006; 287 

Xu et al., 2019). Additionally, eCO2 decreased graph density and average 288 

degree (Table S5). The differences in the topological properties of bacterial 289 

networks between eCO2 and aCO2 might affect soil antibiotic resistance (Xiang 290 

et al., 2023). 291 

3.4 Multiple factors shaping antibiotic resistome 292 

The spread of ARGs was mainly through the propagation of their host 293 

cells (vertical transfer) or horizontal transfer mediated by MGEs (Yan et al., 294 

2023). Network analysis was used to explore the interaction profile between 295 

microbial taxa and ARGs, and track potential ARGs hosts (Fig. 4) (Chen et al., 296 

2017; Li et al., 2015). A total of 47 microbial biomarkers were significantly 297 

correlated with 22 changed ARG subtypes (|r| > 0.6, p < 0.05). For example, 298 

o_Fusobacteriales was positively correlated with lnuC, erm(34) and pncA (Fig. 299 

4), which were significantly enriched in COH.A (Fig. 2 and 3C). The 300 
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g_Lacunisphaera was positively correlated with marR-01，aacC and erm(34). 301 

Besides, f_Peptostreptococcaceae and f_Saprospiraceae, whose abundances 302 

were higher in COL under eCO2 than that under aCO2 (Fig. 3C), were 303 

positively correlated with aadD (Fig. 4). Previous researches have reported 304 

that o_Fusobacteriales and f_Saprospiraceae were the potential ARGs hosts 305 

(Deng et al., 2023; Jia et al., 2020). These results suggested eCO2 may 306 

change the spread of ARGs through affecting the potential source bacteria for 307 

ARGs, such as f_Peptostreptococcaceae and f_Saprospiraceae (Peng et al., 308 

2016). The Saprospiraceae had the potential metabolic capacity for complex 309 

molecular degradation, nitrogen removal, and storage of intracellular polymers, 310 

which could facilitate pollutant removal and bacterial growth (Jin et al., 2024; 311 

Kondrotaite et al., 2022). 312 

Spearman correlation analysis was used to explore relationships between 313 

ARGs and environment variables. Results showed that the SMZ had strong 314 

positive correlation with ARGs and integrase (Fig. S2). Yan et al. (2023) 315 

observed that the SMZ can promote the horizontal transfer of ARGs through 316 

improving cell membrane permeability and regulating the expression of 317 

oxidative stress, the SOS reaction, and conjugation transfer related genes. 318 

Moreover, SMZ was significantly positively correlated with blaSHV, oprD, 319 

erm(34), lnuc, marR-01, pikR2, aacC and negatively correlated with ermA and 320 

blaTEM (Fig. S3). Ohore et al. (2020) also found blaTEM was negatively 321 

related with sulfonamide. Besides, SMZ could favor the selection of 322 

non-corresponding ARGs. These may associate with the roles of MGEs (Wang 323 

et al., 2024). One-variable linear regression was used to determine the 324 

relationship between the abundance of MGEs and ARGs (including total ARGs, 325 

high risk ARGs, low risk ARGs and unassessed ARGs) (Fig. 5). There were 326 

linear positive relationships among the abundance of integrase gene and total 327 

ARGs (R2 = 0.72, p = 0.0016), low risk ARGs (R2 = 0.81, p < 0.001) and 328 
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unassessed (R2 = 0.56, p = 0.023). Horizontal gene transfer constitutes an 329 

important component in the ARGs transmission (Sun et al., 2022), which 330 

occurs through conjugation, transformation, transduction and extracellular 331 

vesicles (Martínez, 2008; Qin et al., 2022). The eCO2 could alter conjugative 332 

and transformation transfer frequency of ARGs within genera through 333 

influencing the cell-to-cell contact, mobilization, channel transfer of plasmid 334 

and power for DNA uptake (Liao et al., 2019a; Liao et al., 2019b). Our results 335 

highlighted the importance of horizontal gene transfer mediated by integrase 336 

gene in the spread of ARGs under elevated CO2 concentration. Further efforts 337 

using various metagenomics surveys will provide a deep understanding of the 338 

mechanisms underlying ARGs transmission under the complex agricultural 339 

system.  340 

4 Conclusions 341 

In summary, this study revealed that the eCO2 changed the response of 342 

the soil antibiotic resistome to the different concentration of SMZ in soils 343 

amended with chemical-organic fertilizer. SMZ at 1 mg kg-1 enhanced the 344 

abundance of soil ARGs compared to that with SMZ at 0.1 mg kg-1. However, 345 

eCO2 alleviated the impact of SMZ at 1 mg kg-1 on the diversity of high risk 346 

ARGs, relative abundance of total ARGs, low risk ARGs and unassessed 347 

ARGs. Changes of certain bacterial biomarkers and horizontal gene transfer 348 

mediated by the integrase gene were linked to the altered response of ARGs 349 

abundance to eCO2 in soils amended with SMZ via chemical-organic fertilizer. 350 

The above results highlight that the risk of ARGs caused by sulfamethazine in 351 

chemical-organic fertilizer soil could be mitigated to some extent under 352 

elevated CO2 level, but sustainable strategies are needed to mitigate the 353 

spread of ARGs, particularly high risk ARGs. 354 
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 537 

Figure captions 538 

Fig. 1. The relative abundance of total ARG (A), integrase and transposases 539 

(B), different risk grades of ARGs in soils under ambient CO2 (C) and elevated 540 

CO2 concentration (ambient + 200 ppm) (D). COL and COH, soils amended 541 

with sulfamethazine (0.1 mg kg-1 or 1 mg kg-1) via chemical-organic fertilization. 542 

Different letters above the bars indicate a significant difference at p < 0.05 543 

among treatments.  544 

Fig. 2. Heatmap of the normalized abundance of ARGs in soils under ambient 545 

CO2 (A) and elevated CO2 concentration (F, ambient + 200 ppm); COL and 546 

COH, soils amended with sulfamethazine (0.1 mg kg-1 or 1 mg kg-1) via 547 

chemical-organic fertilization. 548 

Fig. 3. Changes in bacterial communities of soils under ambient CO2 and 549 

elevated CO2 concentration (F, ambient + 200 ppm). (A) Alpha diversity 550 

estimated by Shannon index; (B) phylum distribution of bacterial communities 551 

(C) LEfSe analysis showing differentially abundant bacterial taxa among 552 
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treatments, based on p < 0.05 and linear discriminant analysis score > 2.5. 553 

The networks co-occurrence analysis of OTUs with abundance > 0.1% under 554 

(D) ambient or (E) elevated CO2 concentration. Red and blue lines indicate 555 

positive and negative correlations, respectively. Connections represented 556 

strongly significantly (p < 0.01) and (|r| > 0.8) correlations. The size of each 557 

node is proportional to number of connections. COL and COH, soils amended 558 

with sulfamethazine (0.1 mg kg-1 or 1 mg kg-1) via chemical-organic 559 

fertilization.  560 

Fig. 4. The networks co-occurrence analysis of significantly changed ARGs 561 

with soil bacteria biomarkers. Red and blue lines indicate positive and negative 562 

correlations, respectively. Connections represented strongly significantly (p < 563 

0.05) and (|r| > 0.6) correlations. The size of each node is proportional to 564 

number of connections. 565 

Fig. 5. One-variable linear regression showing the relationship between the 566 

relative abundance of MGEs and ARGs (including total ARGs, high risk ARGs, 567 

low risk ARGs and unassessed ARGs).568 
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Table 1 The number of different risk grades of ARGs and MGEs detected in 569 

soils amended with sulfamethazine (COL, 0.1 mg kg-1; COH, 1 mg kg-1) via 570 

chemical-organic fertilization under different CO2 levels. 571 

 Ambient CO2 level Elevated CO2 level 

 COL COH COL COH 

Rank Ⅰ ARGs 14 17 14 13 

Rank Ⅱ ARGs 2 2 2 3 

Rank Ⅲ ARGs 8 9 7 9 

Rank Ⅳ ARGs 20 17 17 19 

Unassessed ARGs 27 32 25 30 

High risk ARGs 16 19 16 16 

Low risk ARGs 28 26 24 28 

Total ARGs NO. 71 77 65 74 

Integrase 1 1 1 1 

Transposase 3 3 4 2 

Total MGEs NO. 4 4 5 3 

 572 


